xref: /openbmc/linux/tools/perf/util/symbol-elf.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <fcntl.h>
3 #include <stdio.h>
4 #include <errno.h>
5 #include <string.h>
6 #include <unistd.h>
7 #include <inttypes.h>
8 
9 #include "map.h"
10 #include "map_groups.h"
11 #include "symbol.h"
12 #include "demangle-java.h"
13 #include "demangle-rust.h"
14 #include "machine.h"
15 #include "vdso.h"
16 #include "debug.h"
17 #include "sane_ctype.h"
18 #include <symbol/kallsyms.h>
19 
20 #ifndef EM_AARCH64
21 #define EM_AARCH64	183  /* ARM 64 bit */
22 #endif
23 
24 #ifndef ELF32_ST_VISIBILITY
25 #define ELF32_ST_VISIBILITY(o)	((o) & 0x03)
26 #endif
27 
28 /* For ELF64 the definitions are the same.  */
29 #ifndef ELF64_ST_VISIBILITY
30 #define ELF64_ST_VISIBILITY(o)	ELF32_ST_VISIBILITY (o)
31 #endif
32 
33 /* How to extract information held in the st_other field.  */
34 #ifndef GELF_ST_VISIBILITY
35 #define GELF_ST_VISIBILITY(val)	ELF64_ST_VISIBILITY (val)
36 #endif
37 
38 typedef Elf64_Nhdr GElf_Nhdr;
39 
40 #ifdef HAVE_CPLUS_DEMANGLE_SUPPORT
41 extern char *cplus_demangle(const char *, int);
42 
43 static inline char *bfd_demangle(void __maybe_unused *v, const char *c, int i)
44 {
45 	return cplus_demangle(c, i);
46 }
47 #else
48 #ifdef NO_DEMANGLE
49 static inline char *bfd_demangle(void __maybe_unused *v,
50 				 const char __maybe_unused *c,
51 				 int __maybe_unused i)
52 {
53 	return NULL;
54 }
55 #else
56 #define PACKAGE 'perf'
57 #include <bfd.h>
58 #endif
59 #endif
60 
61 #ifndef HAVE_ELF_GETPHDRNUM_SUPPORT
62 static int elf_getphdrnum(Elf *elf, size_t *dst)
63 {
64 	GElf_Ehdr gehdr;
65 	GElf_Ehdr *ehdr;
66 
67 	ehdr = gelf_getehdr(elf, &gehdr);
68 	if (!ehdr)
69 		return -1;
70 
71 	*dst = ehdr->e_phnum;
72 
73 	return 0;
74 }
75 #endif
76 
77 #ifndef HAVE_ELF_GETSHDRSTRNDX_SUPPORT
78 static int elf_getshdrstrndx(Elf *elf __maybe_unused, size_t *dst __maybe_unused)
79 {
80 	pr_err("%s: update your libelf to > 0.140, this one lacks elf_getshdrstrndx().\n", __func__);
81 	return -1;
82 }
83 #endif
84 
85 #ifndef NT_GNU_BUILD_ID
86 #define NT_GNU_BUILD_ID 3
87 #endif
88 
89 /**
90  * elf_symtab__for_each_symbol - iterate thru all the symbols
91  *
92  * @syms: struct elf_symtab instance to iterate
93  * @idx: uint32_t idx
94  * @sym: GElf_Sym iterator
95  */
96 #define elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) \
97 	for (idx = 0, gelf_getsym(syms, idx, &sym);\
98 	     idx < nr_syms; \
99 	     idx++, gelf_getsym(syms, idx, &sym))
100 
101 static inline uint8_t elf_sym__type(const GElf_Sym *sym)
102 {
103 	return GELF_ST_TYPE(sym->st_info);
104 }
105 
106 static inline uint8_t elf_sym__visibility(const GElf_Sym *sym)
107 {
108 	return GELF_ST_VISIBILITY(sym->st_other);
109 }
110 
111 #ifndef STT_GNU_IFUNC
112 #define STT_GNU_IFUNC 10
113 #endif
114 
115 static inline int elf_sym__is_function(const GElf_Sym *sym)
116 {
117 	return (elf_sym__type(sym) == STT_FUNC ||
118 		elf_sym__type(sym) == STT_GNU_IFUNC) &&
119 	       sym->st_name != 0 &&
120 	       sym->st_shndx != SHN_UNDEF;
121 }
122 
123 static inline bool elf_sym__is_object(const GElf_Sym *sym)
124 {
125 	return elf_sym__type(sym) == STT_OBJECT &&
126 		sym->st_name != 0 &&
127 		sym->st_shndx != SHN_UNDEF;
128 }
129 
130 static inline int elf_sym__is_label(const GElf_Sym *sym)
131 {
132 	return elf_sym__type(sym) == STT_NOTYPE &&
133 		sym->st_name != 0 &&
134 		sym->st_shndx != SHN_UNDEF &&
135 		sym->st_shndx != SHN_ABS &&
136 		elf_sym__visibility(sym) != STV_HIDDEN &&
137 		elf_sym__visibility(sym) != STV_INTERNAL;
138 }
139 
140 static bool elf_sym__filter(GElf_Sym *sym)
141 {
142 	return elf_sym__is_function(sym) || elf_sym__is_object(sym);
143 }
144 
145 static inline const char *elf_sym__name(const GElf_Sym *sym,
146 					const Elf_Data *symstrs)
147 {
148 	return symstrs->d_buf + sym->st_name;
149 }
150 
151 static inline const char *elf_sec__name(const GElf_Shdr *shdr,
152 					const Elf_Data *secstrs)
153 {
154 	return secstrs->d_buf + shdr->sh_name;
155 }
156 
157 static inline int elf_sec__is_text(const GElf_Shdr *shdr,
158 					const Elf_Data *secstrs)
159 {
160 	return strstr(elf_sec__name(shdr, secstrs), "text") != NULL;
161 }
162 
163 static inline bool elf_sec__is_data(const GElf_Shdr *shdr,
164 				    const Elf_Data *secstrs)
165 {
166 	return strstr(elf_sec__name(shdr, secstrs), "data") != NULL;
167 }
168 
169 static bool elf_sec__filter(GElf_Shdr *shdr, Elf_Data *secstrs)
170 {
171 	return elf_sec__is_text(shdr, secstrs) ||
172 	       elf_sec__is_data(shdr, secstrs);
173 }
174 
175 static size_t elf_addr_to_index(Elf *elf, GElf_Addr addr)
176 {
177 	Elf_Scn *sec = NULL;
178 	GElf_Shdr shdr;
179 	size_t cnt = 1;
180 
181 	while ((sec = elf_nextscn(elf, sec)) != NULL) {
182 		gelf_getshdr(sec, &shdr);
183 
184 		if ((addr >= shdr.sh_addr) &&
185 		    (addr < (shdr.sh_addr + shdr.sh_size)))
186 			return cnt;
187 
188 		++cnt;
189 	}
190 
191 	return -1;
192 }
193 
194 Elf_Scn *elf_section_by_name(Elf *elf, GElf_Ehdr *ep,
195 			     GElf_Shdr *shp, const char *name, size_t *idx)
196 {
197 	Elf_Scn *sec = NULL;
198 	size_t cnt = 1;
199 
200 	/* Elf is corrupted/truncated, avoid calling elf_strptr. */
201 	if (!elf_rawdata(elf_getscn(elf, ep->e_shstrndx), NULL))
202 		return NULL;
203 
204 	while ((sec = elf_nextscn(elf, sec)) != NULL) {
205 		char *str;
206 
207 		gelf_getshdr(sec, shp);
208 		str = elf_strptr(elf, ep->e_shstrndx, shp->sh_name);
209 		if (str && !strcmp(name, str)) {
210 			if (idx)
211 				*idx = cnt;
212 			return sec;
213 		}
214 		++cnt;
215 	}
216 
217 	return NULL;
218 }
219 
220 static bool want_demangle(bool is_kernel_sym)
221 {
222 	return is_kernel_sym ? symbol_conf.demangle_kernel : symbol_conf.demangle;
223 }
224 
225 static char *demangle_sym(struct dso *dso, int kmodule, const char *elf_name)
226 {
227 	int demangle_flags = verbose > 0 ? (DMGL_PARAMS | DMGL_ANSI) : DMGL_NO_OPTS;
228 	char *demangled = NULL;
229 
230 	/*
231 	 * We need to figure out if the object was created from C++ sources
232 	 * DWARF DW_compile_unit has this, but we don't always have access
233 	 * to it...
234 	 */
235 	if (!want_demangle(dso->kernel || kmodule))
236 	    return demangled;
237 
238 	demangled = bfd_demangle(NULL, elf_name, demangle_flags);
239 	if (demangled == NULL)
240 		demangled = java_demangle_sym(elf_name, JAVA_DEMANGLE_NORET);
241 	else if (rust_is_mangled(demangled))
242 		/*
243 		    * Input to Rust demangling is the BFD-demangled
244 		    * name which it Rust-demangles in place.
245 		    */
246 		rust_demangle_sym(demangled);
247 
248 	return demangled;
249 }
250 
251 #define elf_section__for_each_rel(reldata, pos, pos_mem, idx, nr_entries) \
252 	for (idx = 0, pos = gelf_getrel(reldata, 0, &pos_mem); \
253 	     idx < nr_entries; \
254 	     ++idx, pos = gelf_getrel(reldata, idx, &pos_mem))
255 
256 #define elf_section__for_each_rela(reldata, pos, pos_mem, idx, nr_entries) \
257 	for (idx = 0, pos = gelf_getrela(reldata, 0, &pos_mem); \
258 	     idx < nr_entries; \
259 	     ++idx, pos = gelf_getrela(reldata, idx, &pos_mem))
260 
261 /*
262  * We need to check if we have a .dynsym, so that we can handle the
263  * .plt, synthesizing its symbols, that aren't on the symtabs (be it
264  * .dynsym or .symtab).
265  * And always look at the original dso, not at debuginfo packages, that
266  * have the PLT data stripped out (shdr_rel_plt.sh_type == SHT_NOBITS).
