xref: /openbmc/linux/tools/perf/util/stat.c (revision 586cb1d6)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <linux/err.h>
4 #include <inttypes.h>
5 #include <math.h>
6 #include <string.h>
7 #include "counts.h"
8 #include "cpumap.h"
9 #include "debug.h"
10 #include "header.h"
11 #include "stat.h"
12 #include "session.h"
13 #include "target.h"
14 #include "evlist.h"
15 #include "evsel.h"
16 #include "thread_map.h"
17 #include "util/hashmap.h"
18 #include <linux/zalloc.h>
19 
20 void update_stats(struct stats *stats, u64 val)
21 {
22 	double delta;
23 
24 	stats->n++;
25 	delta = val - stats->mean;
26 	stats->mean += delta / stats->n;
27 	stats->M2 += delta*(val - stats->mean);
28 
29 	if (val > stats->max)
30 		stats->max = val;
31 
32 	if (val < stats->min)
33 		stats->min = val;
34 }
35 
36 double avg_stats(struct stats *stats)
37 {
38 	return stats->mean;
39 }
40 
41 /*
42  * http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
43  *
44  *       (\Sum n_i^2) - ((\Sum n_i)^2)/n
45  * s^2 = -------------------------------
46  *                  n - 1
47  *
48  * http://en.wikipedia.org/wiki/Stddev
49  *
50  * The std dev of the mean is related to the std dev by:
51  *
52  *             s
53  * s_mean = -------
54  *          sqrt(n)
55  *
56  */
57 double stddev_stats(struct stats *stats)
58 {
59 	double variance, variance_mean;
60 
61 	if (stats->n < 2)
62 		return 0.0;
63 
64 	variance = stats->M2 / (stats->n - 1);
65 	variance_mean = variance / stats->n;
66 
67 	return sqrt(variance_mean);
68 }
69 
70 double rel_stddev_stats(double stddev, double avg)
71 {
72 	double pct = 0.0;
73 
74 	if (avg)
75 		pct = 100.0 * stddev/avg;
76 
77 	return pct;
78 }
79 
80 bool __perf_stat_evsel__is(struct evsel *evsel, enum perf_stat_evsel_id id)
81 {
82 	struct perf_stat_evsel *ps = evsel->stats;
83 
84 	return ps->id == id;
85 }
86 
87 #define ID(id, name) [PERF_STAT_EVSEL_ID__##id] = #name
88 static const char *id_str[PERF_STAT_EVSEL_ID__MAX] = {
89 	ID(NONE,		x),
90 	ID(CYCLES_IN_TX,	cpu/cycles-t/),
91 	ID(TRANSACTION_START,	cpu/tx-start/),
92 	ID(ELISION_START,	cpu/el-start/),
93 	ID(CYCLES_IN_TX_CP,	cpu/cycles-ct/),
94 	ID(TOPDOWN_TOTAL_SLOTS, topdown-total-slots),
95 	ID(TOPDOWN_SLOTS_ISSUED, topdown-slots-issued),
96 	ID(TOPDOWN_SLOTS_RETIRED, topdown-slots-retired),
97 	ID(TOPDOWN_FETCH_BUBBLES, topdown-fetch-bubbles),
98 	ID(TOPDOWN_RECOVERY_BUBBLES, topdown-recovery-bubbles),
99 	ID(TOPDOWN_RETIRING, topdown-retiring),
100 	ID(TOPDOWN_BAD_SPEC, topdown-bad-spec),
101 	ID(TOPDOWN_FE_BOUND, topdown-fe-bound),
102 	ID(TOPDOWN_BE_BOUND, topdown-be-bound),
103 	ID(TOPDOWN_HEAVY_OPS, topdown-heavy-ops),
104 	ID(TOPDOWN_BR_MISPREDICT, topdown-br-mispredict),
105 	ID(TOPDOWN_FETCH_LAT, topdown-fetch-lat),
106 	ID(TOPDOWN_MEM_BOUND, topdown-mem-bound),
107 	ID(SMI_NUM, msr/smi/),
108 	ID(APERF, msr/aperf/),
109 };
110 #undef ID
111 
