xref: /openbmc/linux/tools/perf/util/session.c (revision 71ad0f5e)
1 #define _FILE_OFFSET_BITS 64
2 
3 #include <linux/kernel.h>
4 
5 #include <byteswap.h>
6 #include <unistd.h>
7 #include <sys/types.h>
8 #include <sys/mman.h>
9 
10 #include "evlist.h"
11 #include "evsel.h"
12 #include "session.h"
13 #include "tool.h"
14 #include "sort.h"
15 #include "util.h"
16 #include "cpumap.h"
17 #include "event-parse.h"
18 #include "perf_regs.h"
19 #include "unwind.h"
20 
21 static int perf_session__open(struct perf_session *self, bool force)
22 {
23 	struct stat input_stat;
24 
25 	if (!strcmp(self->filename, "-")) {
26 		self->fd_pipe = true;
27 		self->fd = STDIN_FILENO;
28 
29 		if (perf_session__read_header(self, self->fd) < 0)
30 			pr_err("incompatible file format (rerun with -v to learn more)");
31 
32 		return 0;
33 	}
34 
35 	self->fd = open(self->filename, O_RDONLY);
36 	if (self->fd < 0) {
37 		int err = errno;
38 
39 		pr_err("failed to open %s: %s", self->filename, strerror(err));
40 		if (err == ENOENT && !strcmp(self->filename, "perf.data"))
41 			pr_err("  (try 'perf record' first)");
42 		pr_err("\n");
43 		return -errno;
44 	}
45 
46 	if (fstat(self->fd, &input_stat) < 0)
47 		goto out_close;
48 
49 	if (!force && input_stat.st_uid && (input_stat.st_uid != geteuid())) {
50 		pr_err("file %s not owned by current user or root\n",
51 		       self->filename);
52 		goto out_close;
53 	}
54 
55 	if (!input_stat.st_size) {
56 		pr_info("zero-sized file (%s), nothing to do!\n",
57 			self->filename);
58 		goto out_close;
59 	}
60 
61 	if (perf_session__read_header(self, self->fd) < 0) {
62 		pr_err("incompatible file format (rerun with -v to learn more)");
63 		goto out_close;
64 	}
65 
66 	if (!perf_evlist__valid_sample_type(self->evlist)) {
67 		pr_err("non matching sample_type");
68 		goto out_close;
69 	}
70 
71 	if (!perf_evlist__valid_sample_id_all(self->evlist)) {
72 		pr_err("non matching sample_id_all");
73 		goto out_close;
74 	}
75 
76 	self->size = input_stat.st_size;
77 	return 0;
78 
79 out_close:
80 	close(self->fd);
81 	self->fd = -1;
82 	return -1;
83 }
84 
85 void perf_session__set_id_hdr_size(struct perf_session *session)
86 {
87 	u16 id_hdr_size = perf_evlist__id_hdr_size(session->evlist);
88 
89 	session->host_machine.id_hdr_size = id_hdr_size;
90 	machines__set_id_hdr_size(&session->machines, id_hdr_size);
91 }
92 
93 int perf_session__create_kernel_maps(struct perf_session *self)
94 {
95 	int ret = machine__create_kernel_maps(&self->host_machine);
96 
97 	if (ret >= 0)
98 		ret = machines__create_guest_kernel_maps(&self->machines);
99 	return ret;
100 }
101 
102 static void perf_session__destroy_kernel_maps(struct perf_session *self)
103 {
104 	machine__destroy_kernel_maps(&self->host_machine);
105 	machines__destroy_guest_kernel_maps(&self->machines);
106 }
107 
108 struct perf_session *perf_session__new(const char *filename, int mode,
109 				       bool force, bool repipe,
110 				       struct perf_tool *tool)
111 {
112 	struct perf_session *self;
113 	struct stat st;
114 	size_t len;
115 
116 	if (!filename || !strlen(filename)) {
117 		if (!fstat(STDIN_FILENO, &st) && S_ISFIFO(st.st_mode))
118 			filename = "-";
119 		else
120 			filename = "perf.data";
121 	}
122 
123 	len = strlen(filename);
124 	self = zalloc(sizeof(*self) + len);
125 
126 	if (self == NULL)
127 		goto out;
128 
129 	memcpy(self->filename, filename, len);
130 	/*
131 	 * On 64bit we can mmap the data file in one go. No need for tiny mmap
132 	 * slices. On 32bit we use 32MB.
133 	 */
134 #if BITS_PER_LONG == 64
135 	self->mmap_window = ULLONG_MAX;
136 #else
137 	self->mmap_window = 32 * 1024 * 1024ULL;
138 #endif
139 	self->machines = RB_ROOT;
140 	self->repipe = repipe;
141 	INIT_LIST_HEAD(&self->ordered_samples.samples);
142 	INIT_LIST_HEAD(&self->ordered_samples.sample_cache);
143 	INIT_LIST_HEAD(&self->ordered_samples.to_free);
144 	machine__init(&self->host_machine, "", HOST_KERNEL_ID);
145 	hists__init(&self->hists);
146 
147 	if (mode == O_RDONLY) {
148 		if (perf_session__open(self, force) < 0)
149 			goto out_delete;
150 		perf_session__set_id_hdr_size(self);
151 	} else if (mode == O_WRONLY) {
152 		/*
153 		 * In O_RDONLY mode this will be performed when reading the
154 		 * kernel MMAP event, in perf_event__process_mmap().
155 		 */
156 		if (perf_session__create_kernel_maps(self) < 0)
157 			goto out_delete;
158 	}
159 
160 	if (tool && tool->ordering_requires_timestamps &&
161 	    tool->ordered_samples && !perf_evlist__sample_id_all(self->evlist)) {
162 		dump_printf("WARNING: No sample_id_all support, falling back to unordered processing\n");
163 		tool->ordered_samples = false;
164 	}
165 
166 out:
167 	return self;
168 out_delete:
169 	perf_session__delete(self);
170 	return NULL;
171 }
172 
173 static void machine__delete_dead_threads(struct machine *machine)
174 {
175 	struct thread *n, *t;
176 
177 	list_for_each_entry_safe(t, n, &machine->dead_threads, node) {
178 		list_del(&t->node);
179 		thread__delete(t);
180 	}
181 }
182 
183 static void perf_session__delete_dead_threads(struct perf_session *session)
184 {
185 	machine__delete_dead_threads(&session->host_machine);
186 }
187 
188 static void machine__delete_threads(struct machine *self)
189 {
190 	struct rb_node *nd = rb_first(&self->threads);
191 
192 	while (nd) {
193 		struct thread *t = rb_entry(nd, struct thread, rb_node);
194 
195 		rb_erase(&t->rb_node, &self->threads);
196 		nd = rb_next(nd);
197 		thread__delete(t);
198 	}
199 }
200 
201 static void perf_session__delete_threads(struct perf_session *session)
202 {
203 	machine__delete_threads(&session->host_machine);
204 }
205 
206 void perf_session__delete(struct perf_session *self)
207 {
208 	perf_session__destroy_kernel_maps(self);
209 	perf_session__delete_dead_threads(self);
210 	perf_session__delete_threads(self);
211 	machine__exit(&self->host_machine);
212 	close(self->fd);
213 	free(self);
214 }
215 
216 void machine__remove_thread(struct machine *self, struct thread *th)
217 {
218 	self->last_match = NULL;
219 	rb_erase(&th->rb_node, &self->threads);
220 	/*
221 	 * We may have references to this thread, for instance in some hist_entry
222 	 * instances, so just move them to a separate list.