267  */
268 int dso__synthesize_plt_symbols(struct dso *dso, struct symsrc *ss)
269 {
270 	uint32_t nr_rel_entries, idx;
271 	GElf_Sym sym;
272 	u64 plt_offset, plt_header_size, plt_entry_size;
273 	GElf_Shdr shdr_plt;
274 	struct symbol *f;
275 	GElf_Shdr shdr_rel_plt, shdr_dynsym;
276 	Elf_Data *reldata, *syms, *symstrs;
277 	Elf_Scn *scn_plt_rel, *scn_symstrs, *scn_dynsym;
278 	size_t dynsym_idx;
279 	GElf_Ehdr ehdr;
280 	char sympltname[1024];
281 	Elf *elf;
282 	int nr = 0, symidx, err = 0;
283 
284 	if (!ss->dynsym)
285 		return 0;
286 
287 	elf = ss->elf;
288 	ehdr = ss->ehdr;
289 
290 	scn_dynsym = ss->dynsym;
291 	shdr_dynsym = ss->dynshdr;
292 	dynsym_idx = ss->dynsym_idx;
293 
294 	if (scn_dynsym == NULL)
295 		goto out_elf_end;
296 
297 	scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt,
298 					  ".rela.plt", NULL);
299 	if (scn_plt_rel == NULL) {
300 		scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt,
301 						  ".rel.plt", NULL);
302 		if (scn_plt_rel == NULL)
303 			goto out_elf_end;
304 	}
305 
306 	err = -1;
307 
308 	if (shdr_rel_plt.sh_link != dynsym_idx)
309 		goto out_elf_end;
310 
311 	if (elf_section_by_name(elf, &ehdr, &shdr_plt, ".plt", NULL) == NULL)
312 		goto out_elf_end;
313 
314 	/*
315 	 * Fetch the relocation section to find the idxes to the GOT
316 	 * and the symbols in the .dynsym they refer to.
317 	 */
318 	reldata = elf_getdata(scn_plt_rel, NULL);
319 	if (reldata == NULL)
320 		goto out_elf_end;
321 
322 	syms = elf_getdata(scn_dynsym, NULL);
323 	if (syms == NULL)
324 		goto out_elf_end;
325 
326 	scn_symstrs = elf_getscn(elf, shdr_dynsym.sh_link);
327 	if (scn_symstrs == NULL)
328 		goto out_elf_end;
329 
330 	symstrs = elf_getdata(scn_symstrs, NULL);
331 	if (symstrs == NULL)
332 		goto out_elf_end;
333 
334 	if (symstrs->d_size == 0)
335 		goto out_elf_end;
336 
337 	nr_rel_entries = shdr_rel_plt.sh_size / shdr_rel_plt.sh_entsize;
338 	plt_offset = shdr_plt.sh_offset;
339 	switch (ehdr.e_machine) {
340 		case EM_ARM:
341 			plt_header_size = 20;
342 			plt_entry_size = 12;
343 			break;
344 
345 		case EM_AARCH64:
346 			plt_header_size = 32;
347 			plt_entry_size = 16;
348 			break;
349 
350 		case EM_SPARC:
351 			plt_header_size = 48;
352 			plt_entry_size = 12;
353 			break;
354 
355 		case EM_SPARCV9:
356 			plt_header_size = 128;
357 			plt_entry_size = 32;
358 			break;
359 
360 		default: /* FIXME: s390/alpha/mips/parisc/poperpc/sh/xtensa need to be checked */
361 			plt_header_size = shdr_plt.sh_entsize;
362 			plt_entry_size = shdr_plt.sh_entsize;
363 			break;
364 	}
365 	plt_offset += plt_header_size;
366 
367 	if (shdr_rel_plt.sh_type == SHT_RELA) {
368 		GElf_Rela pos_mem, *pos;
369 
370 		elf_section__for_each_rela(reldata, pos, pos_mem, idx,
371 					   nr_rel_entries) {
372 			const char *elf_name = NULL;
373 			char *demangled = NULL;
374 			symidx = GELF_R_SYM(pos->r_info);
375 			gelf_getsym(syms, symidx, &sym);
376 
377 			elf_name = elf_sym__name(&sym, symstrs);
378 			demangled = demangle_sym(dso, 0, elf_name);
379 			if (demangled != NULL)
380 				elf_name = demangled;
381 			snprintf(sympltname, sizeof(sympltname),
382 				 "%s@plt", elf_name);
383 			free(demangled);
384 
385 			f = symbol__new(plt_offset, plt_entry_size,
386 					STB_GLOBAL, STT_FUNC, sympltname);
387 			if (!f)
388 				goto out_elf_end;
389 
390 			plt_offset += plt_entry_size;
391 			symbols__insert(&dso->symbols, f);
392 			++nr;
393 		}
394 	} else if (shdr_rel_plt.sh_type == SHT_REL) {
395 		GElf_Rel pos_mem, *pos;
396 		elf_section__for_each_rel(reldata, pos, pos_mem, idx,
397 					  nr_rel_entries) {
398 			const char *elf_name = NULL;
399 			char *demangled = NULL;
400 			symidx = GELF_R_SYM(pos->r_info);
401 			gelf_getsym(syms, symidx, &sym);
402 
403 			elf_name = elf_sym__name(&sym, symstrs);
404 			demangled = demangle_sym(dso, 0, elf_name);
405 			if (demangled != NULL)
406 				elf_name = demangled;
407 			snprintf(sympltname, sizeof(sympltname),
408 				 "%s@plt", elf_name);
409 			free(demangled);
410 
411 			f = symbol__new(plt_offset, plt_entry_size,
412 					STB_GLOBAL, STT_FUNC, sympltname);
413 			if (!f)
414 				goto out_elf_end;
415 
416 			plt_offset += plt_entry_size;
417 			symbols__insert(&dso->symbols, f);
418 			++nr;
419 		}
420 	}
421 
422 	err = 0;
423 out_elf_end:
424 	if (err == 0)
425 		return nr;
426 	pr_debug("%s: problems reading %s PLT info.\n",
427 		 __func__, dso->long_name);
428 	return 0;
429 }
430 
431 char *dso__demangle_sym(struct dso *dso, int kmodule, const char *elf_name)
432 {
433 	return demangle_sym(dso, kmodule, elf_name);
434 }
435 
436 /*
437  * Align offset to 4 bytes as needed for note name and descriptor data.
438  */
439 #define NOTE_ALIGN(n) (((n) + 3) & -4U)
440 
441 static int elf_read_build_id(Elf *elf, void *bf, size_t size)
442 {
443 	int err = -1;
444 	GElf_Ehdr ehdr;
445 	GElf_Shdr shdr;
446 	Elf_Data *data;
447 	Elf_Scn *sec;
448 	Elf_Kind ek;
449 	void *ptr;
450 
451 	if (size < BUILD_ID_SIZE)
452 		goto out;
453 
454 	ek = elf_kind(elf);
455 	if (ek != ELF_K_ELF)
456 		goto out;
457 
458 	if (gelf_getehdr(elf, &ehdr) == NULL) {
459 		pr_err("%s: cannot get elf header.\n", __func__);
460 		goto out;
461 	}
462 
463 	/*
464 	 * Check following sections for notes:
465 	 *   '.note.gnu.build-id'
466 	 *   '.notes'
467 	 *   '.note' (VDSO specific)
468 	 */
469 	do {
470 		sec = elf_section_by_name(elf, &ehdr, &shdr,
471 					  ".note.gnu.build-id", NULL);
472 		if (sec)
473 			break;
474 
475 		sec = elf_section_by_name(elf, &ehdr, &shdr,
476 					  ".notes", NULL);
477 		if (sec)
478 			break;
479 
480 		sec = elf_section_by_name(elf, &ehdr, &shdr,
481 					  ".note", NULL);
482 		if (sec)
483 			break;
484 
485 		return err;
486 
487 	} while (0);
488 
489 	data = elf_getdata(sec, NULL);
490 	if (data == NULL)
491 		goto out;
492 
493 	ptr = data->d_buf;
494 	while (ptr < (data->d_buf + data->d_size)) {
495 		GElf_Nhdr *nhdr = ptr;
496 		size_t namesz = NOTE_ALIGN(nhdr->n_namesz),
497 		       descsz = NOTE_ALIGN(nhdr->n_descsz);
498 		const char *name;
499 
500 		ptr += sizeof(*nhdr);
501 		name = ptr;
502 		ptr += namesz;
503 		if (nhdr->n_type == NT_GNU_BUILD_ID &&
504 		    nhdr->n_namesz == sizeof("GNU")) {
505 			if (memcmp(name, "GNU", sizeof("GNU")) == 0) {
506 				size_t sz = min(size, descsz);
507 				memcpy(bf, ptr, sz);
508 				memset(bf + sz, 0, size - sz);
509 				err = descsz;
510 				break;
511 			}
512 		}
513 		ptr += descsz;
514 	}
515 
516 out:
517 	return err;
518 }
519 
520 int filename__read_build_id(const char *filename, void *bf, size_t size)
521 {
522 	int fd, err = -1;
523 	Elf *elf;
524 
525 	if (size < BUILD_ID_SIZE)
526 		goto out;
527 
528 	fd = open(filename, O_RDONLY);
529 	if (fd < 0)
530 		goto out;
531 
532 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
533 	if (elf == NULL) {
534 		pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename);
535 		goto out_close;
536 	}
537 
538 	err = elf_read_build_id(elf, bf, size);
539 
540 	elf_end(elf);
541 out_close:
542 	close(fd);
543 out:
544 	return err;
545 }
546 
547 int sysfs__read_build_id(const char *filename, void *build_id, size_t size)
548 {
549 	int fd, err = -1;
550 
551 	if (size < BUILD_ID_SIZE)
552 		goto out;
553 
554 	fd = open(filename, O_RDONLY);
555 	if (fd < 0)
556 		goto out;
557 
558 	while (1) {
559 		char bf[BUFSIZ];
560 		GElf_Nhdr nhdr;
561 		size_t namesz, descsz;
562 
563 		if (read(fd, &nhdr, sizeof(nhdr)) != sizeof(nhdr))
564 			break;
565 
566 		namesz = NOTE_ALIGN(nhdr.n_namesz);
567 		descsz = NOTE_ALIGN(nhdr.n_descsz);
568 		if (nhdr.n_type == NT_GNU_BUILD_ID &&
569 		    nhdr.n_namesz == sizeof("GNU")) {
570 			if (read(fd, bf, namesz) != (ssize_t)namesz)
571 				break;
572 			if (memcmp(bf, "GNU", sizeof("GNU")) == 0) {