112 static void perf_stat_evsel_id_init(struct evsel *evsel)
113 {
114 	struct perf_stat_evsel *ps = evsel->stats;
115 	int i;
116 
117 	/* ps->id is 0 hence PERF_STAT_EVSEL_ID__NONE by default */
118 
119 	for (i = 0; i < PERF_STAT_EVSEL_ID__MAX; i++) {
120 		if (!strcmp(evsel__name(evsel), id_str[i]) ||
121 		    (strstr(evsel__name(evsel), id_str[i]) && evsel->pmu_name
122 		     && strstr(evsel__name(evsel), evsel->pmu_name))) {
123 			ps->id = i;
124 			break;
125 		}
126 	}
127 }
128 
129 static void evsel__reset_aggr_stats(struct evsel *evsel)
130 {
131 	struct perf_stat_evsel *ps = evsel->stats;
132 	struct perf_stat_aggr *aggr = ps->aggr;
133 
134 	if (aggr)
135 		memset(aggr, 0, sizeof(*aggr) * ps->nr_aggr);
136 }
137 
138 static void evsel__reset_stat_priv(struct evsel *evsel)
139 {
140 	struct perf_stat_evsel *ps = evsel->stats;
141 
142 	init_stats(&ps->res_stats);
143 	evsel__reset_aggr_stats(evsel);
144 }
145 
146 static int evsel__alloc_aggr_stats(struct evsel *evsel, int nr_aggr)
147 {
148 	struct perf_stat_evsel *ps = evsel->stats;
149 
150 	if (ps == NULL)
151 		return 0;
152 
153 	ps->nr_aggr = nr_aggr;
154 	ps->aggr = calloc(nr_aggr, sizeof(*ps->aggr));
155 	if (ps->aggr == NULL)
156 		return -ENOMEM;
157 
158 	return 0;
159 }
160 
161 int evlist__alloc_aggr_stats(struct evlist *evlist, int nr_aggr)
162 {
163 	struct evsel *evsel;
164 
165 	evlist__for_each_entry(evlist, evsel) {
166 		if (evsel__alloc_aggr_stats(evsel, nr_aggr) < 0)
167 			return -1;
168 	}
169 	return 0;
170 }
171 
172 static int evsel__alloc_stat_priv(struct evsel *evsel, int nr_aggr)
173 {
174 	struct perf_stat_evsel *ps;
175 
176 	ps = zalloc(sizeof(*ps));
177 	if (ps == NULL)
178 		return -ENOMEM;
179 
180 	evsel->stats = ps;
181 
182 	if (nr_aggr && evsel__alloc_aggr_stats(evsel, nr_aggr) < 0) {
183 		evsel->stats = NULL;
184 		free(ps);
185 		return -ENOMEM;
186 	}
187 
188 	perf_stat_evsel_id_init(evsel);
189 	evsel__reset_stat_priv(evsel);
190 	return 0;
191 }
192 
193 static void evsel__free_stat_priv(struct evsel *evsel)
194 {
195 	struct perf_stat_evsel *ps = evsel->stats;
196 
197 	if (ps) {
198 		zfree(&ps->aggr);
199 		zfree(&ps->group_data);
200 	}
201 	zfree(&evsel->stats);
202 }
203 
204 static int evsel__alloc_prev_raw_counts(struct evsel *evsel)
205 {
206 	int cpu_map_nr = evsel__nr_cpus(evsel);
207 	int nthreads = perf_thread_map__nr(evsel->core.threads);
208 	struct perf_counts *counts;
209 
210 	counts = perf_counts__new(cpu_map_nr, nthreads);
211 	if (counts)
212 		evsel->prev_raw_counts = counts;
213 
214 	return counts ? 0 : -ENOMEM;
215 }
216 
217 static void evsel__free_prev_raw_counts(struct evsel *evsel)
218 {
219 	perf_counts__delete(evsel->prev_raw_counts);
220 	evsel->prev_raw_counts = NULL;
221 }
222 
223 static void evsel__reset_prev_raw_counts(struct evsel *evsel)
224 {
225 	if (evsel->prev_raw_counts)
226 		perf_counts__reset(evsel->prev_raw_counts);
