1 // SPDX-License-Identifier: GPL-2.0 2 #include <errno.h> 3 #include <linux/err.h> 4 #include <inttypes.h> 5 #include <math.h> 6 #include <string.h> 7 #include "counts.h" 8 #include "cpumap.h" 9 #include "debug.h" 10 #include "header.h" 11 #include "stat.h" 12 #include "session.h" 13 #include "target.h" 14 #include "evlist.h" 15 #include "evsel.h" 16 #include "thread_map.h" 17 #include "util/hashmap.h" 18 #include <linux/zalloc.h> 19 20 void update_stats(struct stats *stats, u64 val) 21 { 22 double delta; 23 24 stats->n++; 25 delta = val - stats->mean; 26 stats->mean += delta / stats->n; 27 stats->M2 += delta*(val - stats->mean); 28 29 if (val > stats->max) 30 stats->max = val; 31 32 if (val < stats->min) 33 stats->min = val; 34 } 35 36 double avg_stats(struct stats *stats) 37 { 38 return stats->mean; 39 } 40 41 /* 42 * http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance 43 * 44 * (\Sum n_i^2) - ((\Sum n_i)^2)/n 45 * s^2 = ------------------------------- 46 * n - 1 47 * 48 * http://en.wikipedia.org/wiki/Stddev 49 * 50 * The std dev of the mean is related to the std dev by: 51 * 52 * s 53 * s_mean = ------- 54 * sqrt(n) 55 * 56 */ 57 double stddev_stats(struct stats *stats) 58 { 59 double variance, variance_mean; 60 61 if (stats->n < 2) 62 return 0.0; 63 64 variance = stats->M2 / (stats->n - 1); 65 variance_mean = variance / stats->n; 66 67 return sqrt(variance_mean); 68 } 69 70 double rel_stddev_stats(double stddev, double avg) 71 { 72 double pct = 0.0; 73 74 if (avg) 75 pct = 100.0 * stddev/avg; 76 77 return pct; 78 } 79 80 static void evsel__reset_aggr_stats(struct evsel *evsel) 81 { 82 struct perf_stat_evsel *ps = evsel->stats; 83 struct perf_stat_aggr *aggr = ps->aggr; 84 85 if (aggr) 86 memset(aggr, 0, sizeof(*aggr) * ps->nr_aggr); 87 } 88 89 static void evsel__reset_stat_priv(struct evsel *evsel) 90 { 91 struct perf_stat_evsel *ps = evsel->stats; 92 93 init_stats(&ps->res_stats); 94 evsel__reset_aggr_stats(evsel); 95 } 96 97 static int evsel__alloc_aggr_stats(struct evsel *evsel, int nr_aggr) 98 { 99 struct perf_stat_evsel *ps = evsel->stats; 100 101 if (ps == NULL) 102 return 0; 103 104 ps->nr_aggr = nr_aggr; 105 ps->aggr = calloc(nr_aggr, sizeof(*ps->aggr)); 106 if (ps->aggr == NULL) 107 return -ENOMEM; 108 109 return 0; 110 } 111 112 int evlist__alloc_aggr_stats(struct evlist *evlist, int nr_aggr) 113 { 114 struct evsel *evsel; 115 116 evlist__for_each_entry(evlist, evsel) { 117 if (evsel__alloc_aggr_stats(evsel, nr_aggr) < 0) 118 return -1; 119 } 120 return 0; 121 } 122 123 static int evsel__alloc_stat_priv(struct evsel *evsel, int nr_aggr) 124 { 125 struct perf_stat_evsel *ps; 126 127 ps = zalloc(sizeof(*ps)); 128 if (ps == NULL) 129 return -ENOMEM; 130 131 evsel->stats = ps; 132 133 if (nr_aggr && evsel__alloc_aggr_stats(evsel, nr_aggr) < 0) { 134 evsel->stats = NULL; 135 free(ps); 136 return -ENOMEM; 137 } 138 139 evsel__reset_stat_priv(evsel); 140 return 0; 141 } 142 143 static void evsel__free_stat_priv(struct evsel *evsel) 144 { 145 struct perf_stat_evsel *ps = evsel->stats; 146 147 if (ps) { 148 zfree(&ps->aggr); 149 zfree(&ps->group_data); 150 } 151 zfree(&evsel->stats); 152 } 153 154 static int evsel__alloc_prev_raw_counts(struct evsel *evsel) 155 { 156 int cpu_map_nr = evsel__nr_cpus(evsel); 157 int nthreads = perf_thread_map__nr(evsel->core.threads); 158 struct perf_counts *counts; 159 160 counts = perf_counts__new(cpu_map_nr, nthreads); 161 if (counts) 162 evsel->prev_raw_counts = counts; 163 164 return counts ? 