573 				size_t sz = min(descsz, size);
574 				if (read(fd, build_id, sz) == (ssize_t)sz) {
575 					memset(build_id + sz, 0, size - sz);
576 					err = 0;
577 					break;
578 				}
579 			} else if (read(fd, bf, descsz) != (ssize_t)descsz)
580 				break;
581 		} else {
582 			int n = namesz + descsz;
583 
584 			if (n > (int)sizeof(bf)) {
585 				n = sizeof(bf);
586 				pr_debug("%s: truncating reading of build id in sysfs file %s: n_namesz=%u, n_descsz=%u.\n",
587 					 __func__, filename, nhdr.n_namesz, nhdr.n_descsz);
588 			}
589 			if (read(fd, bf, n) != n)
590 				break;
591 		}
592 	}
593 	close(fd);
594 out:
595 	return err;
596 }
597 
598 int filename__read_debuglink(const char *filename, char *debuglink,
599 			     size_t size)
600 {
601 	int fd, err = -1;
602 	Elf *elf;
603 	GElf_Ehdr ehdr;
604 	GElf_Shdr shdr;
605 	Elf_Data *data;
606 	Elf_Scn *sec;
607 	Elf_Kind ek;
608 
609 	fd = open(filename, O_RDONLY);
610 	if (fd < 0)
611 		goto out;
612 
613 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
614 	if (elf == NULL) {
615 		pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename);
616 		goto out_close;
617 	}
618 
619 	ek = elf_kind(elf);
620 	if (ek != ELF_K_ELF)
621 		goto out_elf_end;
622 
623 	if (gelf_getehdr(elf, &ehdr) == NULL) {
624 		pr_err("%s: cannot get elf header.\n", __func__);
625 		goto out_elf_end;
626 	}
627 
628 	sec = elf_section_by_name(elf, &ehdr, &shdr,
629 				  ".gnu_debuglink", NULL);
630 	if (sec == NULL)
631 		goto out_elf_end;
632 
633 	data = elf_getdata(sec, NULL);
634 	if (data == NULL)
635 		goto out_elf_end;
636 
637 	/* the start of this section is a zero-terminated string */
638 	strncpy(debuglink, data->d_buf, size);
639 
640 	err = 0;
641 
642 out_elf_end:
643 	elf_end(elf);
644 out_close:
645 	close(fd);
646 out:
647 	return err;
648 }
649 
650 static int dso__swap_init(struct dso *dso, unsigned char eidata)
651 {
652 	static unsigned int const endian = 1;
653 
654 	dso->needs_swap = DSO_SWAP__NO;
655 
656 	switch (eidata) {
657 	case ELFDATA2LSB:
658 		/* We are big endian, DSO is little endian. */
659 		if (*(unsigned char const *)&endian != 1)
660 			dso->needs_swap = DSO_SWAP__YES;
661 		break;
662 
663 	case ELFDATA2MSB:
664 		/* We are little endian, DSO is big endian. */
665 		if (*(unsigned char const *)&endian != 0)
666 			dso->needs_swap = DSO_SWAP__YES;
667 		break;
668 
669 	default:
670 		pr_err("unrecognized DSO data encoding %d\n", eidata);
671 		return -EINVAL;
672 	}
673 
674 	return 0;
675 }
676 
677 bool symsrc__possibly_runtime(struct symsrc *ss)
678 {
679 	return ss->dynsym || ss->opdsec;
680 }
681 
682 bool symsrc__has_symtab(struct symsrc *ss)
683 {
684 	return ss->symtab != NULL;
685 }
686 
687 void symsrc__destroy(struct symsrc *ss)
688 {
689 	zfree(&ss->name);
690 	elf_end(ss->elf);
691 	close(ss->fd);
692 }
693 
694 bool __weak elf__needs_adjust_symbols(GElf_Ehdr ehdr)
695 {
696 	return ehdr.e_type == ET_EXEC || ehdr.e_type == ET_REL;
697 }
698 
699 int symsrc__init(struct symsrc *ss, struct dso *dso, const char *name,
700 		 enum dso_binary_type type)
701 {
702 	int err = -1;
703 	GElf_Ehdr ehdr;
704 	Elf *elf;
705 	int fd;
706 
707 	if (dso__needs_decompress(dso)) {
708 		fd = dso__decompress_kmodule_fd(dso, name);
709 		if (fd < 0)
710 			return -1;
711 
712 		type = dso->symtab_type;
713 	} else {
714 		fd = open(name, O_RDONLY);
715 		if (fd < 0) {
716 			dso->load_errno = errno;
717 			return -1;
718 		}
719 	}
720 
721 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
722 	if (elf == NULL) {
723 		pr_debug("%s: cannot read %s ELF file.\n", __func__, name);
724 		dso->load_errno = DSO_LOAD_ERRNO__INVALID_ELF;
725 		goto out_close;
726 	}
727 
728 	if (gelf_getehdr(elf, &ehdr) == NULL) {
729 		dso->load_errno = DSO_LOAD_ERRNO__INVALID_ELF;
730 		pr_debug("%s: cannot get elf header.\n", __func__);
731 		goto out_elf_end;
732 	}
733 
734 	if (dso__swap_init(dso, ehdr.e_ident[EI_DATA])) {
735 		dso->load_errno = DSO_LOAD_ERRNO__INTERNAL_ERROR;
736 		goto out_elf_end;
737 	}
738 
739 	/* Always reject images with a mismatched build-id: */
740 	if (dso->has_build_id && !symbol_conf.ignore_vmlinux_buildid) {
741 		u8 build_id[BUILD_ID_SIZE];
742 
743 		if (elf_read_build_id(elf, build_id, BUILD_ID_SIZE) < 0) {
744 			dso->load_errno = DSO_LOAD_ERRNO__CANNOT_READ_BUILDID;
745 			goto out_elf_end;
746 		}
747 
748 		if (!dso__build_id_equal(dso, build_id)) {
749 			pr_debug("%s: build id mismatch for %s.\n", __func__, name);
750 			dso->load_errno = DSO_LOAD_ERRNO__MISMATCHING_BUILDID;
751 			goto out_elf_end;
752 		}
753 	}
754 
755 	ss->is_64_bit = (gelf_getclass(elf) == ELFCLASS64);
756 
757 	ss->symtab = elf_section_by_name(elf, &ehdr, &ss->symshdr, ".symtab",
758 			NULL);
759 	if (ss->symshdr.sh_type != SHT_SYMTAB)
760 		ss->symtab = NULL;
761 
762 	ss->dynsym_idx = 0;
763 	ss->dynsym = elf_section_by_name(elf, &ehdr, &ss->dynshdr, ".dynsym",
764 			&ss->dynsym_idx);
765 	if (ss->dynshdr.sh_type != SHT_DYNSYM)
766 		ss->dynsym = NULL;
767 
768 	ss->opdidx = 0;
769 	ss->opdsec = elf_section_by_name(elf, &ehdr, &ss->opdshdr, ".opd",
770 			&ss->opdidx);
771 	if (ss->opdshdr.sh_type != SHT_PROGBITS)
772 		ss->opdsec = NULL;
773 
774 	if (dso->kernel == DSO_TYPE_USER)
775 		ss->adjust_symbols = true;
776 	else
777 		ss->adjust_symbols = elf__needs_adjust_symbols(ehdr);
778 
779 	ss->name   = strdup(name);
780 	if (!ss->name) {
781 		dso->load_errno = errno;
782 		goto out_elf_end;
783 	}
784 
785 	ss->elf    = elf;
786 	ss->fd     = fd;
787 	ss->ehdr   = ehdr;
788 	ss->type   = type;
789 
790 	return 0;
791 
792 out_elf_end:
793 	elf_end(elf);
794 out_close:
795 	close(fd);
796 	return err;
797 }
798 
799 /**
800  * ref_reloc_sym_not_found - has kernel relocation symbol been found.
801  * @kmap: kernel maps and relocation reference symbol
802  *
803  * This function returns %true if we are dealing with the kernel maps and the
804  * relocation reference symbol has not yet been found.  Otherwise %false is
805  * returned.
806  */
807 static bool ref_reloc_sym_not_found(struct kmap *kmap)
808 {
809 	return kmap && kmap->ref_reloc_sym && kmap->ref_reloc_sym->name &&
810 	       !kmap->ref_reloc_sym->unrelocated_addr;
811 }
812 
813 /**
814  * ref_reloc - kernel relocation offset.
815  * @kmap: kernel maps and relocation reference symbol
816  *
817  * This function returns the offset of kernel addresses as determined by using
818  * the relocation reference symbol i.e. if the kernel has not been relocated
819  * then the return value is zero.
820  */
821 static u64 ref_reloc(struct kmap *kmap)
822 {
823 	if (kmap && kmap->ref_reloc_sym &&
824 	    kmap->ref_reloc_sym->unrelocated_addr)
825 		return kmap->ref_reloc_sym->addr -
826 		       kmap->ref_reloc_sym->unrelocated_addr;
827 	return 0;
828 }
829 
830 void __weak arch__sym_update(struct symbol *s __maybe_unused,
831 		GElf_Sym *sym __maybe_unused) { }
832 
833 static int dso__process_kernel_symbol(struct dso *dso, struct map *map,
834 				      GElf_Sym *sym, GElf_Shdr *shdr,
835 				      struct map_groups *kmaps, struct kmap *kmap,
836 				      struct dso **curr_dsop, struct map **curr_mapp,
837 				      const char *section_name,
838 				      bool adjust_kernel_syms, bool kmodule, bool *remap_kernel)
839 {
840 	struct dso *curr_dso = *curr_dsop;
841 	struct map *curr_map;
842 	char dso_name[PATH_MAX];
843 
844 	/* Adjust symbol to map to file offset */
845 	if (adjust_kernel_syms)
846 		sym->st_value -= shdr->sh_addr - shdr->sh_offset;
847 
848 	if (strcmp(section_name, (curr_dso->short_name + dso->short_name_len)) == 0)
849 		return 0;
850 
851 	if (strcmp(section_name, ".text") == 0) {
852 		/*
853 		 * The initial kernel mapping is based on
854 		 * kallsyms and identity maps.  Overwrite it to
855 		 * map to the kernel dso.