227 }
228 
229 static int evsel__alloc_stats(struct evsel *evsel, int nr_aggr, bool alloc_raw)
230 {
231 	if (evsel__alloc_stat_priv(evsel, nr_aggr) < 0 ||
232 	    evsel__alloc_counts(evsel) < 0 ||
233 	    (alloc_raw && evsel__alloc_prev_raw_counts(evsel) < 0))
234 		return -ENOMEM;
235 
236 	return 0;
237 }
238 
239 int evlist__alloc_stats(struct perf_stat_config *config,
240 			struct evlist *evlist, bool alloc_raw)
241 {
242 	struct evsel *evsel;
243 	int nr_aggr = 0;
244 
245 	if (config && config->aggr_map)
246 		nr_aggr = config->aggr_map->nr;
247 
248 	evlist__for_each_entry(evlist, evsel) {
249 		if (evsel__alloc_stats(evsel, nr_aggr, alloc_raw))
250 			goto out_free;
251 	}
252 
253 	return 0;
254 
255 out_free:
256 	evlist__free_stats(evlist);
257 	return -1;
258 }
259 
260 void evlist__free_stats(struct evlist *evlist)
261 {
262 	struct evsel *evsel;
263 
264 	evlist__for_each_entry(evlist, evsel) {
265 		evsel__free_stat_priv(evsel);
266 		evsel__free_counts(evsel);
267 		evsel__free_prev_raw_counts(evsel);
268 	}
269 }
270 
271 void evlist__reset_stats(struct evlist *evlist)
272 {
273 	struct evsel *evsel;
274 
275 	evlist__for_each_entry(evlist, evsel) {
276 		evsel__reset_stat_priv(evsel);
277 		evsel__reset_counts(evsel);
278 	}
279 }
280 
281 void evlist__reset_aggr_stats(struct evlist *evlist)
282 {
283 	struct evsel *evsel;
284 
285 	evlist__for_each_entry(evlist, evsel)
286 		evsel__reset_aggr_stats(evsel);
287 }
288 
289 void evlist__reset_prev_raw_counts(struct evlist *evlist)
290 {
291 	struct evsel *evsel;
292 
293 	evlist__for_each_entry(evlist, evsel)
294 		evsel__reset_prev_raw_counts(evsel);
295 }
296 
297 static void evsel__copy_prev_raw_counts(struct evsel *evsel)
298 {
299 	int idx, nthreads = perf_thread_map__nr(evsel->core.threads);
300 
301 	for (int thread = 0; thread < nthreads; thread++) {
302 		perf_cpu_map__for_each_idx(idx, evsel__cpus(evsel)) {
303 			*perf_counts(evsel->counts, idx, thread) =
304 				*perf_counts(evsel->prev_raw_counts, idx, thread);
305 		}
306 	}
307 }
308 
309 void evlist__copy_prev_raw_counts(struct evlist *evlist)
310 {
311 	struct evsel *evsel;
312 
313 	evlist__for_each_entry(evlist, evsel)
314 		evsel__copy_prev_raw_counts(evsel);
315 }
316 
317 static size_t pkg_id_hash(const void *__key, void *ctx __maybe_unused)
318 {
319 	uint64_t *key = (uint64_t *) __key;
320 
321 	return *key & 0xffffffff;
322 }
323 
324 static bool pkg_id_equal(const void *__key1, const void *__key2,
325 			 void *ctx __maybe_unused)
326 {
327 	uint64_t *key1 = (uint64_t *) __key1;
328 	uint64_t *key2 = (uint64_t *) __key2;
329 
330 	return *key1 == *key2;
331 }
332 
333 static int check_per_pkg(struct evsel *counter, struct perf_counts_values *vals,
334 			 int cpu_map_idx, bool *skip)
335 {
336 	struct hashmap *mask = counter->per_pkg_mask;
337 	struct perf_cpu_map *cpus = evsel__cpus(counter);
