xref: /openbmc/linux/tools/perf/util/session.c (revision 9486aa38)
1 #define _FILE_OFFSET_BITS 64
2 
3 #include <linux/kernel.h>
4 
5 #include <byteswap.h>
6 #include <unistd.h>
7 #include <sys/types.h>
8 #include <sys/mman.h>
9 
10 #include "session.h"
11 #include "sort.h"
12 #include "util.h"
13 
14 static int perf_session__open(struct perf_session *self, bool force)
15 {
16 	struct stat input_stat;
17 
18 	if (!strcmp(self->filename, "-")) {
19 		self->fd_pipe = true;
20 		self->fd = STDIN_FILENO;
21 
22 		if (perf_header__read(self, self->fd) < 0)
23 			pr_err("incompatible file format");
24 
25 		return 0;
26 	}
27 
28 	self->fd = open(self->filename, O_RDONLY);
29 	if (self->fd < 0) {
30 		int err = errno;
31 
32 		pr_err("failed to open %s: %s", self->filename, strerror(err));
33 		if (err == ENOENT && !strcmp(self->filename, "perf.data"))
34 			pr_err("  (try 'perf record' first)");
35 		pr_err("\n");
36 		return -errno;
37 	}
38 
39 	if (fstat(self->fd, &input_stat) < 0)
40 		goto out_close;
41 
42 	if (!force && input_stat.st_uid && (input_stat.st_uid != geteuid())) {
43 		pr_err("file %s not owned by current user or root\n",
44 		       self->filename);
45 		goto out_close;
46 	}
47 
48 	if (!input_stat.st_size) {
49 		pr_info("zero-sized file (%s), nothing to do!\n",
50 			self->filename);
51 		goto out_close;
52 	}
53 
54 	if (perf_header__read(self, self->fd) < 0) {
55 		pr_err("incompatible file format");
56 		goto out_close;
57 	}
58 
59 	self->size = input_stat.st_size;
60 	return 0;
61 
62 out_close:
63 	close(self->fd);
64 	self->fd = -1;
65 	return -1;
66 }
67 
68 static void perf_session__id_header_size(struct perf_session *session)
69 {
70        struct sample_data *data;
71        u64 sample_type = session->sample_type;
72        u16 size = 0;
73 
74 	if (!session->sample_id_all)
75 		goto out;
76 
77        if (sample_type & PERF_SAMPLE_TID)
78                size += sizeof(data->tid) * 2;
79 
80        if (sample_type & PERF_SAMPLE_TIME)
81                size += sizeof(data->time);
82 
83        if (sample_type & PERF_SAMPLE_ID)
84                size += sizeof(data->id);
85 
86        if (sample_type & PERF_SAMPLE_STREAM_ID)
87                size += sizeof(data->stream_id);
88 
89        if (sample_type & PERF_SAMPLE_CPU)
90                size += sizeof(data->cpu) * 2;
91 out:
92        session->id_hdr_size = size;
93 }
94 
95 void perf_session__set_sample_id_all(struct perf_session *session, bool value)
96 {
97 	session->sample_id_all = value;
98 	perf_session__id_header_size(session);
99 }
100 
101 void perf_session__set_sample_type(struct perf_session *session, u64 type)
102 {
103 	session->sample_type = type;
104 }
105 
106 void perf_session__update_sample_type(struct perf_session *self)
107 {
108 	self->sample_type = perf_header__sample_type(&self->header);
109 	self->sample_id_all = perf_header__sample_id_all(&self->header);
110 	perf_session__id_header_size(self);
111 }
112 
113 int perf_session__create_kernel_maps(struct perf_session *self)
114 {
115 	int ret = machine__create_kernel_maps(&self->host_machine);
116 
117 	if (ret >= 0)
118 		ret = machines__create_guest_kernel_maps(&self->machines);
119 	return ret;
120 }
121 
122 static void perf_session__destroy_kernel_maps(struct perf_session *self)
123 {
124 	machine__destroy_kernel_maps(&self->host_machine);
125 	machines__destroy_guest_kernel_maps(&self->machines);
126 }
127 
128 struct perf_session *perf_session__new(const char *filename, int mode,
129 				       bool force, bool repipe,
130 				       struct perf_event_ops *ops)
131 {
132 	size_t len = filename ? strlen(filename) + 1 : 0;
133 	struct perf_session *self = zalloc(sizeof(*self) + len);
134 
135 	if (self == NULL)
136 		goto out;
137 
138 	if (perf_header__init(&self->header) < 0)
139 		goto out_free;
140 
141 	memcpy(self->filename, filename, len);
142 	self->threads = RB_ROOT;
143 	INIT_LIST_HEAD(&self->dead_threads);
144 	self->hists_tree = RB_ROOT;
145 	self->last_match = NULL;
146 	/*
147 	 * On 64bit we can mmap the data file in one go. No need for tiny mmap
148 	 * slices. On 32bit we use 32MB.
