xref: /openbmc/linux/tools/perf/util/session.c (revision bb6be405)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include <linux/err.h>
5 #include <linux/kernel.h>
6 #include <linux/zalloc.h>
7 #include <api/fs/fs.h>
8 
9 #include <byteswap.h>
10 #include <unistd.h>
11 #include <sys/types.h>
12 #include <sys/mman.h>
13 #include <perf/cpumap.h>
14 
15 #include "map_symbol.h"
16 #include "branch.h"
17 #include "debug.h"
18 #include "env.h"
19 #include "evlist.h"
20 #include "evsel.h"
21 #include "memswap.h"
22 #include "map.h"
23 #include "symbol.h"
24 #include "session.h"
25 #include "tool.h"
26 #include "perf_regs.h"
27 #include "asm/bug.h"
28 #include "auxtrace.h"
29 #include "thread.h"
30 #include "thread-stack.h"
31 #include "sample-raw.h"
32 #include "stat.h"
33 #include "tsc.h"
34 #include "ui/progress.h"
35 #include "../perf.h"
36 #include "arch/common.h"
37 #include "units.h"
38 #include <internal/lib.h>
39 
40 #ifdef HAVE_ZSTD_SUPPORT
41 static int perf_session__process_compressed_event(struct perf_session *session,
42 						  union perf_event *event, u64 file_offset)
43 {
44 	void *src;
45 	size_t decomp_size, src_size;
46 	u64 decomp_last_rem = 0;
47 	size_t mmap_len, decomp_len = session->header.env.comp_mmap_len;
48 	struct decomp *decomp, *decomp_last = session->active_decomp->decomp_last;
49 
50 	if (decomp_last) {
51 		decomp_last_rem = decomp_last->size - decomp_last->head;
52 		decomp_len += decomp_last_rem;
53 	}
54 
55 	mmap_len = sizeof(struct decomp) + decomp_len;
56 	decomp = mmap(NULL, mmap_len, PROT_READ|PROT_WRITE,
57 		      MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
58 	if (decomp == MAP_FAILED) {
59 		pr_err("Couldn't allocate memory for decompression\n");
60 		return -1;
61 	}
62 
63 	decomp->file_pos = file_offset;
64 	decomp->mmap_len = mmap_len;
65 	decomp->head = 0;
66 
67 	if (decomp_last_rem) {
68 		memcpy(decomp->data, &(decomp_last->data[decomp_last->head]), decomp_last_rem);
69 		decomp->size = decomp_last_rem;
70 	}
71 
72 	src = (void *)event + sizeof(struct perf_record_compressed);
73 	src_size = event->pack.header.size - sizeof(struct perf_record_compressed);
74 
75 	decomp_size = zstd_decompress_stream(session->active_decomp->zstd_decomp, src, src_size,
76 				&(decomp->data[decomp_last_rem]), decomp_len - decomp_last_rem);
77 	if (!decomp_size) {
78 		munmap(decomp, mmap_len);
79 		pr_err("Couldn't decompress data\n");
80 		return -1;
81 	}
82 
83 	decomp->size += decomp_size;
84 
85 	if (session->active_decomp->decomp == NULL)
86 		session->active_decomp->decomp = decomp;
87 	else
88 		session->active_decomp->decomp_last->next = decomp;
89 
90 	session->active_decomp->decomp_last = decomp;
91 
92 	pr_debug("decomp (B): %zd to %zd\n", src_size, decomp_size);
93 
94 	return 0;
95 }
96 #else /* !HAVE_ZSTD_SUPPORT */
97 #define perf_session__process_compressed_event perf_session__process_compressed_event_stub
98 #endif
99 
100 static int perf_session__deliver_event(struct perf_session *session,
101 				       union perf_event *event,
102 				       struct perf_tool *tool,
103 				       u64 file_offset);
104 
105 static int perf_session__open(struct perf_session *session, int repipe_fd)
106 {
107 	struct perf_data *data = session->data;
108 
109 	if (perf_session__read_header(session, repipe_fd) < 0) {
110 		pr_err("incompatible file format (rerun with -v to learn more)\n");
111 		return -1;
112 	}
113 
114 	if (perf_data__is_pipe(data))
115 		return 0;
116 
117 	if (perf_header__has_feat(&session->header, HEADER_STAT))
118 		return 0;
119 
120 	if (!evlist__valid_sample_type(session->evlist)) {
121 		pr_err("non matching sample_type\n");
122 		return -1;
123 	}
124 
125 	if (!evlist__valid_sample_id_all(session->evlist)) {
126 		pr_err("non matching sample_id_all\n");
127 		return -1;
128 	}
129 
130 	if (!evlist__valid_read_format(session->evlist)) {
131 		pr_err("non matching read_format\n");
132 		return -1;
133 	}
134 
135 	return 0;
136 }
137 
138 void perf_session__set_id_hdr_size(struct perf_session *session)
139 {
140 	u16 id_hdr_size = evlist__id_hdr_size(session->evlist);
141 
142 	machines__set_id_hdr_size(&session->machines, id_hdr_size);
143 }
144 
145 int perf_session__create_kernel_maps(struct perf_session *session)
146 {
147 	int ret = machine__create_kernel_maps(&session->machines.host);
148 
149 	if (ret >= 0)
150 		ret = machines__create_guest_kernel_maps(&session->machines);
151 	return ret;
152 }
153 
154 static void perf_session__destroy_kernel_maps(struct perf_session *session)
155 {
156 	machines__destroy_kernel_maps(&session->machines);
157 }
158 
159 static bool perf_session__has_comm_exec(struct perf_session *session)
160 {
161 	struct evsel *evsel;
162 
163 	evlist__for_each_entry(session->evlist, evsel) {
164 		if (evsel->core.attr.comm_exec)
165 			return true;
166 	}
167 
168 	return false;
169 }
170 
171 static void perf_session__set_comm_exec(struct perf_session *session)
172 {
173 	bool comm_exec = perf_session__has_comm_exec(session);
174 
175 	machines__set_comm_exec(&session->machines, comm_exec);
176 }
177 
178 static int ordered_events__deliver_event(struct ordered_events *oe,
179 					 struct ordered_event *event)
180 {
181 	struct perf_session *session = container_of(oe, struct perf_session,
182 						    ordered_events);
183 
184 	return perf_session__deliver_event(session, event->event,
185 					   session->tool, event->file_offset);
186 }
187 
188 struct perf_session *__perf_session__new(struct perf_data *data,
189 					 bool repipe, int repipe_fd,
190 					 struct perf_tool *tool)
191 {
192 	int ret = -ENOMEM;
193 	struct perf_session *session = zalloc(sizeof(*session));
194 
195 	if (!session)
196 		goto out;
197 
198 	session->repipe = repipe;
199 	session->tool   = tool;
200 	session->decomp_data.zstd_decomp = &session->zstd_data;
201 	session->active_decomp = &session->decomp_data;
202 	INIT_LIST_HEAD(&session->auxtrace_index);
203 	machines__init(&session->machines);
204 	ordered_events__init(&session->ordered_events,
205 			     ordered_events__deliver_event, NULL);
206 
207 	perf_env__init(&session->header.env);
208 	if (data) {
209 		ret = perf_data__open(data);
210 		if (ret < 0)
211 			goto out_delete;
212 
213 		session->data = data;
214 
215 		if (perf_data__is_read(data)) {
216 			ret = perf_session__open(session, repipe_fd);
217 			if (ret < 0)
218 				goto out_delete;
219 
220 			/*
221 			 * set session attributes that are present in perf.data
222 			 * but not in pipe-mode.
223 			 */
224 			if (!data->is_pipe) {
225 				perf_session__set_id_hdr_size(session);
226 				perf_session__set_comm_exec(session);
227 			}
228 
229 			evlist__init_trace_event_sample_raw(session->evlist);
230 
231 			/* Open the directory data. */
232 			if (data->is_dir) {
233 				ret = perf_data__open_dir(data);
234 				if (ret)
235 					goto out_delete;
236 			}
237 
238 			if (!symbol_conf.kallsyms_name &&
239 			    !symbol_conf.vmlinux_name)
240 				symbol_conf.kallsyms_name = perf_data__kallsyms_name(data);
241 		}
242 	} else  {
243 		session->machines.host.env = &perf_env;
244 	}
245 
246 	session->machines.host.single_address_space =
247 		perf_env__single_address_space(session->machines.host.env);
248 
249 	if (!data || perf_data__is_write(data)) {
250 		/*
251 		 * In O_RDONLY mode this will be performed when reading the
252 		 * kernel MMAP event, in perf_event__process_mmap().
253 		 */
254 		if (perf_session__create_kernel_maps(session) < 0)
255 			pr_warning("Cannot read kernel map\n");
256 	}
257 
258 	/*
259 	 * In pipe-mode, evlist is empty until PERF_RECORD_HEADER_ATTR is
260 	 * processed, so evlist__sample_id_all is not meaningful here.
261 	 */
262 	if ((!data || !data->is_pipe) && tool && tool->ordering_requires_timestamps &&
263 	    tool->ordered_events && !evlist__sample_id_all(session->evlist)) {
264 		dump_printf("WARNING: No sample_id_all support, falling back to unordered processing\n");
265 		tool->ordered_events = false;
266 	}
267 
268 	return session;
269 
270  out_delete:
271 	perf_session__delete(session);
272  out:
273 	return ERR_PTR(ret);
274 }
275 
276 static void perf_session__delete_threads(struct perf_session *session)
277 {
278 	machine__delete_threads(&session->machines.host);
279 }
280 
281 static void perf_decomp__release_events(struct decomp *next)
282 {
283 	struct decomp *decomp;
284 	size_t mmap_len;
285 
286 	do {
287 		decomp = next;
288 		if (decomp == NULL)
289 			break;
290 		next = decomp->next;
291 		mmap_len = decomp->mmap_len;
292 		munmap(decomp, mmap_len);
293 	} while (1);
294 }
295 
296 void perf_session__delete(struct perf_session *session)
297 {
298 	if (session == NULL)
299 		return;
300 	auxtrace__free(session);
301 	auxtrace_index__free(&session->auxtrace_index);
302 	perf_session__destroy_kernel_maps(session);
303 	perf_session__delete_threads(session);
304 	perf_decomp__release_events(session->decomp_data.decomp);
305 	perf_env__exit(&session->header.env);
306 	machines__exit(&session->machines);
307 	if (session->data) {
308 		if (perf_data__is_read(session->data))
309 			evlist__delete(session->evlist);
310 		perf_data__close(session->data);
311 	}
312 	trace_event__cleanup(&session->tevent);
313 	free(session);
314 }
315 
316 static int process_event_synth_tracing_data_stub(struct perf_session *session
317 						 __maybe_unused,
318 						 union perf_event *event
319 						 __maybe_unused)
320 {
321 	dump_printf(": unhandled!\n");
322 	return 0;
323 }
324 
325 static int process_event_synth_attr_stub(struct perf_tool *tool __maybe_unused,
326 					 union perf_event *event __maybe_unused,
327 					 struct evlist **pevlist
328 					 __maybe_unused)
329 {
330 	dump_printf(": unhandled!\n");
331 	return 0;
332 }
333 
334 static int process_event_synth_event_update_stub(struct perf_tool *tool __maybe_unused,
335 						 union perf_event *event __maybe_unused,
336 						 struct evlist **pevlist
337 						 __maybe_unused)
338 {
339 	if (dump_trace)
340 		perf_event__fprintf_event_update(event, stdout);
341 
342 	dump_printf(": unhandled!\n");
343 	return 0;
344 }
345 
346 static int process_event_sample_stub(struct perf_tool *tool __maybe_unused,
347 				     union perf_event *event __maybe_unused,
348 				     struct perf_sample *sample __maybe_unused,
349 				     struct evsel *evsel __maybe_unused,
350 				     struct machine *machine __maybe_unused)
351 {
352 	dump_printf(": unhandled!\n");
353 	return 0;
354 }
355 
356 static int process_event_stub(struct perf_tool *tool __maybe_unused,
357 			      union perf_event *event __maybe_unused,
358 			      struct perf_sample *sample __maybe_unused,
359 			      struct machine *machine __maybe_unused)
360 {
361 	dump_printf(": unhandled!\n");
362 	return 0;
363 }
364 
365 static int process_finished_round_stub(struct perf_tool *tool __maybe_unused,
366 				       union perf_event *event __maybe_unused,
367 				       struct ordered_events *oe __maybe_unused)
368 {
369 	dump_printf(": unhandled!\n");
370 	return 0;
371 }
372 
373 static int process_finished_round(struct perf_tool *tool,
374 				  union perf_event *event,
375 				  struct ordered_events *oe);
376 
377 static int skipn(int fd, off_t n)
378 {
379 	char buf[4096];
380 	ssize_t ret;
381 
382 	while (n > 0) {
383 		ret = read(fd, buf, min(n, (off_t)sizeof(buf)));
384 		if (ret <= 0)
385 			return ret;
386 		n -= ret;
387 	}
388 
389 	return 0;
390 }
391 
392 static s64 process_event_auxtrace_stub(struct perf_session *session __maybe_unused,
393 				       union perf_event *event)
394 {
395 	dump_printf(": unhandled!\n");
396 	if (perf_data__is_pipe(session->data))
397 		skipn(perf_data__fd(session->data), event->auxtrace.size);
398 	return event->auxtrace.size;
399 }
400 
401 static int process_event_op2_stub(struct perf_session *session __maybe_unused,
402 				  union perf_event *event __maybe_unused)
403 {
404 	dump_printf(": unhandled!\n");
405 	return 0;
406 }
407 
408 
409 static
410 int process_event_thread_map_stub(struct perf_session *session __maybe_unused,
411 				  union perf_event *event __maybe_unused)
