xref: /openbmc/linux/tools/perf/util/session.c (revision 444d2866)
1 #define _FILE_OFFSET_BITS 64
2 
3 #include <linux/kernel.h>
4 
5 #include <byteswap.h>
6 #include <unistd.h>
7 #include <sys/types.h>
8 #include <sys/mman.h>
9 
10 #include "evlist.h"
11 #include "evsel.h"
12 #include "session.h"
13 #include "tool.h"
14 #include "sort.h"
15 #include "util.h"
16 #include "cpumap.h"
17 
18 static int perf_session__open(struct perf_session *self, bool force)
19 {
20 	struct stat input_stat;
21 
22 	if (!strcmp(self->filename, "-")) {
23 		self->fd_pipe = true;
24 		self->fd = STDIN_FILENO;
25 
26 		if (perf_session__read_header(self, self->fd) < 0)
27 			pr_err("incompatible file format (rerun with -v to learn more)");
28 
29 		return 0;
30 	}
31 
32 	self->fd = open(self->filename, O_RDONLY);
33 	if (self->fd < 0) {
34 		int err = errno;
35 
36 		pr_err("failed to open %s: %s", self->filename, strerror(err));
37 		if (err == ENOENT && !strcmp(self->filename, "perf.data"))
38 			pr_err("  (try 'perf record' first)");
39 		pr_err("\n");
40 		return -errno;
41 	}
42 
43 	if (fstat(self->fd, &input_stat) < 0)
44 		goto out_close;
45 
46 	if (!force && input_stat.st_uid && (input_stat.st_uid != geteuid())) {
47 		pr_err("file %s not owned by current user or root\n",
48 		       self->filename);
49 		goto out_close;
50 	}
51 
52 	if (!input_stat.st_size) {
53 		pr_info("zero-sized file (%s), nothing to do!\n",
54 			self->filename);
55 		goto out_close;
56 	}
57 
58 	if (perf_session__read_header(self, self->fd) < 0) {
59 		pr_err("incompatible file format (rerun with -v to learn more)");
60 		goto out_close;
61 	}
62 
63 	if (!perf_evlist__valid_sample_type(self->evlist)) {
64 		pr_err("non matching sample_type");
65 		goto out_close;
66 	}
67 
68 	if (!perf_evlist__valid_sample_id_all(self->evlist)) {
69 		pr_err("non matching sample_id_all");
70 		goto out_close;
71 	}
72 
73 	self->size = input_stat.st_size;
74 	return 0;
75 
76 out_close:
77 	close(self->fd);
78 	self->fd = -1;
79 	return -1;
80 }
81 
82 void perf_session__update_sample_type(struct perf_session *self)
83 {
84 	self->sample_type = perf_evlist__sample_type(self->evlist);
85 	self->sample_size = __perf_evsel__sample_size(self->sample_type);
86 	self->sample_id_all = perf_evlist__sample_id_all(self->evlist);
87 	self->id_hdr_size = perf_evlist__id_hdr_size(self->evlist);
88 	self->host_machine.id_hdr_size = self->id_hdr_size;
89 }
90 
91 int perf_session__create_kernel_maps(struct perf_session *self)
92 {
93 	int ret = machine__create_kernel_maps(&self->host_machine);
94 
95 	if (ret >= 0)
96 		ret = machines__create_guest_kernel_maps(&self->machines);
97 	return ret;
98 }
99 
100 static void perf_session__destroy_kernel_maps(struct perf_session *self)
101 {
102 	machine__destroy_kernel_maps(&self->host_machine);
103 	machines__destroy_guest_kernel_maps(&self->machines);
104 }
105 
106 struct perf_session *perf_session__new(const char *filename, int mode,
107 				       bool force, bool repipe,
108 				       struct perf_tool *tool)
109 {
110 	struct perf_session *self;
111 	struct stat st;
112 	size_t len;
113 
114 	if (!filename || !strlen(filename)) {
115 		if (!fstat(STDIN_FILENO, &st) && S_ISFIFO(st.st_mode))
116 			filename = "-";
117 		else
118 			filename = "perf.data";
119 	}
120 
121 	len = strlen(filename);
122 	self = zalloc(sizeof(*self) + len);
123 
124 	if (self == NULL)
125 		goto out;
126 
127 	memcpy(self->filename, filename, len);
128 	/*
129 	 * On 64bit we can mmap the data file in one go. No need for tiny mmap
130 	 * slices. On 32bit we use 32MB.
131 	 */
132 #if BITS_PER_LONG == 64
133 	self->mmap_window = ULLONG_MAX;
134 #else
135 	self->mmap_window = 32 * 1024 * 1024ULL;
136 #endif
137 	self->machines = RB_ROOT;
138 	self->repipe = repipe;
139 	INIT_LIST_HEAD(&self->ordered_samples.samples);
140 	INIT_LIST_HEAD(&self->ordered_samples.sample_cache);
141 	INIT_LIST_HEAD(&self->ordered_samples.to_free);
142 	machine__init(&self->host_machine, "", HOST_KERNEL_ID);
143 	hists__init(&self->hists);
144 
145 	if (mode == O_RDONLY) {
146 		if (perf_session__open(self, force) < 0)
147 			goto out_delete;
148 		perf_session__update_sample_type(self);
149 	} else if (mode == O_WRONLY) {
150 		/*
151 		 * In O_RDONLY mode this will be performed when reading the
152 		 * kernel MMAP event, in perf_event__process_mmap().
153 		 */
154 		if (perf_session__create_kernel_maps(self) < 0)
155 			goto out_delete;
156 	}
157 
158 	if (tool && tool->ordering_requires_timestamps &&
159 	    tool->ordered_samples && !self->sample_id_all) {
160 		dump_printf("WARNING: No sample_id_all support, falling back to unordered processing\n");
161 		tool->ordered_samples = false;
162 	}
163 
164 out:
165 	return self;
166 out_delete:
167 	perf_session__delete(self);
168 	return NULL;
169 }
170 
171 static void machine__delete_dead_threads(struct machine *machine)
172 {
173 	struct thread *n, *t;
174 
175 	list_for_each_entry_safe(t, n, &machine->dead_threads, node) {
176 		list_del(&t->node);
177 		thread__delete(t);
178 	}
179 }
180 
181 static void perf_session__delete_dead_threads(struct perf_session *session)
182 {
183 	machine__delete_dead_threads(&session->host_machine);
184 }
185 
186 static void machine__delete_threads(struct machine *self)
187 {
188 	struct rb_node *nd = rb_first(&self->threads);
189 
190 	while (nd) {
191 		struct thread *t = rb_entry(nd, struct thread, rb_node);
192 
193 		rb_erase(&t->rb_node, &self->threads);
194 		nd = rb_next(nd);
195 		thread__delete(t);
196 	}
197 }
198 
199 static void perf_session__delete_threads(struct perf_session *session)
200 {
201 	machine__delete_threads(&session->host_machine);
202 }
203 
204 void perf_session__delete(struct perf_session *self)
205 {
206 	perf_session__destroy_kernel_maps(self);
207 	perf_session__delete_dead_threads(self);
208 	perf_session__delete_threads(self);
209 	machine__exit(&self->host_machine);
210 	close(self->fd);
211 	free(self);
212 }
213 
214 void machine__remove_thread(struct machine *self, struct thread *th)
215 {
216 	self->last_match = NULL;
217 	rb_erase(&th->rb_node, &self->threads);
218 	/*
219 	 * We may have references to this thread, for instance in some hist_entry
220 	 * instances, so just move them to a separate list.