149 	 */
150 #if BITS_PER_LONG == 64
151 	self->mmap_window = ULLONG_MAX;
152 #else
153 	self->mmap_window = 32 * 1024 * 1024ULL;
154 #endif
155 	self->machines = RB_ROOT;
156 	self->repipe = repipe;
157 	INIT_LIST_HEAD(&self->ordered_samples.samples);
158 	INIT_LIST_HEAD(&self->ordered_samples.sample_cache);
159 	INIT_LIST_HEAD(&self->ordered_samples.to_free);
160 	machine__init(&self->host_machine, "", HOST_KERNEL_ID);
161 
162 	if (mode == O_RDONLY) {
163 		if (perf_session__open(self, force) < 0)
164 			goto out_delete;
165 	} else if (mode == O_WRONLY) {
166 		/*
167 		 * In O_RDONLY mode this will be performed when reading the
168 		 * kernel MMAP event, in event__process_mmap().
169 		 */
170 		if (perf_session__create_kernel_maps(self) < 0)
171 			goto out_delete;
172 	}
173 
174 	perf_session__update_sample_type(self);
175 
176 	if (ops && ops->ordering_requires_timestamps &&
177 	    ops->ordered_samples && !self->sample_id_all) {
178 		dump_printf("WARNING: No sample_id_all support, falling back to unordered processing\n");
179 		ops->ordered_samples = false;
180 	}
181 
182 out:
183 	return self;
184 out_free:
185 	free(self);
186 	return NULL;
187 out_delete:
188 	perf_session__delete(self);
189 	return NULL;
190 }
191 
192 static void perf_session__delete_dead_threads(struct perf_session *self)
193 {
194 	struct thread *n, *t;
195 
196 	list_for_each_entry_safe(t, n, &self->dead_threads, node) {
197 		list_del(&t->node);
198 		thread__delete(t);
199 	}
200 }
201 
202 static void perf_session__delete_threads(struct perf_session *self)
203 {
204 	struct rb_node *nd = rb_first(&self->threads);
205 
206 	while (nd) {
207 		struct thread *t = rb_entry(nd, struct thread, rb_node);
208 
209 		rb_erase(&t->rb_node, &self->threads);
210 		nd = rb_next(nd);
211 		thread__delete(t);
212 	}
213 }
214 
215 void perf_session__delete(struct perf_session *self)
216 {
217 	perf_header__exit(&self->header);
218 	perf_session__destroy_kernel_maps(self);
219 	perf_session__delete_dead_threads(self);
220 	perf_session__delete_threads(self);
221 	machine__exit(&self->host_machine);
222 	close(self->fd);
223 	free(self);
224 }
225 
226 void perf_session__remove_thread(struct perf_session *self, struct thread *th)
227 {
228 	self->last_match = NULL;
229 	rb_erase(&th->rb_node, &self->threads);
230 	/*
231 	 * We may have references to this thread, for instance in some hist_entry
232 	 * instances, so just move them to a separate list.
233 	 */
234 	list_add_tail(&th->node, &self->dead_threads);
235 }
236 
237 static bool symbol__match_parent_regex(struct symbol *sym)
238 {
239 	if (sym->name && !regexec(&parent_regex, sym->name, 0, NULL, 0))
240 		return 1;
241 
242 	return 0;
243 }
244 
245 struct map_symbol *perf_session__resolve_callchain(struct perf_session *self,
246 						   struct thread *thread,
247 						   struct ip_callchain *chain,
248 						   struct symbol **parent)
249 {
250 	u8 cpumode = PERF_RECORD_MISC_USER;
251 	unsigned int i;
252 	struct map_symbol *syms = calloc(chain->nr, sizeof(*syms));
253 
254 	if (!syms)
255 		return NULL;
256 
257 	for (i = 0; i < chain->nr; i++) {
258 		u64 ip = chain->ips[i];
259 		struct addr_location al;
260 
261 		if (ip >= PERF_CONTEXT_MAX) {
262 			switch (ip) {
263 			case PERF_CONTEXT_HV:
264 				cpumode = PERF_RECORD_MISC_HYPERVISOR;	break;
265 			case PERF_CONTEXT_KERNEL:
266 				cpumode = PERF_RECORD_MISC_KERNEL;	break;
267 			case PERF_CONTEXT_USER:
268 				cpumode = PERF_RECORD_MISC_USER;	break;
269 			default:
270 				break;
271 			}
272 			continue;
273 		}
274 
275 		al.filtered = false;
276 		thread__find_addr_location(thread, self, cpumode,
277 				MAP__FUNCTION, thread->pid, ip, &al, NULL);
278 		if (al.sym != NULL) {
279 			if (sort__has_parent && !*parent &&
280 			    symbol__match_parent_regex(al.sym))
281 				*parent = al.sym;
282 			if (!symbol_conf.use_callchain)
283 				break;
284 			syms[i].map = al.map;
285 			syms[i].sym = al.sym;
286 		}
287 	}
288 
289 	return syms;
290 }
291 
292 static int process_event_synth_stub(event_t *event __used,
293 				    struct perf_session *session __used)
294 {
295 	dump_printf(": unhandled!\n");
296 	return 0;
297 }
298 
299 static int process_event_stub(event_t *event __used,
300 			      struct sample_data *sample __used,