412 {
413 	if (dump_trace)
414 		perf_event__fprintf_thread_map(event, stdout);
415 
416 	dump_printf(": unhandled!\n");
417 	return 0;
418 }
419 
420 static
421 int process_event_cpu_map_stub(struct perf_session *session __maybe_unused,
422 			       union perf_event *event __maybe_unused)
423 {
424 	if (dump_trace)
425 		perf_event__fprintf_cpu_map(event, stdout);
426 
427 	dump_printf(": unhandled!\n");
428 	return 0;
429 }
430 
431 static
432 int process_event_stat_config_stub(struct perf_session *session __maybe_unused,
433 				   union perf_event *event __maybe_unused)
434 {
435 	if (dump_trace)
436 		perf_event__fprintf_stat_config(event, stdout);
437 
438 	dump_printf(": unhandled!\n");
439 	return 0;
440 }
441 
442 static int process_stat_stub(struct perf_session *perf_session __maybe_unused,
443 			     union perf_event *event)
444 {
445 	if (dump_trace)
446 		perf_event__fprintf_stat(event, stdout);
447 
448 	dump_printf(": unhandled!\n");
449 	return 0;
450 }
451 
452 static int process_stat_round_stub(struct perf_session *perf_session __maybe_unused,
453 				   union perf_event *event)
454 {
455 	if (dump_trace)
456 		perf_event__fprintf_stat_round(event, stdout);
457 
458 	dump_printf(": unhandled!\n");
459 	return 0;
460 }
461 
462 static int process_event_time_conv_stub(struct perf_session *perf_session __maybe_unused,
463 					union perf_event *event)
464 {
465 	if (dump_trace)
466 		perf_event__fprintf_time_conv(event, stdout);
467 
468 	dump_printf(": unhandled!\n");
469 	return 0;
470 }
471 
472 static int perf_session__process_compressed_event_stub(struct perf_session *session __maybe_unused,
473 						       union perf_event *event __maybe_unused,
474 						       u64 file_offset __maybe_unused)
475 {
476        dump_printf(": unhandled!\n");
477        return 0;
478 }
479 
480 void perf_tool__fill_defaults(struct perf_tool *tool)
481 {
482 	if (tool->sample == NULL)
483 		tool->sample = process_event_sample_stub;
484 	if (tool->mmap == NULL)
485 		tool->mmap = process_event_stub;
486 	if (tool->mmap2 == NULL)
487 		tool->mmap2 = process_event_stub;
488 	if (tool->comm == NULL)
489 		tool->comm = process_event_stub;
490 	if (tool->namespaces == NULL)
491 		tool->namespaces = process_event_stub;
492 	if (tool->cgroup == NULL)
493 		tool->cgroup = process_event_stub;
494 	if (tool->fork == NULL)
495 		tool->fork = process_event_stub;
496 	if (tool->exit == NULL)
497 		tool->exit = process_event_stub;
498 	if (tool->lost == NULL)
499 		tool->lost = perf_event__process_lost;
500 	if (tool->lost_samples == NULL)
501 		tool->lost_samples = perf_event__process_lost_samples;
502 	if (tool->aux == NULL)
503 		tool->aux = perf_event__process_aux;
504 	if (tool->itrace_start == NULL)
505 		tool->itrace_start = perf_event__process_itrace_start;
506 	if (tool->context_switch == NULL)
507 		tool->context_switch = perf_event__process_switch;
508 	if (tool->ksymbol == NULL)
509 		tool->ksymbol = perf_event__process_ksymbol;
510 	if (tool->bpf == NULL)
511 		tool->bpf = perf_event__process_bpf;
512 	if (tool->text_poke == NULL)
513 		tool->text_poke = perf_event__process_text_poke;
514 	if (tool->aux_output_hw_id == NULL)
515 		tool->aux_output_hw_id = perf_event__process_aux_output_hw_id;
516 	if (tool->read == NULL)
517 		tool->read = process_event_sample_stub;
518 	if (tool->throttle == NULL)
519 		tool->throttle = process_event_stub;
520 	if (tool->unthrottle == NULL)
521 		tool->unthrottle = process_event_stub;
522 	if (tool->attr == NULL)
523 		tool->attr = process_event_synth_attr_stub;
524 	if (tool->event_update == NULL)
525 		tool->event_update = process_event_synth_event_update_stub;
526 	if (tool->tracing_data == NULL)
527 		tool->tracing_data = process_event_synth_tracing_data_stub;
528 	if (tool->build_id == NULL)
529 		tool->build_id = process_event_op2_stub;
530 	if (tool->finished_round == NULL) {
531 		if (tool->ordered_events)
532 			tool->finished_round = process_finished_round;
533 		else
534 			tool->finished_round = process_finished_round_stub;
535 	}
536 	if (tool->id_index == NULL)
537 		tool->id_index = process_event_op2_stub;
538 	if (tool->auxtrace_info == NULL)
539 		tool->auxtrace_info = process_event_op2_stub;
540 	if (tool->auxtrace == NULL)
541 		tool->auxtrace = process_event_auxtrace_stub;
542 	if (tool->auxtrace_error == NULL)
543 		tool->auxtrace_error = process_event_op2_stub;
544 	if (tool->thread_map == NULL)
545 		tool->thread_map = process_event_thread_map_stub;
546 	if (tool->cpu_map == NULL)
547 		tool->cpu_map = process_event_cpu_map_stub;
548 	if (tool->stat_config == NULL)
549 		tool->stat_config = process_event_stat_config_stub;
550 	if (tool->stat == NULL)
551 		tool->stat = process_stat_stub;
552 	if (tool->stat_round == NULL)
553 		tool->stat_round = process_stat_round_stub;
554 	if (tool->time_conv == NULL)
555 		tool->time_conv = process_event_time_conv_stub;
556 	if (tool->feature == NULL)
557 		tool->feature = process_event_op2_stub;
558 	if (tool->compressed == NULL)
559 		tool->compressed = perf_session__process_compressed_event;
560 }
561 
562 static void swap_sample_id_all(union perf_event *event, void *data)
563 {
564 	void *end = (void *) event + event->header.size;
565 	int size = end - data;
566 
567 	BUG_ON(size % sizeof(u64));
568 	mem_bswap_64(data, size);
569 }
570 
571 static void perf_event__all64_swap(union perf_event *event,
572 				   bool sample_id_all __maybe_unused)
573 {
574 	struct perf_event_header *hdr = &event->header;
575 	mem_bswap_64(hdr + 1, event->header.size - sizeof(*hdr));
576 }
577 
578 static void perf_event__comm_swap(union perf_event *event, bool sample_id_all)
579 {
580 	event->comm.pid = bswap_32(event->comm.pid);
581 	event->comm.tid = bswap_32(event->comm.tid);
582 
583 	if (sample_id_all) {
584 		void *data = &event->comm.comm;
585 
586 		data += PERF_ALIGN(strlen(data) + 1, sizeof(u64));
587 		swap_sample_id_all(event, data);
588 	}
589 }
590 
591 static void perf_event__mmap_swap(union perf_event *event,
592 				  bool sample_id_all)
593 {
594 	event->mmap.pid	  = bswap_32(event->mmap.pid);
595 	event->mmap.tid	  = bswap_32(event->mmap.tid);
596 	event->mmap.start = bswap_64(event->mmap.start);
597 	event->mmap.len	  = bswap_64(event->mmap.len);
598 	event->mmap.pgoff = bswap_64(event->mmap.pgoff);
599 
600 	if (sample_id_all) {
601 		void *data = &event->mmap.filename;
602 
603 		data += PERF_ALIGN(strlen(data) + 1, sizeof(u64));
604 		swap_sample_id_all(event, data);
605 	}
606 }
607 
608 static void perf_event__mmap2_swap(union perf_event *event,
609 				  bool sample_id_all)
610 {
611 	event->mmap2.pid   = bswap_32(event->mmap2.pid);
612 	event->mmap2.tid   = bswap_32(event->mmap2.tid);
613 	event->mmap2.start = bswap_64(event->mmap2.start);
614 	event->mmap2.len   = bswap_64(event->mmap2.len);
615 	event->mmap2.pgoff = bswap_64(event->mmap2.pgoff);
616 
617 	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID)) {
618 		event->mmap2.maj   = bswap_32(event->mmap2.maj);
619 		event->mmap2.min   = bswap_32(event->mmap2.min);
620 		event->mmap2.ino   = bswap_64(event->mmap2.ino);
621 		event->mmap2.ino_generation = bswap_64(event->mmap2.ino_generation);
622 	}
623 
624 	if (sample_id_all) {
625 		void *data = &event->mmap2.filename;
626 
627 		data += PERF_ALIGN(strlen(data) + 1, sizeof(u64));
628 		swap_sample_id_all(event, data);
629 	}
630 }
631 static void perf_event__task_swap(union perf_event *event, bool sample_id_all)
632 {
633 	event->fork.pid	 = bswap_32(event->fork.pid);
634 	event->fork.tid	 = bswap_32(event->fork.tid);
635 	event->fork.ppid = bswap_32(event->fork.ppid);
636 	event->fork.ptid = bswap_32(event->fork.ptid);
637 	event->fork.time = bswap_64(event->fork.time);
638 
639 	if (sample_id_all)
640 		swap_sample_id_all(event, &event->fork + 1);
641 }
642 
643 static void perf_event__read_swap(union perf_event *event, bool sample_id_all)
644 {
645 	event->read.pid		 = bswap_32(event->read.pid);
646 	event->read.tid		 = bswap_32(event->read.tid);
647 	event->read.value	 = bswap_64(event->read.value);
648 	event->read.time_enabled = bswap_64(event->read.time_enabled);
649 	event->read.time_running = bswap_64(event->read.time_running);
650 	event->read.id		 = bswap_64(event->read.id);
651 
652 	if (sample_id_all)
653 		swap_sample_id_all(event, &event->read + 1);
654 }
655 
656 static void perf_event__aux_swap(union perf_event *event, bool sample_id_all)
657 {
658 	event->aux.aux_offset = bswap_64(event->aux.aux_offset);
659 	event->aux.aux_size   = bswap_64(event->aux.aux_size);
660 	event->aux.flags      = bswap_64(event->aux.flags);
661 
662 	if (sample_id_all)
663 		swap_sample_id_all(event, &event->aux + 1);
664 }
665 
666 static void perf_event__itrace_start_swap(union perf_event *event,
667 					  bool sample_id_all)
668 {
669 	event->itrace_start.pid	 = bswap_32(event->itrace_start.pid);
670 	event->itrace_start.tid	 = bswap_32(event->itrace_start.tid);
671 
672 	if (sample_id_all)
673 		swap_sample_id_all(event, &event->itrace_start + 1);
674 }
675 
676 static void perf_event__switch_swap(union perf_event *event, bool sample_id_all)
677 {
678 	if (event->header.type == PERF_RECORD_SWITCH_CPU_WIDE) {
679 		event->context_switch.next_prev_pid =
680 				bswap_32(event->context_switch.next_prev_pid);
681 		event->context_switch.next_prev_tid =
682 				bswap_32(event->context_switch.next_prev_tid);
683 	}
684 
685 	if (sample_id_all)
686 		swap_sample_id_all(event, &event->context_switch + 1);
687 }
688 
689 static void perf_event__text_poke_swap(union perf_event *event, bool sample_id_all)
690 {
691 	event->text_poke.addr    = bswap_64(event->text_poke.addr);
692 	event->text_poke.old_len = bswap_16(event->text_poke.old_len);
693 	event->text_poke.new_len = bswap_16(event->text_poke.new_len);
694 
695 	if (sample_id_all) {
696 		size_t len = sizeof(event->text_poke.old_len) +
697 			     sizeof(event->text_poke.new_len) +
698 			     event->text_poke.old_len +
699 			     event->text_poke.new_len;
700 		void *data = &event->text_poke.old_len;
701 
702 		data += PERF_ALIGN(len, sizeof(u64));
703 		swap_sample_id_all(event, data);
704 	}
705 }
706 
707 static void perf_event__throttle_swap(union perf_event *event,
708 				      bool sample_id_all)
709 {
710 	event->throttle.time	  = bswap_64(event->throttle.time);
711 	event->throttle.id	  = bswap_64(event->throttle.id);
712 	event->throttle.stream_id = bswap_64(event->throttle.stream_id);
713 
714 	if (sample_id_all)
715 		swap_sample_id_all(event, &event->throttle + 1);
716 }
717 
718 static void perf_event__namespaces_swap(union perf_event *event,
719 					bool sample_id_all)
720 {
721 	u64 i;
722 
723 	event->namespaces.pid		= bswap_32(event->namespaces.pid);
724 	event->namespaces.tid		= bswap_32(event->namespaces.tid);
725 	event->namespaces.nr_namespaces	= bswap_64(event->namespaces.nr_namespaces);
726 
727 	for (i = 0; i < event->namespaces.nr_namespaces; i++) {
728 		struct perf_ns_link_info *ns = &event->namespaces.link_info[i];
729 
730 		ns->dev = bswap_64(ns->dev);
731 		ns->ino = bswap_64(ns->ino);
732 	}
733 
734 	if (sample_id_all)
735 		swap_sample_id_all(event, &event->namespaces.link_info[i]);
736 }
737 
738 static void perf_event__cgroup_swap(union perf_event *event, bool sample_id_all)
739 {
740 	event->cgroup.id = bswap_64(event->cgroup.id);
741 
742 	if (sample_id_all) {
743 		void *data = &event->cgroup.path;
744 
745 		data += PERF_ALIGN(strlen(data) + 1, sizeof(u64));
746 		swap_sample_id_all(event, data);
747 	}
748 }
749 
750 static u8 revbyte(u8 b)
751 {
752 	int rev = (b >> 4) | ((b & 0xf) << 4);
753 	rev = ((rev & 0xcc) >> 2) | ((rev & 0x33) << 2);
754 	rev = ((rev & 0xaa) >> 1) | ((rev & 0x55) << 1);
755 	return (u8) rev;
756 }
757 
758 /*
759  * XXX this is hack in attempt to carry flags bitfield
760  * through endian village. ABI says:
761  *
762  * Bit-fields are allocated from right to left (least to most significant)
763  * on little-endian implementations and from left to right (most to least
764  * significant) on big-endian implementations.