223 	 */
224 	list_add_tail(&th->node, &self->dead_threads);
225 }
226 
227 static bool symbol__match_parent_regex(struct symbol *sym)
228 {
229 	if (sym->name && !regexec(&parent_regex, sym->name, 0, NULL, 0))
230 		return 1;
231 
232 	return 0;
233 }
234 
235 static const u8 cpumodes[] = {
236 	PERF_RECORD_MISC_USER,
237 	PERF_RECORD_MISC_KERNEL,
238 	PERF_RECORD_MISC_GUEST_USER,
239 	PERF_RECORD_MISC_GUEST_KERNEL
240 };
241 #define NCPUMODES (sizeof(cpumodes)/sizeof(u8))
242 
243 static void ip__resolve_ams(struct machine *self, struct thread *thread,
244 			    struct addr_map_symbol *ams,
245 			    u64 ip)
246 {
247 	struct addr_location al;
248 	size_t i;
249 	u8 m;
250 
251 	memset(&al, 0, sizeof(al));
252 
253 	for (i = 0; i < NCPUMODES; i++) {
254 		m = cpumodes[i];
255 		/*
256 		 * We cannot use the header.misc hint to determine whether a
257 		 * branch stack address is user, kernel, guest, hypervisor.
258 		 * Branches may straddle the kernel/user/hypervisor boundaries.
259 		 * Thus, we have to try consecutively until we find a match
260 		 * or else, the symbol is unknown
261 		 */
262 		thread__find_addr_location(thread, self, m, MAP__FUNCTION,
263 				ip, &al, NULL);
264 		if (al.sym)
265 			goto found;
266 	}
267 found:
268 	ams->addr = ip;
269 	ams->al_addr = al.addr;
270 	ams->sym = al.sym;
271 	ams->map = al.map;
272 }
273 
274 struct branch_info *machine__resolve_bstack(struct machine *self,
275 					    struct thread *thr,
276 					    struct branch_stack *bs)
277 {
278 	struct branch_info *bi;
279 	unsigned int i;
280 
281 	bi = calloc(bs->nr, sizeof(struct branch_info));
282 	if (!bi)
283 		return NULL;
284 
285 	for (i = 0; i < bs->nr; i++) {
286 		ip__resolve_ams(self, thr, &bi[i].to, bs->entries[i].to);
287 		ip__resolve_ams(self, thr, &bi[i].from, bs->entries[i].from);
288 		bi[i].flags = bs->entries[i].flags;
289 	}
290 	return bi;
291 }
292 
293 static int machine__resolve_callchain_sample(struct machine *machine,
294 					     struct thread *thread,
295 					     struct ip_callchain *chain,
296 					     struct symbol **parent)
297 
298 {
299 	u8 cpumode = PERF_RECORD_MISC_USER;
300 	unsigned int i;
301 	int err;
302 
303 	callchain_cursor_reset(&callchain_cursor);
304 
305 	if (chain->nr > PERF_MAX_STACK_DEPTH) {
306 		pr_warning("corrupted callchain. skipping...\n");
307 		return 0;
308 	}
309 
310 	for (i = 0; i < chain->nr; i++) {
311 		u64 ip;
312 		struct addr_location al;
313 
314 		if (callchain_param.order == ORDER_CALLEE)
315 			ip = chain->ips[i];
316 		else
317 			ip = chain->ips[chain->nr - i - 1];
318 
319 		if (ip >= PERF_CONTEXT_MAX) {
320 			switch (ip) {
321 			case PERF_CONTEXT_HV:
322 				cpumode = PERF_RECORD_MISC_HYPERVISOR;
323 				break;
324 			case PERF_CONTEXT_KERNEL:
325 				cpumode = PERF_RECORD_MISC_KERNEL;
326 				break;
327 			case PERF_CONTEXT_USER:
328 				cpumode = PERF_RECORD_MISC_USER;
329 				break;
330 			default:
331 				pr_debug("invalid callchain context: "
332 					 "%"PRId64"\n", (s64) ip);
333 				/*
334 				 * It seems the callchain is corrupted.
335 				 * Discard all.
336 				 */
337 				callchain_cursor_reset(&callchain_cursor);
338 				return 0;
339 			}
340 			continue;
341 		}
342 
343 		al.filtered = false;
344 		thread__find_addr_location(thread, machine, cpumode,
345 					   MAP__FUNCTION, ip, &al, NULL);
346 		if (al.sym != NULL) {
347 			if (sort__has_parent && !*parent &&
348 			    symbol__match_parent_regex(al.sym))
349 				*parent = al.sym;
350 			if (!symbol_conf.use_callchain)
351 				break;
352 		}
353 
354 		err = callchain_cursor_append(&callchain_cursor,
355 					      ip, al.map, al.sym);
356 		if (err)
357 			return err;
358 	}
359 
360 	return 0;
361 }
362 
363 static int unwind_entry(struct unwind_entry *entry, void *arg)
364 {
365 	struct callchain_cursor *cursor = arg;
366 	return callchain_cursor_append(cursor, entry->ip,
367 				       entry->map, entry->sym);
368 }
369 
370 int machine__resolve_callchain(struct machine *machine,
371 			       struct perf_evsel *evsel,
372 			       struct thread *thread,
373 			       struct perf_sample *sample,
374 			       struct symbol **parent)
375 
376 {
377 	int ret;
378 
379 	callchain_cursor_reset(&callchain_cursor);
380 
381 	ret = machine__resolve_callchain_sample(machine, thread,
382 						sample->callchain, parent);
383 	if (ret)
384 		return ret;
385 
386 	/* Can we do dwarf post unwind? */
387 	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
388 	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
389 		return 0;
390 
391 	return unwind__get_entries(unwind_entry, &callchain_cursor, machine,
392 				   thread, evsel->attr.sample_regs_user,
393 				   sample);
394 
395 }
396 
397 static int process_event_synth_tracing_data_stub(union perf_event *event __used,
398 						 struct perf_session *session __used)
399 {
400 	dump_printf(": unhandled!\n");
401 	return 0;
402 }
403 
404 static int process_event_synth_attr_stub(union perf_event *event __used,
405 					 struct perf_evlist **pevlist __used)
406 {
407 	dump_printf(": unhandled!\n");
408 	return 0;
409 }
410 
411 static int process_event_sample_stub(struct perf_tool *tool __used,
412 				     union perf_event *event __used,
413 				     struct perf_sample *sample __used,
414 				     struct perf_evsel *evsel __used,
415 				     struct machine *machine __used)
416 {
417 	dump_printf(": unhandled!\n");
418 	return 0;
419 }
420 
421 static int process_event_stub(struct perf_tool *tool __used,
422 			      union perf_event *event __used,
423 			      struct perf_sample *sample __used,
424 			      struct machine *machine __used)
425 {
426 	dump_printf(": unhandled!\n");
427 	return 0;
428 }
429 
430 static int process_finished_round_stub(struct perf_tool *tool __used,
431 				       union perf_event *event __used,
432 				       struct perf_session *perf_session __used)
433 {
434 	dump_printf(": unhandled!\n");
435 	return 0;
436 }
437 
438 static int process_event_type_stub(struct perf_tool *tool __used,
439 				   union perf_event *event __used)
440 {
441 	dump_printf(": unhandled!\n");
442 	return 0;
443 }
444 
445 static int process_finished_round(struct perf_tool *tool,
446 				  union perf_event *event,
447 				  struct perf_session *session);
448 
449 static void perf_tool__fill_defaults(struct perf_tool *tool)
450 {
451 	if (tool->sample == NULL)