338 	struct perf_cpu cpu = perf_cpu_map__cpu(cpus, cpu_map_idx);
339 	int s, d, ret = 0;
340 	uint64_t *key;
341 
342 	*skip = false;
343 
344 	if (!counter->per_pkg)
345 		return 0;
346 
347 	if (perf_cpu_map__empty(cpus))
348 		return 0;
349 
350 	if (!mask) {
351 		mask = hashmap__new(pkg_id_hash, pkg_id_equal, NULL);
352 		if (IS_ERR(mask))
353 			return -ENOMEM;
354 
355 		counter->per_pkg_mask = mask;
356 	}
357 
358 	/*
359 	 * we do not consider an event that has not run as a good
360 	 * instance to mark a package as used (skip=1). Otherwise
361 	 * we may run into a situation where the first CPU in a package
362 	 * is not running anything, yet the second is, and this function
363 	 * would mark the package as used after the first CPU and would
364 	 * not read the values from the second CPU.
365 	 */
366 	if (!(vals->run && vals->ena))
367 		return 0;
368 
369 	s = cpu__get_socket_id(cpu);
370 	if (s < 0)
371 		return -1;
372 
373 	/*
374 	 * On multi-die system, die_id > 0. On no-die system, die_id = 0.
375 	 * We use hashmap(socket, die) to check the used socket+die pair.
376 	 */
377 	d = cpu__get_die_id(cpu);
378 	if (d < 0)
379 		return -1;
380 
381 	key = malloc(sizeof(*key));
382 	if (!key)
383 		return -ENOMEM;
384 
385 	*key = (uint64_t)d << 32 | s;
386 	if (hashmap__find(mask, (void *)key, NULL)) {
387 		*skip = true;
388 		free(key);
389 	} else
390 		ret = hashmap__add(mask, (void *)key, (void *)1);
391 
392 	return ret;
393 }
394 
395 static bool evsel__count_has_error(struct evsel *evsel,
396 				   struct perf_counts_values *count,
397 				   struct perf_stat_config *config)
398 {
399 	/* the evsel was failed already */
400 	if (evsel->err || evsel->counts->scaled == -1)
401 		return true;
402 
403 	/* this is meaningful for CPU aggregation modes only */
404 	if (config->aggr_mode == AGGR_GLOBAL)
405 		return false;
406 
407 	/* it's considered ok when it actually ran */
408 	if (count->ena != 0 && count->run != 0)
409 		return false;
410 
411 	return true;
412 }
413 
414 static int
415 process_counter_values(struct perf_stat_config *config, struct evsel *evsel,
416 		       int cpu_map_idx, int thread,
417 		       struct perf_counts_values *count)
418 {
419 	struct perf_stat_evsel *ps = evsel->stats;
420 	static struct perf_counts_values zero;
421 	bool skip = false;
422 
423 	if (check_per_pkg(evsel, count, cpu_map_idx, &skip)) {
424 		pr_err("failed to read per-pkg counter\n");
425 		return -1;
426 	}
427 
428 	if (skip)
429 		count = &zero;
430 
431 	if (!evsel->snapshot)
432 		evsel__compute_deltas(evsel, cpu_map_idx, thread, count);
433 	perf_counts_values__scale(count, config->scale, NULL);
434 
435 	if (config->aggr_mode == AGGR_THREAD) {
436 		struct perf_counts_values *aggr_counts = &ps->aggr[thread].counts;
437 
438 		/*
439 		 * Skip value 0 when enabling --per-thread globally,
440 		 * otherwise too many 0 output.