765  *
766  * The above seems to be byte specific, so we need to reverse each
767  * byte of the bitfield. 'Internet' also says this might be implementation
768  * specific and we probably need proper fix and carry perf_event_attr
769  * bitfield flags in separate data file FEAT_ section. Thought this seems
770  * to work for now.
771  */
772 static void swap_bitfield(u8 *p, unsigned len)
773 {
774 	unsigned i;
775 
776 	for (i = 0; i < len; i++) {
777 		*p = revbyte(*p);
778 		p++;
779 	}
780 }
781 
782 /* exported for swapping attributes in file header */
783 void perf_event__attr_swap(struct perf_event_attr *attr)
784 {
785 	attr->type		= bswap_32(attr->type);
786 	attr->size		= bswap_32(attr->size);
787 
788 #define bswap_safe(f, n) 					\
789 	(attr->size > (offsetof(struct perf_event_attr, f) + 	\
790 		       sizeof(attr->f) * (n)))
791 #define bswap_field(f, sz) 			\
792 do { 						\
793 	if (bswap_safe(f, 0))			\
794 		attr->f = bswap_##sz(attr->f);	\
795 } while(0)
796 #define bswap_field_16(f) bswap_field(f, 16)
797 #define bswap_field_32(f) bswap_field(f, 32)
798 #define bswap_field_64(f) bswap_field(f, 64)
799 
800 	bswap_field_64(config);
801 	bswap_field_64(sample_period);
802 	bswap_field_64(sample_type);
803 	bswap_field_64(read_format);
804 	bswap_field_32(wakeup_events);
805 	bswap_field_32(bp_type);
806 	bswap_field_64(bp_addr);
807 	bswap_field_64(bp_len);
808 	bswap_field_64(branch_sample_type);
809 	bswap_field_64(sample_regs_user);
810 	bswap_field_32(sample_stack_user);
811 	bswap_field_32(aux_watermark);
812 	bswap_field_16(sample_max_stack);
813 	bswap_field_32(aux_sample_size);
814 
815 	/*
816 	 * After read_format are bitfields. Check read_format because
817 	 * we are unable to use offsetof on bitfield.
818 	 */
819 	if (bswap_safe(read_format, 1))
820 		swap_bitfield((u8 *) (&attr->read_format + 1),
821 			      sizeof(u64));
822 #undef bswap_field_64
823 #undef bswap_field_32
824 #undef bswap_field
825 #undef bswap_safe
826 }
827 
828 static void perf_event__hdr_attr_swap(union perf_event *event,
829 				      bool sample_id_all __maybe_unused)
830 {
831 	size_t size;
832 
833 	perf_event__attr_swap(&event->attr.attr);
834 
835 	size = event->header.size;
836 	size -= (void *)&event->attr.id - (void *)event;
837 	mem_bswap_64(event->attr.id, size);
838 }
839 
840 static void perf_event__event_update_swap(union perf_event *event,
841 					  bool sample_id_all __maybe_unused)
842 {
843 	event->event_update.type = bswap_64(event->event_update.type);
844 	event->event_update.id   = bswap_64(event->event_update.id);
845 }
846 
847 static void perf_event__event_type_swap(union perf_event *event,
848 					bool sample_id_all __maybe_unused)
849 {
850 	event->event_type.event_type.event_id =
851 		bswap_64(event->event_type.event_type.event_id);
852 }
853 
854 static void perf_event__tracing_data_swap(union perf_event *event,
855 					  bool sample_id_all __maybe_unused)
856 {
857 	event->tracing_data.size = bswap_32(event->tracing_data.size);
858 }
859 
860 static void perf_event__auxtrace_info_swap(union perf_event *event,
861 					   bool sample_id_all __maybe_unused)
862 {
863 	size_t size;
864 
865 	event->auxtrace_info.type = bswap_32(event->auxtrace_info.type);
866 
867 	size = event->header.size;
868 	size -= (void *)&event->auxtrace_info.priv - (void *)event;
869 	mem_bswap_64(event->auxtrace_info.priv, size);
870 }
871 
872 static void perf_event__auxtrace_swap(union perf_event *event,
873 				      bool sample_id_all __maybe_unused)
874 {
875 	event->auxtrace.size      = bswap_64(event->auxtrace.size);
876 	event->auxtrace.offset    = bswap_64(event->auxtrace.offset);
877 	event->auxtrace.reference = bswap_64(event->auxtrace.reference);
878 	event->auxtrace.idx       = bswap_32(event->auxtrace.idx);
879 	event->auxtrace.tid       = bswap_32(event->auxtrace.tid);
880 	event->auxtrace.cpu       = bswap_32(event->auxtrace.cpu);
881 }
882 
883 static void perf_event__auxtrace_error_swap(union perf_event *event,
884 					    bool sample_id_all __maybe_unused)
885 {
886 	event->auxtrace_error.type = bswap_32(event->auxtrace_error.type);
887 	event->auxtrace_error.code = bswap_32(event->auxtrace_error.code);
888 	event->auxtrace_error.cpu  = bswap_32(event->auxtrace_error.cpu);
889 	event->auxtrace_error.pid  = bswap_32(event->auxtrace_error.pid);
890 	event->auxtrace_error.tid  = bswap_32(event->auxtrace_error.tid);
891 	event->auxtrace_error.fmt  = bswap_32(event->auxtrace_error.fmt);
892 	event->auxtrace_error.ip   = bswap_64(event->auxtrace_error.ip);
893 	if (event->auxtrace_error.fmt)
894 		event->auxtrace_error.time = bswap_64(event->auxtrace_error.time);
895 }
896 
897 static void perf_event__thread_map_swap(union perf_event *event,
898 					bool sample_id_all __maybe_unused)
899 {
900 	unsigned i;
901 
902 	event->thread_map.nr = bswap_64(event->thread_map.nr);
903 
904 	for (i = 0; i < event->thread_map.nr; i++)
905 		event->thread_map.entries[i].pid = bswap_64(event->thread_map.entries[i].pid);
906 }
907 
908 static void perf_event__cpu_map_swap(union perf_event *event,
909 				     bool sample_id_all __maybe_unused)
910 {
911 	struct perf_record_cpu_map_data *data = &event->cpu_map.data;
912 	struct cpu_map_entries *cpus;
913 	struct perf_record_record_cpu_map *mask;
914 	unsigned i;
915 
916 	data->type = bswap_16(data->type);
917 
918 	switch (data->type) {
919 	case PERF_CPU_MAP__CPUS:
920 		cpus = (struct cpu_map_entries *)data->data;
921 
922 		cpus->nr = bswap_16(cpus->nr);
923 
924 		for (i = 0; i < cpus->nr; i++)
925 			cpus->cpu[i] = bswap_16(cpus->cpu[i]);
926 		break;
927 	case PERF_CPU_MAP__MASK:
928 		mask = (struct perf_record_record_cpu_map *)data->data;
929 
930 		mask->nr = bswap_16(mask->nr);
931 		mask->long_size = bswap_16(mask->long_size);
932 
933 		switch (mask->long_size) {
934 		case 4: mem_bswap_32(&mask->mask, mask->nr); break;
935 		case 8: mem_bswap_64(&mask->mask, mask->nr); break;
936 		default:
937 			pr_err("cpu_map swap: unsupported long size\n");
938 		}
939 	default:
940 		break;
941 	}
942 }
943 
944 static void perf_event__stat_config_swap(union perf_event *event,
945 					 bool sample_id_all __maybe_unused)
946 {
947 	u64 size;
948 
949 	size  = bswap_64(event->stat_config.nr) * sizeof(event->stat_config.data[0]);
950 	size += 1; /* nr item itself */
951 	mem_bswap_64(&event->stat_config.nr, size);
952 }
953 
954 static void perf_event__stat_swap(union perf_event *event,
955 				  bool sample_id_all __maybe_unused)
956 {
957 	event->stat.id     = bswap_64(event->stat.id);
958 	event->stat.thread = bswap_32(event->stat.thread);
959 	event->stat.cpu    = bswap_32(event->stat.cpu);
960 	event->stat.val    = bswap_64(event->stat.val);
961 	event->stat.ena    = bswap_64(event->stat.ena);
962 	event->stat.run    = bswap_64(event->stat.run);
963 }
964 
965 static void perf_event__stat_round_swap(union perf_event *event,
966 					bool sample_id_all __maybe_unused)
967 {
968 	event->stat_round.type = bswap_64(event->stat_round.type);
969 	event->stat_round.time = bswap_64(event->stat_round.time);
970 }
971 
972 static void perf_event__time_conv_swap(union perf_event *event,
973 				       bool sample_id_all __maybe_unused)
974 {
975 	event->time_conv.time_shift = bswap_64(event->time_conv.time_shift);
976 	event->time_conv.time_mult  = bswap_64(event->time_conv.time_mult);
977 	event->time_conv.time_zero  = bswap_64(event->time_conv.time_zero);
978 
979 	if (event_contains(event->time_conv, time_cycles)) {
980 		event->time_conv.time_cycles = bswap_64(event->time_conv.time_cycles);
981 		event->time_conv.time_mask = bswap_64(event->time_conv.time_mask);
982 	}
983 }
984 
985 typedef void (*perf_event__swap_op)(union perf_event *event,
986 				    bool sample_id_all);
987 
988 static perf_event__swap_op perf_event__swap_ops[] = {
989 	[PERF_RECORD_MMAP]		  = perf_event__mmap_swap,
990 	[PERF_RECORD_MMAP2]		  = perf_event__mmap2_swap,
991 	[PERF_RECORD_COMM]		  = perf_event__comm_swap,
992 	[PERF_RECORD_FORK]		  = perf_event__task_swap,
993 	[PERF_RECORD_EXIT]		  = perf_event__task_swap,
994 	[PERF_RECORD_LOST]		  = perf_event__all64_swap,
995 	[PERF_RECORD_READ]		  = perf_event__read_swap,
996 	[PERF_RECORD_THROTTLE]		  = perf_event__throttle_swap,
997 	[PERF_RECORD_UNTHROTTLE]	  = perf_event__throttle_swap,
998 	[PERF_RECORD_SAMPLE]		  = perf_event__all64_swap,
999 	[PERF_RECORD_AUX]		  = perf_event__aux_swap,
1000 	[PERF_RECORD_ITRACE_START]	  = perf_event__itrace_start_swap,
1001 	[PERF_RECORD_LOST_SAMPLES]	  = perf_event__all64_swap,
1002 	[PERF_RECORD_SWITCH]		  = perf_event__switch_swap,
1003 	[PERF_RECORD_SWITCH_CPU_WIDE]	  = perf_event__switch_swap,
1004 	[PERF_RECORD_NAMESPACES]	  = perf_event__namespaces_swap,
1005 	[PERF_RECORD_CGROUP]		  = perf_event__cgroup_swap,
1006 	[PERF_RECORD_TEXT_POKE]		  = perf_event__text_poke_swap,
1007 	[PERF_RECORD_AUX_OUTPUT_HW_ID]	  = perf_event__all64_swap,
1008 	[PERF_RECORD_HEADER_ATTR]	  = perf_event__hdr_attr_swap,
1009 	[PERF_RECORD_HEADER_EVENT_TYPE]	  = perf_event__event_type_swap,
1010 	[PERF_RECORD_HEADER_TRACING_DATA] = perf_event__tracing_data_swap,
1011 	[PERF_RECORD_HEADER_BUILD_ID]	  = NULL,
1012 	[PERF_RECORD_ID_INDEX]		  = perf_event__all64_swap,
1013 	[PERF_RECORD_AUXTRACE_INFO]	  = perf_event__auxtrace_info_swap,
1014 	[PERF_RECORD_AUXTRACE]		  = perf_event__auxtrace_swap,
1015 	[PERF_RECORD_AUXTRACE_ERROR]	  = perf_event__auxtrace_error_swap,
1016 	[PERF_RECORD_THREAD_MAP]	  = perf_event__thread_map_swap,
1017 	[PERF_RECORD_CPU_MAP]		  = perf_event__cpu_map_swap,
1018 	[PERF_RECORD_STAT_CONFIG]	  = perf_event__stat_config_swap,
1019 	[PERF_RECORD_STAT]		  = perf_event__stat_swap,
1020 	[PERF_RECORD_STAT_ROUND]	  = perf_event__stat_round_swap,
1021 	[PERF_RECORD_EVENT_UPDATE]	  = perf_event__event_update_swap,
1022 	[PERF_RECORD_TIME_CONV]		  = perf_event__time_conv_swap,
1023 	[PERF_RECORD_HEADER_MAX]	  = NULL,
1024 };
1025 
1026 /*
1027  * When perf record finishes a pass on every buffers, it records this pseudo
1028  * event.