301 			      struct perf_session *session __used)
302 {
303 	dump_printf(": unhandled!\n");
304 	return 0;
305 }
306 
307 static int process_finished_round_stub(event_t *event __used,
308 				       struct perf_session *session __used,
309 				       struct perf_event_ops *ops __used)
310 {
311 	dump_printf(": unhandled!\n");
312 	return 0;
313 }
314 
315 static int process_finished_round(event_t *event,
316 				  struct perf_session *session,
317 				  struct perf_event_ops *ops);
318 
319 static void perf_event_ops__fill_defaults(struct perf_event_ops *handler)
320 {
321 	if (handler->sample == NULL)
322 		handler->sample = process_event_stub;
323 	if (handler->mmap == NULL)
324 		handler->mmap = process_event_stub;
325 	if (handler->comm == NULL)
326 		handler->comm = process_event_stub;
327 	if (handler->fork == NULL)
328 		handler->fork = process_event_stub;
329 	if (handler->exit == NULL)
330 		handler->exit = process_event_stub;
331 	if (handler->lost == NULL)
332 		handler->lost = event__process_lost;
333 	if (handler->read == NULL)
334 		handler->read = process_event_stub;
335 	if (handler->throttle == NULL)
336 		handler->throttle = process_event_stub;
337 	if (handler->unthrottle == NULL)
338 		handler->unthrottle = process_event_stub;
339 	if (handler->attr == NULL)
340 		handler->attr = process_event_synth_stub;
341 	if (handler->event_type == NULL)
342 		handler->event_type = process_event_synth_stub;
343 	if (handler->tracing_data == NULL)
344 		handler->tracing_data = process_event_synth_stub;
345 	if (handler->build_id == NULL)
346 		handler->build_id = process_event_synth_stub;
347 	if (handler->finished_round == NULL) {
348 		if (handler->ordered_samples)
349 			handler->finished_round = process_finished_round;
350 		else
351 			handler->finished_round = process_finished_round_stub;
352 	}
353 }
354 
355 void mem_bswap_64(void *src, int byte_size)
356 {
357 	u64 *m = src;
358 
359 	while (byte_size > 0) {
360 		*m = bswap_64(*m);
361 		byte_size -= sizeof(u64);
362 		++m;
363 	}
364 }
365 
366 static void event__all64_swap(event_t *self)
367 {
368 	struct perf_event_header *hdr = &self->header;
369 	mem_bswap_64(hdr + 1, self->header.size - sizeof(*hdr));
370 }
371 
372 static void event__comm_swap(event_t *self)
373 {
374 	self->comm.pid = bswap_32(self->comm.pid);
375 	self->comm.tid = bswap_32(self->comm.tid);
376 }
377 
378 static void event__mmap_swap(event_t *self)
379 {
380 	self->mmap.pid	 = bswap_32(self->mmap.pid);
381 	self->mmap.tid	 = bswap_32(self->mmap.tid);
382 	self->mmap.start = bswap_64(self->mmap.start);
383 	self->mmap.len	 = bswap_64(self->mmap.len);
384 	self->mmap.pgoff = bswap_64(self->mmap.pgoff);
385 }
386 
387 static void event__task_swap(event_t *self)
388 {
389 	self->fork.pid	= bswap_32(self->fork.pid);
390 	self->fork.tid	= bswap_32(self->fork.tid);
391 	self->fork.ppid	= bswap_32(self->fork.ppid);
392 	self->fork.ptid	= bswap_32(self->fork.ptid);
393 	self->fork.time	= bswap_64(self->fork.time);
394 }
395 
396 static void event__read_swap(event_t *self)
397 {
398 	self->read.pid		= bswap_32(self->read.pid);
399 	self->read.tid		= bswap_32(self->read.tid);
400 	self->read.value	= bswap_64(self->read.value);
401 	self->read.time_enabled	= bswap_64(self->read.time_enabled);
402 	self->read.time_running	= bswap_64(self->read.time_running);
403 	self->read.id		= bswap_64(self->read.id);
404 }
405 
406 static void event__attr_swap(event_t *self)
407 {
408 	size_t size;
409 
410 	self->attr.attr.type		= bswap_32(self->attr.attr.type);
411 	self->attr.attr.size		= bswap_32(self->attr.attr.size);
412 	self->attr.attr.config		= bswap_64(self->attr.attr.config);
413 	self->attr.attr.sample_period	= bswap_64(self->attr.attr.sample_period);
414 	self->attr.attr.sample_type	= bswap_64(self->attr.attr.sample_type);
415 	self->attr.attr.read_format	= bswap_64(self->attr.attr.read_format);
416 	self->attr.attr.wakeup_events	= bswap_32(self->attr.attr.wakeup_events);
417 	self->attr.attr.bp_type		= bswap_32(self->attr.attr.bp_type);
418 	self->attr.attr.bp_addr		= bswap_64(self->attr.attr.bp_addr);
419 	self->attr.attr.bp_len		= bswap_64(self->attr.attr.bp_len);
420 
421 	size = self->header.size;
422 	size -= (void *)&self->attr.id - (void *)self;
423 	mem_bswap_64(self->attr.id, size);