452 		tool->sample = process_event_sample_stub;
453 	if (tool->mmap == NULL)
454 		tool->mmap = process_event_stub;
455 	if (tool->comm == NULL)
456 		tool->comm = process_event_stub;
457 	if (tool->fork == NULL)
458 		tool->fork = process_event_stub;
459 	if (tool->exit == NULL)
460 		tool->exit = process_event_stub;
461 	if (tool->lost == NULL)
462 		tool->lost = perf_event__process_lost;
463 	if (tool->read == NULL)
464 		tool->read = process_event_sample_stub;
465 	if (tool->throttle == NULL)
466 		tool->throttle = process_event_stub;
467 	if (tool->unthrottle == NULL)
468 		tool->unthrottle = process_event_stub;
469 	if (tool->attr == NULL)
470 		tool->attr = process_event_synth_attr_stub;
471 	if (tool->event_type == NULL)
472 		tool->event_type = process_event_type_stub;
473 	if (tool->tracing_data == NULL)
474 		tool->tracing_data = process_event_synth_tracing_data_stub;
475 	if (tool->build_id == NULL)
476 		tool->build_id = process_finished_round_stub;
477 	if (tool->finished_round == NULL) {
478 		if (tool->ordered_samples)
479 			tool->finished_round = process_finished_round;
480 		else
481 			tool->finished_round = process_finished_round_stub;
482 	}
483 }
484 
485 void mem_bswap_32(void *src, int byte_size)
486 {
487 	u32 *m = src;
488 	while (byte_size > 0) {
489 		*m = bswap_32(*m);
490 		byte_size -= sizeof(u32);
491 		++m;
492 	}
493 }
494 
495 void mem_bswap_64(void *src, int byte_size)
496 {
497 	u64 *m = src;
498 
499 	while (byte_size > 0) {
500 		*m = bswap_64(*m);
501 		byte_size -= sizeof(u64);
502 		++m;
503 	}
504 }
505 
506 static void swap_sample_id_all(union perf_event *event, void *data)
507 {
508 	void *end = (void *) event + event->header.size;
509 	int size = end - data;
510 
511 	BUG_ON(size % sizeof(u64));
512 	mem_bswap_64(data, size);
513 }
514 
515 static void perf_event__all64_swap(union perf_event *event,
516 				   bool sample_id_all __used)
517 {
518 	struct perf_event_header *hdr = &event->header;
519 	mem_bswap_64(hdr + 1, event->header.size - sizeof(*hdr));
520 }
521 
522 static void perf_event__comm_swap(union perf_event *event, bool sample_id_all)
523 {
524 	event->comm.pid = bswap_32(event->comm.pid);
525 	event->comm.tid = bswap_32(event->comm.tid);
526 
527 	if (sample_id_all) {
528 		void *data = &event->comm.comm;
529 
530 		data += ALIGN(strlen(data) + 1, sizeof(u64));
531 		swap_sample_id_all(event, data);
532 	}
533 }
534 
535 static void perf_event__mmap_swap(union perf_event *event,
536 				  bool sample_id_all)
537 {
538 	event->mmap.pid	  = bswap_32(event->mmap.pid);
539 	event->mmap.tid	  = bswap_32(event->mmap.tid);
540 	event->mmap.start = bswap_64(event->mmap.start);
541 	event->mmap.len	  = bswap_64(event->mmap.len);
542 	event->mmap.pgoff = bswap_64(event->mmap.pgoff);
543 
544 	if (sample_id_all) {
545 		void *data = &event->mmap.filename;
546 
547 		data += ALIGN(strlen(data) + 1, sizeof(u64));
548 		swap_sample_id_all(event, data);
549 	}
550 }
551 
552 static void perf_event__task_swap(union perf_event *event, bool sample_id_all)
553 {
554 	event->fork.pid	 = bswap_32(event->fork.pid);
555 	event->fork.tid	 = bswap_32(event->fork.tid);
556 	event->fork.ppid = bswap_32(event->fork.ppid);
557 	event->fork.ptid = bswap_32(event->fork.ptid);
558 	event->fork.time = bswap_64(event->fork.time);
559 
560 	if (sample_id_all)
561 		swap_sample_id_all(event, &event->fork + 1);
562 }
563 
564 static void perf_event__read_swap(union perf_event *event, bool sample_id_all)
565 {
566 	event->read.pid		 = bswap_32(event->read.pid);
567 	event->read.tid		 = bswap_32(event->read.tid);
568 	event->read.value	 = bswap_64(event->read.value);
569 	event->read.time_enabled = bswap_64(event->read.time_enabled);
570 	event->read.time_running = bswap_64(event->read.time_running);
571 	event->read.id		 = bswap_64(event->read.id);
572 
573 	if (sample_id_all)
574 		swap_sample_id_all(event, &event->read + 1);
575 }
576 
577 static u8 revbyte(u8 b)
578 {
579 	int rev = (b >> 4) | ((b & 0xf) << 4);
580 	rev = ((rev & 0xcc) >> 2) | ((rev & 0x33) << 2);
581 	rev = ((rev & 0xaa) >> 1) | ((rev & 0x55) << 1);
582 	return (u8) rev;
583 }
584 
585 /*
586  * XXX this is hack in attempt to carry flags bitfield
587  * throught endian village. ABI says:
588  *
589  * Bit-fields are allocated from right to left (least to most significant)
590  * on little-endian implementations and from left to right (most to least
591  * significant) on big-endian implementations.
592  *
593  * The above seems to be byte specific, so we need to reverse each
594  * byte of the bitfield. 'Internet' also says this might be implementation
595  * specific and we probably need proper fix and carry perf_event_attr
596  * bitfield flags in separate data file FEAT_ section. Thought this seems
597  * to work for now.
598  */
599 static void swap_bitfield(u8 *p, unsigned len)
600 {
601 	unsigned i;
602 
603 	for (i = 0; i < len; i++) {
604 		*p = revbyte(*p);
605 		p++;
606 	}
607 }
608 
609 /* exported for swapping attributes in file header */
610 void perf_event__attr_swap(struct perf_event_attr *attr)
611 {
612 	attr->type		= bswap_32(attr->type);
613 	attr->size		= bswap_32(attr->size);
614 	attr->config		= bswap_64(attr->config);
615 	attr->sample_period	= bswap_64(attr->sample_period);
616 	attr->sample_type	= bswap_64(attr->sample_type);
617 	attr->read_format	= bswap_64(attr->read_format);
618 	attr->wakeup_events	= bswap_32(attr->wakeup_events);
619 	attr->bp_type		= bswap_32(attr->bp_type);
620 	attr->bp_addr		= bswap_64(attr->bp_addr);
621 	attr->bp_len		= bswap_64(attr->bp_len);
622 
623 	swap_bitfield((u8 *) (&attr->read_format + 1), sizeof(u64));
624 }
625 
626 static void perf_event__hdr_attr_swap(union perf_event *event,
627 				      bool sample_id_all __used)
628 {
629 	size_t size;
630 
631 	perf_event__attr_swap(&event->attr.attr);
632 
633 	size = event->header.size;
634 	size -= (void *)&event->attr.id - (void *)event;
635 	mem_bswap_64(event->attr.id, size);
636 }
637 
638 static void perf_event__event_type_swap(union perf_event *event,
639 					bool sample_id_all __used)
640 {
641 	event->event_type.event_type.event_id =
642 		bswap_64(event->event_type.event_type.event_id);
643 }
644 
645 static void perf_event__tracing_data_swap(union perf_event *event,
646 					  bool sample_id_all __used)
647 {
648 	event->tracing_data.size = bswap_32(event->tracing_data.size);