856 		 */
857 		if (*remap_kernel && dso->kernel) {
858 			*remap_kernel = false;
859 			map->start = shdr->sh_addr + ref_reloc(kmap);
860 			map->end = map->start + shdr->sh_size;
861 			map->pgoff = shdr->sh_offset;
862 			map->map_ip = map__map_ip;
863 			map->unmap_ip = map__unmap_ip;
864 			/* Ensure maps are correctly ordered */
865 			if (kmaps) {
866 				map__get(map);
867 				map_groups__remove(kmaps, map);
868 				map_groups__insert(kmaps, map);
869 				map__put(map);
870 			}
871 		}
872 
873 		/*
874 		 * The initial module mapping is based on
875 		 * /proc/modules mapped to offset zero.
876 		 * Overwrite it to map to the module dso.
877 		 */
878 		if (*remap_kernel && kmodule) {
879 			*remap_kernel = false;
880 			map->pgoff = shdr->sh_offset;
881 		}
882 
883 		*curr_mapp = map;
884 		*curr_dsop = dso;
885 		return 0;
886 	}
887 
888 	if (!kmap)
889 		return 0;
890 
891 	snprintf(dso_name, sizeof(dso_name), "%s%s", dso->short_name, section_name);
892 
893 	curr_map = map_groups__find_by_name(kmaps, dso_name);
894 	if (curr_map == NULL) {
895 		u64 start = sym->st_value;
896 
897 		if (kmodule)
898 			start += map->start + shdr->sh_offset;
899 
900 		curr_dso = dso__new(dso_name);
901 		if (curr_dso == NULL)
902 			return -1;
903 		curr_dso->kernel = dso->kernel;
904 		curr_dso->long_name = dso->long_name;
905 		curr_dso->long_name_len = dso->long_name_len;
906 		curr_map = map__new2(start, curr_dso);
907 		dso__put(curr_dso);
908 		if (curr_map == NULL)
909 			return -1;
910 
911 		if (adjust_kernel_syms) {
912 			curr_map->start  = shdr->sh_addr + ref_reloc(kmap);
913 			curr_map->end	 = curr_map->start + shdr->sh_size;
914 			curr_map->pgoff	 = shdr->sh_offset;
915 		} else {
916 			curr_map->map_ip = curr_map->unmap_ip = identity__map_ip;
917 		}
918 		curr_dso->symtab_type = dso->symtab_type;
919 		map_groups__insert(kmaps, curr_map);
920 		/*
921 		 * Add it before we drop the referece to curr_map, i.e. while
922 		 * we still are sure to have a reference to this DSO via
923 		 * *curr_map->dso.
924 		 */
925 		dsos__add(&map->groups->machine->dsos, curr_dso);
926 		/* kmaps already got it */
927 		map__put(curr_map);
928 		dso__set_loaded(curr_dso);
929 		*curr_mapp = curr_map;
930 		*curr_dsop = curr_dso;
931 	} else
932 		*curr_dsop = curr_map->dso;
933 
934 	return 0;
935 }
936 
937 int dso__load_sym(struct dso *dso, struct map *map, struct symsrc *syms_ss,
938 		  struct symsrc *runtime_ss, int kmodule)
939 {
940 	struct kmap *kmap = dso->kernel ? map__kmap(map) : NULL;
941 	struct map_groups *kmaps = kmap ? map__kmaps(map) : NULL;
942 	struct map *curr_map = map;
943 	struct dso *curr_dso = dso;
944 	Elf_Data *symstrs, *secstrs;
945 	uint32_t nr_syms;
946 	int err = -1;
947 	uint32_t idx;
948 	GElf_Ehdr ehdr;
949 	GElf_Shdr shdr;
950 	GElf_Shdr tshdr;
951 	Elf_Data *syms, *opddata = NULL;
952 	GElf_Sym sym;
953 	Elf_Scn *sec, *sec_strndx;
954 	Elf *elf;
955 	int nr = 0;
956 	bool remap_kernel = false, adjust_kernel_syms = false;
957 
958 	if (kmap && !kmaps)
959 		return -1;
960 
961 	dso->symtab_type = syms_ss->type;
962 	dso->is_64_bit = syms_ss->is_64_bit;
963 	dso->rel = syms_ss->ehdr.e_type == ET_REL;
964 
965 	/*
966 	 * Modules may already have symbols from kallsyms, but those symbols
967 	 * have the wrong values for the dso maps, so remove them.
968 	 */
969 	if (kmodule && syms_ss->symtab)
970 		symbols__delete(&dso->symbols);
971 
972 	if (!syms_ss->symtab) {
973 		/*
974 		 * If the vmlinux is stripped, fail so we will fall back
975 		 * to using kallsyms. The vmlinux runtime symbols aren't
976 		 * of much use.
977 		 */
978 		if (dso->kernel)
979 			goto out_elf_end;
980 
981 		syms_ss->symtab  = syms_ss->dynsym;
982 		syms_ss->symshdr = syms_ss->dynshdr;
983 	}
984 
985 	elf = syms_ss->elf;
986 	ehdr = syms_ss->ehdr;
987 	sec = syms_ss->symtab;
988 	shdr = syms_ss->symshdr;
989 
990 	if (elf_section_by_name(runtime_ss->elf, &runtime_ss->ehdr, &tshdr,
991 				".text", NULL))
992 		dso->text_offset = tshdr.sh_addr - tshdr.sh_offset;
993 
994 	if (runtime_ss->opdsec)
995 		opddata = elf_rawdata(runtime_ss->opdsec, NULL);
996 
997 	syms = elf_getdata(sec, NULL);
998 	if (syms == NULL)
999 		goto out_elf_end;
1000 
1001 	sec = elf_getscn(elf, shdr.sh_link);
1002 	if (sec == NULL)
1003 		goto out_elf_end;
1004 
1005 	symstrs = elf_getdata(sec, NULL);
1006 	if (symstrs == NULL)
1007 		goto out_elf_end;
1008 
1009 	sec_strndx = elf_getscn(runtime_ss->elf, runtime_ss->ehdr.e_shstrndx);
1010 	if (sec_strndx == NULL)
1011 		goto out_elf_end;
1012 
1013 	secstrs = elf_getdata(sec_strndx, NULL);
1014 	if (secstrs == NULL)
1015 		goto out_elf_end;
1016 
1017 	nr_syms = shdr.sh_size / shdr.sh_entsize;
1018 
1019 	memset(&sym, 0, sizeof(sym));
1020 
1021 	/*
1022 	 * The kernel relocation symbol is needed in advance in order to adjust
1023 	 * kernel maps correctly.
1024 	 */
1025 	if (ref_reloc_sym_not_found(kmap)) {
1026 		elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) {
1027 			const char *elf_name = elf_sym__name(&sym, symstrs);
1028 
1029 			if (strcmp(elf_name, kmap->ref_reloc_sym->name))
1030 				continue;
1031 			kmap->ref_reloc_sym->unrelocated_addr = sym.st_value;
1032 			map->reloc = kmap->ref_reloc_sym->addr -
1033 				     kmap->ref_reloc_sym->unrelocated_addr;
1034 			break;
1035 		}
1036 	}
1037 
1038 	/*
1039 	 * Handle any relocation of vdso necessary because older kernels
1040 	 * attempted to prelink vdso to its virtual address.
1041 	 */
1042 	if (dso__is_vdso(dso))
1043 		map->reloc = map->start - dso->text_offset;
1044 
1045 	dso->adjust_symbols = runtime_ss->adjust_symbols || ref_reloc(kmap);
1046 	/*
1047 	 * Initial kernel and module mappings do not map to the dso.
1048 	 * Flag the fixups.
1049 	 */
1050 	if (dso->kernel || kmodule) {
1051 		remap_kernel = true;
1052 		adjust_kernel_syms = dso->adjust_symbols;
1053 	}
1054 	elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) {
1055 		struct symbol *f;
1056 		const char *elf_name = elf_sym__name(&sym, symstrs);
1057 		char *demangled = NULL;
1058 		int is_label = elf_sym__is_label(&sym);
1059 		const char *section_name;
1060 		bool used_opd = false;
1061 
1062 		if (!is_label && !elf_sym__filter(&sym))
1063 			continue;
1064 
1065 		/* Reject ARM ELF "mapping symbols": these aren't unique and
1066 		 * don't identify functions, so will confuse the profile
1067 		 * output: */
1068 		if (ehdr.e_machine == EM_ARM || ehdr.e_machine == EM_AARCH64) {
1069 			if (elf_name[0] == '$' && strchr("adtx", elf_name[1])
1070 			    && (elf_name[2] == '\0' || elf_name[2] == '.'))
1071 				continue;
1072 		}
1073 
1074 		if (runtime_ss->opdsec && sym.st_shndx == runtime_ss->opdidx) {
1075 			u32 offset = sym.st_value - syms_ss->opdshdr.sh_addr;
1076 			u64 *opd = opddata->d_buf + offset;
1077 			sym.st_value = DSO__SWAP(dso, u64, *opd);
1078 			sym.st_shndx = elf_addr_to_index(runtime_ss->elf,
1079 					sym.st_value);
1080 			used_opd = true;
1081 		}
1082 		/*
1083 		 * When loading symbols in a data mapping, ABS symbols (which
1084 		 * has a value of SHN_ABS in its st_shndx) failed at
1085 		 * elf_getscn().  And it marks the loading as a failure so
1086 		 * already loaded symbols cannot be fixed up.
1087 		 *
1088 		 * I'm not sure what should be done. Just ignore them for now.
1089 		 * - Namhyung Kim
1090 		 */
1091 		if (sym.st_shndx == SHN_ABS)
1092 			continue;
1093 
1094 		sec = elf_getscn(runtime_ss->elf, sym.st_shndx);
1095 		if (!sec)
1096 			goto out_elf_end;
1097 
1098 		gelf_getshdr(sec, &shdr);
1099 
1100 		if (is_label && !elf_sec__filter(&shdr, secstrs))
1101 			continue;
1102 
1103 		section_name = elf_sec__name(&shdr, secstrs);
1104 
1105 		/* On ARM, symbols for thumb functions have 1 added to
1106 		 * the symbol address as a flag - remove it */
1107 		if ((ehdr.e_machine == EM_ARM) &&
1108 		    (GELF_ST_TYPE(sym.st_info) == STT_FUNC) &&
1109 		    (sym.st_value & 1))
1110 			--sym.st_value;
1111 
1112 		if (dso->kernel || kmodule) {
1113 			if (dso__process_kernel_symbol(dso, map, &sym, &shdr, kmaps, kmap, &curr_dso, &curr_map,
1114 						       section_name, adjust_kernel_syms, kmodule, &remap_kernel))
1115 				goto out_elf_end;
1116 		} else if ((used_opd && runtime_ss->adjust_symbols) ||
1117 			   (!used_opd && syms_ss->adjust_symbols)) {
1118 			pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " "
1119 				  "sh_addr: %#" PRIx64 " sh_offset: %#" PRIx64 "\n", __func__,
1120 				  (u64)sym.st_value, (u64)shdr.sh_addr,
1121 				  (u64)shdr.sh_offset);
1122 			sym.st_value -= shdr.sh_addr - shdr.sh_offset;
1123 		}
1124 
1125 		demangled = demangle_sym(dso, kmodule, elf_name);
1126 		if (demangled != NULL)
1127 			elf_name = demangled;
1128 
1129 		f = symbol__new(sym.st_value, sym.st_size,
1130 				GELF_ST_BIND(sym.st_info),
1131 				GELF_ST_TYPE(sym.st_info), elf_name);
1132 		free(demangled);
1133 		if (!f)
1134 			goto out_elf_end;
1135 
1136 		arch__sym_update(f, &sym);
1137 
1138 		__symbols__insert(&curr_dso->symbols, f, dso->kernel);
1139 		nr++;
1140 	}
1141 
1142 	/*
1143 	 * For misannotated, zeroed, ASM function sizes.