221 	 */
222 	list_add_tail(&th->node, &self->dead_threads);
223 }
224 
225 static bool symbol__match_parent_regex(struct symbol *sym)
226 {
227 	if (sym->name && !regexec(&parent_regex, sym->name, 0, NULL, 0))
228 		return 1;
229 
230 	return 0;
231 }
232 
233 static const u8 cpumodes[] = {
234 	PERF_RECORD_MISC_USER,
235 	PERF_RECORD_MISC_KERNEL,
236 	PERF_RECORD_MISC_GUEST_USER,
237 	PERF_RECORD_MISC_GUEST_KERNEL
238 };
239 #define NCPUMODES (sizeof(cpumodes)/sizeof(u8))
240 
241 static void ip__resolve_ams(struct machine *self, struct thread *thread,
242 			    struct addr_map_symbol *ams,
243 			    u64 ip)
244 {
245 	struct addr_location al;
246 	size_t i;
247 	u8 m;
248 
249 	memset(&al, 0, sizeof(al));
250 
251 	for (i = 0; i < NCPUMODES; i++) {
252 		m = cpumodes[i];
253 		/*
254 		 * We cannot use the header.misc hint to determine whether a
255 		 * branch stack address is user, kernel, guest, hypervisor.
256 		 * Branches may straddle the kernel/user/hypervisor boundaries.
257 		 * Thus, we have to try consecutively until we find a match
258 		 * or else, the symbol is unknown
259 		 */
260 		thread__find_addr_location(thread, self, m, MAP__FUNCTION,
261 				ip, &al, NULL);
262 		if (al.sym)
263 			goto found;
264 	}
265 found:
266 	ams->addr = ip;
267 	ams->al_addr = al.addr;
268 	ams->sym = al.sym;
269 	ams->map = al.map;
270 }
271 
272 struct branch_info *machine__resolve_bstack(struct machine *self,
273 					    struct thread *thr,
274 					    struct branch_stack *bs)
275 {
276 	struct branch_info *bi;
277 	unsigned int i;
278 
279 	bi = calloc(bs->nr, sizeof(struct branch_info));
280 	if (!bi)
281 		return NULL;
282 
283 	for (i = 0; i < bs->nr; i++) {
284 		ip__resolve_ams(self, thr, &bi[i].to, bs->entries[i].to);
285 		ip__resolve_ams(self, thr, &bi[i].from, bs->entries[i].from);
286 		bi[i].flags = bs->entries[i].flags;
287 	}
288 	return bi;
289 }
290 
291 int machine__resolve_callchain(struct machine *self, struct perf_evsel *evsel,
292 			       struct thread *thread,
293 			       struct ip_callchain *chain,
294 			       struct symbol **parent)
295 {
296 	u8 cpumode = PERF_RECORD_MISC_USER;
297 	unsigned int i;
298 	int err;
299 
300 	callchain_cursor_reset(&evsel->hists.callchain_cursor);
301 
302 	for (i = 0; i < chain->nr; i++) {
303 		u64 ip;
304 		struct addr_location al;
305 
306 		if (callchain_param.order == ORDER_CALLEE)
307 			ip = chain->ips[i];
308 		else
309 			ip = chain->ips[chain->nr - i - 1];
310 
311 		if (ip >= PERF_CONTEXT_MAX) {
312 			switch (ip) {
313 			case PERF_CONTEXT_HV:
314 				cpumode = PERF_RECORD_MISC_HYPERVISOR;	break;
315 			case PERF_CONTEXT_KERNEL:
316 				cpumode = PERF_RECORD_MISC_KERNEL;	break;
317 			case PERF_CONTEXT_USER:
318 				cpumode = PERF_RECORD_MISC_USER;	break;
319 			default:
320 				break;
321 			}
322 			continue;
323 		}
324 
325 		al.filtered = false;
326 		thread__find_addr_location(thread, self, cpumode,
327 					   MAP__FUNCTION, ip, &al, NULL);
328 		if (al.sym != NULL) {
329 			if (sort__has_parent && !*parent &&
330 			    symbol__match_parent_regex(al.sym))
331 				*parent = al.sym;
332 			if (!symbol_conf.use_callchain)
333 				break;
334 		}
335 
336 		err = callchain_cursor_append(&evsel->hists.callchain_cursor,
337 					      ip, al.map, al.sym);
338 		if (err)
339 			return err;
340 	}
341 
342 	return 0;
343 }
344 
345 static int process_event_synth_tracing_data_stub(union perf_event *event __used,
346 						 struct perf_session *session __used)
347 {
348 	dump_printf(": unhandled!\n");
349 	return 0;
350 }
351 
352 static int process_event_synth_attr_stub(union perf_event *event __used,
353 					 struct perf_evlist **pevlist __used)
354 {
355 	dump_printf(": unhandled!\n");
356 	return 0;
357 }
358 
359 static int process_event_sample_stub(struct perf_tool *tool __used,
360 				     union perf_event *event __used,
361 				     struct perf_sample *sample __used,
362 				     struct perf_evsel *evsel __used,
363 				     struct machine *machine __used)
364 {
365 	dump_printf(": unhandled!\n");
366 	return 0;
367 }
368 
369 static int process_event_stub(struct perf_tool *tool __used,
370 			      union perf_event *event __used,
371 			      struct perf_sample *sample __used,
372 			      struct machine *machine __used)
373 {
374 	dump_printf(": unhandled!\n");
375 	return 0;
376 }
377 
378 static int process_finished_round_stub(struct perf_tool *tool __used,
379 				       union perf_event *event __used,
380 				       struct perf_session *perf_session __used)
381 {
382 	dump_printf(": unhandled!\n");
383 	return 0;
384 }
385 
386 static int process_event_type_stub(struct perf_tool *tool __used,
387 				   union perf_event *event __used)
388 {
389 	dump_printf(": unhandled!\n");
390 	return 0;
391 }
392 
393 static int process_finished_round(struct perf_tool *tool,
394 				  union perf_event *event,
395 				  struct perf_session *session);
396 
397 static void perf_tool__fill_defaults(struct perf_tool *tool)
398 {
399 	if (tool->sample == NULL)
400 		tool->sample = process_event_sample_stub;
401 	if (tool->mmap == NULL)
402 		tool->mmap = process_event_stub;
403 	if (tool->comm == NULL)
404 		tool->comm = process_event_stub;
405 	if (tool->fork == NULL)
406 		tool->fork = process_event_stub;
407 	if (tool->exit == NULL)
408 		tool->exit = process_event_stub;
409 	if (tool->lost == NULL)
410 		tool->lost = perf_event__process_lost;
411 	if (tool->read == NULL)
412 		tool->read = process_event_sample_stub;
413 	if (tool->throttle == NULL)
414 		tool->throttle = process_event_stub;
415 	if (tool->unthrottle == NULL)
416 		tool->unthrottle = process_event_stub;
417 	if (tool->attr == NULL)
418 		tool->attr = process_event_synth_attr_stub;
419 	if (tool->event_type == NULL)
420 		tool->event_type = process_event_type_stub;
421 	if (tool->tracing_data == NULL)
422 		tool->tracing_data = process_event_synth_tracing_data_stub;
423 	if (tool->build_id == NULL)
424 		tool->build_id = process_finished_round_stub;
425 	if (tool->finished_round == NULL) {
426 		if (tool->ordered_samples)
427 			tool->finished_round = process_finished_round;
428 		else
429 			tool->finished_round = process_finished_round_stub;
430 	}
431 }