441 		 */
442 		if (count->val == 0 && config->system_wide)
443 			return 0;
444 
445 		ps->aggr[thread].nr++;
446 
447 		aggr_counts->val += count->val;
448 		aggr_counts->ena += count->ena;
449 		aggr_counts->run += count->run;
450 		return 0;
451 	}
452 
453 	if (ps->aggr) {
454 		struct perf_cpu cpu = perf_cpu_map__cpu(evsel->core.cpus, cpu_map_idx);
455 		struct aggr_cpu_id aggr_id = config->aggr_get_id(config, cpu);
456 		struct perf_stat_aggr *ps_aggr;
457 		int i;
458 
459 		for (i = 0; i < ps->nr_aggr; i++) {
460 			if (!aggr_cpu_id__equal(&aggr_id, &config->aggr_map->map[i]))
461 				continue;
462 
463 			ps_aggr = &ps->aggr[i];
464 			ps_aggr->nr++;
465 
466 			/*
467 			 * When any result is bad, make them all to give consistent output
468 			 * in interval mode.  But per-task counters can have 0 enabled time
469 			 * when some tasks are idle.
470 			 */
471 			if (evsel__count_has_error(evsel, count, config) && !ps_aggr->failed) {
472 				ps_aggr->counts.val = 0;
473 				ps_aggr->counts.ena = 0;
474 				ps_aggr->counts.run = 0;
475 				ps_aggr->failed = true;
476 			}
477 
478 			if (!ps_aggr->failed) {
479 				ps_aggr->counts.val += count->val;
480 				ps_aggr->counts.ena += count->ena;
481 				ps_aggr->counts.run += count->run;
482 			}
483 			break;
484 		}
485 	}
486 
487 	return 0;
488 }
489 
490 static int process_counter_maps(struct perf_stat_config *config,
491 				struct evsel *counter)
492 {
493 	int nthreads = perf_thread_map__nr(counter->core.threads);
494 	int ncpus = evsel__nr_cpus(counter);
495 	int idx, thread;
496 
497 	for (thread = 0; thread < nthreads; thread++) {
498 		for (idx = 0; idx < ncpus; idx++) {
499 			if (process_counter_values(config, counter, idx, thread,
500 						   perf_counts(counter->counts, idx, thread)))
501 				return -1;
502 		}
503 	}
504 
505 	return 0;
506 }
507 
508 int perf_stat_process_counter(struct perf_stat_config *config,
509 			      struct evsel *counter)
510 {
511 	struct perf_stat_evsel *ps = counter->stats;
512 	u64 *count;
513 	int ret;
514 
515 	if (counter->per_pkg)
516 		evsel__zero_per_pkg(counter);
517 
518 	ret = process_counter_maps(config, counter);
519 	if (ret)
520 		return ret;
521 
522 	if (config->aggr_mode != AGGR_GLOBAL)
523 		return 0;
524 
525 	/*
526 	 * GLOBAL aggregation mode only has a single aggr counts,
527 	 * so we can use ps->aggr[0] as the actual output.