649 }
650 
651 typedef void (*perf_event__swap_op)(union perf_event *event,
652 				    bool sample_id_all);
653 
654 static perf_event__swap_op perf_event__swap_ops[] = {
655 	[PERF_RECORD_MMAP]		  = perf_event__mmap_swap,
656 	[PERF_RECORD_COMM]		  = perf_event__comm_swap,
657 	[PERF_RECORD_FORK]		  = perf_event__task_swap,
658 	[PERF_RECORD_EXIT]		  = perf_event__task_swap,
659 	[PERF_RECORD_LOST]		  = perf_event__all64_swap,
660 	[PERF_RECORD_READ]		  = perf_event__read_swap,
661 	[PERF_RECORD_SAMPLE]		  = perf_event__all64_swap,
662 	[PERF_RECORD_HEADER_ATTR]	  = perf_event__hdr_attr_swap,
663 	[PERF_RECORD_HEADER_EVENT_TYPE]	  = perf_event__event_type_swap,
664 	[PERF_RECORD_HEADER_TRACING_DATA] = perf_event__tracing_data_swap,
665 	[PERF_RECORD_HEADER_BUILD_ID]	  = NULL,
666 	[PERF_RECORD_HEADER_MAX]	  = NULL,
667 };
668 
669 struct sample_queue {
670 	u64			timestamp;
671 	u64			file_offset;
672 	union perf_event	*event;
673 	struct list_head	list;
674 };
675 
676 static void perf_session_free_sample_buffers(struct perf_session *session)
677 {
678 	struct ordered_samples *os = &session->ordered_samples;
679 
680 	while (!list_empty(&os->to_free)) {
681 		struct sample_queue *sq;
682 
683 		sq = list_entry(os->to_free.next, struct sample_queue, list);
684 		list_del(&sq->list);
685 		free(sq);
686 	}
687 }
688 
689 static int perf_session_deliver_event(struct perf_session *session,
690 				      union perf_event *event,
691 				      struct perf_sample *sample,
692 				      struct perf_tool *tool,
693 				      u64 file_offset);
694 
695 static void flush_sample_queue(struct perf_session *s,
696 			       struct perf_tool *tool)
697 {
698 	struct ordered_samples *os = &s->ordered_samples;
699 	struct list_head *head = &os->samples;
700 	struct sample_queue *tmp, *iter;
701 	struct perf_sample sample;
702 	u64 limit = os->next_flush;
703 	u64 last_ts = os->last_sample ? os->last_sample->timestamp : 0ULL;
704 	unsigned idx = 0, progress_next = os->nr_samples / 16;
705 	int ret;
706 
707 	if (!tool->ordered_samples || !limit)
708 		return;
709 
710 	list_for_each_entry_safe(iter, tmp, head, list) {
711 		if (iter->timestamp > limit)
712 			break;
713 
714 		ret = perf_evlist__parse_sample(s->evlist, iter->event, &sample,
715 						s->header.needs_swap);
716 		if (ret)
717 			pr_err("Can't parse sample, err = %d\n", ret);
718 		else
719 			perf_session_deliver_event(s, iter->event, &sample, tool,
720 						   iter->file_offset);
721 
722 		os->last_flush = iter->timestamp;
723 		list_del(&iter->list);
724 		list_add(&iter->list, &os->sample_cache);
725 		if (++idx >= progress_next) {
726 			progress_next += os->nr_samples / 16;
727 			ui_progress__update(idx, os->nr_samples,
728 					    "Processing time ordered events...");
729 		}
730 	}
731 
732 	if (list_empty(head)) {
733 		os->last_sample = NULL;
734 	} else if (last_ts <= limit) {
735 		os->last_sample =
736 			list_entry(head->prev, struct sample_queue, list);
737 	}
738 
739 	os->nr_samples = 0;
740 }
741 
742 /*
743  * When perf record finishes a pass on every buffers, it records this pseudo
744  * event.
745  * We record the max timestamp t found in the pass n.
746  * Assuming these timestamps are monotonic across cpus, we know that if
747  * a buffer still has events with timestamps below t, they will be all
748  * available and then read in the pass n + 1.
749  * Hence when we start to read the pass n + 2, we can safely flush every
750  * events with timestamps below t.
751  *
752  *    ============ PASS n =================
753  *       CPU 0         |   CPU 1
754  *                     |
755  *    cnt1 timestamps  |   cnt2 timestamps
756  *          1          |         2
757  *          2          |         3
758  *          -          |         4  <--- max recorded
759  *
760  *    ============ PASS n + 1 ==============
761  *       CPU 0         |   CPU 1
762  *                     |
763  *    cnt1 timestamps  |   cnt2 timestamps
764  *          3          |         5
765  *          4          |         6
766  *          5          |         7 <---- max recorded
767  *
768  *      Flush every events below timestamp 4
769  *
770  *    ============ PASS n + 2 ==============
771  *       CPU 0         |   CPU 1
772  *                     |
773  *    cnt1 timestamps  |   cnt2 timestamps
774  *          6          |         8
775  *          7          |         9
776  *          -          |         10
777  *
778  *      Flush every events below timestamp 7
779  *      etc...
780  */
781 static int process_finished_round(struct perf_tool *tool,
782 				  union perf_event *event __used,
783 				  struct perf_session *session)
784 {
785 	flush_sample_queue(session, tool);
786 	session->ordered_samples.next_flush = session->ordered_samples.max_timestamp;
787 
788 	return 0;
789 }
790 
791 /* The queue is ordered by time */
792 static void __queue_event(struct sample_queue *new, struct perf_session *s)
793 {
794 	struct ordered_samples *os = &s->ordered_samples;
795 	struct sample_queue *sample = os->last_sample;
796 	u64 timestamp = new->timestamp;
797 	struct list_head *p;
798 
799 	++os->nr_samples;
800 	os->last_sample = new;
801 
802 	if (!sample) {
803 		list_add(&new->list, &os->samples);
804 		os->max_timestamp = timestamp;
805 		return;
806 	}
807 
808 	/*
809 	 * last_sample might point to some random place in the list as it's
810 	 * the last queued event. We expect that the new event is close to
811 	 * this.
812 	 */
813 	if (sample->timestamp <= timestamp) {
814 		while (sample->timestamp <= timestamp) {
815 			p = sample->list.next;
816 			if (p == &os->samples) {
817 				list_add_tail(&new->list, &os->samples);
818 				os->max_timestamp = timestamp;
819 				return;
820 			}
821 			sample = list_entry(p, struct sample_queue, list);
822 		}
823 		list_add_tail(&new->list, &sample->list);
824 	} else {
825 		while (sample->timestamp > timestamp) {
826 			p = sample->list.prev;
827 			if (p == &os->samples) {
828 				list_add(&new->list, &os->samples);
829 				return;
830 			}
831 			sample = list_entry(p, struct sample_queue, list);
832 		}
833 		list_add(&new->list, &sample->list);
834 	}
835 }
836 
837 #define MAX_SAMPLE_BUFFER	(64 * 1024 / sizeof(struct sample_queue))
838 
839 static int perf_session_queue_event(struct perf_session *s, union perf_event *event,