432 
433 void mem_bswap_64(void *src, int byte_size)
434 {
435 	u64 *m = src;
436 
437 	while (byte_size > 0) {
438 		*m = bswap_64(*m);
439 		byte_size -= sizeof(u64);
440 		++m;
441 	}
442 }
443 
444 static void perf_event__all64_swap(union perf_event *event)
445 {
446 	struct perf_event_header *hdr = &event->header;
447 	mem_bswap_64(hdr + 1, event->header.size - sizeof(*hdr));
448 }
449 
450 static void perf_event__comm_swap(union perf_event *event)
451 {
452 	event->comm.pid = bswap_32(event->comm.pid);
453 	event->comm.tid = bswap_32(event->comm.tid);
454 }
455 
456 static void perf_event__mmap_swap(union perf_event *event)
457 {
458 	event->mmap.pid	  = bswap_32(event->mmap.pid);
459 	event->mmap.tid	  = bswap_32(event->mmap.tid);
460 	event->mmap.start = bswap_64(event->mmap.start);
461 	event->mmap.len	  = bswap_64(event->mmap.len);
462 	event->mmap.pgoff = bswap_64(event->mmap.pgoff);
463 }
464 
465 static void perf_event__task_swap(union perf_event *event)
466 {
467 	event->fork.pid	 = bswap_32(event->fork.pid);
468 	event->fork.tid	 = bswap_32(event->fork.tid);
469 	event->fork.ppid = bswap_32(event->fork.ppid);
470 	event->fork.ptid = bswap_32(event->fork.ptid);
471 	event->fork.time = bswap_64(event->fork.time);
472 }
473 
474 static void perf_event__read_swap(union perf_event *event)
475 {
476 	event->read.pid		 = bswap_32(event->read.pid);
477 	event->read.tid		 = bswap_32(event->read.tid);
478 	event->read.value	 = bswap_64(event->read.value);
479 	event->read.time_enabled = bswap_64(event->read.time_enabled);
480 	event->read.time_running = bswap_64(event->read.time_running);
481 	event->read.id		 = bswap_64(event->read.id);
482 }
483 
484 static u8 revbyte(u8 b)
485 {
486 	int rev = (b >> 4) | ((b & 0xf) << 4);
487 	rev = ((rev & 0xcc) >> 2) | ((rev & 0x33) << 2);
488 	rev = ((rev & 0xaa) >> 1) | ((rev & 0x55) << 1);
489 	return (u8) rev;
490 }
491 
492 /*
493  * XXX this is hack in attempt to carry flags bitfield
494  * throught endian village. ABI says:
495  *
496  * Bit-fields are allocated from right to left (least to most significant)
497  * on little-endian implementations and from left to right (most to least
498  * significant) on big-endian implementations.
499  *
500  * The above seems to be byte specific, so we need to reverse each
501  * byte of the bitfield. 'Internet' also says this might be implementation
502  * specific and we probably need proper fix and carry perf_event_attr
503  * bitfield flags in separate data file FEAT_ section. Thought this seems
504  * to work for now.
505  */
506 static void swap_bitfield(u8 *p, unsigned len)
507 {
508 	unsigned i;
509 
510 	for (i = 0; i < len; i++) {
511 		*p = revbyte(*p);
512 		p++;
513 	}
514 }
515 
516 /* exported for swapping attributes in file header */
517 void perf_event__attr_swap(struct perf_event_attr *attr)
518 {
519 	attr->type		= bswap_32(attr->type);
520 	attr->size		= bswap_32(attr->size);
521 	attr->config		= bswap_64(attr->config);
522 	attr->sample_period	= bswap_64(attr->sample_period);
523 	attr->sample_type	= bswap_64(attr->sample_type);
524 	attr->read_format	= bswap_64(attr->read_format);
525 	attr->wakeup_events	= bswap_32(attr->wakeup_events);
526 	attr->bp_type		= bswap_32(attr->bp_type);
527 	attr->bp_addr		= bswap_64(attr->bp_addr);
528 	attr->bp_len		= bswap_64(attr->bp_len);
529 
530 	swap_bitfield((u8 *) (&attr->read_format + 1), sizeof(u64));
531 }
532 
533 static void perf_event__hdr_attr_swap(union perf_event *event)
534 {
535 	size_t size;
536 
537 	perf_event__attr_swap(&event->attr.attr);
538 
539 	size = event->header.size;
540 	size -= (void *)&event->attr.id - (void *)event;
541 	mem_bswap_64(event->attr.id, size);
542 }
543 
544 static void perf_event__event_type_swap(union perf_event *event)
545 {
546 	event->event_type.event_type.event_id =
547 		bswap_64(event->event_type.event_type.event_id);
548 }
549 
550 static void perf_event__tracing_data_swap(union perf_event *event)
551 {
552 	event->tracing_data.size = bswap_32(event->tracing_data.size);
553 }
554 
555 typedef void (*perf_event__swap_op)(union perf_event *event);
556 
557 static perf_event__swap_op perf_event__swap_ops[] = {
558 	[PERF_RECORD_MMAP]		  = perf_event__mmap_swap,
559 	[PERF_RECORD_COMM]		  = perf_event__comm_swap,
560 	[PERF_RECORD_FORK]		  = perf_event__task_swap,
561 	[PERF_RECORD_EXIT]		  = perf_event__task_swap,
562 	[PERF_RECORD_LOST]		  = perf_event__all64_swap,
563 	[PERF_RECORD_READ]		  = perf_event__read_swap,
564 	[PERF_RECORD_SAMPLE]		  = perf_event__all64_swap,
565 	[PERF_RECORD_HEADER_ATTR]	  = perf_event__hdr_attr_swap,
566 	[PERF_RECORD_HEADER_EVENT_TYPE]	  = perf_event__event_type_swap,
567 	[PERF_RECORD_HEADER_TRACING_DATA] = perf_event__tracing_data_swap,
568 	[PERF_RECORD_HEADER_BUILD_ID]	  = NULL,
569 	[PERF_RECORD_HEADER_MAX]	  = NULL,
570 };
571 
572 struct sample_queue {
573 	u64			timestamp;
574 	u64			file_offset;
575 	union perf_event	*event;
576 	struct list_head	list;
577 };
578 
579 static void perf_session_free_sample_buffers(struct perf_session *session)
580 {
581 	struct ordered_samples *os = &session->ordered_samples;
582 
583 	while (!list_empty(&os->to_free)) {
584 		struct sample_queue *sq;
585 
586 		sq = list_entry(os->to_free.next, struct sample_queue, list);
587 		list_del(&sq->list);
588 		free(sq);
589 	}
590 }
591 
592 static int perf_session_deliver_event(struct perf_session *session,
593 				      union perf_event *event,
594 				      struct perf_sample *sample,
595 				      struct perf_tool *tool,
596 				      u64 file_offset);
597 
598 static void flush_sample_queue(struct perf_session *s,
599 			       struct perf_tool *tool)
600 {
601 	struct ordered_samples *os = &s->ordered_samples;
602 	struct list_head *head = &os->samples;
603 	struct sample_queue *tmp, *iter;
604 	struct perf_sample sample;
605 	u64 limit = os->next_flush;
606 	u64 last_ts = os->last_sample ? os->last_sample->timestamp : 0ULL;
607 	unsigned idx = 0, progress_next = os->nr_samples / 16;
608 	int ret;
609 
610 	if (!tool->ordered_samples || !limit)
611 		return;
612 
613 	list_for_each_entry_safe(iter, tmp, head, list) {
614 		if (iter->timestamp > limit)
615 			break;
616 