1144 	 */
1145 	if (nr > 0) {
1146 		symbols__fixup_end(&dso->symbols);
1147 		symbols__fixup_duplicate(&dso->symbols);
1148 		if (kmap) {
1149 			/*
1150 			 * We need to fixup this here too because we create new
1151 			 * maps here, for things like vsyscall sections.
1152 			 */
1153 			map_groups__fixup_end(kmaps);
1154 		}
1155 	}
1156 	err = nr;
1157 out_elf_end:
1158 	return err;
1159 }
1160 
1161 static int elf_read_maps(Elf *elf, bool exe, mapfn_t mapfn, void *data)
1162 {
1163 	GElf_Phdr phdr;
1164 	size_t i, phdrnum;
1165 	int err;
1166 	u64 sz;
1167 
1168 	if (elf_getphdrnum(elf, &phdrnum))
1169 		return -1;
1170 
1171 	for (i = 0; i < phdrnum; i++) {
1172 		if (gelf_getphdr(elf, i, &phdr) == NULL)
1173 			return -1;
1174 		if (phdr.p_type != PT_LOAD)
1175 			continue;
1176 		if (exe) {
1177 			if (!(phdr.p_flags & PF_X))
1178 				continue;
1179 		} else {
1180 			if (!(phdr.p_flags & PF_R))
1181 				continue;
1182 		}
1183 		sz = min(phdr.p_memsz, phdr.p_filesz);
1184 		if (!sz)
1185 			continue;
1186 		err = mapfn(phdr.p_vaddr, sz, phdr.p_offset, data);
1187 		if (err)
1188 			return err;
1189 	}
1190 	return 0;
1191 }
1192 
1193 int file__read_maps(int fd, bool exe, mapfn_t mapfn, void *data,
1194 		    bool *is_64_bit)
1195 {
1196 	int err;
1197 	Elf *elf;
1198 
1199 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1200 	if (elf == NULL)
1201 		return -1;
1202 
1203 	if (is_64_bit)
1204 		*is_64_bit = (gelf_getclass(elf) == ELFCLASS64);
1205 
1206 	err = elf_read_maps(elf, exe, mapfn, data);
1207 
1208 	elf_end(elf);
1209 	return err;
1210 }
1211 
1212 enum dso_type dso__type_fd(int fd)
1213 {
1214 	enum dso_type dso_type = DSO__TYPE_UNKNOWN;
1215 	GElf_Ehdr ehdr;
1216 	Elf_Kind ek;
1217 	Elf *elf;
1218 
1219 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1220 	if (elf == NULL)
1221 		goto out;
1222 
1223 	ek = elf_kind(elf);
1224 	if (ek != ELF_K_ELF)
1225 		goto out_end;
1226 
1227 	if (gelf_getclass(elf) == ELFCLASS64) {
1228 		dso_type = DSO__TYPE_64BIT;
1229 		goto out_end;
1230 	}
1231 
1232 	if (gelf_getehdr(elf, &ehdr) == NULL)
1233 		goto out_end;
1234 
1235 	if (ehdr.e_machine == EM_X86_64)
1236 		dso_type = DSO__TYPE_X32BIT;
1237 	else
1238 		dso_type = DSO__TYPE_32BIT;
1239 out_end:
1240 	elf_end(elf);
1241 out:
1242 	return dso_type;
1243 }
1244 
1245 static int copy_bytes(int from, off_t from_offs, int to, off_t to_offs, u64 len)
1246 {
1247 	ssize_t r;
1248 	size_t n;
1249 	int err = -1;
1250 	char *buf = malloc(page_size);
1251 
1252 	if (buf == NULL)
1253 		return -1;
1254 
1255 	if (lseek(to, to_offs, SEEK_SET) != to_offs)
1256 		goto out;
1257 
1258 	if (lseek(from, from_offs, SEEK_SET) != from_offs)
1259 		goto out;
1260 
1261 	while (len) {
1262 		n = page_size;
1263 		if (len < n)
1264 			n = len;
1265 		/* Use read because mmap won't work on proc files */
1266 		r = read(from, buf, n);
1267 		if (r < 0)
1268 			goto out;
1269 		if (!r)
1270 			break;
1271 		n = r;
1272 		r = write(to, buf, n);
1273 		if (r < 0)
1274 			goto out;
1275 		if ((size_t)r != n)
1276 			goto out;
1277 		len -= n;
1278 	}
1279 
1280 	err = 0;
1281 out:
1282 	free(buf);
1283 	return err;
1284 }
1285 
1286 struct kcore {
1287 	int fd;
1288 	int elfclass;
1289 	Elf *elf;
1290 	GElf_Ehdr ehdr;
1291 };
1292 
1293 static int kcore__open(struct kcore *kcore, const char *filename)
1294 {
1295 	GElf_Ehdr *ehdr;
1296 
1297 	kcore->fd = open(filename, O_RDONLY);
1298 	if (kcore->fd == -1)
1299 		return -1;
1300 
1301 	kcore->elf = elf_begin(kcore->fd, ELF_C_READ, NULL);
1302 	if (!kcore->elf)
1303 		goto out_close;
1304 
1305 	kcore->elfclass = gelf_getclass(kcore->elf);
1306 	if (kcore->elfclass == ELFCLASSNONE)
1307 		goto out_end;
1308 
1309 	ehdr = gelf_getehdr(kcore->elf, &kcore->ehdr);
1310 	if (!ehdr)
1311 		goto out_end;
1312 
1313 	return 0;
1314 
1315 out_end:
1316 	elf_end(kcore->elf);
1317 out_close:
1318 	close(kcore->fd);
1319 	return -1;
1320 }
1321 
1322 static int kcore__init(struct kcore *kcore, char *filename, int elfclass,
1323 		       bool temp)
1324 {
1325 	kcore->elfclass = elfclass;
1326 
1327 	if (temp)
1328 		kcore->fd = mkstemp(filename);
1329 	else
1330 		kcore->fd = open(filename, O_WRONLY | O_CREAT | O_EXCL, 0400);
1331 	if (kcore->fd == -1)
1332 		return -1;
1333 
1334 	kcore->elf = elf_begin(kcore->fd, ELF_C_WRITE, NULL);
1335 	if (!kcore->elf)
1336 		goto out_close;
1337 
1338 	if (!gelf_newehdr(kcore->elf, elfclass))
1339 		goto out_end;
1340 
1341 	memset(&kcore->ehdr, 0, sizeof(GElf_Ehdr));
1342 
1343 	return 0;
1344 
1345 out_end:
1346 	elf_end(kcore->elf);
1347 out_close:
1348 	close(kcore->fd);
1349 	unlink(filename);
1350 	return -1;
1351 }
1352 
1353 static void kcore__close(struct kcore *kcore)
1354 {
1355 	elf_end(kcore->elf);
1356 	close(kcore->fd);
1357 }
1358 
1359 static int kcore__copy_hdr(struct kcore *from, struct kcore *to, size_t count)
1360 {
1361 	GElf_Ehdr *ehdr = &to->ehdr;
1362 	GElf_Ehdr *kehdr = &from->ehdr;
1363 
1364 	memcpy(ehdr->e_ident, kehdr->e_ident, EI_NIDENT);
1365 	ehdr->e_type      = kehdr->e_type;
1366 	ehdr->e_machine   = kehdr->e_machine;
1367 	ehdr->e_version   = kehdr->e_version;
1368 	ehdr->e_entry     = 0;
1369 	ehdr->e_shoff     = 0;
1370 	ehdr->e_flags     = kehdr->e_flags;
1371 	ehdr->e_phnum     = count;
1372 	ehdr->e_shentsize = 0;
1373 	ehdr->e_shnum     = 0;
1374 	ehdr->e_shstrndx  = 0;
1375 
1376 	if (from->elfclass == ELFCLASS32) {
1377 		ehdr->e_phoff     = sizeof(Elf32_Ehdr);
1378 		ehdr->e_ehsize    = sizeof(Elf32_Ehdr);
1379 		ehdr->e_phentsize = sizeof(Elf32_Phdr);
1380 	} else {
1381 		ehdr->e_phoff     = sizeof(Elf64_Ehdr);
1382 		ehdr->e_ehsize    = sizeof(Elf64_Ehdr);
1383 		ehdr->e_phentsize = sizeof(Elf64_Phdr);
1384 	}
1385 
1386 	if (!gelf_update_ehdr(to->elf, ehdr))
1387 		return -1;
1388 
1389 	if (!gelf_newphdr(to->elf, count))
1390 		return -1;
1391 
1392 	return 0;
1393 }
1394 
1395 static int kcore__add_phdr(struct kcore *kcore, int idx, off_t offset,
1396 			   u64 addr, u64 len)
1397 {
1398 	GElf_Phdr phdr = {
1399 		.p_type		= PT_LOAD,
1400 		.p_flags	= PF_R | PF_W | PF_X,
1401 		.p_offset	= offset,
1402 		.p_vaddr	= addr,
1403 		.p_paddr	= 0,
1404 		.p_filesz	= len,
1405 		.p_memsz	= len,
1406 		.p_align	= page_size,
1407 	};
1408 
1409 	if (!gelf_update_phdr(kcore->elf, idx, &phdr))
1410 		return -1;
1411 
1412 	return 0;
1413 }
1414 
1415 static off_t kcore__write(struct kcore *kcore)
1416 {
1417 	return elf_update(kcore->elf, ELF_C_WRITE);
1418 }
1419 
1420 struct phdr_data {
1421 	off_t offset;
1422 	off_t rel;
1423 	u64 addr;
1424 	u64 len;
1425 	struct list_head node;
1426 	struct phdr_data *remaps;
1427 };
1428 
1429 struct sym_data {
1430 	u64 addr;
1431 	struct list_head node;
1432 };
1433 
1434 struct kcore_copy_info {
1435 	u64 stext;
1436 	u64 etext;
1437 	u64 first_symbol;
1438 	u64 last_symbol;
1439 	u64 first_module;
1440 	u64 last_module_symbol;
1441 	size_t phnum;
1442 	struct list_head phdrs;
1443 	struct list_head syms;
1444 };
1445 
1446 #define kcore_copy__for_each_phdr(k, p) \
1447 	list_for_each_entry((p), &(k)->phdrs, node)
1448 
1449 static struct phdr_data *phdr_data__new(u64 addr, u64 len, off_t offset)
1450 {
1451 	struct phdr_data *p = zalloc(sizeof(*p));
1452 
1453 	if (p) {
1454 		p->addr   = addr;
1455 		p->len    = len;
1456 		p->offset = offset;
1457 	}
1458 
1459 	return p;
1460 }
1461 
1462 static struct phdr_data *kcore_copy_info__addnew(struct kcore_copy_info *kci,
1463 						 u64 addr, u64 len,
1464 						 off_t offset)
1465 {
1466 	struct phdr_data *p = phdr_data__new(addr, len, offset);
1467 
1468 	if (p)
1469 		list_add_tail(&p->node, &kci->phdrs);
1470 
1471 	return p;
1472 }
1473 
1474 static void kcore_copy__free_phdrs(struct kcore_copy_info *kci)
1475 {
1476 	struct phdr_data *p, *tmp;
1477 
1478 	list_for_each_entry_safe(p, tmp, &kci->phdrs, node) {
1479 		list_del(&p->node);
1480 		free(p);
1481 	}
1482 }
1483 
1484 static struct sym_data *kcore_copy__new_sym(struct kcore_copy_info *kci,
1485 					    u64 addr)
1486 {
1487 	struct sym_data *s = zalloc(sizeof(*s));
1488 
1489 	if (s) {
1490 		s->addr = addr;
1491 		list_add_tail(&s->node, &kci->syms);
1492 	}
1493 
1494 	return s;
1495 }
1496 
1497 static void kcore_copy__free_syms(struct kcore_copy_info *kci)
1498 {
1499 	struct sym_data *s, *tmp;
1500 