1029  * We record the max timestamp t found in the pass n.
1030  * Assuming these timestamps are monotonic across cpus, we know that if
1031  * a buffer still has events with timestamps below t, they will be all
1032  * available and then read in the pass n + 1.
1033  * Hence when we start to read the pass n + 2, we can safely flush every
1034  * events with timestamps below t.
1035  *
1036  *    ============ PASS n =================
1037  *       CPU 0         |   CPU 1
1038  *                     |
1039  *    cnt1 timestamps  |   cnt2 timestamps
1040  *          1          |         2
1041  *          2          |         3
1042  *          -          |         4  <--- max recorded
1043  *
1044  *    ============ PASS n + 1 ==============
1045  *       CPU 0         |   CPU 1
1046  *                     |
1047  *    cnt1 timestamps  |   cnt2 timestamps
1048  *          3          |         5
1049  *          4          |         6
1050  *          5          |         7 <---- max recorded
1051  *
1052  *      Flush every events below timestamp 4
1053  *
1054  *    ============ PASS n + 2 ==============
1055  *       CPU 0         |   CPU 1
1056  *                     |
1057  *    cnt1 timestamps  |   cnt2 timestamps
1058  *          6          |         8
1059  *          7          |         9
1060  *          -          |         10
1061  *
1062  *      Flush every events below timestamp 7
1063  *      etc...
1064  */
1065 static int process_finished_round(struct perf_tool *tool __maybe_unused,
1066 				  union perf_event *event __maybe_unused,
1067 				  struct ordered_events *oe)
1068 {
1069 	if (dump_trace)
1070 		fprintf(stdout, "\n");
1071 	return ordered_events__flush(oe, OE_FLUSH__ROUND);
1072 }
1073 
1074 int perf_session__queue_event(struct perf_session *s, union perf_event *event,
1075 			      u64 timestamp, u64 file_offset)
1076 {
1077 	return ordered_events__queue(&s->ordered_events, event, timestamp, file_offset);
1078 }
1079 
1080 static void callchain__lbr_callstack_printf(struct perf_sample *sample)
1081 {
1082 	struct ip_callchain *callchain = sample->callchain;
1083 	struct branch_stack *lbr_stack = sample->branch_stack;
1084 	struct branch_entry *entries = perf_sample__branch_entries(sample);
1085 	u64 kernel_callchain_nr = callchain->nr;
1086 	unsigned int i;
1087 
1088 	for (i = 0; i < kernel_callchain_nr; i++) {
1089 		if (callchain->ips[i] == PERF_CONTEXT_USER)
1090 			break;
1091 	}
1092 
1093 	if ((i != kernel_callchain_nr) && lbr_stack->nr) {
1094 		u64 total_nr;
1095 		/*
1096 		 * LBR callstack can only get user call chain,
1097 		 * i is kernel call chain number,
1098 		 * 1 is PERF_CONTEXT_USER.
1099 		 *
1100 		 * The user call chain is stored in LBR registers.
1101 		 * LBR are pair registers. The caller is stored
1102 		 * in "from" register, while the callee is stored
1103 		 * in "to" register.
1104 		 * For example, there is a call stack
1105 		 * "A"->"B"->"C"->"D".
1106 		 * The LBR registers will be recorded like
1107 		 * "C"->"D", "B"->"C", "A"->"B".
1108 		 * So only the first "to" register and all "from"
1109 		 * registers are needed to construct the whole stack.
1110 		 */
1111 		total_nr = i + 1 + lbr_stack->nr + 1;
1112 		kernel_callchain_nr = i + 1;
1113 
1114 		printf("... LBR call chain: nr:%" PRIu64 "\n", total_nr);
1115 
1116 		for (i = 0; i < kernel_callchain_nr; i++)
1117 			printf("..... %2d: %016" PRIx64 "\n",
1118 			       i, callchain->ips[i]);
1119 
1120 		printf("..... %2d: %016" PRIx64 "\n",
1121 		       (int)(kernel_callchain_nr), entries[0].to);
1122 		for (i = 0; i < lbr_stack->nr; i++)
1123 			printf("..... %2d: %016" PRIx64 "\n",
1124 			       (int)(i + kernel_callchain_nr + 1), entries[i].from);
1125 	}
1126 }
1127 
1128 static void callchain__printf(struct evsel *evsel,
1129 			      struct perf_sample *sample)
1130 {
1131 	unsigned int i;
1132 	struct ip_callchain *callchain = sample->callchain;
1133 
1134 	if (evsel__has_branch_callstack(evsel))
1135 		callchain__lbr_callstack_printf(sample);
1136 
1137 	printf("... FP chain: nr:%" PRIu64 "\n", callchain->nr);
1138 
1139 	for (i = 0; i < callchain->nr; i++)
1140 		printf("..... %2d: %016" PRIx64 "\n",
1141 		       i, callchain->ips[i]);
1142 }
1143 
1144 static void branch_stack__printf(struct perf_sample *sample, bool callstack)
1145 {
1146 	struct branch_entry *entries = perf_sample__branch_entries(sample);
1147 	uint64_t i;
1148 
1149 	printf("%s: nr:%" PRIu64 "\n",
1150 		!callstack ? "... branch stack" : "... branch callstack",
1151 		sample->branch_stack->nr);
1152 
1153 	for (i = 0; i < sample->branch_stack->nr; i++) {
1154 		struct branch_entry *e = &entries[i];
1155 
1156 		if (!callstack) {
1157 			printf("..... %2"PRIu64": %016" PRIx64 " -> %016" PRIx64 " %hu cycles %s%s%s%s %x\n",
1158 				i, e->from, e->to,
1159 				(unsigned short)e->flags.cycles,
1160 				e->flags.mispred ? "M" : " ",
1161 				e->flags.predicted ? "P" : " ",
1162 				e->flags.abort ? "A" : " ",
1163 				e->flags.in_tx ? "T" : " ",
1164 				(unsigned)e->flags.reserved);
1165 		} else {
1166 			printf("..... %2"PRIu64": %016" PRIx64 "\n",
1167 				i, i > 0 ? e->from : e->to);
1168 		}
1169 	}
1170 }
1171 
1172 static void regs_dump__printf(u64 mask, u64 *regs, const char *arch)
1173 {
1174 	unsigned rid, i = 0;
1175 
1176 	for_each_set_bit(rid, (unsigned long *) &mask, sizeof(mask) * 8) {
1177 		u64 val = regs[i++];
1178 
1179 		printf(".... %-5s 0x%016" PRIx64 "\n",
1180 		       perf_reg_name(rid, arch), val);
1181 	}
1182 }
1183 
1184 static const char *regs_abi[] = {
1185 	[PERF_SAMPLE_REGS_ABI_NONE] = "none",
1186 	[PERF_SAMPLE_REGS_ABI_32] = "32-bit",
1187 	[PERF_SAMPLE_REGS_ABI_64] = "64-bit",
1188 };
1189 
1190 static inline const char *regs_dump_abi(struct regs_dump *d)
1191 {
1192 	if (d->abi > PERF_SAMPLE_REGS_ABI_64)
1193 		return "unknown";
1194 
1195 	return regs_abi[d->abi];
1196 }
1197 
1198 static void regs__printf(const char *type, struct regs_dump *regs, const char *arch)
1199 {
1200 	u64 mask = regs->mask;
1201 
1202 	printf("... %s regs: mask 0x%" PRIx64 " ABI %s\n",
1203 	       type,
1204 	       mask,
1205 	       regs_dump_abi(regs));
1206 
1207 	regs_dump__printf(mask, regs->regs, arch);
1208 }
1209 
1210 static void regs_user__printf(struct perf_sample *sample, const char *arch)
1211 {
1212 	struct regs_dump *user_regs = &sample->user_regs;
1213 
1214 	if (user_regs->regs)
1215 		regs__printf("user", user_regs, arch);
1216 }
1217 
1218 static void regs_intr__printf(struct perf_sample *sample, const char *arch)
1219 {
1220 	struct regs_dump *intr_regs = &sample->intr_regs;
1221 
1222 	if (intr_regs->regs)
1223 		regs__printf("intr", intr_regs, arch);
1224 }
1225 
1226 static void stack_user__printf(struct stack_dump *dump)
1227 {
1228 	printf("... ustack: size %" PRIu64 ", offset 0x%x\n",
1229 	       dump->size, dump->offset);
1230 }
1231 
1232 static void evlist__print_tstamp(struct evlist *evlist, union perf_event *event, struct perf_sample *sample)
1233 {
1234 	u64 sample_type = __evlist__combined_sample_type(evlist);
1235 
1236 	if (event->header.type != PERF_RECORD_SAMPLE &&
1237 	    !evlist__sample_id_all(evlist)) {
1238 		fputs("-1 -1 ", stdout);
1239 		return;
1240 	}
1241 
1242 	if ((sample_type & PERF_SAMPLE_CPU))
1243 		printf("%u ", sample->cpu);
1244 
1245 	if (sample_type & PERF_SAMPLE_TIME)
1246 		printf("%" PRIu64 " ", sample->time);
1247 }
1248 
1249 static void sample_read__printf(struct perf_sample *sample, u64 read_format)
1250 {
1251 	printf("... sample_read:\n");
1252 
1253 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1254 		printf("...... time enabled %016" PRIx64 "\n",
1255 		       sample->read.time_enabled);
1256 
1257 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1258 		printf("...... time running %016" PRIx64 "\n",
1259 		       sample->read.time_running);
1260 
1261 	if (read_format & PERF_FORMAT_GROUP) {
1262 		u64 i;
1263 
1264 		printf(".... group nr %" PRIu64 "\n", sample->read.group.nr);
1265 
1266 		for (i = 0; i < sample->read.group.nr; i++) {
1267 			struct sample_read_value *value;
1268 
1269 			value = &sample->read.group.values[i];
1270 			printf("..... id %016" PRIx64
1271 			       ", value %016" PRIx64 "\n",
1272 			       value->id, value->value);
1273 		}
1274 	} else
1275 		printf("..... id %016" PRIx64 ", value %016" PRIx64 "\n",
1276 			sample->read.one.id, sample->read.one.value);
1277 }
1278 
1279 static void dump_event(struct evlist *evlist, union perf_event *event,
1280 		       u64 file_offset, struct perf_sample *sample)
1281 {
1282 	if (!dump_trace)
1283 		return;
1284 
1285 	printf("\n%#" PRIx64 " [%#x]: event: %d\n",
1286 	       file_offset, event->header.size, event->header.type);
1287 
1288 	trace_event(event);
1289 	if (event->header.type == PERF_RECORD_SAMPLE && evlist->trace_event_sample_raw)
1290 		evlist->trace_event_sample_raw(evlist, event, sample);
1291 
1292 	if (sample)
1293 		evlist__print_tstamp(evlist, event, sample);
1294 
1295 	printf("%#" PRIx64 " [%#x]: PERF_RECORD_%s", file_offset,
1296 	       event->header.size, perf_event__name(event->header.type));
1297 }
1298 
1299 char *get_page_size_name(u64 size, char *str)
1300 {
1301 	if (!size || !unit_number__scnprintf(str, PAGE_SIZE_NAME_LEN, size))
1302 		snprintf(str, PAGE_SIZE_NAME_LEN, "%s", "N/A");
1303 
1304 	return str;
1305 }
1306 
1307 static void dump_sample(struct evsel *evsel, union perf_event *event,
1308 			struct perf_sample *sample, const char *arch)
1309 {
1310 	u64 sample_type;
1311 	char str[PAGE_SIZE_NAME_LEN];
1312 
1313 	if (!dump_trace)
1314 		return;
1315 
1316 	printf("(IP, 0x%x): %d/%d: %#" PRIx64 " period: %" PRIu64 " addr: %#" PRIx64 "\n",
1317 	       event->header.misc, sample->pid, sample->tid, sample->ip,
1318 	       sample->period, sample->addr);
1319 
1320 	sample_type = evsel->core.attr.sample_type;
1321 
1322 	if (evsel__has_callchain(evsel))
1323 		callchain__printf(evsel, sample);
1324 
1325 	if (evsel__has_br_stack(evsel))
1326 		branch_stack__printf(sample, evsel__has_branch_callstack(evsel));
1327 
1328 	if (sample_type & PERF_SAMPLE_REGS_USER)
1329 		regs_user__printf(sample, arch);
1330 
1331 	if (sample_type & PERF_SAMPLE_REGS_INTR)
1332 		regs_intr__printf(sample, arch);
1333 
1334 	if (sample_type & PERF_SAMPLE_STACK_USER)
1335 		stack_user__printf(&sample->user_stack);
1336 
1337 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
1338 		printf("... weight: %" PRIu64 "", sample->weight);
1339 			if (sample_type & PERF_SAMPLE_WEIGHT_STRUCT) {
1340 				printf(",0x%"PRIx16"", sample->ins_lat);
1341 				printf(",0x%"PRIx16"", sample->p_stage_cyc);
1342 			}
1343 		printf("\n");
1344 	}
1345 
1346 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1347 		printf(" . data_src: 0x%"PRIx64"\n", sample->data_src);
1348 
1349 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1350 		printf(" .. phys_addr: 0x%"PRIx64"\n", sample->phys_addr);
1351 
1352 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1353 		printf(" .. data page size: %s\n", get_page_size_name(sample->data_page_size, str));
1354 
1355 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1356 		printf(" .. code page size: %s\n", get_page_size_name(sample->code_page_size, str));
1357 
1358 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1359 		printf("... transaction: %" PRIx64 "\n", sample->transaction);
1360 
1361 	if (sample_type & PERF_SAMPLE_READ)
1362 		sample_read__printf(sample, evsel->core.attr.read_format);
1363 }
1364 
1365 static void dump_read(struct evsel *evsel, union perf_event *event)
1366 {
1367 	struct perf_record_read *read_event = &event->read;
1368 	u64 read_format;
1369 
1370 	if (!dump_trace)
1371 		return;
1372 
1373 	printf(": %d %d %s %" PRI_lu64 "\n", event->read.pid, event->read.tid,
1374 	       evsel__name(evsel), event->read.value);
1375 
1376 	if (!evsel)
1377 		return;
1378 
1379 	read_format = evsel->core.attr.read_format;
1380 
1381 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1382 		printf("... time enabled : %" PRI_lu64 "\n", read_event->time_enabled);
1383 
1384 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1385 		printf("... time running : %" PRI_lu64 "\n", read_event->time_running);
1386 
1387 	if (read_format & PERF_FORMAT_ID)
1388 		printf("... id           : %" PRI_lu64 "\n", read_event->id);
1389 }
1390 
1391 static struct machine *machines__find_for_cpumode(struct machines *machines,
1392 					       union perf_event *event,
1393 					       struct perf_sample *sample)
1394 {
1395 	if (perf_guest &&
1396 	    ((sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL) ||
1397 	     (sample->cpumode == PERF_RECORD_MISC_GUEST_USER))) {
1398 		u32 pid;
1399 
1400 		if (event->header.type == PERF_RECORD_MMAP
1401 		    || event->header.type == PERF_RECORD_MMAP2)
1402 			pid = event->mmap.pid;
1403 		else
1404 			pid = sample->pid;
1405 
1406 		return machines__find_guest(machines, pid);
1407 	}
1408 
1409 	return &machines->host;
1410 }
1411 
1412 static int deliver_sample_value(struct evlist *evlist,
1413 				struct perf_tool *tool,
1414 				union perf_event *event,
1415 				struct perf_sample *sample,
1416 				struct sample_read_value *v,
1417 				struct machine *machine)
1418 {
1419 	struct perf_sample_id *sid = evlist__id2sid(evlist, v->id);
1420 	struct evsel *evsel;
1421 
1422 	if (sid) {
1423 		sample->id     = v->id;
1424 		sample->period = v->value - sid->period;
1425 		sid->period    = v->value;
1426 	}
1427 
1428 	if (!sid || sid->evsel == NULL) {
1429 		++evlist->stats.nr_unknown_id;
1430 		return 0;
1431 	}
1432 
1433 	/*
1434 	 * There's no reason to deliver sample
1435 	 * for zero period, bail out.