617 		ret = perf_session__parse_sample(s, iter->event, &sample);
618 		if (ret)
619 			pr_err("Can't parse sample, err = %d\n", ret);
620 		else
621 			perf_session_deliver_event(s, iter->event, &sample, tool,
622 						   iter->file_offset);
623 
624 		os->last_flush = iter->timestamp;
625 		list_del(&iter->list);
626 		list_add(&iter->list, &os->sample_cache);
627 		if (++idx >= progress_next) {
628 			progress_next += os->nr_samples / 16;
629 			ui_progress__update(idx, os->nr_samples,
630 					    "Processing time ordered events...");
631 		}
632 	}
633 
634 	if (list_empty(head)) {
635 		os->last_sample = NULL;
636 	} else if (last_ts <= limit) {
637 		os->last_sample =
638 			list_entry(head->prev, struct sample_queue, list);
639 	}
640 
641 	os->nr_samples = 0;
642 }
643 
644 /*
645  * When perf record finishes a pass on every buffers, it records this pseudo
646  * event.
647  * We record the max timestamp t found in the pass n.
648  * Assuming these timestamps are monotonic across cpus, we know that if
649  * a buffer still has events with timestamps below t, they will be all
650  * available and then read in the pass n + 1.
651  * Hence when we start to read the pass n + 2, we can safely flush every
652  * events with timestamps below t.
653  *
654  *    ============ PASS n =================
655  *       CPU 0         |   CPU 1
656  *                     |
657  *    cnt1 timestamps  |   cnt2 timestamps
658  *          1          |         2
659  *          2          |         3
660  *          -          |         4  <--- max recorded
661  *
662  *    ============ PASS n + 1 ==============
663  *       CPU 0         |   CPU 1
664  *                     |
665  *    cnt1 timestamps  |   cnt2 timestamps
666  *          3          |         5
667  *          4          |         6
668  *          5          |         7 <---- max recorded
669  *
670  *      Flush every events below timestamp 4
671  *
672  *    ============ PASS n + 2 ==============
673  *       CPU 0         |   CPU 1
674  *                     |
675  *    cnt1 timestamps  |   cnt2 timestamps
676  *          6          |         8
677  *          7          |         9
678  *          -          |         10
679  *
680  *      Flush every events below timestamp 7
681  *      etc...
682  */
683 static int process_finished_round(struct perf_tool *tool,
684 				  union perf_event *event __used,
685 				  struct perf_session *session)
686 {
687 	flush_sample_queue(session, tool);
688 	session->ordered_samples.next_flush = session->ordered_samples.max_timestamp;
689 
690 	return 0;
691 }
692 
693 /* The queue is ordered by time */
694 static void __queue_event(struct sample_queue *new, struct perf_session *s)
695 {
696 	struct ordered_samples *os = &s->ordered_samples;
697 	struct sample_queue *sample = os->last_sample;
698 	u64 timestamp = new->timestamp;
699 	struct list_head *p;
700 
701 	++os->nr_samples;
702 	os->last_sample = new;
703 
704 	if (!sample) {
705 		list_add(&new->list, &os->samples);
706 		os->max_timestamp = timestamp;
707 		return;
708 	}
709 
710 	/*
711 	 * last_sample might point to some random place in the list as it's
712 	 * the last queued event. We expect that the new event is close to
713 	 * this.
714 	 */
715 	if (sample->timestamp <= timestamp) {
716 		while (sample->timestamp <= timestamp) {
717 			p = sample->list.next;
718 			if (p == &os->samples) {
719 				list_add_tail(&new->list, &os->samples);
720 				os->max_timestamp = timestamp;
721 				return;
722 			}
723 			sample = list_entry(p, struct sample_queue, list);
724 		}
725 		list_add_tail(&new->list, &sample->list);
726 	} else {
727 		while (sample->timestamp > timestamp) {
728 			p = sample->list.prev;
729 			if (p == &os->samples) {
730 				list_add(&new->list, &os->samples);
731 				return;
732 			}
733 			sample = list_entry(p, struct sample_queue, list);
734 		}
735 		list_add(&new->list, &sample->list);
736 	}
737 }
738 
739 #define MAX_SAMPLE_BUFFER	(64 * 1024 / sizeof(struct sample_queue))
740 
741 static int perf_session_queue_event(struct perf_session *s, union perf_event *event,
742 				    struct perf_sample *sample, u64 file_offset)
743 {
744 	struct ordered_samples *os = &s->ordered_samples;
745 	struct list_head *sc = &os->sample_cache;
746 	u64 timestamp = sample->time;
747 	struct sample_queue *new;
748 
749 	if (!timestamp || timestamp == ~0ULL)
750 		return -ETIME;
751 
752 	if (timestamp < s->ordered_samples.last_flush) {
753 		printf("Warning: Timestamp below last timeslice flush\n");
754 		return -EINVAL;
755 	}
756 
757 	if (!list_empty(sc)) {
758 		new = list_entry(sc->next, struct sample_queue, list);
759 		list_del(&new->list);
760 	} else if (os->sample_buffer) {
761 		new = os->sample_buffer + os->sample_buffer_idx;
762 		if (++os->sample_buffer_idx == MAX_SAMPLE_BUFFER)
763 			os->sample_buffer = NULL;
764 	} else {
765 		os->sample_buffer = malloc(MAX_SAMPLE_BUFFER * sizeof(*new));
766 		if (!os->sample_buffer)
767 			return -ENOMEM;
768 		list_add(&os->sample_buffer->list, &os->to_free);
769 		os->sample_buffer_idx = 2;
770 		new = os->sample_buffer + 1;
771 	}
772 
773 	new->timestamp = timestamp;
774 	new->file_offset = file_offset;
775 	new->event = event;
776 
777 	__queue_event(new, s);
778 
779 	return 0;
780 }
781 
782 static void callchain__printf(struct perf_sample *sample)
783 {
784 	unsigned int i;
785 
786 	printf("... chain: nr:%" PRIu64 "\n", sample->callchain->nr);
787 
788 	for (i = 0; i < sample->callchain->nr; i++)
789 		printf("..... %2d: %016" PRIx64 "\n",
790 		       i, sample->callchain->ips[i]);
791 }
792 
793 static void branch_stack__printf(struct perf_sample *sample)
794 {
795 	uint64_t i;
796 
797 	printf("... branch stack: nr:%" PRIu64 "\n", sample->branch_stack->nr);
798 
799 	for (i = 0; i < sample->branch_stack->nr; i++)
800 		printf("..... %2"PRIu64": %016" PRIx64 " -> %016" PRIx64 "\n",
801 			i, sample->branch_stack->entries[i].from,
802 			sample->branch_stack->entries[i].to);
803 }
804 
805 static void perf_session__print_tstamp(struct perf_session *session,
806 				       union perf_event *event,
807 				       struct perf_sample *sample)
808 {
809 	if (event->header.type != PERF_RECORD_SAMPLE &&