1501 	list_for_each_entry_safe(s, tmp, &kci->syms, node) {
1502 		list_del(&s->node);
1503 		free(s);
1504 	}
1505 }
1506 
1507 static int kcore_copy__process_kallsyms(void *arg, const char *name, char type,
1508 					u64 start)
1509 {
1510 	struct kcore_copy_info *kci = arg;
1511 
1512 	if (!kallsyms__is_function(type))
1513 		return 0;
1514 
1515 	if (strchr(name, '[')) {
1516 		if (start > kci->last_module_symbol)
1517 			kci->last_module_symbol = start;
1518 		return 0;
1519 	}
1520 
1521 	if (!kci->first_symbol || start < kci->first_symbol)
1522 		kci->first_symbol = start;
1523 
1524 	if (!kci->last_symbol || start > kci->last_symbol)
1525 		kci->last_symbol = start;
1526 
1527 	if (!strcmp(name, "_stext")) {
1528 		kci->stext = start;
1529 		return 0;
1530 	}
1531 
1532 	if (!strcmp(name, "_etext")) {
1533 		kci->etext = start;
1534 		return 0;
1535 	}
1536 
1537 	if (is_entry_trampoline(name) && !kcore_copy__new_sym(kci, start))
1538 		return -1;
1539 
1540 	return 0;
1541 }
1542 
1543 static int kcore_copy__parse_kallsyms(struct kcore_copy_info *kci,
1544 				      const char *dir)
1545 {
1546 	char kallsyms_filename[PATH_MAX];
1547 
1548 	scnprintf(kallsyms_filename, PATH_MAX, "%s/kallsyms", dir);
1549 
1550 	if (symbol__restricted_filename(kallsyms_filename, "/proc/kallsyms"))
1551 		return -1;
1552 
1553 	if (kallsyms__parse(kallsyms_filename, kci,
1554 			    kcore_copy__process_kallsyms) < 0)
1555 		return -1;
1556 
1557 	return 0;
1558 }
1559 
1560 static int kcore_copy__process_modules(void *arg,
1561 				       const char *name __maybe_unused,
1562 				       u64 start, u64 size __maybe_unused)
1563 {
1564 	struct kcore_copy_info *kci = arg;
1565 
1566 	if (!kci->first_module || start < kci->first_module)
1567 		kci->first_module = start;
1568 
1569 	return 0;
1570 }
1571 
1572 static int kcore_copy__parse_modules(struct kcore_copy_info *kci,
1573 				     const char *dir)
1574 {
1575 	char modules_filename[PATH_MAX];
1576 
1577 	scnprintf(modules_filename, PATH_MAX, "%s/modules", dir);
1578 
1579 	if (symbol__restricted_filename(modules_filename, "/proc/modules"))
1580 		return -1;
1581 
1582 	if (modules__parse(modules_filename, kci,
1583 			   kcore_copy__process_modules) < 0)
1584 		return -1;
1585 
1586 	return 0;
1587 }
1588 
1589 static int kcore_copy__map(struct kcore_copy_info *kci, u64 start, u64 end,
1590 			   u64 pgoff, u64 s, u64 e)
1591 {
1592 	u64 len, offset;
1593 
1594 	if (s < start || s >= end)
1595 		return 0;
1596 
1597 	offset = (s - start) + pgoff;
1598 	len = e < end ? e - s : end - s;
1599 
1600 	return kcore_copy_info__addnew(kci, s, len, offset) ? 0 : -1;
1601 }
1602 
1603 static int kcore_copy__read_map(u64 start, u64 len, u64 pgoff, void *data)
1604 {
1605 	struct kcore_copy_info *kci = data;
1606 	u64 end = start + len;
1607 	struct sym_data *sdat;
1608 
1609 	if (kcore_copy__map(kci, start, end, pgoff, kci->stext, kci->etext))
1610 		return -1;
1611 
1612 	if (kcore_copy__map(kci, start, end, pgoff, kci->first_module,
1613 			    kci->last_module_symbol))
1614 		return -1;
1615 
1616 	list_for_each_entry(sdat, &kci->syms, node) {
1617 		u64 s = round_down(sdat->addr, page_size);
1618 
1619 		if (kcore_copy__map(kci, start, end, pgoff, s, s + len))
1620 			return -1;
1621 	}
1622 
1623 	return 0;
1624 }
1625 
1626 static int kcore_copy__read_maps(struct kcore_copy_info *kci, Elf *elf)
1627 {
1628 	if (elf_read_maps(elf, true, kcore_copy__read_map, kci) < 0)
1629 		return -1;
1630 
1631 	return 0;
1632 }
1633 
1634 static void kcore_copy__find_remaps(struct kcore_copy_info *kci)
1635 {
1636 	struct phdr_data *p, *k = NULL;
1637 	u64 kend;
1638 
1639 	if (!kci->stext)
1640 		return;
1641 
1642 	/* Find phdr that corresponds to the kernel map (contains stext) */
1643 	kcore_copy__for_each_phdr(kci, p) {
1644 		u64 pend = p->addr + p->len - 1;
1645 
1646 		if (p->addr <= kci->stext && pend >= kci->stext) {
1647 			k = p;
1648 			break;
1649 		}
1650 	}
1651 
1652 	if (!k)
1653 		return;
1654 
1655 	kend = k->offset + k->len;
1656 
1657 	/* Find phdrs that remap the kernel */
1658 	kcore_copy__for_each_phdr(kci, p) {
1659 		u64 pend = p->offset + p->len;
1660 
1661 		if (p == k)
1662 			continue;
1663 
1664 		if (p->offset >= k->offset && pend <= kend)
1665 			p->remaps = k;
1666 	}
1667 }
1668 
1669 static void kcore_copy__layout(struct kcore_copy_info *kci)
1670 {
1671 	struct phdr_data *p;
1672 	off_t rel = 0;
1673 
1674 	kcore_copy__find_remaps(kci);
1675 
1676 	kcore_copy__for_each_phdr(kci, p) {
1677 		if (!p->remaps) {
1678 			p->rel = rel;
1679 			rel += p->len;
1680 		}
1681 		kci->phnum += 1;
1682 	}
1683 
1684 	kcore_copy__for_each_phdr(kci, p) {
1685 		struct phdr_data *k = p->remaps;
1686 
1687 		if (k)
1688 			p->rel = p->offset - k->offset + k->rel;
1689 	}
1690 }
1691 
1692 static int kcore_copy__calc_maps(struct kcore_copy_info *kci, const char *dir,
1693 				 Elf *elf)
1694 {
1695 	if (kcore_copy__parse_kallsyms(kci, dir))
1696 		return -1;
1697 
1698 	if (kcore_copy__parse_modules(kci, dir))
1699 		return -1;
1700 
1701 	if (kci->stext)
1702 		kci->stext = round_down(kci->stext, page_size);
1703 	else
1704 		kci->stext = round_down(kci->first_symbol, page_size);
1705 
1706 	if (kci->etext) {
1707 		kci->etext = round_up(kci->etext, page_size);
1708 	} else if (kci->last_symbol) {
1709 		kci->etext = round_up(kci->last_symbol, page_size);
1710 		kci->etext += page_size;
1711 	}
1712 
1713 	kci->first_module = round_down(kci->first_module, page_size);
1714 
1715 	if (kci->last_module_symbol) {
1716 		kci->last_module_symbol = round_up(kci->last_module_symbol,
1717 						   page_size);
1718 		kci->last_module_symbol += page_size;
1719 	}
1720 
1721 	if (!kci->stext || !kci->etext)
1722 		return -1;
1723 
1724 	if (kci->first_module && !kci->last_module_symbol)
1725 		return -1;
1726 
1727 	if (kcore_copy__read_maps(kci, elf))
1728 		return -1;
1729 
1730 	kcore_copy__layout(kci);
1731 
1732 	return 0;
1733 }
1734 
1735 static int kcore_copy__copy_file(const char *from_dir, const char *to_dir,
1736 				 const char *name)
1737 {
1738 	char from_filename[PATH_MAX];
1739 	char to_filename[PATH_MAX];
1740 
1741 	scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name);
1742 	scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name);
1743 
1744 	return copyfile_mode(from_filename, to_filename, 0400);
1745 }
1746 
1747 static int kcore_copy__unlink(const char *dir, const char *name)
1748 {
1749 	char filename[PATH_MAX];
1750 
1751 	scnprintf(filename, PATH_MAX, "%s/%s", dir, name);
1752 
1753 	return unlink(filename);
1754 }
1755 
1756 static int kcore_copy__compare_fds(int from, int to)
1757 {
1758 	char *buf_from;
1759 	char *buf_to;
1760 	ssize_t ret;
1761 	size_t len;
1762 	int err = -1;
1763 
1764 	buf_from = malloc(page_size);
1765 	buf_to = malloc(page_size);
1766 	if (!buf_from || !buf_to)
1767 		goto out;
1768 
1769 	while (1) {
1770 		/* Use read because mmap won't work on proc files */
1771 		ret = read(from, buf_from, page_size);
1772 		if (ret < 0)
1773 			goto out;
1774 
1775 		if (!ret)
1776 			break;
1777 
1778 		len = ret;
1779 
1780 		if (readn(to, buf_to, len) != (int)len)
1781 			goto out;
1782 
1783 		if (memcmp(buf_from, buf_to, len))
1784 			goto out;
1785 	}
1786 
1787 	err = 0;
1788 out:
1789 	free(buf_to);
1790 	free(buf_from);
1791 	return err;
1792 }
1793 
1794 static int kcore_copy__compare_files(const char *from_filename,
1795 				     const char *to_filename)
1796 {
1797 	int from, to, err = -1;
1798 
1799 	from = open(from_filename, O_RDONLY);
1800 	if (from < 0)
1801 		return -1;
1802 
1803 	to = open(to_filename, O_RDONLY);
1804 	if (to < 0)
1805 		goto out_close_from;
1806 
1807 	err = kcore_copy__compare_fds(from, to);
1808 
1809 	close(to);
1810 out_close_from:
1811 	close(from);
1812 	return err;
1813 }
1814 
1815 static int kcore_copy__compare_file(const char *from_dir, const char *to_dir,
1816 				    const char *name)
1817 {
1818 	char from_filename[PATH_MAX];
1819 	char to_filename[PATH_MAX];
1820 
1821 	scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name);
1822 	scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name);
1823 
1824 	return kcore_copy__compare_files(from_filename, to_filename);
1825 }
1826 
1827 /**
1828  * kcore_copy - copy kallsyms, modules and kcore from one directory to another.