424 }
425 
426 static void event__event_type_swap(event_t *self)
427 {
428 	self->event_type.event_type.event_id =
429 		bswap_64(self->event_type.event_type.event_id);
430 }
431 
432 static void event__tracing_data_swap(event_t *self)
433 {
434 	self->tracing_data.size = bswap_32(self->tracing_data.size);
435 }
436 
437 typedef void (*event__swap_op)(event_t *self);
438 
439 static event__swap_op event__swap_ops[] = {
440 	[PERF_RECORD_MMAP]   = event__mmap_swap,
441 	[PERF_RECORD_COMM]   = event__comm_swap,
442 	[PERF_RECORD_FORK]   = event__task_swap,
443 	[PERF_RECORD_EXIT]   = event__task_swap,
444 	[PERF_RECORD_LOST]   = event__all64_swap,
445 	[PERF_RECORD_READ]   = event__read_swap,
446 	[PERF_RECORD_SAMPLE] = event__all64_swap,
447 	[PERF_RECORD_HEADER_ATTR]   = event__attr_swap,
448 	[PERF_RECORD_HEADER_EVENT_TYPE]   = event__event_type_swap,
449 	[PERF_RECORD_HEADER_TRACING_DATA]   = event__tracing_data_swap,
450 	[PERF_RECORD_HEADER_BUILD_ID]   = NULL,
451 	[PERF_RECORD_HEADER_MAX]    = NULL,
452 };
453 
454 struct sample_queue {
455 	u64			timestamp;
456 	u64			file_offset;
457 	event_t			*event;
458 	struct list_head	list;
459 };
460 
461 static void perf_session_free_sample_buffers(struct perf_session *session)
462 {
463 	struct ordered_samples *os = &session->ordered_samples;
464 
465 	while (!list_empty(&os->to_free)) {
466 		struct sample_queue *sq;
467 
468 		sq = list_entry(os->to_free.next, struct sample_queue, list);
469 		list_del(&sq->list);
470 		free(sq);
471 	}
472 }
473 
474 static int perf_session_deliver_event(struct perf_session *session,
475 				      event_t *event,
476 				      struct sample_data *sample,
477 				      struct perf_event_ops *ops,
478 				      u64 file_offset);
479 
480 static void flush_sample_queue(struct perf_session *s,
481 			       struct perf_event_ops *ops)
482 {
483 	struct ordered_samples *os = &s->ordered_samples;
484 	struct list_head *head = &os->samples;
485 	struct sample_queue *tmp, *iter;
486 	struct sample_data sample;
487 	u64 limit = os->next_flush;
488 	u64 last_ts = os->last_sample ? os->last_sample->timestamp : 0ULL;
489 
490 	if (!ops->ordered_samples || !limit)
491 		return;
492 
493 	list_for_each_entry_safe(iter, tmp, head, list) {
494 		if (iter->timestamp > limit)
495 			break;
496 
497 		event__parse_sample(iter->event, s, &sample);
498 		perf_session_deliver_event(s, iter->event, &sample, ops,
499 					   iter->file_offset);
500 
501 		os->last_flush = iter->timestamp;
502 		list_del(&iter->list);
503 		list_add(&iter->list, &os->sample_cache);
504 	}
505 
506 	if (list_empty(head)) {
507 		os->last_sample = NULL;
508 	} else if (last_ts <= limit) {
509 		os->last_sample =
510 			list_entry(head->prev, struct sample_queue, list);
511 	}
512 }
513 
514 /*
515  * When perf record finishes a pass on every buffers, it records this pseudo
516  * event.
517  * We record the max timestamp t found in the pass n.
518  * Assuming these timestamps are monotonic across cpus, we know that if
519  * a buffer still has events with timestamps below t, they will be all
520  * available and then read in the pass n + 1.
521  * Hence when we start to read the pass n + 2, we can safely flush every
522  * events with timestamps below t.
523  *
524  *    ============ PASS n =================
525  *       CPU 0         |   CPU 1
526  *                     |
527  *    cnt1 timestamps  |   cnt2 timestamps
528  *          1          |         2
529  *          2          |         3
530  *          -          |         4  <--- max recorded
531  *
532  *    ============ PASS n + 1 ==============
533  *       CPU 0         |   CPU 1
534  *                     |
535  *    cnt1 timestamps  |   cnt2 timestamps
536  *          3          |         5
537  *          4          |         6
538  *          5          |         7 <---- max recorded
539  *
540  *      Flush every events below timestamp 4
541  *
542  *    ============ PASS n + 2 ==============
543  *       CPU 0         |   CPU 1
544  *                     |
545  *    cnt1 timestamps  |   cnt2 timestamps
546  *          6          |         8
547  *          7          |         9
548  *          -          |         10
549  *
550  *      Flush every events below timestamp 7
551  *      etc...