1436 	 */
1437 	if (!sample->period)
1438 		return 0;
1439 
1440 	evsel = container_of(sid->evsel, struct evsel, core);
1441 	return tool->sample(tool, event, sample, evsel, machine);
1442 }
1443 
1444 static int deliver_sample_group(struct evlist *evlist,
1445 				struct perf_tool *tool,
1446 				union  perf_event *event,
1447 				struct perf_sample *sample,
1448 				struct machine *machine)
1449 {
1450 	int ret = -EINVAL;
1451 	u64 i;
1452 
1453 	for (i = 0; i < sample->read.group.nr; i++) {
1454 		ret = deliver_sample_value(evlist, tool, event, sample,
1455 					   &sample->read.group.values[i],
1456 					   machine);
1457 		if (ret)
1458 			break;
1459 	}
1460 
1461 	return ret;
1462 }
1463 
1464 static int evlist__deliver_sample(struct evlist *evlist, struct perf_tool *tool,
1465 				  union  perf_event *event, struct perf_sample *sample,
1466 				  struct evsel *evsel, struct machine *machine)
1467 {
1468 	/* We know evsel != NULL. */
1469 	u64 sample_type = evsel->core.attr.sample_type;
1470 	u64 read_format = evsel->core.attr.read_format;
1471 
1472 	/* Standard sample delivery. */
1473 	if (!(sample_type & PERF_SAMPLE_READ))
1474 		return tool->sample(tool, event, sample, evsel, machine);
1475 
1476 	/* For PERF_SAMPLE_READ we have either single or group mode. */
1477 	if (read_format & PERF_FORMAT_GROUP)
1478 		return deliver_sample_group(evlist, tool, event, sample,
1479 					    machine);
1480 	else
1481 		return deliver_sample_value(evlist, tool, event, sample,
1482 					    &sample->read.one, machine);
1483 }
1484 
1485 static int machines__deliver_event(struct machines *machines,
1486 				   struct evlist *evlist,
1487 				   union perf_event *event,
1488 				   struct perf_sample *sample,
1489 				   struct perf_tool *tool, u64 file_offset)
1490 {
1491 	struct evsel *evsel;
1492 	struct machine *machine;
1493 
1494 	dump_event(evlist, event, file_offset, sample);
1495 
1496 	evsel = evlist__id2evsel(evlist, sample->id);
1497 
1498 	machine = machines__find_for_cpumode(machines, event, sample);
1499 
1500 	switch (event->header.type) {
1501 	case PERF_RECORD_SAMPLE:
1502 		if (evsel == NULL) {
1503 			++evlist->stats.nr_unknown_id;
1504 			return 0;
1505 		}
1506 		if (machine == NULL) {
1507 			++evlist->stats.nr_unprocessable_samples;
1508 			dump_sample(evsel, event, sample, perf_env__arch(NULL));
1509 			return 0;
1510 		}
1511 		dump_sample(evsel, event, sample, perf_env__arch(machine->env));
1512 		return evlist__deliver_sample(evlist, tool, event, sample, evsel, machine);
1513 	case PERF_RECORD_MMAP:
1514 		return tool->mmap(tool, event, sample, machine);
1515 	case PERF_RECORD_MMAP2:
1516 		if (event->header.misc & PERF_RECORD_MISC_PROC_MAP_PARSE_TIMEOUT)
1517 			++evlist->stats.nr_proc_map_timeout;
1518 		return tool->mmap2(tool, event, sample, machine);
1519 	case PERF_RECORD_COMM:
1520 		return tool->comm(tool, event, sample, machine);
1521 	case PERF_RECORD_NAMESPACES:
1522 		return tool->namespaces(tool, event, sample, machine);
1523 	case PERF_RECORD_CGROUP:
1524 		return tool->cgroup(tool, event, sample, machine);
1525 	case PERF_RECORD_FORK:
1526 		return tool->fork(tool, event, sample, machine);
1527 	case PERF_RECORD_EXIT:
1528 		return tool->exit(tool, event, sample, machine);
1529 	case PERF_RECORD_LOST:
1530 		if (tool->lost == perf_event__process_lost)
1531 			evlist->stats.total_lost += event->lost.lost;
1532 		return tool->lost(tool, event, sample, machine);
1533 	case PERF_RECORD_LOST_SAMPLES:
1534 		if (tool->lost_samples == perf_event__process_lost_samples)
1535 			evlist->stats.total_lost_samples += event->lost_samples.lost;
1536 		return tool->lost_samples(tool, event, sample, machine);
1537 	case PERF_RECORD_READ:
1538 		dump_read(evsel, event);
1539 		return tool->read(tool, event, sample, evsel, machine);
1540 	case PERF_RECORD_THROTTLE:
1541 		return tool->throttle(tool, event, sample, machine);
1542 	case PERF_RECORD_UNTHROTTLE:
1543 		return tool->unthrottle(tool, event, sample, machine);
1544 	case PERF_RECORD_AUX:
1545 		if (tool->aux == perf_event__process_aux) {
1546 			if (event->aux.flags & PERF_AUX_FLAG_TRUNCATED)
1547 				evlist->stats.total_aux_lost += 1;
1548 			if (event->aux.flags & PERF_AUX_FLAG_PARTIAL)
1549 				evlist->stats.total_aux_partial += 1;
1550 			if (event->aux.flags & PERF_AUX_FLAG_COLLISION)
1551 				evlist->stats.total_aux_collision += 1;
1552 		}
1553 		return tool->aux(tool, event, sample, machine);
1554 	case PERF_RECORD_ITRACE_START:
1555 		return tool->itrace_start(tool, event, sample, machine);
1556 	case PERF_RECORD_SWITCH:
1557 	case PERF_RECORD_SWITCH_CPU_WIDE:
1558 		return tool->context_switch(tool, event, sample, machine);
1559 	case PERF_RECORD_KSYMBOL:
1560 		return tool->ksymbol(tool, event, sample, machine);
1561 	case PERF_RECORD_BPF_EVENT:
1562 		return tool->bpf(tool, event, sample, machine);
1563 	case PERF_RECORD_TEXT_POKE:
1564 		return tool->text_poke(tool, event, sample, machine);
1565 	case PERF_RECORD_AUX_OUTPUT_HW_ID:
1566 		return tool->aux_output_hw_id(tool, event, sample, machine);
1567 	default:
1568 		++evlist->stats.nr_unknown_events;
1569 		return -1;
1570 	}
1571 }
1572 
1573 static int perf_session__deliver_event(struct perf_session *session,
1574 				       union perf_event *event,
1575 				       struct perf_tool *tool,
1576 				       u64 file_offset)
1577 {
1578 	struct perf_sample sample;
1579 	int ret = evlist__parse_sample(session->evlist, event, &sample);
1580 
1581 	if (ret) {
1582 		pr_err("Can't parse sample, err = %d\n", ret);
1583 		return ret;
1584 	}
1585 
1586 	ret = auxtrace__process_event(session, event, &sample, tool);
1587 	if (ret < 0)
1588 		return ret;
1589 	if (ret > 0)
1590 		return 0;
1591 
1592 	ret = machines__deliver_event(&session->machines, session->evlist,
1593 				      event, &sample, tool, file_offset);
1594 
1595 	if (dump_trace && sample.aux_sample.size)
1596 		auxtrace__dump_auxtrace_sample(session, &sample);
1597 
1598 	return ret;
1599 }
1600 
1601 static s64 perf_session__process_user_event(struct perf_session *session,
1602 					    union perf_event *event,
1603 					    u64 file_offset)
1604 {
1605 	struct ordered_events *oe = &session->ordered_events;
1606 	struct perf_tool *tool = session->tool;
1607 	struct perf_sample sample = { .time = 0, };
1608 	int fd = perf_data__fd(session->data);
1609 	int err;
1610 
1611 	if (event->header.type != PERF_RECORD_COMPRESSED ||
1612 	    tool->compressed == perf_session__process_compressed_event_stub)
1613 		dump_event(session->evlist, event, file_offset, &sample);
1614 
1615 	/* These events are processed right away */
1616 	switch (event->header.type) {
1617 	case PERF_RECORD_HEADER_ATTR:
1618 		err = tool->attr(tool, event, &session->evlist);
1619 		if (err == 0) {
1620 			perf_session__set_id_hdr_size(session);
1621 			perf_session__set_comm_exec(session);
1622 		}
1623 		return err;
1624 	case PERF_RECORD_EVENT_UPDATE:
1625 		return tool->event_update(tool, event, &session->evlist);
1626 	case PERF_RECORD_HEADER_EVENT_TYPE:
1627 		/*
1628 		 * Deprecated, but we need to handle it for sake
1629 		 * of old data files create in pipe mode.
1630 		 */
1631 		return 0;
1632 	case PERF_RECORD_HEADER_TRACING_DATA:
1633 		/*
1634 		 * Setup for reading amidst mmap, but only when we
1635 		 * are in 'file' mode. The 'pipe' fd is in proper
1636 		 * place already.