1829  * @from_dir: from directory
1830  * @to_dir: to directory
1831  *
1832  * This function copies kallsyms, modules and kcore files from one directory to
1833  * another.  kallsyms and modules are copied entirely.  Only code segments are
1834  * copied from kcore.  It is assumed that two segments suffice: one for the
1835  * kernel proper and one for all the modules.  The code segments are determined
1836  * from kallsyms and modules files.  The kernel map starts at _stext or the
1837  * lowest function symbol, and ends at _etext or the highest function symbol.
1838  * The module map starts at the lowest module address and ends at the highest
1839  * module symbol.  Start addresses are rounded down to the nearest page.  End
1840  * addresses are rounded up to the nearest page.  An extra page is added to the
1841  * highest kernel symbol and highest module symbol to, hopefully, encompass that
1842  * symbol too.  Because it contains only code sections, the resulting kcore is
1843  * unusual.  One significant peculiarity is that the mapping (start -> pgoff)
1844  * is not the same for the kernel map and the modules map.  That happens because
1845  * the data is copied adjacently whereas the original kcore has gaps.  Finally,
1846  * kallsyms and modules files are compared with their copies to check that
1847  * modules have not been loaded or unloaded while the copies were taking place.
1848  *
1849  * Return: %0 on success, %-1 on failure.
1850  */
1851 int kcore_copy(const char *from_dir, const char *to_dir)
1852 {
1853 	struct kcore kcore;
1854 	struct kcore extract;
1855 	int idx = 0, err = -1;
1856 	off_t offset, sz;
1857 	struct kcore_copy_info kci = { .stext = 0, };
1858 	char kcore_filename[PATH_MAX];
1859 	char extract_filename[PATH_MAX];
1860 	struct phdr_data *p;
1861 
1862 	INIT_LIST_HEAD(&kci.phdrs);
1863 	INIT_LIST_HEAD(&kci.syms);
1864 
1865 	if (kcore_copy__copy_file(from_dir, to_dir, "kallsyms"))
1866 		return -1;
1867 
1868 	if (kcore_copy__copy_file(from_dir, to_dir, "modules"))
1869 		goto out_unlink_kallsyms;
1870 
1871 	scnprintf(kcore_filename, PATH_MAX, "%s/kcore", from_dir);
1872 	scnprintf(extract_filename, PATH_MAX, "%s/kcore", to_dir);
1873 
1874 	if (kcore__open(&kcore, kcore_filename))
1875 		goto out_unlink_modules;
1876 
1877 	if (kcore_copy__calc_maps(&kci, from_dir, kcore.elf))
1878 		goto out_kcore_close;
1879 
1880 	if (kcore__init(&extract, extract_filename, kcore.elfclass, false))
1881 		goto out_kcore_close;
1882 
1883 	if (kcore__copy_hdr(&kcore, &extract, kci.phnum))
1884 		goto out_extract_close;
1885 
1886 	offset = gelf_fsize(extract.elf, ELF_T_EHDR, 1, EV_CURRENT) +
1887 		 gelf_fsize(extract.elf, ELF_T_PHDR, kci.phnum, EV_CURRENT);
1888 	offset = round_up(offset, page_size);
1889 
1890 	kcore_copy__for_each_phdr(&kci, p) {
1891 		off_t offs = p->rel + offset;
1892 
1893 		if (kcore__add_phdr(&extract, idx++, offs, p->addr, p->len))
1894 			goto out_extract_close;
1895 	}
1896 
1897 	sz = kcore__write(&extract);
1898 	if (sz < 0 || sz > offset)
1899 		goto out_extract_close;
1900 
1901 	kcore_copy__for_each_phdr(&kci, p) {
1902 		off_t offs = p->rel + offset;
1903 
1904 		if (p->remaps)
1905 			continue;
1906 		if (copy_bytes(kcore.fd, p->offset, extract.fd, offs, p->len))
1907 			goto out_extract_close;
1908 	}
1909 
1910 	if (kcore_copy__compare_file(from_dir, to_dir, "modules"))
1911 		goto out_extract_close;
1912 
1913 	if (kcore_copy__compare_file(from_dir, to_dir, "kallsyms"))
1914 		goto out_extract_close;
1915 
1916 	err = 0;
1917 
1918 out_extract_close:
1919 	kcore__close(&extract);
1920 	if (err)
1921 		unlink(extract_filename);
1922 out_kcore_close:
1923 	kcore__close(&kcore);
1924 out_unlink_modules:
1925 	if (err)
1926 		kcore_copy__unlink(to_dir, "modules");
1927 out_unlink_kallsyms:
1928 	if (err)
1929 		kcore_copy__unlink(to_dir, "kallsyms");
1930 
1931 	kcore_copy__free_phdrs(&kci);
1932 	kcore_copy__free_syms(&kci);
1933 
1934 	return err;
1935 }
1936 
1937 int kcore_extract__create(struct kcore_extract *kce)
1938 {
1939 	struct kcore kcore;
1940 	struct kcore extract;
1941 	size_t count = 1;
1942 	int idx = 0, err = -1;
1943 	off_t offset = page_size, sz;
1944 
1945 	if (kcore__open(&kcore, kce->kcore_filename))
1946 		return -1;
1947 
1948 	strcpy(kce->extract_filename, PERF_KCORE_EXTRACT);
1949 	if (kcore__init(&extract, kce->extract_filename, kcore.elfclass, true))
1950 		goto out_kcore_close;
1951 
1952 	if (kcore__copy_hdr(&kcore, &extract, count))
1953 		goto out_extract_close;
1954 
1955 	if (kcore__add_phdr(&extract, idx, offset, kce->addr, kce->len))
1956 		goto out_extract_close;
1957 
1958 	sz = kcore__write(&extract);
1959 	if (sz < 0 || sz > offset)
1960 		goto out_extract_close;
1961 
1962 	if (copy_bytes(kcore.fd, kce->offs, extract.fd, offset, kce->len))
1963 		goto out_extract_close;
1964 
1965 	err = 0;
1966 
1967 out_extract_close:
1968 	kcore__close(&extract);
1969 	if (err)
1970 		unlink(kce->extract_filename);
1971 out_kcore_close:
1972 	kcore__close(&kcore);
1973 
1974 	return err;
1975 }
1976 
1977 void kcore_extract__delete(struct kcore_extract *kce)
1978 {
1979 	unlink(kce->extract_filename);
1980 }
1981 
1982 #ifdef HAVE_GELF_GETNOTE_SUPPORT
1983 
1984 static void sdt_adjust_loc(struct sdt_note *tmp, GElf_Addr base_off)
1985 {
1986 	if (!base_off)
1987 		return;
1988 
1989 	if (tmp->bit32)
1990 		tmp->addr.a32[SDT_NOTE_IDX_LOC] =
1991 			tmp->addr.a32[SDT_NOTE_IDX_LOC] + base_off -
1992 			tmp->addr.a32[SDT_NOTE_IDX_BASE];
1993 	else
1994 		tmp->addr.a64[SDT_NOTE_IDX_LOC] =
1995 			tmp->addr.a64[SDT_NOTE_IDX_LOC] + base_off -
1996 			tmp->addr.a64[SDT_NOTE_IDX_BASE];
1997 }
1998 
1999 static void sdt_adjust_refctr(struct sdt_note *tmp, GElf_Addr base_addr,
2000 			      GElf_Addr base_off)
2001 {
2002 	if (!base_off)
2003 		return;
2004 
2005 	if (tmp->bit32 && tmp->addr.a32[SDT_NOTE_IDX_REFCTR])
2006 		tmp->addr.a32[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off);
2007 	else if (tmp->addr.a64[SDT_NOTE_IDX_REFCTR])
2008 		tmp->addr.a64[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off);
2009 }
2010 
2011 /**
2012  * populate_sdt_note : Parse raw data and identify SDT note
2013  * @elf: elf of the opened file
2014  * @data: raw data of a section with description offset applied
2015  * @len: note description size
2016  * @type: type of the note
2017  * @sdt_notes: List to add the SDT note
2018  *
2019  * Responsible for parsing the @data in section .note.stapsdt in @elf and
2020  * if its an SDT note, it appends to @sdt_notes list.