810 	    !session->sample_id_all) {
811 		fputs("-1 -1 ", stdout);
812 		return;
813 	}
814 
815 	if ((session->sample_type & PERF_SAMPLE_CPU))
816 		printf("%u ", sample->cpu);
817 
818 	if (session->sample_type & PERF_SAMPLE_TIME)
819 		printf("%" PRIu64 " ", sample->time);
820 }
821 
822 static void dump_event(struct perf_session *session, union perf_event *event,
823 		       u64 file_offset, struct perf_sample *sample)
824 {
825 	if (!dump_trace)
826 		return;
827 
828 	printf("\n%#" PRIx64 " [%#x]: event: %d\n",
829 	       file_offset, event->header.size, event->header.type);
830 
831 	trace_event(event);
832 
833 	if (sample)
834 		perf_session__print_tstamp(session, event, sample);
835 
836 	printf("%#" PRIx64 " [%#x]: PERF_RECORD_%s", file_offset,
837 	       event->header.size, perf_event__name(event->header.type));
838 }
839 
840 static void dump_sample(struct perf_session *session, union perf_event *event,
841 			struct perf_sample *sample)
842 {
843 	if (!dump_trace)
844 		return;
845 
846 	printf("(IP, %d): %d/%d: %#" PRIx64 " period: %" PRIu64 " addr: %#" PRIx64 "\n",
847 	       event->header.misc, sample->pid, sample->tid, sample->ip,
848 	       sample->period, sample->addr);
849 
850 	if (session->sample_type & PERF_SAMPLE_CALLCHAIN)
851 		callchain__printf(sample);
852 
853 	if (session->sample_type & PERF_SAMPLE_BRANCH_STACK)
854 		branch_stack__printf(sample);
855 }
856 
857 static struct machine *
858 	perf_session__find_machine_for_cpumode(struct perf_session *session,
859 					       union perf_event *event)
860 {
861 	const u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
862 
863 	if (cpumode == PERF_RECORD_MISC_GUEST_KERNEL && perf_guest) {
864 		u32 pid;
865 
866 		if (event->header.type == PERF_RECORD_MMAP)
867 			pid = event->mmap.pid;
868 		else
869 			pid = event->ip.pid;
870 
871 		return perf_session__find_machine(session, pid);
872 	}
873 
874 	return perf_session__find_host_machine(session);
875 }
876 
877 static int perf_session_deliver_event(struct perf_session *session,
878 				      union perf_event *event,
879 				      struct perf_sample *sample,
880 				      struct perf_tool *tool,
881 				      u64 file_offset)
882 {
883 	struct perf_evsel *evsel;
884 	struct machine *machine;
885 
886 	dump_event(session, event, file_offset, sample);
887 
888 	evsel = perf_evlist__id2evsel(session->evlist, sample->id);
889 	if (evsel != NULL && event->header.type != PERF_RECORD_SAMPLE) {
890 		/*
891 		 * XXX We're leaving PERF_RECORD_SAMPLE unnacounted here
892 		 * because the tools right now may apply filters, discarding
893 		 * some of the samples. For consistency, in the future we
894 		 * should have something like nr_filtered_samples and remove
895 		 * the sample->period from total_sample_period, etc, KISS for
896 		 * now tho.
897 		 *
898 		 * Also testing against NULL allows us to handle files without
899 		 * attr.sample_id_all and/or without PERF_SAMPLE_ID. In the
900 		 * future probably it'll be a good idea to restrict event
901 		 * processing via perf_session to files with both set.
902 		 */
903 		hists__inc_nr_events(&evsel->hists, event->header.type);
904 	}
905 
906 	machine = perf_session__find_machine_for_cpumode(session, event);
907 
908 	switch (event->header.type) {
909 	case PERF_RECORD_SAMPLE:
910 		dump_sample(session, event, sample);
911 		if (evsel == NULL) {
912 			++session->hists.stats.nr_unknown_id;
913 			return 0;
914 		}
915 		if (machine == NULL) {
916 			++session->hists.stats.nr_unprocessable_samples;
917 			return 0;
918 		}
919 		return tool->sample(tool, event, sample, evsel, machine);
920 	case PERF_RECORD_MMAP:
921 		return tool->mmap(tool, event, sample, machine);
922 	case PERF_RECORD_COMM:
923 		return tool->comm(tool, event, sample, machine);
924 	case PERF_RECORD_FORK:
925 		return tool->fork(tool, event, sample, machine);
926 	case PERF_RECORD_EXIT:
927 		return tool->exit(tool, event, sample, machine);
928 	case PERF_RECORD_LOST:
929 		if (tool->lost == perf_event__process_lost)
930 			session->hists.stats.total_lost += event->lost.lost;
931 		return tool->lost(tool, event, sample, machine);
932 	case PERF_RECORD_READ:
933 		return tool->read(tool, event, sample, evsel, machine);
934 	case PERF_RECORD_THROTTLE:
935 		return tool->throttle(tool, event, sample, machine);
936 	case PERF_RECORD_UNTHROTTLE:
937 		return tool->unthrottle(tool, event, sample, machine);
938 	default:
939 		++session->hists.stats.nr_unknown_events;
940 		return -1;
941 	}
942 }
943 
944 static int perf_session__preprocess_sample(struct perf_session *session,
945 					   union perf_event *event, struct perf_sample *sample)
946 {
947 	if (event->header.type != PERF_RECORD_SAMPLE ||
948 	    !(session->sample_type & PERF_SAMPLE_CALLCHAIN))
949 		return 0;
950 
951 	if (!ip_callchain__valid(sample->callchain, event)) {
952 		pr_debug("call-chain problem with event, skipping it.\n");
953 		++session->hists.stats.nr_invalid_chains;
954 		session->hists.stats.total_invalid_chains += sample->period;
955 		return -EINVAL;
956 	}
957 	return 0;
958 }
959 
960 static int perf_session__process_user_event(struct perf_session *session, union perf_event *event,
961 					    struct perf_tool *tool, u64 file_offset)
962 {
963 	int err;
964 
965 	dump_event(session, event, file_offset, NULL);
966 
967 	/* These events are processed right away */
968 	switch (event->header.type) {
969 	case PERF_RECORD_HEADER_ATTR:
970 		err = tool->attr(event, &session->evlist);
971 		if (err == 0)
972 			perf_session__update_sample_type(session);
973 		return err;
974 	case PERF_RECORD_HEADER_EVENT_TYPE:
975 		return tool->event_type(tool, event);
976 	case PERF_RECORD_HEADER_TRACING_DATA:
977 		/* setup for reading amidst mmap */
978 		lseek(session->fd, file_offset, SEEK_SET);
979 		return tool->tracing_data(event, session);
980 	case PERF_RECORD_HEADER_BUILD_ID:
981 		return tool->build_id(tool, event, session);
982 	case PERF_RECORD_FINISHED_ROUND:
983 		return tool->finished_round(tool, event, session);
984 	default:
985 		return -EINVAL;
986 	}
987 }
988 
989 static int perf_session__process_event(struct perf_session *session,