840 				    struct perf_sample *sample, u64 file_offset)
841 {
842 	struct ordered_samples *os = &s->ordered_samples;
843 	struct list_head *sc = &os->sample_cache;
844 	u64 timestamp = sample->time;
845 	struct sample_queue *new;
846 
847 	if (!timestamp || timestamp == ~0ULL)
848 		return -ETIME;
849 
850 	if (timestamp < s->ordered_samples.last_flush) {
851 		printf("Warning: Timestamp below last timeslice flush\n");
852 		return -EINVAL;
853 	}
854 
855 	if (!list_empty(sc)) {
856 		new = list_entry(sc->next, struct sample_queue, list);
857 		list_del(&new->list);
858 	} else if (os->sample_buffer) {
859 		new = os->sample_buffer + os->sample_buffer_idx;
860 		if (++os->sample_buffer_idx == MAX_SAMPLE_BUFFER)
861 			os->sample_buffer = NULL;
862 	} else {
863 		os->sample_buffer = malloc(MAX_SAMPLE_BUFFER * sizeof(*new));
864 		if (!os->sample_buffer)
865 			return -ENOMEM;
866 		list_add(&os->sample_buffer->list, &os->to_free);
867 		os->sample_buffer_idx = 2;
868 		new = os->sample_buffer + 1;
869 	}
870 
871 	new->timestamp = timestamp;
872 	new->file_offset = file_offset;
873 	new->event = event;
874 
875 	__queue_event(new, s);
876 
877 	return 0;
878 }
879 
880 static void callchain__printf(struct perf_sample *sample)
881 {
882 	unsigned int i;
883 
884 	printf("... chain: nr:%" PRIu64 "\n", sample->callchain->nr);
885 
886 	for (i = 0; i < sample->callchain->nr; i++)
887 		printf("..... %2d: %016" PRIx64 "\n",
888 		       i, sample->callchain->ips[i]);
889 }
890 
891 static void branch_stack__printf(struct perf_sample *sample)
892 {
893 	uint64_t i;
894 
895 	printf("... branch stack: nr:%" PRIu64 "\n", sample->branch_stack->nr);
896 
897 	for (i = 0; i < sample->branch_stack->nr; i++)
898 		printf("..... %2"PRIu64": %016" PRIx64 " -> %016" PRIx64 "\n",
899 			i, sample->branch_stack->entries[i].from,
900 			sample->branch_stack->entries[i].to);
901 }
902 
903 static void regs_dump__printf(u64 mask, u64 *regs)
904 {
905 	unsigned rid, i = 0;
906 
907 	for_each_set_bit(rid, (unsigned long *) &mask, sizeof(mask) * 8) {
908 		u64 val = regs[i++];
909 
910 		printf(".... %-5s 0x%" PRIx64 "\n",
911 		       perf_reg_name(rid), val);
912 	}
913 }
914 
915 static void regs_user__printf(struct perf_sample *sample, u64 mask)
916 {
917 	struct regs_dump *user_regs = &sample->user_regs;
918 
919 	if (user_regs->regs) {
920 		printf("... user regs: mask 0x%" PRIx64 "\n", mask);
921 		regs_dump__printf(mask, user_regs->regs);
922 	}
923 }
924 
925 static void stack_user__printf(struct stack_dump *dump)
926 {
927 	printf("... ustack: size %" PRIu64 ", offset 0x%x\n",
928 	       dump->size, dump->offset);
929 }
930 
931 static void perf_session__print_tstamp(struct perf_session *session,
932 				       union perf_event *event,
933 				       struct perf_sample *sample)
934 {
935 	u64 sample_type = perf_evlist__sample_type(session->evlist);
936 
937 	if (event->header.type != PERF_RECORD_SAMPLE &&
938 	    !perf_evlist__sample_id_all(session->evlist)) {
939 		fputs("-1 -1 ", stdout);
940 		return;
941 	}
942 
943 	if ((sample_type & PERF_SAMPLE_CPU))
944 		printf("%u ", sample->cpu);
945 
946 	if (sample_type & PERF_SAMPLE_TIME)
947 		printf("%" PRIu64 " ", sample->time);
948 }
949 
950 static void dump_event(struct perf_session *session, union perf_event *event,
951 		       u64 file_offset, struct perf_sample *sample)
952 {
953 	if (!dump_trace)
954 		return;
955 
956 	printf("\n%#" PRIx64 " [%#x]: event: %d\n",
957 	       file_offset, event->header.size, event->header.type);
958 
959 	trace_event(event);
960 
961 	if (sample)
962 		perf_session__print_tstamp(session, event, sample);
963 
964 	printf("%#" PRIx64 " [%#x]: PERF_RECORD_%s", file_offset,
965 	       event->header.size, perf_event__name(event->header.type));
966 }
967 
968 static void dump_sample(struct perf_evsel *evsel, union perf_event *event,
969 			struct perf_sample *sample)
970 {
971 	u64 sample_type;
972 
973 	if (!dump_trace)
974 		return;
975 
976 	printf("(IP, %d): %d/%d: %#" PRIx64 " period: %" PRIu64 " addr: %#" PRIx64 "\n",
977 	       event->header.misc, sample->pid, sample->tid, sample->ip,
978 	       sample->period, sample->addr);
979 
980 	sample_type = evsel->attr.sample_type;
981 
982 	if (sample_type & PERF_SAMPLE_CALLCHAIN)
983 		callchain__printf(sample);
984 
985 	if (sample_type & PERF_SAMPLE_BRANCH_STACK)
986 		branch_stack__printf(sample);
987 
988 	if (sample_type & PERF_SAMPLE_REGS_USER)
989 		regs_user__printf(sample, evsel->attr.sample_regs_user);
990 
991 	if (sample_type & PERF_SAMPLE_STACK_USER)
992 		stack_user__printf(&sample->user_stack);
993 }
994 
995 static struct machine *
996 	perf_session__find_machine_for_cpumode(struct perf_session *session,
997 					       union perf_event *event)
998 {
999 	const u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1000 
1001 	if (perf_guest &&
1002 	    ((cpumode == PERF_RECORD_MISC_GUEST_KERNEL) ||
1003 	     (cpumode == PERF_RECORD_MISC_GUEST_USER))) {
1004 		u32 pid;
1005 
1006 		if (event->header.type == PERF_RECORD_MMAP)
1007 			pid = event->mmap.pid;
1008 		else
1009 			pid = event->ip.pid;
1010 
1011 		return perf_session__findnew_machine(session, pid);
1012 	}
1013 
1014 	return perf_session__find_host_machine(session);
1015 }
1016 
1017 static int perf_session_deliver_event(struct perf_session *session,
1018 				      union perf_event *event,
1019 				      struct perf_sample *sample,
1020 				      struct perf_tool *tool,
1021 				      u64 file_offset)
1022 {
1023 	struct perf_evsel *evsel;
1024 	struct machine *machine;
1025 
1026 	dump_event(session, event, file_offset, sample);
1027 
1028 	evsel = perf_evlist__id2evsel(session->evlist, sample->id);
1029 	if (evsel != NULL && event->header.type != PERF_RECORD_SAMPLE) {
1030 		/*
1031 		 * XXX We're leaving PERF_RECORD_SAMPLE unnacounted here
1032 		 * because the tools right now may apply filters, discarding
1033 		 * some of the samples. For consistency, in the future we
1034 		 * should have something like nr_filtered_samples and remove
1035 		 * the sample->period from total_sample_period, etc, KISS for
1036 		 * now tho.
1037 		 *
1038 		 * Also testing against NULL allows us to handle files without
1039 		 * attr.sample_id_all and/or without PERF_SAMPLE_ID. In the
1040 		 * future probably it'll be a good idea to restrict event
1041 		 * processing via perf_session to files with both set.