1637 		 */
1638 		if (!perf_data__is_pipe(session->data))
1639 			lseek(fd, file_offset, SEEK_SET);
1640 		return tool->tracing_data(session, event);
1641 	case PERF_RECORD_HEADER_BUILD_ID:
1642 		return tool->build_id(session, event);
1643 	case PERF_RECORD_FINISHED_ROUND:
1644 		return tool->finished_round(tool, event, oe);
1645 	case PERF_RECORD_ID_INDEX:
1646 		return tool->id_index(session, event);
1647 	case PERF_RECORD_AUXTRACE_INFO:
1648 		return tool->auxtrace_info(session, event);
1649 	case PERF_RECORD_AUXTRACE:
1650 		/* setup for reading amidst mmap */
1651 		lseek(fd, file_offset + event->header.size, SEEK_SET);
1652 		return tool->auxtrace(session, event);
1653 	case PERF_RECORD_AUXTRACE_ERROR:
1654 		perf_session__auxtrace_error_inc(session, event);
1655 		return tool->auxtrace_error(session, event);
1656 	case PERF_RECORD_THREAD_MAP:
1657 		return tool->thread_map(session, event);
1658 	case PERF_RECORD_CPU_MAP:
1659 		return tool->cpu_map(session, event);
1660 	case PERF_RECORD_STAT_CONFIG:
1661 		return tool->stat_config(session, event);
1662 	case PERF_RECORD_STAT:
1663 		return tool->stat(session, event);
1664 	case PERF_RECORD_STAT_ROUND:
1665 		return tool->stat_round(session, event);
1666 	case PERF_RECORD_TIME_CONV:
1667 		session->time_conv = event->time_conv;
1668 		return tool->time_conv(session, event);
1669 	case PERF_RECORD_HEADER_FEATURE:
1670 		return tool->feature(session, event);
1671 	case PERF_RECORD_COMPRESSED:
1672 		err = tool->compressed(session, event, file_offset);
1673 		if (err)
1674 			dump_event(session->evlist, event, file_offset, &sample);
1675 		return err;
1676 	default:
1677 		return -EINVAL;
1678 	}
1679 }
1680 
1681 int perf_session__deliver_synth_event(struct perf_session *session,
1682 				      union perf_event *event,
1683 				      struct perf_sample *sample)
1684 {
1685 	struct evlist *evlist = session->evlist;
1686 	struct perf_tool *tool = session->tool;
1687 
1688 	events_stats__inc(&evlist->stats, event->header.type);
1689 
1690 	if (event->header.type >= PERF_RECORD_USER_TYPE_START)
1691 		return perf_session__process_user_event(session, event, 0);
1692 
1693 	return machines__deliver_event(&session->machines, evlist, event, sample, tool, 0);
1694 }
1695 
1696 static void event_swap(union perf_event *event, bool sample_id_all)
1697 {
1698 	perf_event__swap_op swap;
1699 
1700 	swap = perf_event__swap_ops[event->header.type];
1701 	if (swap)
1702 		swap(event, sample_id_all);
1703 }
1704 
1705 int perf_session__peek_event(struct perf_session *session, off_t file_offset,
1706 			     void *buf, size_t buf_sz,
1707 			     union perf_event **event_ptr,
1708 			     struct perf_sample *sample)
1709 {
1710 	union perf_event *event;
1711 	size_t hdr_sz, rest;
1712 	int fd;
1713 
1714 	if (session->one_mmap && !session->header.needs_swap) {
1715 		event = file_offset - session->one_mmap_offset +
1716 			session->one_mmap_addr;
1717 		goto out_parse_sample;
1718 	}
1719 
1720 	if (perf_data__is_pipe(session->data))
1721 		return -1;
1722 
1723 	fd = perf_data__fd(session->data);
1724 	hdr_sz = sizeof(struct perf_event_header);
1725 
1726 	if (buf_sz < hdr_sz)
1727 		return -1;
1728 
1729 	if (lseek(fd, file_offset, SEEK_SET) == (off_t)-1 ||
1730 	    readn(fd, buf, hdr_sz) != (ssize_t)hdr_sz)
1731 		return -1;
1732 
1733 	event = (union perf_event *)buf;
1734 
1735 	if (session->header.needs_swap)
1736 		perf_event_header__bswap(&event->header);
1737 
1738 	if (event->header.size < hdr_sz || event->header.size > buf_sz)
1739 		return -1;
1740 
1741 	buf += hdr_sz;
1742 	rest = event->header.size - hdr_sz;
1743 
1744 	if (readn(fd, buf, rest) != (ssize_t)rest)
1745 		return -1;
1746 
1747 	if (session->header.needs_swap)
1748 		event_swap(event, evlist__sample_id_all(session->evlist));
1749 
1750 out_parse_sample:
1751 
1752 	if (sample && event->header.type < PERF_RECORD_USER_TYPE_START &&
1753 	    evlist__parse_sample(session->evlist, event, sample))
1754 		return -1;
1755 
1756 	*event_ptr = event;
1757 
1758 	return 0;
1759 }
1760 
1761 int perf_session__peek_events(struct perf_session *session, u64 offset,
1762 			      u64 size, peek_events_cb_t cb, void *data)
1763 {
1764 	u64 max_offset = offset + size;
1765 	char buf[PERF_SAMPLE_MAX_SIZE];
1766 	union perf_event *event;
1767 	int err;
1768 
1769 	do {
1770 		err = perf_session__peek_event(session, offset, buf,
1771 					       PERF_SAMPLE_MAX_SIZE, &event,
1772 					       NULL);
1773 		if (err)
1774 			return err;
1775 
1776 		err = cb(session, event, offset, data);
1777 		if (err)
1778 			return err;
1779 
1780 		offset += event->header.size;
1781 		if (event->header.type == PERF_RECORD_AUXTRACE)
1782 			offset += event->auxtrace.size;
1783 
1784 	} while (offset < max_offset);
1785 
1786 	return err;
1787 }
1788 
1789 static s64 perf_session__process_event(struct perf_session *session,
1790 				       union perf_event *event, u64 file_offset)
1791 {
1792 	struct evlist *evlist = session->evlist;
1793 	struct perf_tool *tool = session->tool;
1794 	int ret;
1795 
1796 	if (session->header.needs_swap)
1797 		event_swap(event, evlist__sample_id_all(evlist));
1798 
1799 	if (event->header.type >= PERF_RECORD_HEADER_MAX)
1800 		return -EINVAL;
1801 
1802 	events_stats__inc(&evlist->stats, event->header.type);
1803 
1804 	if (event->header.type >= PERF_RECORD_USER_TYPE_START)
1805 		return perf_session__process_user_event(session, event, file_offset);
1806 
1807 	if (tool->ordered_events) {
1808 		u64 timestamp = -1ULL;
1809 
1810 		ret = evlist__parse_sample_timestamp(evlist, event, &timestamp);
1811 		if (ret && ret != -1)
1812 			return ret;
1813 
1814 		ret = perf_session__queue_event(session, event, timestamp, file_offset);
1815 		if (ret != -ETIME)
1816 			return ret;
1817 	}
1818 
1819 	return perf_session__deliver_event(session, event, tool, file_offset);
1820 }
1821 
1822 void perf_event_header__bswap(struct perf_event_header *hdr)
1823 {
1824 	hdr->type = bswap_32(hdr->type);
1825 	hdr->misc = bswap_16(hdr->misc);
1826 	hdr->size = bswap_16(hdr->size);
1827 }
1828 
1829 struct thread *perf_session__findnew(struct perf_session *session, pid_t pid)
1830 {
1831 	return machine__findnew_thread(&session->machines.host, -1, pid);
1832 }
1833 
1834 int perf_session__register_idle_thread(struct perf_session *session)
1835 {
1836 	struct thread *thread = machine__idle_thread(&session->machines.host);
1837 
1838 	/* machine__idle_thread() got the thread, so put it */
1839 	thread__put(thread);
1840 	return thread ? 0 : -1;
1841 }
1842 
1843 static void
1844 perf_session__warn_order(const struct perf_session *session)
1845 {
1846 	const struct ordered_events *oe = &session->ordered_events;
1847 	struct evsel *evsel;
1848 	bool should_warn = true;
1849 
1850 	evlist__for_each_entry(session->evlist, evsel) {
1851 		if (evsel->core.attr.write_backward)
1852 			should_warn = false;
1853 	}
1854 
1855 	if (!should_warn)
1856 		return;
1857 	if (oe->nr_unordered_events != 0)
1858 		ui__warning("%u out of order events recorded.\n", oe->nr_unordered_events);
1859 }
1860 
1861 static void perf_session__warn_about_errors(const struct perf_session *session)
1862 {
1863 	const struct events_stats *stats = &session->evlist->stats;
1864 
1865 	if (session->tool->lost == perf_event__process_lost &&
1866 	    stats->nr_events[PERF_RECORD_LOST] != 0) {
1867 		ui__warning("Processed %d events and lost %d chunks!\n\n"
1868 			    "Check IO/CPU overload!\n\n",
1869 			    stats->nr_events[0],
1870 			    stats->nr_events[PERF_RECORD_LOST]);
1871 	}
1872 
1873 	if (session->tool->lost_samples == perf_event__process_lost_samples) {
1874 		double drop_rate;
1875 
1876 		drop_rate = (double)stats->total_lost_samples /
1877 			    (double) (stats->nr_events[PERF_RECORD_SAMPLE] + stats->total_lost_samples);
1878 		if (drop_rate > 0.05) {
1879 			ui__warning("Processed %" PRIu64 " samples and lost %3.2f%%!\n\n",
1880 				    stats->nr_events[PERF_RECORD_SAMPLE] + stats->total_lost_samples,
1881 				    drop_rate * 100.0);
1882 		}
1883 	}
1884 
1885 	if (session->tool->aux == perf_event__process_aux &&
1886 	    stats->total_aux_lost != 0) {
1887 		ui__warning("AUX data lost %" PRIu64 " times out of %u!\n\n",
1888 			    stats->total_aux_lost,
1889 			    stats->nr_events[PERF_RECORD_AUX]);
1890 	}
1891 
1892 	if (session->tool->aux == perf_event__process_aux &&
1893 	    stats->total_aux_partial != 0) {
1894 		bool vmm_exclusive = false;
1895 
1896 		(void)sysfs__read_bool("module/kvm_intel/parameters/vmm_exclusive",
1897 		                       &vmm_exclusive);
1898 
1899 		ui__warning("AUX data had gaps in it %" PRIu64 " times out of %u!\n\n"
1900 		            "Are you running a KVM guest in the background?%s\n\n",
1901 			    stats->total_aux_partial,
1902 			    stats->nr_events[PERF_RECORD_AUX],
1903 			    vmm_exclusive ?