990 				       union perf_event *event,
991 				       struct perf_tool *tool,
992 				       u64 file_offset)
993 {
994 	struct perf_sample sample;
995 	int ret;
996 
997 	if (session->header.needs_swap &&
998 	    perf_event__swap_ops[event->header.type])
999 		perf_event__swap_ops[event->header.type](event);
1000 
1001 	if (event->header.type >= PERF_RECORD_HEADER_MAX)
1002 		return -EINVAL;
1003 
1004 	hists__inc_nr_events(&session->hists, event->header.type);
1005 
1006 	if (event->header.type >= PERF_RECORD_USER_TYPE_START)
1007 		return perf_session__process_user_event(session, event, tool, file_offset);
1008 
1009 	/*
1010 	 * For all kernel events we get the sample data
1011 	 */
1012 	ret = perf_session__parse_sample(session, event, &sample);
1013 	if (ret)
1014 		return ret;
1015 
1016 	/* Preprocess sample records - precheck callchains */
1017 	if (perf_session__preprocess_sample(session, event, &sample))
1018 		return 0;
1019 
1020 	if (tool->ordered_samples) {
1021 		ret = perf_session_queue_event(session, event, &sample,
1022 					       file_offset);
1023 		if (ret != -ETIME)
1024 			return ret;
1025 	}
1026 
1027 	return perf_session_deliver_event(session, event, &sample, tool,
1028 					  file_offset);
1029 }
1030 
1031 void perf_event_header__bswap(struct perf_event_header *self)
1032 {
1033 	self->type = bswap_32(self->type);
1034 	self->misc = bswap_16(self->misc);
1035 	self->size = bswap_16(self->size);
1036 }
1037 
1038 struct thread *perf_session__findnew(struct perf_session *session, pid_t pid)
1039 {
1040 	return machine__findnew_thread(&session->host_machine, pid);
1041 }
1042 
1043 static struct thread *perf_session__register_idle_thread(struct perf_session *self)
1044 {
1045 	struct thread *thread = perf_session__findnew(self, 0);
1046 
1047 	if (thread == NULL || thread__set_comm(thread, "swapper")) {
1048 		pr_err("problem inserting idle task.\n");
1049 		thread = NULL;
1050 	}
1051 
1052 	return thread;
1053 }
1054 
1055 static void perf_session__warn_about_errors(const struct perf_session *session,
1056 					    const struct perf_tool *tool)
1057 {
1058 	if (tool->lost == perf_event__process_lost &&
1059 	    session->hists.stats.nr_events[PERF_RECORD_LOST] != 0) {
1060 		ui__warning("Processed %d events and lost %d chunks!\n\n"
1061 			    "Check IO/CPU overload!\n\n",
1062 			    session->hists.stats.nr_events[0],
1063 			    session->hists.stats.nr_events[PERF_RECORD_LOST]);
1064 	}
1065 
1066 	if (session->hists.stats.nr_unknown_events != 0) {
1067 		ui__warning("Found %u unknown events!\n\n"
1068 			    "Is this an older tool processing a perf.data "
1069 			    "file generated by a more recent tool?\n\n"
1070 			    "If that is not the case, consider "
1071 			    "reporting to linux-kernel@vger.kernel.org.\n\n",
1072 			    session->hists.stats.nr_unknown_events);
1073 	}
1074 
1075 	if (session->hists.stats.nr_unknown_id != 0) {
1076 		ui__warning("%u samples with id not present in the header\n",
1077 			    session->hists.stats.nr_unknown_id);
1078 	}
1079 
1080  	if (session->hists.stats.nr_invalid_chains != 0) {
1081  		ui__warning("Found invalid callchains!\n\n"
1082  			    "%u out of %u events were discarded for this reason.\n\n"
1083  			    "Consider reporting to linux-kernel@vger.kernel.org.\n\n",
1084  			    session->hists.stats.nr_invalid_chains,
1085  			    session->hists.stats.nr_events[PERF_RECORD_SAMPLE]);
1086  	}
1087 
1088 	if (session->hists.stats.nr_unprocessable_samples != 0) {
1089 		ui__warning("%u unprocessable samples recorded.\n"
1090 			    "Do you have a KVM guest running and not using 'perf kvm'?\n",
1091 			    session->hists.stats.nr_unprocessable_samples);
1092 	}
1093 }
1094 
1095 #define session_done()	(*(volatile int *)(&session_done))
1096 volatile int session_done;
1097 
1098 static int __perf_session__process_pipe_events(struct perf_session *self,
1099 					       struct perf_tool *tool)
1100 {
1101 	union perf_event *event;
1102 	uint32_t size, cur_size = 0;
1103 	void *buf = NULL;
1104 	int skip = 0;
1105 	u64 head;
1106 	int err;
1107 	void *p;
1108 
1109 	perf_tool__fill_defaults(tool);
1110 
1111 	head = 0;
1112 	cur_size = sizeof(union perf_event);
1113 
1114 	buf = malloc(cur_size);
1115 	if (!buf)
1116 		return -errno;
1117 more:
1118 	event = buf;
1119 	err = readn(self->fd, event, sizeof(struct perf_event_header));
1120 	if (err <= 0) {
1121 		if (err == 0)
1122 			goto done;
1123 
1124 		pr_err("failed to read event header\n");
1125 		goto out_err;
1126 	}
1127 
1128 	if (self->header.needs_swap)
1129 		perf_event_header__bswap(&event->header);
1130 
1131 	size = event->header.size;
1132 	if (size == 0)
1133 		size = 8;
1134 
1135 	if (size > cur_size) {
1136 		void *new = realloc(buf, size);
1137 		if (!new) {
1138 			pr_err("failed to allocate memory to read event\n");
1139 			goto out_err;
1140 		}
1141 		buf = new;
1142 		cur_size = size;
1143 		event = buf;
1144 	}
1145 	p = event;
1146 	p += sizeof(struct perf_event_header);
1147 
1148 	if (size - sizeof(struct perf_event_header)) {
1149 		err = readn(self->fd, p, size - sizeof(struct perf_event_header));
1150 		if (err <= 0) {
1151 			if (err == 0) {
1152 				pr_err("unexpected end of event stream\n");
1153 				goto done;
1154 			}
1155 
1156 			pr_err("failed to read event data\n");
1157 			goto out_err;
1158 		}
1159 	}
1160 
1161 	if ((skip = perf_session__process_event(self, event, tool, head)) < 0) {
1162 		pr_err("%#" PRIx64 " [%#x]: failed to process type: %d\n",
1163 		       head, event->header.size, event->header.type);
1164 		err = -EINVAL;
1165 		goto out_err;
1166 	}
1167 
1168 	head += size;
1169 
1170 	if (skip > 0)
1171 		head += skip;
1172 
1173 	if (!session_done())
1174 		goto more;
1175 done:
1176 	err = 0;
1177 out_err:
1178 	free(buf);
1179 	perf_session__warn_about_errors(self, tool);
1180 	perf_session_free_sample_buffers(self);
1181 	return err;
1182 }
1183 
1184 static union perf_event *
1185 fetch_mmaped_event(struct perf_session *session,
1186 		   u64 head, size_t mmap_size, char *buf)
1187 {
1188 	union perf_event *event;
1189 
1190 	/*
1191 	 * Ensure we have enough space remaining to read
1192 	 * the size of the event in the headers.