528 	 */
529 	count = ps->aggr[0].counts.values;
530 	update_stats(&ps->res_stats, *count);
531 
532 	if (verbose > 0) {
533 		fprintf(config->output, "%s: %" PRIu64 " %" PRIu64 " %" PRIu64 "\n",
534 			evsel__name(counter), count[0], count[1], count[2]);
535 	}
536 
537 	return 0;
538 }
539 
540 static int evsel__merge_aggr_counters(struct evsel *evsel, struct evsel *alias)
541 {
542 	struct perf_stat_evsel *ps_a = evsel->stats;
543 	struct perf_stat_evsel *ps_b = alias->stats;
544 	int i;
545 
546 	if (ps_a->aggr == NULL && ps_b->aggr == NULL)
547 		return 0;
548 
549 	if (ps_a->nr_aggr != ps_b->nr_aggr) {
550 		pr_err("Unmatched aggregation mode between aliases\n");
551 		return -1;
552 	}
553 
554 	for (i = 0; i < ps_a->nr_aggr; i++) {
555 		struct perf_counts_values *aggr_counts_a = &ps_a->aggr[i].counts;
556 		struct perf_counts_values *aggr_counts_b = &ps_b->aggr[i].counts;
557 
558 		/* NB: don't increase aggr.nr for aliases */
559 
560 		aggr_counts_a->val += aggr_counts_b->val;
561 		aggr_counts_a->ena += aggr_counts_b->ena;
562 		aggr_counts_a->run += aggr_counts_b->run;
563 	}
564 
565 	return 0;
566 }
567 /* events should have the same name, scale, unit, cgroup but on different PMUs */
568 static bool evsel__is_alias(struct evsel *evsel_a, struct evsel *evsel_b)
569 {
570 	if (strcmp(evsel__name(evsel_a), evsel__name(evsel_b)))
571 		return false;
572 
573 	if (evsel_a->scale != evsel_b->scale)
574 		return false;
575 
576 	if (evsel_a->cgrp != evsel_b->cgrp)
577 		return false;
578 
579 	if (strcmp(evsel_a->unit, evsel_b->unit))
580 		return false;
581 
582 	if (evsel__is_clock(evsel_a) != evsel__is_clock(evsel_b))
583 		return false;
584 
585 	return !!strcmp(evsel_a->pmu_name, evsel_b->pmu_name);
586 }
587 
588 static void evsel__merge_aliases(struct evsel *evsel)
589 {
590 	struct evlist *evlist = evsel->evlist;
591 	struct evsel *alias;
592 
593 	alias = list_prepare_entry(evsel, &(evlist->core.entries), core.node);
594 	list_for_each_entry_continue(alias, &evlist->core.entries, core.node) {
595 		/* Merge the same events on different PMUs. */
596 		if (evsel__is_alias(evsel, alias)) {
597 			evsel__merge_aggr_counters(evsel, alias);
598 			alias->merged_stat = true;
599 		}
600 	}
601 }
602 
603 static bool evsel__should_merge_hybrid(const struct evsel *evsel,
604 				       const struct perf_stat_config *config)
605 {
606 	return config->hybrid_merge && evsel__is_hybrid(evsel);
607 }
608 
609 static void evsel__merge_stats(struct evsel *evsel, struct perf_stat_config *config)
610 {
611 	/* this evsel is already merged */
612 	if (evsel->merged_stat)
613 		return;
614 
615 	if (evsel->auto_merge_stats || evsel__should_merge_hybrid(evsel, config))
616 		evsel__merge_aliases(evsel);
617 }
618 
619 /* merge the same uncore and hybrid events if requested */
620 void perf_stat_merge_counters(struct perf_stat_config *config, struct evlist *evlist)
621 {
622 	struct evsel *evsel;
623 
624 	if (config->no_merge)
625 		return;
626 
627 	evlist__for_each_entry(evlist, evsel)
628 		evsel__merge_stats(evsel, config);
629 }
630 
631 static void evsel__update_percore_stats(struct evsel *evsel, struct aggr_cpu_id *core_id)
632 {
633 	struct perf_stat_evsel *ps = evsel->stats;
634 	struct perf_counts_values counts = { 0, };
635 	struct aggr_cpu_id id;