1904 			    "\nReloading kvm_intel module with vmm_exclusive=0\n"
1905 			    "will reduce the gaps to only guest's timeslices." :
1906 			    "");
1907 	}
1908 
1909 	if (session->tool->aux == perf_event__process_aux &&
1910 	    stats->total_aux_collision != 0) {
1911 		ui__warning("AUX data detected collision  %" PRIu64 " times out of %u!\n\n",
1912 			    stats->total_aux_collision,
1913 			    stats->nr_events[PERF_RECORD_AUX]);
1914 	}
1915 
1916 	if (stats->nr_unknown_events != 0) {
1917 		ui__warning("Found %u unknown events!\n\n"
1918 			    "Is this an older tool processing a perf.data "
1919 			    "file generated by a more recent tool?\n\n"
1920 			    "If that is not the case, consider "
1921 			    "reporting to linux-kernel@vger.kernel.org.\n\n",
1922 			    stats->nr_unknown_events);
1923 	}
1924 
1925 	if (stats->nr_unknown_id != 0) {
1926 		ui__warning("%u samples with id not present in the header\n",
1927 			    stats->nr_unknown_id);
1928 	}
1929 
1930 	if (stats->nr_invalid_chains != 0) {
1931 		ui__warning("Found invalid callchains!\n\n"
1932 			    "%u out of %u events were discarded for this reason.\n\n"
1933 			    "Consider reporting to linux-kernel@vger.kernel.org.\n\n",
1934 			    stats->nr_invalid_chains,
1935 			    stats->nr_events[PERF_RECORD_SAMPLE]);
1936 	}
1937 
1938 	if (stats->nr_unprocessable_samples != 0) {
1939 		ui__warning("%u unprocessable samples recorded.\n"
1940 			    "Do you have a KVM guest running and not using 'perf kvm'?\n",
1941 			    stats->nr_unprocessable_samples);
1942 	}
1943 
1944 	perf_session__warn_order(session);
1945 
1946 	events_stats__auxtrace_error_warn(stats);
1947 
1948 	if (stats->nr_proc_map_timeout != 0) {
1949 		ui__warning("%d map information files for pre-existing threads were\n"
1950 			    "not processed, if there are samples for addresses they\n"
1951 			    "will not be resolved, you may find out which are these\n"
1952 			    "threads by running with -v and redirecting the output\n"
1953 			    "to a file.\n"
1954 			    "The time limit to process proc map is too short?\n"
1955 			    "Increase it by --proc-map-timeout\n",
1956 			    stats->nr_proc_map_timeout);
1957 	}
1958 }
1959 
1960 static int perf_session__flush_thread_stack(struct thread *thread,
1961 					    void *p __maybe_unused)
1962 {
1963 	return thread_stack__flush(thread);
1964 }
1965 
1966 static int perf_session__flush_thread_stacks(struct perf_session *session)
1967 {
1968 	return machines__for_each_thread(&session->machines,
1969 					 perf_session__flush_thread_stack,
1970 					 NULL);
1971 }
1972 
1973 volatile int session_done;
1974 
1975 static int __perf_session__process_decomp_events(struct perf_session *session);
1976 
1977 static int __perf_session__process_pipe_events(struct perf_session *session)
1978 {
1979 	struct ordered_events *oe = &session->ordered_events;
1980 	struct perf_tool *tool = session->tool;
1981 	union perf_event *event;
1982 	uint32_t size, cur_size = 0;
1983 	void *buf = NULL;
1984 	s64 skip = 0;
1985 	u64 head;
1986 	ssize_t err;
1987 	void *p;
1988 
1989 	perf_tool__fill_defaults(tool);
1990 
1991 	head = 0;
1992 	cur_size = sizeof(union perf_event);
1993 
1994 	buf = malloc(cur_size);
1995 	if (!buf)
1996 		return -errno;
1997 	ordered_events__set_copy_on_queue(oe, true);
1998 more:
1999 	event = buf;
2000 	err = perf_data__read(session->data, event,
2001 			      sizeof(struct perf_event_header));
2002 	if (err <= 0) {
2003 		if (err == 0)
2004 			goto done;
2005 
2006 		pr_err("failed to read event header\n");
2007 		goto out_err;
2008 	}
2009 
2010 	if (session->header.needs_swap)
2011 		perf_event_header__bswap(&event->header);
2012 
2013 	size = event->header.size;
2014 	if (size < sizeof(struct perf_event_header)) {
2015 		pr_err("bad event header size\n");
2016 		goto out_err;
2017 	}
2018 
2019 	if (size > cur_size) {
2020 		void *new = realloc(buf, size);
2021 		if (!new) {
2022 			pr_err("failed to allocate memory to read event\n");
2023 			goto out_err;
2024 		}
2025 		buf = new;
2026 		cur_size = size;
2027 		event = buf;
2028 	}
2029 	p = event;
2030 	p += sizeof(struct perf_event_header);
2031 
2032 	if (size - sizeof(struct perf_event_header)) {
2033 		err = perf_data__read(session->data, p,
2034 				      size - sizeof(struct perf_event_header));
2035 		if (err <= 0) {
2036 			if (err == 0) {
2037 				pr_err("unexpected end of event stream\n");
2038 				goto done;
2039 			}
2040 
2041 			pr_err("failed to read event data\n");
2042 			goto out_err;
2043 		}
2044 	}
2045 
2046 	if ((skip = perf_session__process_event(session, event, head)) < 0) {
2047 		pr_err("%#" PRIx64 " [%#x]: failed to process type: %d\n",
2048 		       head, event->header.size, event->header.type);
2049 		err = -EINVAL;
2050 		goto out_err;
2051 	}
2052 
2053 	head += size;
2054 
2055 	if (skip > 0)
2056 		head += skip;
2057 
2058 	err = __perf_session__process_decomp_events(session);
2059 	if (err)
2060 		goto out_err;
2061 
2062 	if (!session_done())
2063 		goto more;
2064 done:
2065 	/* do the final flush for ordered samples */
2066 	err = ordered_events__flush(oe, OE_FLUSH__FINAL);
2067 	if (err)
2068 		goto out_err;
2069 	err = auxtrace__flush_events(session, tool);
2070 	if (err)
2071 		goto out_err;
2072 	err = perf_session__flush_thread_stacks(session);
2073 out_err:
2074 	free(buf);
2075 	if (!tool->no_warn)
2076 		perf_session__warn_about_errors(session);
2077 	ordered_events__free(&session->ordered_events);
2078 	auxtrace__free_events(session);
2079 	return err;
2080 }
2081 
2082 static union perf_event *
2083 prefetch_event(char *buf, u64 head, size_t mmap_size,
2084 	       bool needs_swap, union perf_event *error)
2085 {
2086 	union perf_event *event;
2087 
2088 	/*
2089 	 * Ensure we have enough space remaining to read
2090 	 * the size of the event in the headers.
2091 	 */
2092 	if (head + sizeof(event->header) > mmap_size)
2093 		return NULL;
2094 
2095 	event = (union perf_event *)(buf + head);
2096 	if (needs_swap)
2097 		perf_event_header__bswap(&event->header);
2098 
2099 	if (head + event->header.size <= mmap_size)
2100 		return event;
2101 
2102 	/* We're not fetching the event so swap back again */
2103 	if (needs_swap)
2104 		perf_event_header__bswap(&event->header);
2105 
2106 	pr_debug("%s: head=%#" PRIx64 " event->header_size=%#x, mmap_size=%#zx:"
2107 		 " fuzzed or compressed perf.data?\n",__func__, head, event->header.size, mmap_size);
2108 
2109 	return error;
2110 }
2111 
2112 static union perf_event *
2113 fetch_mmaped_event(u64 head, size_t mmap_size, char *buf, bool needs_swap)
2114 {
2115 	return prefetch_event(buf, head, mmap_size, needs_swap, ERR_PTR(-EINVAL));
2116 }
2117 
2118 static union perf_event *
2119 fetch_decomp_event(u64 head, size_t mmap_size, char *buf, bool needs_swap)
2120 {
2121 	return prefetch_event(buf, head, mmap_size, needs_swap, NULL);
2122 }
2123 
2124 static int __perf_session__process_decomp_events(struct perf_session *session)
2125 {
2126 	s64 skip;
2127 	u64 size;
2128 	struct decomp *decomp = session->active_decomp->decomp_last;
2129 
2130 	if (!decomp)
2131 		return 0;
2132 
2133 	while (decomp->head < decomp->size && !session_done()) {
2134 		union perf_event *event = fetch_decomp_event(decomp->head, decomp->size, decomp->data,
2135 							     session->header.needs_swap);
2136 
2137 		if (!event)
2138 			break;
2139 
2140 		size = event->header.size;
2141 
2142 		if (size < sizeof(struct perf_event_header) ||
2143 		    (skip = perf_session__process_event(session, event, decomp->file_pos)) < 0) {
2144 			pr_err("%#" PRIx64 " [%#x]: failed to process type: %d\n",
2145 				decomp->file_pos + decomp->head, event->header.size, event->header.type);
2146 			return -EINVAL;
2147 		}
2148 
2149 		if (skip)
2150 			size += skip;
2151 
2152 		decomp->head += size;
2153 	}
2154 
2155 	return 0;
2156 }
2157 
2158 /*
2159  * On 64bit we can mmap the data file in one go. No need for tiny mmap
2160  * slices. On 32bit we use 32MB.
2161  */
2162 #if BITS_PER_LONG == 64
2163 #define MMAP_SIZE ULLONG_MAX
2164 #define NUM_MMAPS 1
2165 #else
2166 #define MMAP_SIZE (32 * 1024 * 1024ULL)
2167 #define NUM_MMAPS 128
2168 #endif
2169 
2170 struct reader;
2171 
2172 typedef s64 (*reader_cb_t)(struct perf_session *session,
2173 			   union perf_event *event,
2174 			   u64 file_offset);
2175 
2176 struct reader {
2177 	int		 fd;
2178 	u64		 data_size;
2179 	u64		 data_offset;
2180 	reader_cb_t	 process;
2181 	bool		 in_place_update;
2182 	char		 *mmaps[NUM_MMAPS];
2183 	size_t		 mmap_size;
2184 	int		 mmap_idx;
2185 	char		 *mmap_cur;
2186 	u64		 file_pos;
2187 	u64		 file_offset;
2188 	u64		 head;
2189 	u64		 size;
2190 	bool		 done;
2191 	struct zstd_data   zstd_data;
2192 	struct decomp_data decomp_data;
2193 };
2194 
2195 static int
2196 reader__init(struct reader *rd, bool *one_mmap)
2197 {
2198 	u64 data_size = rd->data_size;
2199 	char **mmaps = rd->mmaps;
2200 
2201 	rd->head = rd->data_offset;
2202 	data_size += rd->data_offset;
2203 
2204 	rd->mmap_size = MMAP_SIZE;
2205 	if (rd->mmap_size > data_size) {
2206 		rd->mmap_size = data_size;
2207 		if (one_mmap)
2208 			*one_mmap = true;
2209 	}
2210 
2211 	memset(mmaps, 0, sizeof(rd->mmaps));
2212 
2213 	if (zstd_init(&rd->zstd_data, 0))
2214 		return -1;
2215 	rd->decomp_data.zstd_decomp = &rd->zstd_data;
2216 
2217 	return 0;
2218 }
2219 
2220 static void
2221 reader__release_decomp(struct reader *rd)
2222 {
2223 	perf_decomp__release_events(rd->decomp_data.decomp);
2224 	zstd_fini(&rd->zstd_data);
2225 }
2226 
2227 static int
2228 reader__mmap(struct reader *rd, struct perf_session *session)
2229 {
2230 	int mmap_prot, mmap_flags;
2231 	char *buf, **mmaps = rd->mmaps;
2232 	u64 page_offset;
2233 
2234 	mmap_prot  = PROT_READ;
2235 	mmap_flags = MAP_SHARED;
2236 
2237 	if (rd->in_place_update) {
2238 		mmap_prot  |= PROT_WRITE;
2239 	} else if (session->header.needs_swap) {
2240 		mmap_prot  |= PROT_WRITE;
2241 		mmap_flags = MAP_PRIVATE;
2242 	}
2243 
2244 	if (mmaps[rd->mmap_idx]) {
2245 		munmap(mmaps[rd->mmap_idx], rd->mmap_size);
2246 		mmaps[rd->mmap_idx] = NULL;
2247 	}
2248 
2249 	page_offset = page_size * (rd->head / page_size);
2250 	rd->file_offset += page_offset;
2251 	rd->head -= page_offset;
2252 
2253 	buf = mmap(NULL, rd->mmap_size, mmap_prot, mmap_flags, rd->fd,
2254 		   rd->file_offset);
2255 	if (buf == MAP_FAILED) {
2256 		pr_err("failed to mmap file\n");
2257 		return -errno;
2258 	}
2259 	mmaps[rd->mmap_idx] = rd->mmap_cur = buf;
2260 	rd->mmap_idx = (rd->mmap_idx + 1) & (ARRAY_SIZE(rd->mmaps) - 1);
2261 	rd->file_pos = rd->file_offset + rd->head;
2262 	if (session->one_mmap) {
2263 		session->one_mmap_addr = buf;
2264 		session->one_mmap_offset = rd->file_offset;
2265 	}
2266 
2267 	return 0;
2268 }
2269 
2270 enum {
2271 	READER_OK,
2272 	READER_NODATA,
2273 };
2274 
2275 static int
2276 reader__read_event(struct reader *rd, struct perf_session *session,
2277 		   struct ui_progress *prog)
2278 {
2279 	u64 size;
2280 	int err = READER_OK;
2281 	union perf_event *event;
2282 	s64 skip;
2283 
2284 	event = fetch_mmaped_event(rd->head, rd->mmap_size, rd->mmap_cur,
2285 				   session->header.needs_swap);
2286 	if (IS_ERR(event))
2287 		return PTR_ERR(event);
2288 
2289 	if (!event)
2290 		return READER_NODATA;
2291 
2292 	size = event->header.size;
2293 
2294 	skip = -EINVAL;
2295 
2296 	if (size < sizeof(struct perf_event_header) ||
2297 	    (skip = rd->process(session, event, rd->file_pos)) < 0) {
2298 		pr_err("%#" PRIx64 " [%#x]: failed to process type: %d [%s]\n",
2299 		       rd->file_offset + rd->head, event->header.size,
2300 		       event->header.type, strerror(-skip));
2301 		err = skip;
2302 		goto out;
2303 	}
2304 
2305 	if (skip)
2306 		size += skip;
2307 
2308 	rd->size += size;
2309 	rd->head += size;
2310 	rd->file_pos += size;
2311 
2312 	err = __perf_session__process_decomp_events(session);
2313 	if (err)
2314 		goto out;
2315 
2316 	ui_progress__update(prog, size);
2317 
2318 out:
2319 	return err;
2320 }
2321 
2322 static inline bool
2323 reader__eof(struct reader *rd)
2324 {
2325 	return (rd->file_pos >= rd->data_size + rd->data_offset);
2326 }
2327 
2328 static int
2329 reader__process_events(struct reader *rd, struct perf_session *session,
2330 		       struct ui_progress *prog)
2331 {
2332 	int err;
2333 
2334 	err = reader__init(rd, &session->one_mmap);
2335 	if (err)
2336 		goto out;
2337 
2338 	session->active_decomp = &rd->decomp_data;
2339 
2340 remap:
2341 	err = reader__mmap(rd, session);
2342 	if (err)
2343 		goto out;
2344 
2345 more:
2346 	err = reader__read_event(rd, session, prog);
2347 	if (err < 0)
2348 		goto out;
2349 	else if (err == READER_NODATA)
2350 		goto remap;
2351 
2352 	if (session_done())
2353 		goto out;
2354 
2355 	if (!reader__eof(rd))
2356 		goto more;
2357 
2358 out:
2359 	session->active_decomp = &session->decomp_data;
2360 	return err;
2361 }
2362 
2363 static s64 process_simple(struct perf_session *session,
2364 			  union perf_event *event,
2365 			  u64 file_offset)
2366 {
2367 	return perf_session__process_event(session, event, file_offset);
2368 }
2369 
2370 static int __perf_session__process_events(struct perf_session *session)
2371 {
2372 	struct reader rd = {
2373 		.fd		= perf_data__fd(session->data),
2374 		.data_size	= session->header.data_size,
2375 		.data_offset	= session->header.data_offset,
2376 		.process	= process_simple,
2377 		.in_place_update = session->data->in_place_update,
2378 	};
2379 	struct ordered_events *oe = &session->ordered_events;
2380 	struct perf_tool *tool = session->tool;
2381 	struct ui_progress prog;
2382 	int err;
2383 
2384 	perf_tool__fill_defaults(tool);
2385 
2386 	if (rd.data_size == 0)
2387 		return -1;
2388 
2389 	ui_progress__init_size(&prog, rd.data_size, "Processing events...");
2390 
2391 	err = reader__process_events(&rd, session, &prog);
2392 	if (err)
2393 		goto out_err;
2394 	/* do the final flush for ordered samples */
2395 	err = ordered_events__flush(oe, OE_FLUSH__FINAL);
2396 	if (err)
2397 		goto out_err;
2398 	err = auxtrace__flush_events(session, tool);
2399 	if (err)
2400 		goto out_err;
2401 	err = perf_session__flush_thread_stacks(session);
2402 out_err:
2403 	ui_progress__finish();
2404 	if (!tool->no_warn)
2405 		perf_session__warn_about_errors(session);
2406 	/*
2407 	 * We may switching perf.data output, make ordered_events
2408 	 * reusable.