1193 	 */
1194 	if (head + sizeof(event->header) > mmap_size)
1195 		return NULL;
1196 
1197 	event = (union perf_event *)(buf + head);
1198 
1199 	if (session->header.needs_swap)
1200 		perf_event_header__bswap(&event->header);
1201 
1202 	if (head + event->header.size > mmap_size)
1203 		return NULL;
1204 
1205 	return event;
1206 }
1207 
1208 int __perf_session__process_events(struct perf_session *session,
1209 				   u64 data_offset, u64 data_size,
1210 				   u64 file_size, struct perf_tool *tool)
1211 {
1212 	u64 head, page_offset, file_offset, file_pos, progress_next;
1213 	int err, mmap_prot, mmap_flags, map_idx = 0;
1214 	size_t	page_size, mmap_size;
1215 	char *buf, *mmaps[8];
1216 	union perf_event *event;
1217 	uint32_t size;
1218 
1219 	perf_tool__fill_defaults(tool);
1220 
1221 	page_size = sysconf(_SC_PAGESIZE);
1222 
1223 	page_offset = page_size * (data_offset / page_size);
1224 	file_offset = page_offset;
1225 	head = data_offset - page_offset;
1226 
1227 	if (data_offset + data_size < file_size)
1228 		file_size = data_offset + data_size;
1229 
1230 	progress_next = file_size / 16;
1231 
1232 	mmap_size = session->mmap_window;
1233 	if (mmap_size > file_size)
1234 		mmap_size = file_size;
1235 
1236 	memset(mmaps, 0, sizeof(mmaps));
1237 
1238 	mmap_prot  = PROT_READ;
1239 	mmap_flags = MAP_SHARED;
1240 
1241 	if (session->header.needs_swap) {
1242 		mmap_prot  |= PROT_WRITE;
1243 		mmap_flags = MAP_PRIVATE;
1244 	}
1245 remap:
1246 	buf = mmap(NULL, mmap_size, mmap_prot, mmap_flags, session->fd,
1247 		   file_offset);
1248 	if (buf == MAP_FAILED) {
1249 		pr_err("failed to mmap file\n");
1250 		err = -errno;
1251 		goto out_err;
1252 	}
1253 	mmaps[map_idx] = buf;
1254 	map_idx = (map_idx + 1) & (ARRAY_SIZE(mmaps) - 1);
1255 	file_pos = file_offset + head;
1256 
1257 more:
1258 	event = fetch_mmaped_event(session, head, mmap_size, buf);
1259 	if (!event) {
1260 		if (mmaps[map_idx]) {
1261 			munmap(mmaps[map_idx], mmap_size);
1262 			mmaps[map_idx] = NULL;
1263 		}
1264 
1265 		page_offset = page_size * (head / page_size);
1266 		file_offset += page_offset;
1267 		head -= page_offset;
1268 		goto remap;
1269 	}
1270 
1271 	size = event->header.size;
1272 
1273 	if (size == 0 ||
1274 	    perf_session__process_event(session, event, tool, file_pos) < 0) {
1275 		pr_err("%#" PRIx64 " [%#x]: failed to process type: %d\n",
1276 		       file_offset + head, event->header.size,
1277 		       event->header.type);
1278 		err = -EINVAL;
1279 		goto out_err;
1280 	}
1281 
1282 	head += size;
1283 	file_pos += size;
1284 
1285 	if (file_pos >= progress_next) {
1286 		progress_next += file_size / 16;
1287 		ui_progress__update(file_pos, file_size,
1288 				    "Processing events...");
1289 	}
1290 
1291 	if (file_pos < file_size)
1292 		goto more;
1293 
1294 	err = 0;
1295 	/* do the final flush for ordered samples */
1296 	session->ordered_samples.next_flush = ULLONG_MAX;
1297 	flush_sample_queue(session, tool);
1298 out_err:
1299 	perf_session__warn_about_errors(session, tool);
1300 	perf_session_free_sample_buffers(session);
1301 	return err;
1302 }
1303 
1304 int perf_session__process_events(struct perf_session *self,
1305 				 struct perf_tool *tool)
1306 {
1307 	int err;
1308 
1309 	if (perf_session__register_idle_thread(self) == NULL)
1310 		return -ENOMEM;
1311 
1312 	if (!self->fd_pipe)
1313 		err = __perf_session__process_events(self,
1314 						     self->header.data_offset,
1315 						     self->header.data_size,
1316 						     self->size, tool);
1317 	else
1318 		err = __perf_session__process_pipe_events(self, tool);
1319 
1320 	return err;
1321 }
1322 
1323 bool perf_session__has_traces(struct perf_session *self, const char *msg)
1324 {
1325 	if (!(self->sample_type & PERF_SAMPLE_RAW)) {
1326 		pr_err("No trace sample to read. Did you call 'perf %s'?\n", msg);
1327 		return false;
1328 	}
1329 
1330 	return true;
1331 }
1332 
1333 int maps__set_kallsyms_ref_reloc_sym(struct map **maps,
1334 				     const char *symbol_name, u64 addr)
1335 {
1336 	char *bracket;
1337 	enum map_type i;
1338 	struct ref_reloc_sym *ref;
1339 
1340 	ref = zalloc(sizeof(struct ref_reloc_sym));
1341 	if (ref == NULL)
1342 		return -ENOMEM;
1343 
1344 	ref->name = strdup(symbol_name);
1345 	if (ref->name == NULL) {
1346 		free(ref);
1347 		return -ENOMEM;
1348 	}
1349 
1350 	bracket = strchr(ref->name, ']');
1351 	if (bracket)
1352 		*bracket = '\0';
1353 
1354 	ref->addr = addr;
1355 
1356 	for (i = 0; i < MAP__NR_TYPES; ++i) {
1357 		struct kmap *kmap = map__kmap(maps[i]);
1358 		kmap->ref_reloc_sym = ref;
1359 	}
1360 
1361 	return 0;
1362 }
1363 
1364 size_t perf_session__fprintf_dsos(struct perf_session *self, FILE *fp)
1365 {
1366 	return __dsos__fprintf(&self->host_machine.kernel_dsos, fp) +
1367 	       __dsos__fprintf(&self->host_machine.user_dsos, fp) +
1368 	       machines__fprintf_dsos(&self->machines, fp);
1369 }
1370 
1371 size_t perf_session__fprintf_dsos_buildid(struct perf_session *self, FILE *fp,
1372 					  bool with_hits)
1373 {
1374 	size_t ret = machine__fprintf_dsos_buildid(&self->host_machine, fp, with_hits);
1375 	return ret + machines__fprintf_dsos_buildid(&self->machines, fp, with_hits);
1376 }
1377 
1378 size_t perf_session__fprintf_nr_events(struct perf_session *session, FILE *fp)
1379 {
1380 	struct perf_evsel *pos;
1381 	size_t ret = fprintf(fp, "Aggregated stats:\n");
1382 
1383 	ret += hists__fprintf_nr_events(&session->hists, fp);
1384 
1385 	list_for_each_entry(pos, &session->evlist->entries, node) {
1386 		ret += fprintf(fp, "%s stats:\n", event_name(pos));
1387 		ret += hists__fprintf_nr_events(&pos->hists, fp);
1388 	}
1389 
1390 	return ret;
1391 }
1392 
1393 size_t perf_session__fprintf(struct perf_session *session, FILE *fp)
1394 {
1395 	/*
1396 	 * FIXME: Here we have to actually print all the machines in this
1397 	 * session, not just the host...