552  */
553 static int process_finished_round(event_t *event __used,
554 				  struct perf_session *session,
555 				  struct perf_event_ops *ops)
556 {
557 	flush_sample_queue(session, ops);
558 	session->ordered_samples.next_flush = session->ordered_samples.max_timestamp;
559 
560 	return 0;
561 }
562 
563 /* The queue is ordered by time */
564 static void __queue_event(struct sample_queue *new, struct perf_session *s)
565 {
566 	struct ordered_samples *os = &s->ordered_samples;
567 	struct sample_queue *sample = os->last_sample;
568 	u64 timestamp = new->timestamp;
569 	struct list_head *p;
570 
571 	os->last_sample = new;
572 
573 	if (!sample) {
574 		list_add(&new->list, &os->samples);
575 		os->max_timestamp = timestamp;
576 		return;
577 	}
578 
579 	/*
580 	 * last_sample might point to some random place in the list as it's
581 	 * the last queued event. We expect that the new event is close to
582 	 * this.
583 	 */
584 	if (sample->timestamp <= timestamp) {
585 		while (sample->timestamp <= timestamp) {
586 			p = sample->list.next;
587 			if (p == &os->samples) {
588 				list_add_tail(&new->list, &os->samples);
589 				os->max_timestamp = timestamp;
590 				return;
591 			}
592 			sample = list_entry(p, struct sample_queue, list);
593 		}
594 		list_add_tail(&new->list, &sample->list);
595 	} else {
596 		while (sample->timestamp > timestamp) {
597 			p = sample->list.prev;
598 			if (p == &os->samples) {
599 				list_add(&new->list, &os->samples);
600 				return;
601 			}
602 			sample = list_entry(p, struct sample_queue, list);
603 		}
604 		list_add(&new->list, &sample->list);
605 	}
606 }
607 
608 #define MAX_SAMPLE_BUFFER	(64 * 1024 / sizeof(struct sample_queue))
609 
610 static int perf_session_queue_event(struct perf_session *s, event_t *event,
611 				    struct sample_data *data, u64 file_offset)
612 {
613 	struct ordered_samples *os = &s->ordered_samples;
614 	struct list_head *sc = &os->sample_cache;
615 	u64 timestamp = data->time;
616 	struct sample_queue *new;
617 
618 	if (!timestamp || timestamp == ~0ULL)
619 		return -ETIME;
620 
621 	if (timestamp < s->ordered_samples.last_flush) {
622 		printf("Warning: Timestamp below last timeslice flush\n");
623 		return -EINVAL;
624 	}
625 
626 	if (!list_empty(sc)) {
627 		new = list_entry(sc->next, struct sample_queue, list);
628 		list_del(&new->list);
629 	} else if (os->sample_buffer) {
630 		new = os->sample_buffer + os->sample_buffer_idx;
631 		if (++os->sample_buffer_idx == MAX_SAMPLE_BUFFER)
632 			os->sample_buffer = NULL;
633 	} else {
634 		os->sample_buffer = malloc(MAX_SAMPLE_BUFFER * sizeof(*new));
635 		if (!os->sample_buffer)
636 			return -ENOMEM;
637 		list_add(&os->sample_buffer->list, &os->to_free);
638 		os->sample_buffer_idx = 2;
639 		new = os->sample_buffer + 1;
640 	}
641 
642 	new->timestamp = timestamp;
643 	new->file_offset = file_offset;
644 	new->event = event;
645 
646 	__queue_event(new, s);
647 
648 	return 0;
649 }
650 
651 static void callchain__printf(struct sample_data *sample)
652 {
653 	unsigned int i;
654 
655 	printf("... chain: nr:%" PRIu64 "\n", sample->callchain->nr);
656 
657 	for (i = 0; i < sample->callchain->nr; i++)
658 		printf("..... %2d: %016" PRIx64 "\n",
659 		       i, sample->callchain->ips[i]);
660 }
661 
662 static void perf_session__print_tstamp(struct perf_session *session,
663 				       event_t *event,
664 				       struct sample_data *sample)
665 {
666 	if (event->header.type != PERF_RECORD_SAMPLE &&
667 	    !session->sample_id_all) {
668 		fputs("-1 -1 ", stdout);
669 		return;
670 	}
671 
672 	if ((session->sample_type & PERF_SAMPLE_CPU))
673 		printf("%u ", sample->cpu);
674 
675 	if (session->sample_type & PERF_SAMPLE_TIME)
676 		printf("%" PRIu64 " ", sample->time);
677 }
678 
679 static void dump_event(struct perf_session *session, event_t *event,
680 		       u64 file_offset, struct sample_data *sample)
681 {
682 	if (!dump_trace)
683 		return;
684 
685 	printf("\n%#" PRIx64 " [%#x]: event: %d\n",
686 	       file_offset, event->header.size, event->header.type);
687 
688 	trace_event(event);
689 
690 	if (sample)
691 		perf_session__print_tstamp(session, event, sample);
692 
693 	printf("%#" PRIx64 " [%#x]: PERF_RECORD_%s", file_offset,
694 	       event->header.size, event__get_event_name(event->header.type));
695 }
696 
697 static void dump_sample(struct perf_session *session, event_t *event,
698 			struct sample_data *sample)
699 {
700 	if (!dump_trace)
701 		return;
702 
703 	printf("(IP, %d): %d/%d: %#" PRIx64 " period: %" PRIu64 "\n",
704 	       event->header.misc, sample->pid, sample->tid, sample->ip,
705 	       sample->period);
706 
707 	if (session->sample_type & PERF_SAMPLE_CALLCHAIN)
708 		callchain__printf(sample);
709 }
710 
711 static int perf_session_deliver_event(struct perf_session *session,
712 				      event_t *event,
713 				      struct sample_data *sample,
714 				      struct perf_event_ops *ops,