2409 	 */
2410 	ordered_events__reinit(&session->ordered_events);
2411 	auxtrace__free_events(session);
2412 	reader__release_decomp(&rd);
2413 	session->one_mmap = false;
2414 	return err;
2415 }
2416 
2417 /*
2418  * Processing 2 MB of data from each reader in sequence,
2419  * because that's the way the ordered events sorting works
2420  * most efficiently.
2421  */
2422 #define READER_MAX_SIZE (2 * 1024 * 1024)
2423 
2424 /*
2425  * This function reads, merge and process directory data.
2426  * It assumens the version 1 of directory data, where each
2427  * data file holds per-cpu data, already sorted by kernel.
2428  */
2429 static int __perf_session__process_dir_events(struct perf_session *session)
2430 {
2431 	struct perf_data *data = session->data;
2432 	struct perf_tool *tool = session->tool;
2433 	int i, ret, readers, nr_readers;
2434 	struct ui_progress prog;
2435 	u64 total_size = perf_data__size(session->data);
2436 	struct reader *rd;
2437 
2438 	perf_tool__fill_defaults(tool);
2439 
2440 	ui_progress__init_size(&prog, total_size, "Sorting events...");
2441 
2442 	nr_readers = 1;
2443 	for (i = 0; i < data->dir.nr; i++) {
2444 		if (data->dir.files[i].size)
2445 			nr_readers++;
2446 	}
2447 
2448 	rd = zalloc(nr_readers * sizeof(struct reader));
2449 	if (!rd)
2450 		return -ENOMEM;
2451 
2452 	rd[0] = (struct reader) {
2453 		.fd		 = perf_data__fd(session->data),
2454 		.data_size	 = session->header.data_size,
2455 		.data_offset	 = session->header.data_offset,
2456 		.process	 = process_simple,
2457 		.in_place_update = session->data->in_place_update,
2458 	};
2459 	ret = reader__init(&rd[0], NULL);
2460 	if (ret)
2461 		goto out_err;
2462 	ret = reader__mmap(&rd[0], session);
2463 	if (ret)
2464 		goto out_err;
2465 	readers = 1;
2466 
2467 	for (i = 0; i < data->dir.nr; i++) {
2468 		if (!data->dir.files[i].size)
2469 			continue;
2470 		rd[readers] = (struct reader) {
2471 			.fd		 = data->dir.files[i].fd,
2472 			.data_size	 = data->dir.files[i].size,
2473 			.data_offset	 = 0,
2474 			.process	 = process_simple,
2475 			.in_place_update = session->data->in_place_update,
2476 		};
2477 		ret = reader__init(&rd[readers], NULL);
2478 		if (ret)
2479 			goto out_err;
2480 		ret = reader__mmap(&rd[readers], session);
2481 		if (ret)
2482 			goto out_err;
2483 		readers++;
2484 	}
2485 
2486 	i = 0;
2487 	while (readers) {
2488 		if (session_done())
2489 			break;
2490 
2491 		if (rd[i].done) {
2492 			i = (i + 1) % nr_readers;
2493 			continue;
2494 		}
2495 		if (reader__eof(&rd[i])) {
2496 			rd[i].done = true;
2497 			readers--;
2498 			continue;
2499 		}
2500 
2501 		session->active_decomp = &rd[i].decomp_data;
2502 		ret = reader__read_event(&rd[i], session, &prog);
2503 		if (ret < 0) {
2504 			goto out_err;
2505 		} else if (ret == READER_NODATA) {
2506 			ret = reader__mmap(&rd[i], session);
2507 			if (ret)
2508 				goto out_err;
2509 		}
2510 
2511 		if (rd[i].size >= READER_MAX_SIZE) {
2512 			rd[i].size = 0;
2513 			i = (i + 1) % nr_readers;
2514 		}
2515 	}
2516 
2517 	ret = ordered_events__flush(&session->ordered_events, OE_FLUSH__FINAL);
2518 	if (ret)
2519 		goto out_err;
2520 
2521 	ret = perf_session__flush_thread_stacks(session);
2522 out_err:
2523 	ui_progress__finish();
2524 
2525 	if (!tool->no_warn)
2526 		perf_session__warn_about_errors(session);
2527 
2528 	/*
2529 	 * We may switching perf.data output, make ordered_events
2530 	 * reusable.
2531 	 */
2532 	ordered_events__reinit(&session->ordered_events);
2533 
2534 	session->one_mmap = false;
2535 
2536 	session->active_decomp = &session->decomp_data;
2537 	for (i = 0; i < nr_readers; i++)
2538 		reader__release_decomp(&rd[i]);
2539 	zfree(&rd);
2540 
2541 	return ret;
2542 }
2543 
2544 int perf_session__process_events(struct perf_session *session)
2545 {
2546 	if (perf_session__register_idle_thread(session) < 0)
2547 		return -ENOMEM;
2548 
2549 	if (perf_data__is_pipe(session->data))
2550 		return __perf_session__process_pipe_events(session);
2551 
2552 	if (perf_data__is_dir(session->data))
2553 		return __perf_session__process_dir_events(session);
2554 
2555 	return __perf_session__process_events(session);
2556 }
2557 
2558 bool perf_session__has_traces(struct perf_session *session, const char *msg)
2559 {
2560 	struct evsel *evsel;
2561 
2562 	evlist__for_each_entry(session->evlist, evsel) {
2563 		if (evsel->core.attr.type == PERF_TYPE_TRACEPOINT)
2564 			return true;
2565 	}
2566 
2567 	pr_err("No trace sample to read. Did you call 'perf %s'?\n", msg);
2568 	return false;
2569 }
2570 
2571 int map__set_kallsyms_ref_reloc_sym(struct map *map, const char *symbol_name, u64 addr)
2572 {
2573 	char *bracket;
2574 	struct ref_reloc_sym *ref;
2575 	struct kmap *kmap;
2576 
2577 	ref = zalloc(sizeof(struct ref_reloc_sym));
2578 	if (ref == NULL)
2579 		return -ENOMEM;
2580 
2581 	ref->name = strdup(symbol_name);
2582 	if (ref->name == NULL) {
2583 		free(ref);
2584 		return -ENOMEM;
2585 	}
2586 
2587 	bracket = strchr(ref->name, ']');
2588 	if (bracket)
2589 		*bracket = '\0';
2590 
2591 	ref->addr = addr;
2592 
2593 	kmap = map__kmap(map);
2594 	if (kmap)
2595 		kmap->ref_reloc_sym = ref;
2596 
2597 	return 0;
2598 }
2599 
2600 size_t perf_session__fprintf_dsos(struct perf_session *session, FILE *fp)
2601 {
2602 	return machines__fprintf_dsos(&session->machines, fp);
2603 }
2604 
2605 size_t perf_session__fprintf_dsos_buildid(struct perf_session *session, FILE *fp,
2606 					  bool (skip)(struct dso *dso, int parm), int parm)
2607 {
2608 	return machines__fprintf_dsos_buildid(&session->machines, fp, skip, parm);
2609 }
2610 
2611 size_t perf_session__fprintf_nr_events(struct perf_session *session, FILE *fp,
2612 				       bool skip_empty)
2613 {
2614 	size_t ret;
2615 	const char *msg = "";
2616 
2617 	if (perf_header__has_feat(&session->header, HEADER_AUXTRACE))
2618 		msg = " (excludes AUX area (e.g. instruction trace) decoded / synthesized events)";
2619 
2620 	ret = fprintf(fp, "\nAggregated stats:%s\n", msg);
2621 
2622 	ret += events_stats__fprintf(&session->evlist->stats, fp, skip_empty);
2623 	return ret;
2624 }
2625 
2626 size_t perf_session__fprintf(struct perf_session *session, FILE *fp)
2627 {
2628 	/*
2629 	 * FIXME: Here we have to actually print all the machines in this
2630 	 * session, not just the host...
2631 	 */
2632 	return machine__fprintf(&session->machines.host, fp);
2633 }
2634 
2635 struct evsel *perf_session__find_first_evtype(struct perf_session *session,
2636 					      unsigned int type)
2637 {
2638 	struct evsel *pos;
2639 
2640 	evlist__for_each_entry(session->evlist, pos) {
2641 		if (pos->core.attr.type == type)
2642 			return pos;
2643 	}
2644 	return NULL;
2645 }
2646 
2647 int perf_session__cpu_bitmap(struct perf_session *session,
2648 			     const char *cpu_list, unsigned long *cpu_bitmap)
2649 {
2650 	int i, err = -1;
2651 	struct perf_cpu_map *map;
2652 	int nr_cpus = min(session->header.env.nr_cpus_avail, MAX_NR_CPUS);
2653 
2654 	for (i = 0; i < PERF_TYPE_MAX; ++i) {
2655 		struct evsel *evsel;
2656 
2657 		evsel = perf_session__find_first_evtype(session, i);
2658 		if (!evsel)
2659 			continue;
2660 
2661 		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_CPU)) {
2662 			pr_err("File does not contain CPU events. "
2663 			       "Remove -C option to proceed.\n");
2664 			return -1;
2665 		}
2666 	}
2667 
2668 	map = perf_cpu_map__new(cpu_list);
2669 	if (map == NULL) {
2670 		pr_err("Invalid cpu_list\n");
2671 		return -1;
2672 	}
2673 
2674 	for (i = 0; i < perf_cpu_map__nr(map); i++) {
2675 		struct perf_cpu cpu = perf_cpu_map__cpu(map, i);
2676 
2677 		if (cpu.cpu >= nr_cpus) {
2678 			pr_err("Requested CPU %d too large. "
2679 			       "Consider raising MAX_NR_CPUS\n", cpu.cpu);
2680 			goto out_delete_map;
2681 		}
2682 
2683 		set_bit(cpu.cpu, cpu_bitmap);
2684 	}
2685 
2686 	err = 0;
2687 
2688 out_delete_map:
2689 	perf_cpu_map__put(map);
2690 	return err;
2691 }
2692 
2693 void perf_session__fprintf_info(struct perf_session *session, FILE *fp,
2694 				bool full)
2695 {
2696 	if (session == NULL || fp == NULL)
2697 		return;
2698 
2699 	fprintf(fp, "# ========\n");
2700 	perf_header__fprintf_info(session, fp, full);
2701 	fprintf(fp, "# ========\n#\n");
2702 }
2703 
2704 int perf_event__process_id_index(struct perf_session *session,
2705 				 union perf_event *event)
2706 {
2707 	struct evlist *evlist = session->evlist;
2708 	struct perf_record_id_index *ie = &event->id_index;
2709 	size_t i, nr, max_nr;
2710 
2711 	max_nr = (ie->header.size - sizeof(struct perf_record_id_index)) /
2712 		 sizeof(struct id_index_entry);
2713 	nr = ie->nr;
2714 	if (nr > max_nr)
2715 		return -EINVAL;
2716 
2717 	if (dump_trace)
2718 		fprintf(stdout, " nr: %zu\n", nr);
2719 
2720 	for (i = 0; i < nr; i++) {
2721 		struct id_index_entry *e = &ie->entries[i];
2722 		struct perf_sample_id *sid;
2723 
2724 		if (dump_trace) {
2725 			fprintf(stdout,	" ... id: %"PRI_lu64, e->id);
2726 			fprintf(stdout,	"  idx: %"PRI_lu64, e->idx);
2727 			fprintf(stdout,	"  cpu: %"PRI_ld64, e->cpu);
2728 			fprintf(stdout,	"  tid: %"PRI_ld64"\n", e->tid);
2729 		}
2730 
2731 		sid = evlist__id2sid(evlist, e->id);
2732 		if (!sid)
2733 			return -ENOENT;
2734 		sid->idx = e->idx;
2735 		sid->cpu.cpu = e->cpu;
2736 		sid->tid = e->tid;
2737 	}
2738 	return 0;
2739 }
2740