0 : -ENOMEM; 165 } 166 167 static void evsel__free_prev_raw_counts(struct evsel *evsel) 168 { 169 perf_counts__delete(evsel->prev_raw_counts); 170 evsel->prev_raw_counts = NULL; 171 } 172 173 static void evsel__reset_prev_raw_counts(struct evsel *evsel) 174 { 175 if (evsel->prev_raw_counts) 176 perf_counts__reset(evsel->prev_raw_counts); 177 } 178 179 static int evsel__alloc_stats(struct evsel *evsel, int nr_aggr, bool alloc_raw) 180 { 181 if (evsel__alloc_stat_priv(evsel, nr_aggr) < 0 || 182 evsel__alloc_counts(evsel) < 0 || 183 (alloc_raw && evsel__alloc_prev_raw_counts(evsel) < 0)) 184 return -ENOMEM; 185 186 return 0; 187 } 188 189 int evlist__alloc_stats(struct perf_stat_config *config, 190 struct evlist *evlist, bool alloc_raw) 191 { 192 struct evsel *evsel; 193 int nr_aggr = 0; 194 195 if (config && config->aggr_map) 196 nr_aggr = config->aggr_map->nr; 197 198 evlist__for_each_entry(evlist, evsel) { 199 if (evsel__alloc_stats(evsel, nr_aggr, alloc_raw)) 200 goto out_free; 201 } 202 203 return 0; 204 205 out_free: 206 evlist__free_stats(evlist); 207 return -1; 208 } 209 210 void evlist__free_stats(struct evlist *evlist) 211 { 212 struct evsel *evsel; 213 214 evlist__for_each_entry(evlist, evsel) { 215 evsel__free_stat_priv(evsel); 216 evsel__free_counts(evsel); 217 evsel__free_prev_raw_counts(evsel); 218 } 219 } 220 221 void evlist__reset_stats(struct evlist *evlist) 222 { 223 struct evsel *evsel; 224 225 evlist__for_each_entry(evlist, evsel) { 226 evsel__reset_stat_priv(evsel); 227 evsel__reset_counts(evsel); 228 } 229 } 230 231 void evlist__reset_aggr_stats(struct evlist *evlist) 232 { 233 struct evsel *evsel; 234 235 evlist__for_each_entry(evlist, evsel) 236 evsel__reset_aggr_stats(evsel); 237 } 238 239 void evlist__reset_prev_raw_counts(struct evlist *evlist) 240 { 241 struct evsel *evsel; 242 243 evlist__for_each_entry(evlist, evsel) 244 evsel__reset_prev_raw_counts(evsel); 245 } 246 247 static void evsel__copy_prev_raw_counts(struct evsel *evsel) 248 { 249 int idx, nthreads = perf_thread_map__nr(evsel->core.threads); 250 251 for (int thread = 0; thread < nthreads; thread++) { 252 perf_cpu_map__for_each_idx(idx, evsel__cpus(evsel)) { 253 *perf_counts(evsel->counts, idx, thread) = 254 *perf_counts(evsel->prev_raw_counts, idx, thread); 255 } 256 } 257 } 258 259 void evlist__copy_prev_raw_counts(struct evlist *evlist) 260 { 261 struct evsel *evsel; 262 263 evlist__for_each_entry(evlist, evsel) 264 evsel__copy_prev_raw_counts(evsel); 265 } 266 267 static void evsel__copy_res_stats(struct evsel *evsel) 268 { 269 struct perf_stat_evsel *ps = evsel->stats; 270 271 /* 272 * For GLOBAL aggregation mode, it updates the counts for each run 273 * in the evsel->stats.res_stats. See perf_stat_process_counter(). 274 */ 275 *ps->aggr[0].counts.values = avg_stats(&ps->res_stats); 276 } 277 278 void evlist__copy_res_stats(struct perf_stat_config *config, struct evlist *evlist) 279 { 280 struct evsel *evsel; 281 282 if (config->aggr_mode != AGGR_GLOBAL) 283 return; 284 285 evlist__for_each_entry(evlist, evsel) 286 evsel__copy_res_stats(evsel); 287 } 288 289 static size_t pkg_id_hash(long __key, void *ctx __maybe_unused) 290 { 291 uint64_t *key = (uint64_t *) __key; 292 293 return *key & 0xffffffff; 294 } 295 296 static bool pkg_id_equal(long __key1, long __key2, void *ctx __maybe_unused) 297 { 298 uint64_t *key1 = (uint64_t *) __key1; 299 uint64_t *key2 = (uint64_t *) __key2; 300 301 return *key1 == *key2; 302 } 303 304 static int check_per_pkg(struct evsel *counter, struct perf_counts_values *vals, 305 int cpu_map_idx, bool *skip) 306 { 307 struct hashmap *mask = counter->per_pkg_mask; 308 struct perf_cpu_map *cpus = evsel__cpus(counter); 309 struct perf_cpu cpu = perf_cpu_map__cpu(cpus, cpu_map_idx); 310 int s, d, ret = 0; 311 uint64_t *key; 312 313 *skip = false; 314 315 if (!counter->per_pkg) 316 return 0; 317 318 if (perf_cpu_map__empty(cpus)) 319 return 0; 320 321 if (!mask) { 322 mask = hashmap__new(pkg_id_hash, pkg_id_equal, NULL); 323 if (IS_ERR(mask)) 324 return -ENOMEM; 325 326 counter->per_pkg_mask = mask; 327 } 328 329 /* 330 * we do not consider an event that has not run as a good 331 * instance to mark a package as used (skip=1). Otherwise 332 * we may run into a situation where the first CPU in a package 333 * is not running anything, yet the second is, and this function 334 * would mark the package as used after the first CPU and would 335 * not read the values from the second CPU. 336 */ 337 if (!(vals->run && vals->ena)) 338 return 0; 339 340 s = cpu__get_socket_id(cpu); 341 if (s < 0) 342 return -1; 343 344 /* 345 * On multi-die system, die_id > 0. On no-die system, die_id = 0. 346 * We use hashmap(socket, die) to check the used socket+die pair. 347 */ 348 d = cpu__get_die_id(cpu); 349 if (d < 0) 350 return -1; 351 352 key = malloc(sizeof(*key)); 353 if (!key) 354 return -ENOMEM; 355 356 *key = (uint64_t)d << 32 | s; 357 if (hashmap__find(mask, key, NULL)) { 358 *skip = true; 359 free(key); 360 } else 361 ret = hashmap__add(mask, key, 1); 362 363 return ret; 364 } 365 366 static bool evsel__count_has_error(struct evsel *evsel, 367 struct perf_counts_values *count, 368 struct perf_stat_config *config) 369 { 370 /* the evsel was failed already */ 371 if (evsel->err || evsel->counts->scaled == -1) 372 return true; 373 374 /* this is meaningful for CPU aggregation modes only */ 375 if (config->aggr_mode == AGGR_GLOBAL) 376 return false; 377 378 /* it's considered ok when it actually ran */ 379 if (count->ena != 0 && count->run != 0) 380 return false; 381 382 return true; 383 } 384 385 static int 386 process_counter_values(struct perf_stat_config *config, struct evsel *evsel, 387 int cpu_map_idx, int thread, 388 struct perf_counts_values *count) 389 { 390 struct perf_stat_evsel *ps = evsel->stats; 391 static struct perf_counts_values zero; 392 bool skip = false; 393 394 if (check_per_pkg(evsel, count, cpu_map_idx, &skip)) { 395 pr_err("failed to read per-pkg counter\n"); 396 return -1; 397 } 398 399 if (skip) 400 count = &zero; 401 402 if (!evsel->snapshot) 403 evsel__compute_deltas(evsel, cpu_map_idx, thread, count); 404 perf_counts_values__scale(count, config->scale, NULL); 405 406 if (config->aggr_mode == AGGR_THREAD) { 407 struct perf_counts_values *aggr_counts = &ps->aggr[thread].counts; 408 409 /* 410 * Skip value 0 when enabling --per-thread globally, 411 * otherwise too many 0 output. 412 */ 413 if (count->val == 0 && config->system_wide) 414 return 0; 415 416 ps->aggr[thread].nr++; 417 418 aggr_counts->val += count->val; 419 aggr_counts->ena += count->ena; 420 aggr_counts->run += count->run; 421 return 0; 422 } 423 424 if (ps->aggr) { 425 struct perf_cpu cpu = perf_cpu_map__cpu(evsel->core.cpus, cpu_map_idx); 426 struct aggr_cpu_id aggr_id = config->aggr_get_id(config, cpu); 427 struct perf_stat_aggr *ps_aggr; 428 int i; 429 430 for (i = 0; i < ps->nr_aggr; i++) { 431 if (!aggr_cpu_id__equal(&aggr_id, &config->aggr_map->map[i])) 