715 				      u64 file_offset)
716 {
717 	dump_event(session, event, file_offset, sample);
718 
719 	switch (event->header.type) {
720 	case PERF_RECORD_SAMPLE:
721 		dump_sample(session, event, sample);
722 		return ops->sample(event, sample, session);
723 	case PERF_RECORD_MMAP:
724 		return ops->mmap(event, sample, session);
725 	case PERF_RECORD_COMM:
726 		return ops->comm(event, sample, session);
727 	case PERF_RECORD_FORK:
728 		return ops->fork(event, sample, session);
729 	case PERF_RECORD_EXIT:
730 		return ops->exit(event, sample, session);
731 	case PERF_RECORD_LOST:
732 		return ops->lost(event, sample, session);
733 	case PERF_RECORD_READ:
734 		return ops->read(event, sample, session);
735 	case PERF_RECORD_THROTTLE:
736 		return ops->throttle(event, sample, session);
737 	case PERF_RECORD_UNTHROTTLE:
738 		return ops->unthrottle(event, sample, session);
739 	default:
740 		++session->hists.stats.nr_unknown_events;
741 		return -1;
742 	}
743 }
744 
745 static int perf_session__preprocess_sample(struct perf_session *session,
746 					   event_t *event, struct sample_data *sample)
747 {
748 	if (event->header.type != PERF_RECORD_SAMPLE ||
749 	    !(session->sample_type & PERF_SAMPLE_CALLCHAIN))
750 		return 0;
751 
752 	if (!ip_callchain__valid(sample->callchain, event)) {
753 		pr_debug("call-chain problem with event, skipping it.\n");
754 		++session->hists.stats.nr_invalid_chains;
755 		session->hists.stats.total_invalid_chains += sample->period;
756 		return -EINVAL;
757 	}
758 	return 0;
759 }
760 
761 static int perf_session__process_user_event(struct perf_session *session, event_t *event,
762 					    struct perf_event_ops *ops, u64 file_offset)
763 {
764 	dump_event(session, event, file_offset, NULL);
765 
766 	/* These events are processed right away */
767 	switch (event->header.type) {
768 	case PERF_RECORD_HEADER_ATTR:
769 		return ops->attr(event, session);
770 	case PERF_RECORD_HEADER_EVENT_TYPE:
771 		return ops->event_type(event, session);
772 	case PERF_RECORD_HEADER_TRACING_DATA:
773 		/* setup for reading amidst mmap */
774 		lseek(session->fd, file_offset, SEEK_SET);
775 		return ops->tracing_data(event, session);
776 	case PERF_RECORD_HEADER_BUILD_ID:
777 		return ops->build_id(event, session);
778 	case PERF_RECORD_FINISHED_ROUND:
779 		return ops->finished_round(event, session, ops);
780 	default:
781 		return -EINVAL;
782 	}
783 }
784 
785 static int perf_session__process_event(struct perf_session *session,
786 				       event_t *event,
787 				       struct perf_event_ops *ops,
788 				       u64 file_offset)
789 {
790 	struct sample_data sample;
791 	int ret;
792 
793 	if (session->header.needs_swap && event__swap_ops[event->header.type])
794 		event__swap_ops[event->header.type](event);
795 
796 	if (event->header.type >= PERF_RECORD_HEADER_MAX)
797 		return -EINVAL;
798 
799 	hists__inc_nr_events(&session->hists, event->header.type);
800 
801 	if (event->header.type >= PERF_RECORD_USER_TYPE_START)
802 		return perf_session__process_user_event(session, event, ops, file_offset);
803 
804 	/*
805 	 * For all kernel events we get the sample data
806 	 */
807 	event__parse_sample(event, session, &sample);
808 
809 	/* Preprocess sample records - precheck callchains */
810 	if (perf_session__preprocess_sample(session, event, &sample))
811 		return 0;
812 
813 	if (ops->ordered_samples) {
814 		ret = perf_session_queue_event(session, event, &sample,
815 					       file_offset);
816 		if (ret != -ETIME)
817 			return ret;
818 	}
819 
820 	return perf_session_deliver_event(session, event, &sample, ops,
821 					  file_offset);
822 }
823 
824 void perf_event_header__bswap(struct perf_event_header *self)
825 {
826 	self->type = bswap_32(self->type);
827 	self->misc = bswap_16(self->misc);
828 	self->size = bswap_16(self->size);
829 }
830 
831 static struct thread *perf_session__register_idle_thread(struct perf_session *self)
832 {
833 	struct thread *thread = perf_session__findnew(self, 0);
834 
835 	if (thread == NULL || thread__set_comm(thread, "swapper")) {
836 		pr_err("problem inserting idle task.\n");
837 		thread = NULL;
838 	}
839 
840 	return thread;
841 }
842 
843 static void perf_session__warn_about_errors(const struct perf_session *session,
844 					    const struct perf_event_ops *ops)
845 {
846 	if (ops->lost == event__process_lost &&
847 	    session->hists.stats.total_lost != 0) {
848 		ui__warning("Processed %" PRIu64 " events and LOST %" PRIu64
849 			    "!\n\nCheck IO/CPU overload!\n\n",
850 			    session->hists.stats.total_period,
851 			    session->hists.stats.total_lost);
852 	}
853 
854 	if (session->hists.stats.nr_unknown_events != 0) {
855 		ui__warning("Found %u unknown events!\n\n"
856 			    "Is this an older tool processing a perf.data "
857 			    "file generated by a more recent tool?\n\n"
858 			    "If that is not the case, consider "
859 			    "reporting to linux-kernel@vger.kernel.org.\n\n",