636 	struct perf_cpu cpu;
637 	int idx;
638 
639 	/* collect per-core counts */
640 	perf_cpu_map__for_each_cpu(cpu, idx, evsel->core.cpus) {
641 		struct perf_stat_aggr *aggr = &ps->aggr[idx];
642 
643 		id = aggr_cpu_id__core(cpu, NULL);
644 		if (!aggr_cpu_id__equal(core_id, &id))
645 			continue;
646 
647 		counts.val += aggr->counts.val;
648 		counts.ena += aggr->counts.ena;
649 		counts.run += aggr->counts.run;
650 	}
651 
652 	/* update aggregated per-core counts for each CPU */
653 	perf_cpu_map__for_each_cpu(cpu, idx, evsel->core.cpus) {
654 		struct perf_stat_aggr *aggr = &ps->aggr[idx];
655 
656 		id = aggr_cpu_id__core(cpu, NULL);
657 		if (!aggr_cpu_id__equal(core_id, &id))
658 			continue;
659 
660 		aggr->counts.val = counts.val;
661 		aggr->counts.ena = counts.ena;
662 		aggr->counts.run = counts.run;
663 
664 		aggr->used = true;
665 	}
666 }
667 
668 /* we have an aggr_map for cpu, but want to aggregate the counters per-core */
669 static void evsel__process_percore(struct evsel *evsel)
670 {
671 	struct perf_stat_evsel *ps = evsel->stats;
672 	struct aggr_cpu_id core_id;
673 	struct perf_cpu cpu;
674 	int idx;
675 
676 	if (!evsel->percore)
677 		return;
678 
679 	perf_cpu_map__for_each_cpu(cpu, idx, evsel->core.cpus) {
680 		struct perf_stat_aggr *aggr = &ps->aggr[idx];
681 
682 		if (aggr->used)
683 			continue;
684 
685 		core_id = aggr_cpu_id__core(cpu, NULL);
686 		evsel__update_percore_stats(evsel, &core_id);
687 	}
688 }
689 
690 /* process cpu stats on per-core events */
691 void perf_stat_process_percore(struct perf_stat_config *config, struct evlist *evlist)
692 {
693 	struct evsel *evsel;
694 
695 	if (config->aggr_mode != AGGR_NONE)
696 		return;
697 
698 	evlist__for_each_entry(evlist, evsel)
699 		evsel__process_percore(evsel);
700 }
701 
702 static void evsel__update_shadow_stats(struct evsel *evsel)
703 {
704 	struct perf_stat_evsel *ps = evsel->stats;
705 	int i;
706 
707 	if (ps->aggr == NULL)
708 		return;
709 
710 	for (i = 0; i < ps->nr_aggr; i++) {
711 		struct perf_counts_values *aggr_counts = &ps->aggr[i].counts;
712 
713 		perf_stat__update_shadow_stats(evsel, aggr_counts->val, i, &rt_stat);
714 	}
715 }
716 
717 void perf_stat_process_shadow_stats(struct perf_stat_config *config __maybe_unused,
718 				    struct evlist *evlist)
719 {
720 	struct evsel *evsel;
721 
722 	evlist__for_each_entry(evlist, evsel)
723 		evsel__update_shadow_stats(evsel);
724 }
725 
726 int perf_event__process_stat_event(struct perf_session *session,
727 				   union perf_event *event)
728 {
729 	struct perf_counts_values count, *ptr;
730 	struct perf_record_stat *st = &event->stat;
731 	struct evsel *counter;
732 	int cpu_map_idx;
733 
734 	count.val = st->val;
735 	count.ena = st->ena;
736 	count.run = st->run;
737 
738 	counter = evlist__id2evsel(session->evlist, st->id);
739 	if (!counter) {
740 		pr_err("Failed to resolve counter for stat event.\n");
741 		return -EINVAL;
742 	}
743 	cpu_map_idx = perf_cpu_map__idx(evsel__cpus(counter), (struct perf_cpu){.cpu = st->cpu});
744 	if (cpu_map_idx == -1) {
745 		pr_err("Invalid CPU %d for event %s.\n", st->cpu, evsel__name(counter));
746 		return -EINVAL;
747 	}
748 	ptr = perf_counts(counter->counts, cpu_map_idx, st->thread);
749 	if (ptr == NULL) {
750 		pr_err("Failed to find perf count for CPU %d thread %d on event %s.\n",