432 continue; 433 434 ps_aggr = &ps->aggr[i]; 435 ps_aggr->nr++; 436 437 /* 438 * When any result is bad, make them all to give consistent output 439 * in interval mode. But per-task counters can have 0 enabled time 440 * when some tasks are idle. 441 */ 442 if (evsel__count_has_error(evsel, count, config) && !ps_aggr->failed) { 443 ps_aggr->counts.val = 0; 444 ps_aggr->counts.ena = 0; 445 ps_aggr->counts.run = 0; 446 ps_aggr->failed = true; 447 } 448 449 if (!ps_aggr->failed) { 450 ps_aggr->counts.val += count->val; 451 ps_aggr->counts.ena += count->ena; 452 ps_aggr->counts.run += count->run; 453 } 454 break; 455 } 456 } 457 458 return 0; 459 } 460 461 static int process_counter_maps(struct perf_stat_config *config, 462 struct evsel *counter) 463 { 464 int nthreads = perf_thread_map__nr(counter->core.threads); 465 int ncpus = evsel__nr_cpus(counter); 466 int idx, thread; 467 468 for (thread = 0; thread < nthreads; thread++) { 469 for (idx = 0; idx < ncpus; idx++) { 470 if (process_counter_values(config, counter, idx, thread, 471 perf_counts(counter->counts, idx, thread))) 472 return -1; 473 } 474 } 475 476 return 0; 477 } 478 479 int perf_stat_process_counter(struct perf_stat_config *config, 480 struct evsel *counter) 481 { 482 struct perf_stat_evsel *ps = counter->stats; 483 u64 *count; 484 int ret; 485 486 if (counter->per_pkg) 487 evsel__zero_per_pkg(counter); 488 489 ret = process_counter_maps(config, counter); 490 if (ret) 491 return ret; 492 493 if (config->aggr_mode != AGGR_GLOBAL) 494 return 0; 495 496 /* 497 * GLOBAL aggregation mode only has a single aggr counts, 498 * so we can use ps->aggr[0] as the actual output. 499 */ 500 count = ps->aggr[0].counts.values; 501 update_stats(&ps->res_stats, *count); 502 503 if (verbose > 0) { 504 fprintf(config->output, "%s: %" PRIu64 " %" PRIu64 " %" PRIu64 "\n", 505 evsel__name(counter), count[0], count[1], count[2]); 506 } 507 508 return 0; 509 } 510 511 static int evsel__merge_aggr_counters(struct evsel *evsel, struct evsel *alias) 512 { 513 struct perf_stat_evsel *ps_a = evsel->stats; 514 struct perf_stat_evsel *ps_b = alias->stats; 515 int i; 516 517 if (ps_a->aggr == NULL && ps_b->aggr == NULL) 518 return 0; 519 520 if (ps_a->nr_aggr != ps_b->nr_aggr) { 521 pr_err("Unmatched aggregation mode between aliases\n"); 522 return -1; 523 } 524 525 for (i = 0; i < ps_a->nr_aggr; i++) { 526 struct perf_counts_values *aggr_counts_a = &ps_a->aggr[i].counts; 527 struct perf_counts_values *aggr_counts_b = &ps_b->aggr[i].counts; 528 529 /* NB: don't increase aggr.nr for aliases */ 530 531 aggr_counts_a->val += aggr_counts_b->val; 532 aggr_counts_a->ena += aggr_counts_b->ena; 533 aggr_counts_a->run += aggr_counts_b->run; 534 } 535 536 return 0; 537 } 538 /* events should have the same name, scale, unit, cgroup but on different PMUs */ 539 static bool evsel__is_alias(struct evsel *evsel_a, struct evsel *evsel_b) 540 { 541 if (strcmp(evsel__name(evsel_a), evsel__name(evsel_b))) 542 return false; 543 544 if (evsel_a->scale != evsel_b->scale) 545 return false; 546 547 if (evsel_a->cgrp != evsel_b->cgrp) 548 return false; 549 550 if (strcmp(evsel_a->unit, evsel_b->unit)) 551 return false; 552 553 if (evsel__is_clock(evsel_a) != evsel__is_clock(evsel_b)) 554 return false; 555 556 return !!strcmp(evsel_a->pmu_name, evsel_b->pmu_name); 557 } 558 559 static void evsel__merge_aliases(struct evsel *evsel) 560 { 561 struct evlist *evlist = evsel->evlist; 562 struct evsel *alias; 563 564 alias = list_prepare_entry(evsel, &(evlist->core.entries), core.node); 565 list_for_each_entry_continue(alias, &evlist->core.entries, core.node) { 566 /* Merge the same events on different PMUs. */ 567 if (evsel__is_alias(evsel, alias)) { 568 evsel__merge_aggr_counters(evsel, alias); 569 alias->merged_stat = true; 570 } 571 } 572 } 573 574 static bool evsel__should_merge_hybrid(const struct evsel *evsel, 575 const struct perf_stat_config *config) 576 { 577 return config->hybrid_merge && evsel__is_hybrid(evsel); 578 } 579 580 static void evsel__merge_stats(struct evsel *evsel, struct perf_stat_config *config) 581 { 582 /* this evsel is already merged */ 583 if (evsel->merged_stat) 584 return; 585 586 if (evsel->auto_merge_stats || evsel__should_merge_hybrid(evsel, config)) 587 evsel__merge_aliases(evsel); 588 } 589 590 /* merge the same uncore and hybrid events if requested */ 591 void perf_stat_merge_counters(struct perf_stat_config *config, struct evlist *evlist) 592 { 593 struct evsel *evsel; 594 595 if (config->no_merge) 596 return; 597 598 evlist__for_each_entry(evlist, evsel) 599 evsel__merge_stats(evsel, config); 600 } 601 602 static void evsel__update_percore_stats(struct evsel *evsel, struct aggr_cpu_id *core_id) 603 { 604 struct perf_stat_evsel *ps = evsel->stats; 605 struct perf_counts_values counts = { 0, }; 606 struct aggr_cpu_id id; 607 struct perf_cpu cpu; 608 int idx; 609 610 /* collect per-core counts */ 611 perf_cpu_map__for_each_cpu(cpu, idx, evsel->core.cpus) { 612 struct perf_stat_aggr *aggr = &ps->aggr[idx]; 613 614 id = aggr_cpu_id__core(cpu, NULL); 615 if (!aggr_cpu_id__equal(core_id, &id)) 616 continue; 617 618 counts.val += aggr->counts.val; 619 counts.ena += aggr->counts.ena; 620 counts.run += aggr->counts.run; 621 } 622 623 /* update aggregated per-core counts for each CPU */ 624 perf_cpu_map__for_each_cpu(cpu, idx, evsel->core.cpus) { 625 struct perf_stat_aggr *aggr = &ps->aggr[idx]; 626 627 id = aggr_cpu_id__core(cpu, NULL); 628 if (!aggr_cpu_id__equal(core_id, &id)) 629 continue; 630 631 aggr->counts.val = counts.val; 632 aggr->counts.ena = counts.ena; 633 aggr->counts.run = counts.run; 634 635 aggr->used = true; 636 } 637 } 638 639 /* we have an aggr_map for cpu, but want to aggregate the counters per-core */ 640 static void evsel__process_percore(struct evsel *evsel) 641 { 642 struct perf_stat_evsel *ps = evsel->stats; 643 struct aggr_cpu_id core_id; 644 struct perf_cpu cpu; 645 int idx; 646 647 if (!evsel->percore) 648 return; 649 650 perf_cpu_map__for_each_cpu(cpu, idx, evsel->core.cpus) { 651 struct perf_stat_aggr *aggr = &ps->aggr[idx]; 652 653 if (aggr->used) 654 continue; 655 656 core_id = aggr_cpu_id__core(cpu, NULL); 657 evsel__update_percore_stats(evsel, &core_id); 658 } 659 } 660 661 /* process cpu stats on per-core events */ 662 void perf_stat_process_percore(struct perf_stat_config *config, struct evlist *evlist) 663 { 664 struct evsel *evsel; 665 666 if (config->aggr_mode != AGGR_NONE) 667 return; 668 669 evlist__for_each_entry(evlist, evsel) 670 evsel__process_percore(evsel); 671 } 672 673 int perf_event__process_stat_event(struct perf_session *session, 674 union perf_event *event) 675 { 676 struct perf_counts_values count, *ptr; 677 struct perf_record_stat *st = &event->stat; 678 struct evsel *counter; 679 int cpu_map_idx; 680 681 count.val = st->val; 682 count.ena = st->ena; 683 count.run = st->run; 684 685 counter = evlist__id2evsel(session->evlist, st->id); 686 if (!counter) { 687 pr_err("Failed to resolve counter for stat event.