860 			    session->hists.stats.nr_unknown_events);
861 	}
862 
863  	if (session->hists.stats.nr_invalid_chains != 0) {
864  		ui__warning("Found invalid callchains!\n\n"
865  			    "%u out of %u events were discarded for this reason.\n\n"
866  			    "Consider reporting to linux-kernel@vger.kernel.org.\n\n",
867  			    session->hists.stats.nr_invalid_chains,
868  			    session->hists.stats.nr_events[PERF_RECORD_SAMPLE]);
869  	}
870 }
871 
872 #define session_done()	(*(volatile int *)(&session_done))
873 volatile int session_done;
874 
875 static int __perf_session__process_pipe_events(struct perf_session *self,
876 					       struct perf_event_ops *ops)
877 {
878 	event_t event;
879 	uint32_t size;
880 	int skip = 0;
881 	u64 head;
882 	int err;
883 	void *p;
884 
885 	perf_event_ops__fill_defaults(ops);
886 
887 	head = 0;
888 more:
889 	err = readn(self->fd, &event, sizeof(struct perf_event_header));
890 	if (err <= 0) {
891 		if (err == 0)
892 			goto done;
893 
894 		pr_err("failed to read event header\n");
895 		goto out_err;
896 	}
897 
898 	if (self->header.needs_swap)
899 		perf_event_header__bswap(&event.header);
900 
901 	size = event.header.size;
902 	if (size == 0)
903 		size = 8;
904 
905 	p = &event;
906 	p += sizeof(struct perf_event_header);
907 
908 	if (size - sizeof(struct perf_event_header)) {
909 		err = readn(self->fd, p, size - sizeof(struct perf_event_header));
910 		if (err <= 0) {
911 			if (err == 0) {
912 				pr_err("unexpected end of event stream\n");
913 				goto done;
914 			}
915 
916 			pr_err("failed to read event data\n");
917 			goto out_err;
918 		}
919 	}
920 
921 	if (size == 0 ||
922 	    (skip = perf_session__process_event(self, &event, ops, head)) < 0) {
923 		dump_printf("%#" PRIx64 " [%#x]: skipping unknown header type: %d\n",
924 			    head, event.header.size, event.header.type);
925 		/*
926 		 * assume we lost track of the stream, check alignment, and
927 		 * increment a single u64 in the hope to catch on again 'soon'.
928 		 */
929 		if (unlikely(head & 7))
930 			head &= ~7ULL;
931 
932 		size = 8;
933 	}
934 
935 	head += size;
936 
937 	if (skip > 0)
938 		head += skip;
939 
940 	if (!session_done())
941 		goto more;
942 done:
943 	err = 0;
944 out_err:
945 	perf_session__warn_about_errors(self, ops);
946 	perf_session_free_sample_buffers(self);
947 	return err;
948 }
949 
950 int __perf_session__process_events(struct perf_session *session,
951 				   u64 data_offset, u64 data_size,
952 				   u64 file_size, struct perf_event_ops *ops)
953 {
954 	u64 head, page_offset, file_offset, file_pos, progress_next;
955 	int err, mmap_prot, mmap_flags, map_idx = 0;
956 	struct ui_progress *progress;
957 	size_t	page_size, mmap_size;
958 	char *buf, *mmaps[8];
959 	event_t *event;
960 	uint32_t size;
961 
962 	perf_event_ops__fill_defaults(ops);
963 
964 	page_size = sysconf(_SC_PAGESIZE);
965 
966 	page_offset = page_size * (data_offset / page_size);
967 	file_offset = page_offset;
968 	head = data_offset - page_offset;
969 
970 	if (data_offset + data_size < file_size)
971 		file_size = data_offset + data_size;
972 
973 	progress_next = file_size / 16;
974 	progress = ui_progress__new("Processing events...", file_size);
975 	if (progress == NULL)
976 		return -1;
977 
978 	mmap_size = session->mmap_window;
979 	if (mmap_size > file_size)
980 		mmap_size = file_size;
981 
982 	memset(mmaps, 0, sizeof(mmaps));
983 
984 	mmap_prot  = PROT_READ;
985 	mmap_flags = MAP_SHARED;
986 
987 	if (session->header.needs_swap) {
988 		mmap_prot  |= PROT_WRITE;
989 		mmap_flags = MAP_PRIVATE;
990 	}
991 remap:
992 	buf = mmap(NULL, mmap_size, mmap_prot, mmap_flags, session->fd,
993 		   file_offset);
994 	if (buf == MAP_FAILED) {
995 		pr_err("failed to mmap file\n");
996 		err = -errno;
997 		goto out_err;
998 	}
999 	mmaps[map_idx] = buf;
1000 	map_idx = (map_idx + 1) & (ARRAY_SIZE(mmaps) - 1);
1001 	file_pos = file_offset + head;
1002 
1003 more:
1004 	event = (event_t *)(buf + head);
1005 
1006 	if (session->header.needs_swap)
1007 		perf_event_header__bswap(&event->header);
1008 	size = event->header.size;
1009 	if (size == 0)
1010 		size = 8;
1011 
1012 	if (head + event->header.size > mmap_size) {
1013 		if (mmaps[map_idx]) {
1014 			munmap(mmaps[map_idx], mmap_size);
1015 			mmaps[map_idx] = NULL;
1016 		}
1017 
1018 		page_offset = page_size * (head / page_size);
1019 		file_offset += page_offset;
1020 		head -= page_offset;
1021 		goto remap;
1022 	}
1023 
1024 	size = event->header.size;
1025 
1026 	if (size == 0 ||
1027 	    perf_session__process_event(session, event, ops, file_pos) < 0) {
1028 		dump_printf("%#" PRIx64 " [%#x]: skipping unknown header type: %d\n",
1029 			    file_offset + head, event->header.size,
1030 			    event->header.type);
1031 		/*
1032 		 * assume we lost track of the stream, check alignment, and
1033 		 * increment a single u64 in the hope to catch on again 'soon'.