2021  */
2022 static int populate_sdt_note(Elf **elf, const char *data, size_t len,
2023 			     struct list_head *sdt_notes)
2024 {
2025 	const char *provider, *name, *args;
2026 	struct sdt_note *tmp = NULL;
2027 	GElf_Ehdr ehdr;
2028 	GElf_Shdr shdr;
2029 	int ret = -EINVAL;
2030 
2031 	union {
2032 		Elf64_Addr a64[NR_ADDR];
2033 		Elf32_Addr a32[NR_ADDR];
2034 	} buf;
2035 
2036 	Elf_Data dst = {
2037 		.d_buf = &buf, .d_type = ELF_T_ADDR, .d_version = EV_CURRENT,
2038 		.d_size = gelf_fsize((*elf), ELF_T_ADDR, NR_ADDR, EV_CURRENT),
2039 		.d_off = 0, .d_align = 0
2040 	};
2041 	Elf_Data src = {
2042 		.d_buf = (void *) data, .d_type = ELF_T_ADDR,
2043 		.d_version = EV_CURRENT, .d_size = dst.d_size, .d_off = 0,
2044 		.d_align = 0
2045 	};
2046 
2047 	tmp = (struct sdt_note *)calloc(1, sizeof(struct sdt_note));
2048 	if (!tmp) {
2049 		ret = -ENOMEM;
2050 		goto out_err;
2051 	}
2052 
2053 	INIT_LIST_HEAD(&tmp->note_list);
2054 
2055 	if (len < dst.d_size + 3)
2056 		goto out_free_note;
2057 
2058 	/* Translation from file representation to memory representation */
2059 	if (gelf_xlatetom(*elf, &dst, &src,
2060 			  elf_getident(*elf, NULL)[EI_DATA]) == NULL) {
2061 		pr_err("gelf_xlatetom : %s\n", elf_errmsg(-1));
2062 		goto out_free_note;
2063 	}
2064 
2065 	/* Populate the fields of sdt_note */
2066 	provider = data + dst.d_size;
2067 
2068 	name = (const char *)memchr(provider, '\0', data + len - provider);
2069 	if (name++ == NULL)
2070 		goto out_free_note;
2071 
2072 	tmp->provider = strdup(provider);
2073 	if (!tmp->provider) {
2074 		ret = -ENOMEM;
2075 		goto out_free_note;
2076 	}
2077 	tmp->name = strdup(name);
2078 	if (!tmp->name) {
2079 		ret = -ENOMEM;
2080 		goto out_free_prov;
2081 	}
2082 
2083 	args = memchr(name, '\0', data + len - name);
2084 
2085 	/*
2086 	 * There is no argument if:
2087 	 * - We reached the end of the note;
2088 	 * - There is not enough room to hold a potential string;
2089 	 * - The argument string is empty or just contains ':'.
2090 	 */
2091 	if (args == NULL || data + len - args < 2 ||
2092 		args[1] == ':' || args[1] == '\0')
2093 		tmp->args = NULL;
2094 	else {
2095 		tmp->args = strdup(++args);
2096 		if (!tmp->args) {
2097 			ret = -ENOMEM;
2098 			goto out_free_name;
2099 		}
2100 	}
2101 
2102 	if (gelf_getclass(*elf) == ELFCLASS32) {
2103 		memcpy(&tmp->addr, &buf, 3 * sizeof(Elf32_Addr));
2104 		tmp->bit32 = true;
2105 	} else {
2106 		memcpy(&tmp->addr, &buf, 3 * sizeof(Elf64_Addr));
2107 		tmp->bit32 = false;
2108 	}
2109 
2110 	if (!gelf_getehdr(*elf, &ehdr)) {
2111 		pr_debug("%s : cannot get elf header.\n", __func__);
2112 		ret = -EBADF;
2113 		goto out_free_args;
2114 	}
2115 
2116 	/* Adjust the prelink effect :
2117 	 * Find out the .stapsdt.base section.
2118 	 * This scn will help us to handle prelinking (if present).
2119 	 * Compare the retrieved file offset of the base section with the
2120 	 * base address in the description of the SDT note. If its different,
2121 	 * then accordingly, adjust the note location.
2122 	 */
2123 	if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_BASE_SCN, NULL))
2124 		sdt_adjust_loc(tmp, shdr.sh_offset);
2125 
2126 	/* Adjust reference counter offset */
2127 	if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_PROBES_SCN, NULL))
2128 		sdt_adjust_refctr(tmp, shdr.sh_addr, shdr.sh_offset);
2129 
2130 	list_add_tail(&tmp->note_list, sdt_notes);
2131 	return 0;
2132 
2133 out_free_args:
2134 	free(tmp->args);
2135 out_free_name:
2136 	free(tmp->name);
2137 out_free_prov:
2138 	free(tmp->provider);
2139 out_free_note:
2140 	free(tmp);
2141 out_err:
2142 	return ret;
2143 }
2144 
2145 /**
2146  * construct_sdt_notes_list : constructs a list of SDT notes
2147  * @elf : elf to look into
2148  * @sdt_notes : empty list_head
2149  *
2150  * Scans the sections in 'elf' for the section
2151  * .note.stapsdt. It, then calls populate_sdt_note to find
2152  * out the SDT events and populates the 'sdt_notes'.
2153  */
2154 static int construct_sdt_notes_list(Elf *elf, struct list_head *sdt_notes)
2155 {
2156 	GElf_Ehdr ehdr;
2157 	Elf_Scn *scn = NULL;
2158 	Elf_Data *data;
2159 	GElf_Shdr shdr;
2160 	size_t shstrndx, next;
2161 	GElf_Nhdr nhdr;
2162 	size_t name_off, desc_off, offset;
2163 	int ret = 0;
2164 
2165 	if (gelf_getehdr(elf, &ehdr) == NULL) {
2166 		ret = -EBADF;
2167 		goto out_ret;
2168 	}
2169 	if (elf_getshdrstrndx(elf, &shstrndx) != 0) {
2170 		ret = -EBADF;
2171 		goto out_ret;
2172 	}
2173 
2174 	/* Look for the required section */
2175 	scn = elf_section_by_name(elf, &ehdr, &shdr, SDT_NOTE_SCN, NULL);
2176 	if (!scn) {
2177 		ret = -ENOENT;
2178 		goto out_ret;
2179 	}
2180 
2181 	if ((shdr.sh_type != SHT_NOTE) || (shdr.sh_flags & SHF_ALLOC)) {
2182 		ret = -ENOENT;
2183 		goto out_ret;
2184 	}
2185 
2186 	data = elf_getdata(scn, NULL);
2187 
2188 	/* Get the SDT notes */
2189 	for (offset = 0; (next = gelf_getnote(data, offset, &nhdr, &name_off,
2190 					      &desc_off)) > 0; offset = next) {
2191 		if (nhdr.n_namesz == sizeof(SDT_NOTE_NAME) &&
2192 		    !memcmp(data->d_buf + name_off, SDT_NOTE_NAME,
2193 			    sizeof(SDT_NOTE_NAME))) {
2194 			/* Check the type of the note */
2195 			if (nhdr.n_type != SDT_NOTE_TYPE)
2196 				goto out_ret;
2197 
2198 			ret = populate_sdt_note(&elf, ((data->d_buf) + desc_off),
2199 						nhdr.n_descsz, sdt_notes);
2200 			if (ret < 0)
2201 				goto out_ret;
2202 		}
2203 	}
2204 	if (list_empty(sdt_notes))
2205 		ret = -ENOENT;
2206 
2207 out_ret:
2208 	return ret;
2209 }
2210 
2211 /**
2212  * get_sdt_note_list : Wrapper to construct a list of sdt notes
2213  * @head : empty list_head
2214  * @target : file to find SDT notes from
2215  *
2216  * This opens the file, initializes
2217  * the ELF and then calls construct_sdt_notes_list.
2218  */
2219 int get_sdt_note_list(struct list_head *head, const char *target)
2220 {
2221 	Elf *elf;
2222 	int fd, ret;
2223 
2224 	fd = open(target, O_RDONLY);
2225 	if (fd < 0)
2226 		return -EBADF;
2227 
2228 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
2229 	if (!elf) {
2230 		ret = -EBADF;
2231 		goto out_close;
2232 	}
2233 	ret = construct_sdt_notes_list(elf, head);
2234 	elf_end(elf);
2235 out_close:
2236 	close(fd);
2237 	return ret;
2238 }
2239 
2240 /**
2241  * cleanup_sdt_note_list : free the sdt notes' list
2242  * @sdt_notes: sdt notes' list
2243  *
2244  * Free up the SDT notes in @sdt_notes.
2245  * Returns the number of SDT notes free'd.
2246  */
2247 int cleanup_sdt_note_list(struct list_head *sdt_notes)
2248 {
2249 	struct sdt_note *tmp, *pos;
2250 	int nr_free = 0;
2251 
2252 	list_for_each_entry_safe(pos, tmp, sdt_notes, note_list) {
2253 		list_del(&pos->note_list);
2254 		free(pos->name);
2255 		free(pos->provider);
2256 		free(pos);
2257 		nr_free++;
2258 	}
2259 	return nr_free;
2260 }
2261 
2262 /**
2263  * sdt_notes__get_count: Counts the number of sdt events
2264  * @start: list_head to sdt_notes list
2265  *
2266  * Returns the number of SDT notes in a list
2267  */
2268 int sdt_notes__get_count(struct list_head *start)
2269 {
2270 	struct sdt_note *sdt_ptr;
2271 	int count = 0;
2272 
2273 	list_for_each_entry(sdt_ptr, start, note_list)
2274 		count++;
2275 	return count;
2276 }
2277 #endif
2278 
2279 void symbol__elf_init(void)
2280 {
2281 	elf_version(EV_CURRENT);
2282 }
2283