1042 		 */
1043 		hists__inc_nr_events(&evsel->hists, event->header.type);
1044 	}
1045 
1046 	machine = perf_session__find_machine_for_cpumode(session, event);
1047 
1048 	switch (event->header.type) {
1049 	case PERF_RECORD_SAMPLE:
1050 		dump_sample(evsel, event, sample);
1051 		if (evsel == NULL) {
1052 			++session->hists.stats.nr_unknown_id;
1053 			return 0;
1054 		}
1055 		if (machine == NULL) {
1056 			++session->hists.stats.nr_unprocessable_samples;
1057 			return 0;
1058 		}
1059 		return tool->sample(tool, event, sample, evsel, machine);
1060 	case PERF_RECORD_MMAP:
1061 		return tool->mmap(tool, event, sample, machine);
1062 	case PERF_RECORD_COMM:
1063 		return tool->comm(tool, event, sample, machine);
1064 	case PERF_RECORD_FORK:
1065 		return tool->fork(tool, event, sample, machine);
1066 	case PERF_RECORD_EXIT:
1067 		return tool->exit(tool, event, sample, machine);
1068 	case PERF_RECORD_LOST:
1069 		if (tool->lost == perf_event__process_lost)
1070 			session->hists.stats.total_lost += event->lost.lost;
1071 		return tool->lost(tool, event, sample, machine);
1072 	case PERF_RECORD_READ:
1073 		return tool->read(tool, event, sample, evsel, machine);
1074 	case PERF_RECORD_THROTTLE:
1075 		return tool->throttle(tool, event, sample, machine);
1076 	case PERF_RECORD_UNTHROTTLE:
1077 		return tool->unthrottle(tool, event, sample, machine);
1078 	default:
1079 		++session->hists.stats.nr_unknown_events;
1080 		return -1;
1081 	}
1082 }
1083 
1084 static int perf_session__preprocess_sample(struct perf_session *session,
1085 					   union perf_event *event, struct perf_sample *sample)
1086 {
1087 	if (event->header.type != PERF_RECORD_SAMPLE ||
1088 	    !(perf_evlist__sample_type(session->evlist) & PERF_SAMPLE_CALLCHAIN))
1089 		return 0;
1090 
1091 	if (!ip_callchain__valid(sample->callchain, event)) {
1092 		pr_debug("call-chain problem with event, skipping it.\n");
1093 		++session->hists.stats.nr_invalid_chains;
1094 		session->hists.stats.total_invalid_chains += sample->period;
1095 		return -EINVAL;
1096 	}
1097 	return 0;
1098 }
1099 
1100 static int perf_session__process_user_event(struct perf_session *session, union perf_event *event,
1101 					    struct perf_tool *tool, u64 file_offset)
1102 {
1103 	int err;
1104 
1105 	dump_event(session, event, file_offset, NULL);
1106 
1107 	/* These events are processed right away */
1108 	switch (event->header.type) {
1109 	case PERF_RECORD_HEADER_ATTR:
1110 		err = tool->attr(event, &session->evlist);
1111 		if (err == 0)
1112 			perf_session__set_id_hdr_size(session);
1113 		return err;
1114 	case PERF_RECORD_HEADER_EVENT_TYPE:
1115 		return tool->event_type(tool, event);
1116 	case PERF_RECORD_HEADER_TRACING_DATA:
1117 		/* setup for reading amidst mmap */
1118 		lseek(session->fd, file_offset, SEEK_SET);
1119 		return tool->tracing_data(event, session);
1120 	case PERF_RECORD_HEADER_BUILD_ID:
1121 		return tool->build_id(tool, event, session);
1122 	case PERF_RECORD_FINISHED_ROUND:
1123 		return tool->finished_round(tool, event, session);
1124 	default:
1125 		return -EINVAL;
1126 	}
1127 }
1128 
1129 static void event_swap(union perf_event *event, bool sample_id_all)
1130 {
1131 	perf_event__swap_op swap;
1132 
1133 	swap = perf_event__swap_ops[event->header.type];
1134 	if (swap)
1135 		swap(event, sample_id_all);
1136 }
1137 
1138 static int perf_session__process_event(struct perf_session *session,
1139 				       union perf_event *event,
1140 				       struct perf_tool *tool,
1141 				       u64 file_offset)
1142 {
1143 	struct perf_sample sample;
1144 	int ret;
1145 
1146 	if (session->header.needs_swap)
1147 		event_swap(event, perf_evlist__sample_id_all(session->evlist));
1148 
1149 	if (event->header.type >= PERF_RECORD_HEADER_MAX)
1150 		return -EINVAL;
1151 
1152 	hists__inc_nr_events(&session->hists, event->header.type);
1153 
1154 	if (event->header.type >= PERF_RECORD_USER_TYPE_START)
1155 		return perf_session__process_user_event(session, event, tool, file_offset);
1156 
1157 	/*
1158 	 * For all kernel events we get the sample data
1159 	 */
1160 	ret = perf_evlist__parse_sample(session->evlist, event, &sample,
1161 					session->header.needs_swap);
1162 	if (ret)
1163 		return ret;
1164 
1165 	/* Preprocess sample records - precheck callchains */
1166 	if (perf_session__preprocess_sample(session, event, &sample))
1167 		return 0;
1168 
1169 	if (tool->ordered_samples) {
1170 		ret = perf_session_queue_event(session, event, &sample,
1171 					       file_offset);
1172 		if (ret != -ETIME)
1173 			return ret;
1174 	}
1175 
1176 	return perf_session_deliver_event(session, event, &sample, tool,
1177 					  file_offset);
1178 }
1179 
1180 void perf_event_header__bswap(struct perf_event_header *self)
1181 {
1182 	self->type = bswap_32(self->type);
1183 	self->misc = bswap_16(self->misc);
1184 	self->size = bswap_16(self->size);
1185 }
1186 
1187 struct thread *perf_session__findnew(struct perf_session *session, pid_t pid)
1188 {
1189 	return machine__findnew_thread(&session->host_machine, pid);
1190 }
1191 
1192 static struct thread *perf_session__register_idle_thread(struct perf_session *self)
1193 {
1194 	struct thread *thread = perf_session__findnew(self, 0);
1195 
1196 	if (thread == NULL || thread__set_comm(thread, "swapper")) {
1197 		pr_err("problem inserting idle task.\n");
1198 		thread = NULL;
1199 	}
1200 
1201 	return thread;
1202 }
1203 
1204 static void perf_session__warn_about_errors(const struct perf_session *session,
1205 					    const struct perf_tool *tool)
1206 {
1207 	if (tool->lost == perf_event__process_lost &&
1208 	    session->hists.stats.nr_events[PERF_RECORD_LOST] != 0) {
1209 		ui__warning("Processed %d events and lost %d chunks!\n\n"
1210 			    "Check IO/CPU overload!\n\n",
1211 			    session->hists.stats.nr_events[0],
1212 			    session->hists.stats.nr_events[PERF_RECORD_LOST]);
1213 	}
1214 
1215 	if (session->hists.stats.nr_unknown_events != 0) {
1216 		ui__warning("Found %u unknown events!\n\n"
1217 			    "Is this an older tool processing a perf.data "
1218 			    "file generated by a more recent tool?\n\n"
1219 			    "If that is not the case, consider "
1220 			    "reporting to linux-kernel@vger.kernel.org.\n\n",
1221 			    session->hists.stats.nr_unknown_events);
1222 	}
1223 
1224 	if (session->hists.stats.nr_unknown_id != 0) {
1225 		ui__warning("%u samples with id not present in the header\n",
1226 			    session->hists.stats.nr_unknown_id);
1227 	}
1228 
1229  	if (session->hists.stats.nr_invalid_chains != 0) {
1230  		ui__warning("Found invalid callchains!\n\n"
1231  			    "%u out of %u events were discarded for this reason.\n\n"
1232  			    "Consider reporting to linux-kernel@vger.kernel.org.\n\n",
1233  			    session->hists.stats.nr_invalid_chains,
1234  			    session->hists.stats.nr_events[PERF_RECORD_SAMPLE]);
1235  	}
1236 
1237 	if (session->hists.stats.nr_unprocessable_samples != 0) {
1238 		ui__warning("%u unprocessable samples recorded.\n"
1239 			    "Do you have a KVM guest running and not using 'perf kvm'?\n",
1240 			    session->hists.stats.nr_unprocessable_samples);
1241 	}
1242 }
1243 
1244 #define session_done()	(*(volatile int *)(&session_done))
1245 volatile int session_done;
1246 
1247 static int __perf_session__process_pipe_events(struct perf_session *self,
1248 					       struct perf_tool *tool)
1249 {
1250 	union perf_event *event;
1251 	uint32_t size, cur_size = 0;
1252 	void *buf = NULL;
1253 	int skip = 0;
1254 	u64 head;
1255 	int err;
1256 	void *p;
1257 
1258 	perf_tool__fill_defaults(tool);
1259 
1260 	head = 0;
1261 	cur_size = sizeof(union perf_event);
1262 
1263 	buf = malloc(cur_size);
1264 	if (!buf)
1265 		return -errno;
1266 more:
1267 	event = buf;
1268 	err = readn(self->fd, event, sizeof(struct perf_event_header));
1269 	if (err <= 0) {
1270 		if (err == 0)
1271 			goto done;
1272 
1273 		pr_err("failed to read event header\n");
1274 		goto out_err;
1275 	}
1276 
1277 	if (self->header.needs_swap)
1278 		perf_event_header__bswap(&event->header);
1279 
1280 	size = event->header.size;
1281 	if (size == 0)
1282 		size = 8;
1283 
1284 	if (size > cur_size) {
1285 		void *new = realloc(buf, size);
1286 		if (!new) {
1287 			pr_err("failed to allocate memory to read event\n");
1288 			goto out_err;
1289 		}
1290 		buf = new;
1291 		cur_size = size;
1292 		event = buf;
1293 	}
1294 	p = event;
1295 	p += sizeof(struct perf_event_header);
1296 
1297 	if (size - sizeof(struct perf_event_header)) {
1298 		err = readn(self->fd, p, size - sizeof(struct perf_event_header));
1299 		if (err <= 0) {
1300 			if (err == 0) {
1301 				pr_err("unexpected end of event stream\n");
1302 				goto done;
1303 			}
1304 
1305 			pr_err("failed to read event data\n");
1306 			goto out_err;
1307 		}
1308 	}
1309 
1310 	if ((skip = perf_session__process_event(self, event, tool, head)) < 0) {
1311 		pr_err("%#" PRIx64 " [%#x]: failed to process type: %d\n",
1312 		       head, event->header.size, event->header.type);
1313 		err = -EINVAL;
1314 		goto out_err;
1315 	}
1316 
1317 	head += size;
1318 
1319 	if (skip > 0)
1320 		head += skip;
1321 
1322 	if (!session_done())
1323 		goto more;
1324 done:
1325 	err = 0;
1326 out_err:
1327 	free(buf);
1328 	perf_session__warn_about_errors(self, tool);
1329 	perf_session_free_sample_buffers(self);
1330 	return err;
1331 }
1332 
1333 static union perf_event *
1334 fetch_mmaped_event(struct perf_session *session,
1335 		   u64 head, size_t mmap_size, char *buf)
1336 {
1337 	union perf_event *event;
1338 
1339 	/*
1340 	 * Ensure we have enough space remaining to read
1341 	 * the size of the event in the headers.