1034 		 */
1035 		if (unlikely(head & 7))
1036 			head &= ~7ULL;
1037 
1038 		size = 8;
1039 	}
1040 
1041 	head += size;
1042 	file_pos += size;
1043 
1044 	if (file_pos >= progress_next) {
1045 		progress_next += file_size / 16;
1046 		ui_progress__update(progress, file_pos);
1047 	}
1048 
1049 	if (file_pos < file_size)
1050 		goto more;
1051 
1052 	err = 0;
1053 	/* do the final flush for ordered samples */
1054 	session->ordered_samples.next_flush = ULLONG_MAX;
1055 	flush_sample_queue(session, ops);
1056 out_err:
1057 	ui_progress__delete(progress);
1058 	perf_session__warn_about_errors(session, ops);
1059 	perf_session_free_sample_buffers(session);
1060 	return err;
1061 }
1062 
1063 int perf_session__process_events(struct perf_session *self,
1064 				 struct perf_event_ops *ops)
1065 {
1066 	int err;
1067 
1068 	if (perf_session__register_idle_thread(self) == NULL)
1069 		return -ENOMEM;
1070 
1071 	if (!self->fd_pipe)
1072 		err = __perf_session__process_events(self,
1073 						     self->header.data_offset,
1074 						     self->header.data_size,
1075 						     self->size, ops);
1076 	else
1077 		err = __perf_session__process_pipe_events(self, ops);
1078 
1079 	return err;
1080 }
1081 
1082 bool perf_session__has_traces(struct perf_session *self, const char *msg)
1083 {
1084 	if (!(self->sample_type & PERF_SAMPLE_RAW)) {
1085 		pr_err("No trace sample to read. Did you call 'perf %s'?\n", msg);
1086 		return false;
1087 	}
1088 
1089 	return true;
1090 }
1091 
1092 int perf_session__set_kallsyms_ref_reloc_sym(struct map **maps,
1093 					     const char *symbol_name,
1094 					     u64 addr)
1095 {
1096 	char *bracket;
1097 	enum map_type i;
1098 	struct ref_reloc_sym *ref;
1099 
1100 	ref = zalloc(sizeof(struct ref_reloc_sym));
1101 	if (ref == NULL)
1102 		return -ENOMEM;
1103 
1104 	ref->name = strdup(symbol_name);
1105 	if (ref->name == NULL) {
1106 		free(ref);
1107 		return -ENOMEM;
1108 	}
1109 
1110 	bracket = strchr(ref->name, ']');
1111 	if (bracket)
1112 		*bracket = '\0';
1113 
1114 	ref->addr = addr;
1115 
1116 	for (i = 0; i < MAP__NR_TYPES; ++i) {
1117 		struct kmap *kmap = map__kmap(maps[i]);
1118 		kmap->ref_reloc_sym = ref;
1119 	}
1120 
1121 	return 0;
1122 }
1123 
1124 size_t perf_session__fprintf_dsos(struct perf_session *self, FILE *fp)
1125 {
1126 	return __dsos__fprintf(&self->host_machine.kernel_dsos, fp) +
1127 	       __dsos__fprintf(&self->host_machine.user_dsos, fp) +
1128 	       machines__fprintf_dsos(&self->machines, fp);
1129 }
1130 
1131 size_t perf_session__fprintf_dsos_buildid(struct perf_session *self, FILE *fp,
1132 					  bool with_hits)
1133 {
1134 	size_t ret = machine__fprintf_dsos_buildid(&self->host_machine, fp, with_hits);
1135 	return ret + machines__fprintf_dsos_buildid(&self->machines, fp, with_hits);
1136 }
1137