1398 	 */
1399 	return machine__fprintf(&session->host_machine, fp);
1400 }
1401 
1402 void perf_session__remove_thread(struct perf_session *session,
1403 				 struct thread *th)
1404 {
1405 	/*
1406 	 * FIXME: This one makes no sense, we need to remove the thread from
1407 	 * the machine it belongs to, perf_session can have many machines, so
1408 	 * doing it always on ->host_machine is wrong.  Fix when auditing all
1409 	 * the 'perf kvm' code.
1410 	 */
1411 	machine__remove_thread(&session->host_machine, th);
1412 }
1413 
1414 struct perf_evsel *perf_session__find_first_evtype(struct perf_session *session,
1415 					      unsigned int type)
1416 {
1417 	struct perf_evsel *pos;
1418 
1419 	list_for_each_entry(pos, &session->evlist->entries, node) {
1420 		if (pos->attr.type == type)
1421 			return pos;
1422 	}
1423 	return NULL;
1424 }
1425 
1426 void perf_event__print_ip(union perf_event *event, struct perf_sample *sample,
1427 			  struct machine *machine, struct perf_evsel *evsel,
1428 			  int print_sym, int print_dso, int print_symoffset)
1429 {
1430 	struct addr_location al;
1431 	struct callchain_cursor *cursor = &evsel->hists.callchain_cursor;
1432 	struct callchain_cursor_node *node;
1433 
1434 	if (perf_event__preprocess_sample(event, machine, &al, sample,
1435 					  NULL) < 0) {
1436 		error("problem processing %d event, skipping it.\n",
1437 			event->header.type);
1438 		return;
1439 	}
1440 
1441 	if (symbol_conf.use_callchain && sample->callchain) {
1442 
1443 		if (machine__resolve_callchain(machine, evsel, al.thread,
1444 						sample->callchain, NULL) != 0) {
1445 			if (verbose)
1446 				error("Failed to resolve callchain. Skipping\n");
1447 			return;
1448 		}
1449 		callchain_cursor_commit(cursor);
1450 
1451 		while (1) {
1452 			node = callchain_cursor_current(cursor);
1453 			if (!node)
1454 				break;
1455 
1456 			printf("\t%16" PRIx64, node->ip);
1457 			if (print_sym) {
1458 				printf(" ");
1459 				symbol__fprintf_symname(node->sym, stdout);
1460 			}
1461 			if (print_dso) {
1462 				printf(" (");
1463 				map__fprintf_dsoname(al.map, stdout);
1464 				printf(")");
1465 			}
1466 			printf("\n");
1467 
1468 			callchain_cursor_advance(cursor);
1469 		}
1470 
1471 	} else {
1472 		printf("%16" PRIx64, sample->ip);
1473 		if (print_sym) {
1474 			printf(" ");
1475 			if (print_symoffset)
1476 				symbol__fprintf_symname_offs(al.sym, &al,
1477 							     stdout);
1478 			else
1479 				symbol__fprintf_symname(al.sym, stdout);
1480 		}
1481 
1482 		if (print_dso) {
1483 			printf(" (");
1484 			map__fprintf_dsoname(al.map, stdout);
1485 			printf(")");
1486 		}
1487 	}
1488 }
1489 
1490 int perf_session__cpu_bitmap(struct perf_session *session,
1491 			     const char *cpu_list, unsigned long *cpu_bitmap)
1492 {
1493 	int i;
1494 	struct cpu_map *map;
1495 
1496 	for (i = 0; i < PERF_TYPE_MAX; ++i) {
1497 		struct perf_evsel *evsel;
1498 
1499 		evsel = perf_session__find_first_evtype(session, i);
1500 		if (!evsel)
1501 			continue;
1502 
1503 		if (!(evsel->attr.sample_type & PERF_SAMPLE_CPU)) {
1504 			pr_err("File does not contain CPU events. "
1505 			       "Remove -c option to proceed.\n");
1506 			return -1;
1507 		}
1508 	}
1509 
1510 	map = cpu_map__new(cpu_list);
1511 	if (map == NULL) {
1512 		pr_err("Invalid cpu_list\n");
1513 		return -1;
1514 	}
1515 
1516 	for (i = 0; i < map->nr; i++) {
1517 		int cpu = map->map[i];
1518 
1519 		if (cpu >= MAX_NR_CPUS) {
1520 			pr_err("Requested CPU %d too large. "
1521 			       "Consider raising MAX_NR_CPUS\n", cpu);
1522 			return -1;
1523 		}
1524 
1525 		set_bit(cpu, cpu_bitmap);
1526 	}
1527 
1528 	return 0;
1529 }
1530 
1531 void perf_session__fprintf_info(struct perf_session *session, FILE *fp,
1532 				bool full)
1533 {
1534 	struct stat st;
1535 	int ret;
1536 
1537 	if (session == NULL || fp == NULL)
1538 		return;
1539 
1540 	ret = fstat(session->fd, &st);
1541 	if (ret == -1)
1542 		return;
1543 
1544 	fprintf(fp, "# ========\n");
1545 	fprintf(fp, "# captured on: %s", ctime(&st.st_ctime));
1546 	perf_header__fprintf_info(session, fp, full);
1547 	fprintf(fp, "# ========\n#\n");
1548 }
1549