1342 	 */
1343 	if (head + sizeof(event->header) > mmap_size)
1344 		return NULL;
1345 
1346 	event = (union perf_event *)(buf + head);
1347 
1348 	if (session->header.needs_swap)
1349 		perf_event_header__bswap(&event->header);
1350 
1351 	if (head + event->header.size > mmap_size)
1352 		return NULL;
1353 
1354 	return event;
1355 }
1356 
1357 int __perf_session__process_events(struct perf_session *session,
1358 				   u64 data_offset, u64 data_size,
1359 				   u64 file_size, struct perf_tool *tool)
1360 {
1361 	u64 head, page_offset, file_offset, file_pos, progress_next;
1362 	int err, mmap_prot, mmap_flags, map_idx = 0;
1363 	size_t	page_size, mmap_size;
1364 	char *buf, *mmaps[8];
1365 	union perf_event *event;
1366 	uint32_t size;
1367 
1368 	perf_tool__fill_defaults(tool);
1369 
1370 	page_size = sysconf(_SC_PAGESIZE);
1371 
1372 	page_offset = page_size * (data_offset / page_size);
1373 	file_offset = page_offset;
1374 	head = data_offset - page_offset;
1375 
1376 	if (data_offset + data_size < file_size)
1377 		file_size = data_offset + data_size;
1378 
1379 	progress_next = file_size / 16;
1380 
1381 	mmap_size = session->mmap_window;
1382 	if (mmap_size > file_size)
1383 		mmap_size = file_size;
1384 
1385 	memset(mmaps, 0, sizeof(mmaps));
1386 
1387 	mmap_prot  = PROT_READ;
1388 	mmap_flags = MAP_SHARED;
1389 
1390 	if (session->header.needs_swap) {
1391 		mmap_prot  |= PROT_WRITE;
1392 		mmap_flags = MAP_PRIVATE;
1393 	}
1394 remap:
1395 	buf = mmap(NULL, mmap_size, mmap_prot, mmap_flags, session->fd,
1396 		   file_offset);
1397 	if (buf == MAP_FAILED) {
1398 		pr_err("failed to mmap file\n");
1399 		err = -errno;
1400 		goto out_err;
1401 	}
1402 	mmaps[map_idx] = buf;
1403 	map_idx = (map_idx + 1) & (ARRAY_SIZE(mmaps) - 1);
1404 	file_pos = file_offset + head;
1405 
1406 more:
1407 	event = fetch_mmaped_event(session, head, mmap_size, buf);
1408 	if (!event) {
1409 		if (mmaps[map_idx]) {
1410 			munmap(mmaps[map_idx], mmap_size);
1411 			mmaps[map_idx] = NULL;
1412 		}
1413 
1414 		page_offset = page_size * (head / page_size);
1415 		file_offset += page_offset;
1416 		head -= page_offset;
1417 		goto remap;
1418 	}
1419 
1420 	size = event->header.size;
1421 
1422 	if (size == 0 ||
1423 	    perf_session__process_event(session, event, tool, file_pos) < 0) {
1424 		pr_err("%#" PRIx64 " [%#x]: failed to process type: %d\n",
1425 		       file_offset + head, event->header.size,
1426 		       event->header.type);
1427 		err = -EINVAL;
1428 		goto out_err;
1429 	}
1430 
1431 	head += size;
1432 	file_pos += size;
1433 
1434 	if (file_pos >= progress_next) {
1435 		progress_next += file_size / 16;
1436 		ui_progress__update(file_pos, file_size,
1437 				    "Processing events...");
1438 	}
1439 
1440 	if (file_pos < file_size)
1441 		goto more;
1442 
1443 	err = 0;
1444 	/* do the final flush for ordered samples */
1445 	session->ordered_samples.next_flush = ULLONG_MAX;
1446 	flush_sample_queue(session, tool);
1447 out_err:
1448 	perf_session__warn_about_errors(session, tool);
1449 	perf_session_free_sample_buffers(session);
1450 	return err;
1451 }
1452 
1453 int perf_session__process_events(struct perf_session *self,
1454 				 struct perf_tool *tool)
1455 {
1456 	int err;
1457 
1458 	if (perf_session__register_idle_thread(self) == NULL)
1459 		return -ENOMEM;
1460 
1461 	if (!self->fd_pipe)
1462 		err = __perf_session__process_events(self,
1463 						     self->header.data_offset,
1464 						     self->header.data_size,
1465 						     self->size, tool);
1466 	else
1467 		err = __perf_session__process_pipe_events(self, tool);
1468 
1469 	return err;
1470 }
1471 
1472 bool perf_session__has_traces(struct perf_session *session, const char *msg)
1473 {
1474 	if (!(perf_evlist__sample_type(session->evlist) & PERF_SAMPLE_RAW)) {
1475 		pr_err("No trace sample to read. Did you call 'perf %s'?\n", msg);
1476 		return false;
1477 	}
1478 
1479 	return true;
1480 }
1481 
1482 int maps__set_kallsyms_ref_reloc_sym(struct map **maps,
1483 				     const char *symbol_name, u64 addr)
1484 {
1485 	char *bracket;
1486 	enum map_type i;
1487 	struct ref_reloc_sym *ref;
1488 
1489 	ref = zalloc(sizeof(struct ref_reloc_sym));
1490 	if (ref == NULL)
1491 		return -ENOMEM;
1492 
1493 	ref->name = strdup(symbol_name);
1494 	if (ref->name == NULL) {
1495 		free(ref);
1496 		return -ENOMEM;
1497 	}
1498 
1499 	bracket = strchr(ref->name, ']');
1500 	if (bracket)
1501 		*bracket = '\0';
1502 
1503 	ref->addr = addr;
1504 
1505 	for (i = 0; i < MAP__NR_TYPES; ++i) {
1506 		struct kmap *kmap = map__kmap(maps[i]);
1507 		kmap->ref_reloc_sym = ref;
1508 	}
1509 
1510 	return 0;
1511 }
1512 
1513 size_t perf_session__fprintf_dsos(struct perf_session *self, FILE *fp)
1514 {
1515 	return __dsos__fprintf(&self->host_machine.kernel_dsos, fp) +
1516 	       __dsos__fprintf(&self->host_machine.user_dsos, fp) +
1517 	       machines__fprintf_dsos(&self->machines, fp);
1518 }
1519 
1520 size_t perf_session__fprintf_dsos_buildid(struct perf_session *self, FILE *fp,
1521 					  bool with_hits)
1522 {
1523 	size_t ret = machine__fprintf_dsos_buildid(&self->host_machine, fp, with_hits);
1524 	return ret + machines__fprintf_dsos_buildid(&self->machines, fp, with_hits);
1525 }
1526 
1527 size_t perf_session__fprintf_nr_events(struct perf_session *session, FILE *fp)
1528 {
1529 	struct perf_evsel *pos;
1530 	size_t ret = fprintf(fp, "Aggregated stats:\n");
1531 
1532 	ret += hists__fprintf_nr_events(&session->hists, fp);
1533 
1534 	list_for_each_entry(pos, &session->evlist->entries, node) {
1535 		ret += fprintf(fp, "%s stats:\n", perf_evsel__name(pos));
1536 		ret += hists__fprintf_nr_events(&pos->hists, fp);
1537 	}
1538 
1539 	return ret;
1540 }
1541 
1542 size_t perf_session__fprintf(struct perf_session *session, FILE *fp)
1543 {
1544 	/*
1545 	 * FIXME: Here we have to actually print all the machines in this
1546 	 * session, not just the host...