751 			st->cpu, st->thread, evsel__name(counter));
752 		return -EINVAL;
753 	}
754 	*ptr = count;
755 	counter->supported = true;
756 	return 0;
757 }
758 
759 size_t perf_event__fprintf_stat(union perf_event *event, FILE *fp)
760 {
761 	struct perf_record_stat *st = (struct perf_record_stat *)event;
762 	size_t ret;
763 
764 	ret  = fprintf(fp, "\n... id %" PRI_lu64 ", cpu %d, thread %d\n",
765 		       st->id, st->cpu, st->thread);
766 	ret += fprintf(fp, "... value %" PRI_lu64 ", enabled %" PRI_lu64 ", running %" PRI_lu64 "\n",
767 		       st->val, st->ena, st->run);
768 
769 	return ret;
770 }
771 
772 size_t perf_event__fprintf_stat_round(union perf_event *event, FILE *fp)
773 {
774 	struct perf_record_stat_round *rd = (struct perf_record_stat_round *)event;
775 	size_t ret;
776 
777 	ret = fprintf(fp, "\n... time %" PRI_lu64 ", type %s\n", rd->time,
778 		      rd->type == PERF_STAT_ROUND_TYPE__FINAL ? "FINAL" : "INTERVAL");
779 
780 	return ret;
781 }
782 
783 size_t perf_event__fprintf_stat_config(union perf_event *event, FILE *fp)
784 {
785 	struct perf_stat_config sc;
786 	size_t ret;
787 
788 	perf_event__read_stat_config(&sc, &event->stat_config);
789 
790 	ret  = fprintf(fp, "\n");
791 	ret += fprintf(fp, "... aggr_mode %d\n", sc.aggr_mode);
792 	ret += fprintf(fp, "... scale     %d\n", sc.scale);
793 	ret += fprintf(fp, "... interval  %u\n", sc.interval);
794 
795 	return ret;
796 }
797 
798 int create_perf_stat_counter(struct evsel *evsel,
799 			     struct perf_stat_config *config,
800 			     struct target *target,
801 			     int cpu_map_idx)
802 {
803 	struct perf_event_attr *attr = &evsel->core.attr;
804 	struct evsel *leader = evsel__leader(evsel);
805 
806 	attr->read_format = PERF_FORMAT_TOTAL_TIME_ENABLED |
807 			    PERF_FORMAT_TOTAL_TIME_RUNNING;
808 
809 	/*
810 	 * The event is part of non trivial group, let's enable
811 	 * the group read (for leader) and ID retrieval for all
812 	 * members.
813 	 */
814 	if (leader->core.nr_members > 1)
815 		attr->read_format |= PERF_FORMAT_ID|PERF_FORMAT_GROUP;
816 
817 	attr->inherit = !config->no_inherit && list_empty(&evsel->bpf_counter_list);
818 
819 	/*
820 	 * Some events get initialized with sample_(period/type) set,
821 	 * like tracepoints. Clear it up for counting.
822 	 */
823 	attr->sample_period = 0;
824 
825 	if (config->identifier)
826 		attr->sample_type = PERF_SAMPLE_IDENTIFIER;
827 
828 	if (config->all_user) {
829 		attr->exclude_kernel = 1;
830 		attr->exclude_user   = 0;
831 	}
832 
833 	if (config->all_kernel) {
834 		attr->exclude_kernel = 0;
835 		attr->exclude_user   = 1;
836 	}
837 
838 	/*
839 	 * Disabling all counters initially, they will be enabled
840 	 * either manually by us or by kernel via enable_on_exec
841 	 * set later.
842 	 */
843 	if (evsel__is_group_leader(evsel)) {
844 		attr->disabled = 1;
845 
846 		/*
847 		 * In case of initial_delay we enable tracee
848 		 * events manually.
849 		 */
850 		if (target__none(target) && !config->initial_delay)
851 			attr->enable_on_exec = 1;
852 	}
853 
854 	if (target__has_cpu(target) && !target__has_per_thread(target))
855 		return evsel__open_per_cpu(evsel, evsel__cpus(evsel), cpu_map_idx);
856 
857 	return evsel__open_per_thread(evsel, evsel->core.threads);
858 }
859