\n"); 688 return -EINVAL; 689 } 690 cpu_map_idx = perf_cpu_map__idx(evsel__cpus(counter), (struct perf_cpu){.cpu = st->cpu}); 691 if (cpu_map_idx == -1) { 692 pr_err("Invalid CPU %d for event %s.\n", st->cpu, evsel__name(counter)); 693 return -EINVAL; 694 } 695 ptr = perf_counts(counter->counts, cpu_map_idx, st->thread); 696 if (ptr == NULL) { 697 pr_err("Failed to find perf count for CPU %d thread %d on event %s.\n", 698 st->cpu, st->thread, evsel__name(counter)); 699 return -EINVAL; 700 } 701 *ptr = count; 702 counter->supported = true; 703 return 0; 704 } 705 706 size_t perf_event__fprintf_stat(union perf_event *event, FILE *fp) 707 { 708 struct perf_record_stat *st = (struct perf_record_stat *)event; 709 size_t ret; 710 711 ret = fprintf(fp, "\n... id %" PRI_lu64 ", cpu %d, thread %d\n", 712 st->id, st->cpu, st->thread); 713 ret += fprintf(fp, "... value %" PRI_lu64 ", enabled %" PRI_lu64 ", running %" PRI_lu64 "\n", 714 st->val, st->ena, st->run); 715 716 return ret; 717 } 718 719 size_t perf_event__fprintf_stat_round(union perf_event *event, FILE *fp) 720 { 721 struct perf_record_stat_round *rd = (struct perf_record_stat_round *)event; 722 size_t ret; 723 724 ret = fprintf(fp, "\n... time %" PRI_lu64 ", type %s\n", rd->time, 725 rd->type == PERF_STAT_ROUND_TYPE__FINAL ? "FINAL" : "INTERVAL"); 726 727 return ret; 728 } 729 730 size_t perf_event__fprintf_stat_config(union perf_event *event, FILE *fp) 731 { 732 struct perf_stat_config sc = {}; 733 size_t ret; 734 735 perf_event__read_stat_config(&sc, &event->stat_config); 736 737 ret = fprintf(fp, "\n"); 738 ret += fprintf(fp, "... aggr_mode %d\n", sc.aggr_mode); 739 ret += fprintf(fp, "... scale %d\n", sc.scale); 740 ret += fprintf(fp, "... interval %u\n", sc.interval); 741 742 return ret; 743 } 744 745 int create_perf_stat_counter(struct evsel *evsel, 746 struct perf_stat_config *config, 747 struct target *target, 748 int cpu_map_idx) 749 { 750 struct perf_event_attr *attr = &evsel->core.attr; 751 struct evsel *leader = evsel__leader(evsel); 752 753 attr->read_format = PERF_FORMAT_TOTAL_TIME_ENABLED | 754 PERF_FORMAT_TOTAL_TIME_RUNNING; 755 756 /* 757 * The event is part of non trivial group, let's enable 758 * the group read (for leader) and ID retrieval for all 759 * members. 760 */ 761 if (leader->core.nr_members > 1) 762 attr->read_format |= PERF_FORMAT_ID|PERF_FORMAT_GROUP; 763 764 attr->inherit = !config->no_inherit && list_empty(&evsel->bpf_counter_list); 765 766 /* 767 * Some events get initialized with sample_(period/type) set, 768 * like tracepoints. Clear it up for counting. 769 */ 770 attr->sample_period = 0; 771 772 if (config->identifier) 773 attr->sample_type = PERF_SAMPLE_IDENTIFIER; 774 775 if (config->all_user) { 776 attr->exclude_kernel = 1; 777 attr->exclude_user = 0; 778 } 779 780 if (config->all_kernel) { 781 attr->exclude_kernel = 0; 782 attr->exclude_user = 1; 783 } 784 785 /* 786 * Disabling all counters initially, they will be enabled 787 * either manually by us or by kernel via enable_on_exec 788 * set later. 789 */ 790 if (evsel__is_group_leader(evsel)) { 791 attr->disabled = 1; 792 793 if (target__enable_on_exec(target)) 794 attr->enable_on_exec = 1; 795 } 796 797 if (target__has_cpu(target) && !target__has_per_thread(target)) 798 return evsel__open_per_cpu(evsel, evsel__cpus(evsel), cpu_map_idx); 799 800 return evsel__open_per_thread(evsel, evsel->core.threads); 801 } 802