1547 	 */
1548 	return machine__fprintf(&session->host_machine, fp);
1549 }
1550 
1551 void perf_session__remove_thread(struct perf_session *session,
1552 				 struct thread *th)
1553 {
1554 	/*
1555 	 * FIXME: This one makes no sense, we need to remove the thread from
1556 	 * the machine it belongs to, perf_session can have many machines, so
1557 	 * doing it always on ->host_machine is wrong.  Fix when auditing all
1558 	 * the 'perf kvm' code.
1559 	 */
1560 	machine__remove_thread(&session->host_machine, th);
1561 }
1562 
1563 struct perf_evsel *perf_session__find_first_evtype(struct perf_session *session,
1564 					      unsigned int type)
1565 {
1566 	struct perf_evsel *pos;
1567 
1568 	list_for_each_entry(pos, &session->evlist->entries, node) {
1569 		if (pos->attr.type == type)
1570 			return pos;
1571 	}
1572 	return NULL;
1573 }
1574 
1575 void perf_evsel__print_ip(struct perf_evsel *evsel, union perf_event *event,
1576 			  struct perf_sample *sample, struct machine *machine,
1577 			  int print_sym, int print_dso, int print_symoffset)
1578 {
1579 	struct addr_location al;
1580 	struct callchain_cursor_node *node;
1581 
1582 	if (perf_event__preprocess_sample(event, machine, &al, sample,
1583 					  NULL) < 0) {
1584 		error("problem processing %d event, skipping it.\n",
1585 			event->header.type);
1586 		return;
1587 	}
1588 
1589 	if (symbol_conf.use_callchain && sample->callchain) {
1590 
1591 
1592 		if (machine__resolve_callchain(machine, evsel, al.thread,
1593 					       sample, NULL) != 0) {
1594 			if (verbose)
1595 				error("Failed to resolve callchain. Skipping\n");
1596 			return;
1597 		}
1598 		callchain_cursor_commit(&callchain_cursor);
1599 
1600 		while (1) {
1601 			node = callchain_cursor_current(&callchain_cursor);
1602 			if (!node)
1603 				break;
1604 
1605 			printf("\t%16" PRIx64, node->ip);
1606 			if (print_sym) {
1607 				printf(" ");
1608 				symbol__fprintf_symname(node->sym, stdout);
1609 			}
1610 			if (print_dso) {
1611 				printf(" (");
1612 				map__fprintf_dsoname(node->map, stdout);
1613 				printf(")");
1614 			}
1615 			printf("\n");
1616 
1617 			callchain_cursor_advance(&callchain_cursor);
1618 		}
1619 
1620 	} else {
1621 		printf("%16" PRIx64, sample->ip);
1622 		if (print_sym) {
1623 			printf(" ");
1624 			if (print_symoffset)
1625 				symbol__fprintf_symname_offs(al.sym, &al,
1626 							     stdout);
1627 			else
1628 				symbol__fprintf_symname(al.sym, stdout);
1629 		}
1630 
1631 		if (print_dso) {
1632 			printf(" (");
1633 			map__fprintf_dsoname(al.map, stdout);
1634 			printf(")");
1635 		}
1636 	}
1637 }
1638 
1639 int perf_session__cpu_bitmap(struct perf_session *session,
1640 			     const char *cpu_list, unsigned long *cpu_bitmap)
1641 {
1642 	int i;
1643 	struct cpu_map *map;
1644 
1645 	for (i = 0; i < PERF_TYPE_MAX; ++i) {
1646 		struct perf_evsel *evsel;
1647 
1648 		evsel = perf_session__find_first_evtype(session, i);
1649 		if (!evsel)
1650 			continue;
1651 
1652 		if (!(evsel->attr.sample_type & PERF_SAMPLE_CPU)) {
1653 			pr_err("File does not contain CPU events. "
1654 			       "Remove -c option to proceed.\n");
1655 			return -1;
1656 		}
1657 	}
1658 
1659 	map = cpu_map__new(cpu_list);
1660 	if (map == NULL) {
1661 		pr_err("Invalid cpu_list\n");
1662 		return -1;
1663 	}
1664 
1665 	for (i = 0; i < map->nr; i++) {
1666 		int cpu = map->map[i];
1667 
1668 		if (cpu >= MAX_NR_CPUS) {
1669 			pr_err("Requested CPU %d too large. "
1670 			       "Consider raising MAX_NR_CPUS\n", cpu);
1671 			return -1;
1672 		}
1673 
1674 		set_bit(cpu, cpu_bitmap);
1675 	}
1676 
1677 	return 0;
1678 }
1679 
1680 void perf_session__fprintf_info(struct perf_session *session, FILE *fp,
1681 				bool full)
1682 {
1683 	struct stat st;
1684 	int ret;
1685 
1686 	if (session == NULL || fp == NULL)
1687 		return;
1688 
1689 	ret = fstat(session->fd, &st);
1690 	if (ret == -1)
1691 		return;
1692 
1693 	fprintf(fp, "# ========\n");
1694 	fprintf(fp, "# captured on: %s", ctime(&st.st_ctime));
1695 	perf_header__fprintf_info(session, fp, full);
1696 	fprintf(fp, "# ========\n#\n");
1697 }
1698 
1699 
1700 int __perf_session__set_tracepoints_handlers(struct perf_session *session,
1701 					     const struct perf_evsel_str_handler *assocs,
1702 					     size_t nr_assocs)
1703 {
1704 	struct perf_evlist *evlist = session->evlist;
1705 	struct event_format *format;
1706 	struct perf_evsel *evsel;
1707 	char *tracepoint, *name;
1708 	size_t i;
1709 	int err;
1710 
1711 	for (i = 0; i < nr_assocs; i++) {
1712 		err = -ENOMEM;
1713 		tracepoint = strdup(assocs[i].name);
1714 		if (tracepoint == NULL)
1715 			goto out;
1716 
1717 		err = -ENOENT;
1718 		name = strchr(tracepoint, ':');
1719 		if (name == NULL)
1720 			goto out_free;
1721 
1722 		*name++ = '\0';
1723 		format = pevent_find_event_by_name(session->pevent,
1724 						   tracepoint, name);
1725 		if (format == NULL) {
1726 			/*
1727 			 * Adding a handler for an event not in the session,
1728 			 * just ignore it.
1729 			 */
1730 			goto next;
1731 		}
1732 
1733 		evsel = perf_evlist__find_tracepoint_by_id(evlist, format->id);
1734 		if (evsel == NULL)
1735 			goto next;
1736 
1737 		err = -EEXIST;
1738 		if (evsel->handler.func != NULL)
1739 			goto out_free;
1740 		evsel->handler.func = assocs[i].handler;
1741 next:
1742 		free(tracepoint);
1743 	}
1744 
1745 	err = 0;
1746 out:
1747 	return err;
1748 
1749 out_free:
1750 	free(tracepoint);
1751 	goto out;
1752 }
1753