xref: /openbmc/linux/tools/perf/util/session.c (revision 37982ba0)
1 #define _FILE_OFFSET_BITS 64
2 
3 #include <linux/kernel.h>
4 
5 #include <byteswap.h>
6 #include <unistd.h>
7 #include <sys/types.h>
8 #include <sys/mman.h>
9 
10 #include "session.h"
11 #include "sort.h"
12 #include "util.h"
13 
14 static int perf_session__open(struct perf_session *self, bool force)
15 {
16 	struct stat input_stat;
17 
18 	if (!strcmp(self->filename, "-")) {
19 		self->fd_pipe = true;
20 		self->fd = STDIN_FILENO;
21 
22 		if (perf_header__read(self, self->fd) < 0)
23 			pr_err("incompatible file format");
24 
25 		return 0;
26 	}
27 
28 	self->fd = open(self->filename, O_RDONLY);
29 	if (self->fd < 0) {
30 		int err = errno;
31 
32 		pr_err("failed to open %s: %s", self->filename, strerror(err));
33 		if (err == ENOENT && !strcmp(self->filename, "perf.data"))
34 			pr_err("  (try 'perf record' first)");
35 		pr_err("\n");
36 		return -errno;
37 	}
38 
39 	if (fstat(self->fd, &input_stat) < 0)
40 		goto out_close;
41 
42 	if (!force && input_stat.st_uid && (input_stat.st_uid != geteuid())) {
43 		pr_err("file %s not owned by current user or root\n",
44 		       self->filename);
45 		goto out_close;
46 	}
47 
48 	if (!input_stat.st_size) {
49 		pr_info("zero-sized file (%s), nothing to do!\n",
50 			self->filename);
51 		goto out_close;
52 	}
53 
54 	if (perf_header__read(self, self->fd) < 0) {
55 		pr_err("incompatible file format");
56 		goto out_close;
57 	}
58 
59 	self->size = input_stat.st_size;
60 	return 0;
61 
62 out_close:
63 	close(self->fd);
64 	self->fd = -1;
65 	return -1;
66 }
67 
68 void perf_session__update_sample_type(struct perf_session *self)
69 {
70 	self->sample_type = perf_header__sample_type(&self->header);
71 }
72 
73 int perf_session__create_kernel_maps(struct perf_session *self)
74 {
75 	int ret = machine__create_kernel_maps(&self->host_machine);
76 
77 	if (ret >= 0)
78 		ret = machines__create_guest_kernel_maps(&self->machines);
79 	return ret;
80 }
81 
82 static void perf_session__destroy_kernel_maps(struct perf_session *self)
83 {
84 	machine__destroy_kernel_maps(&self->host_machine);
85 	machines__destroy_guest_kernel_maps(&self->machines);
86 }
87 
88 struct perf_session *perf_session__new(const char *filename, int mode, bool force, bool repipe)
89 {
90 	size_t len = filename ? strlen(filename) + 1 : 0;
91 	struct perf_session *self = zalloc(sizeof(*self) + len);
92 
93 	if (self == NULL)
94 		goto out;
95 
96 	if (perf_header__init(&self->header) < 0)
97 		goto out_free;
98 
99 	memcpy(self->filename, filename, len);
100 	self->threads = RB_ROOT;
101 	INIT_LIST_HEAD(&self->dead_threads);
102 	self->hists_tree = RB_ROOT;
103 	self->last_match = NULL;
104 	self->mmap_window = 32;
105 	self->machines = RB_ROOT;
106 	self->repipe = repipe;
107 	INIT_LIST_HEAD(&self->ordered_samples.samples_head);
108 	machine__init(&self->host_machine, "", HOST_KERNEL_ID);
109 
110 	if (mode == O_RDONLY) {
111 		if (perf_session__open(self, force) < 0)
112 			goto out_delete;
113 	} else if (mode == O_WRONLY) {
114 		/*
115 		 * In O_RDONLY mode this will be performed when reading the
116 		 * kernel MMAP event, in event__process_mmap().
117 		 */
118 		if (perf_session__create_kernel_maps(self) < 0)
119 			goto out_delete;
120 	}
121 
122 	perf_session__update_sample_type(self);
123 out:
124 	return self;
125 out_free:
126 	free(self);
127 	return NULL;
128 out_delete:
129 	perf_session__delete(self);
130 	return NULL;
131 }
132 
133 static void perf_session__delete_dead_threads(struct perf_session *self)
134 {
135 	struct thread *n, *t;
136 
137 	list_for_each_entry_safe(t, n, &self->dead_threads, node) {
138 		list_del(&t->node);
139 		thread__delete(t);
140 	}
141 }
142 
143 static void perf_session__delete_threads(struct perf_session *self)
144 {
145 	struct rb_node *nd = rb_first(&self->threads);
146 
147 	while (nd) {
148 		struct thread *t = rb_entry(nd, struct thread, rb_node);
149 
150 		rb_erase(&t->rb_node, &self->threads);
151 		nd = rb_next(nd);
152 		thread__delete(t);
153 	}
154 }
155 
156 void perf_session__delete(struct perf_session *self)
157 {
158 	perf_header__exit(&self->header);
159 	perf_session__destroy_kernel_maps(self);
160 	perf_session__delete_dead_threads(self);
161 	perf_session__delete_threads(self);
162 	machine__exit(&self->host_machine);
163 	close(self->fd);
164 	free(self);
165 }
166 
167 void perf_session__remove_thread(struct perf_session *self, struct thread *th)
168 {
169 	self->last_match = NULL;
170 	rb_erase(&th->rb_node, &self->threads);
171 	/*
172 	 * We may have references to this thread, for instance in some hist_entry
173 	 * instances, so just move them to a separate list.
174 	 */
175 	list_add_tail(&th->node, &self->dead_threads);
176 }
177 
178 static bool symbol__match_parent_regex(struct symbol *sym)
179 {
180 	if (sym->name && !regexec(&parent_regex, sym->name, 0, NULL, 0))
181 		return 1;
182 
183 	return 0;
184 }
185 
186 struct map_symbol *perf_session__resolve_callchain(struct perf_session *self,
187 						   struct thread *thread,
188 						   struct ip_callchain *chain,
189 						   struct symbol **parent)
190 {
191 	u8 cpumode = PERF_RECORD_MISC_USER;
192 	unsigned int i;
193 	struct map_symbol *syms = calloc(chain->nr, sizeof(*syms));
194 
195 	if (!syms)
196 		return NULL;
197 
198 	for (i = 0; i < chain->nr; i++) {
199 		u64 ip = chain->ips[i];
200 		struct addr_location al;
201 
202 		if (ip >= PERF_CONTEXT_MAX) {
203 			switch (ip) {
204 			case PERF_CONTEXT_HV:
205 				cpumode = PERF_RECORD_MISC_HYPERVISOR;	break;
206 			case PERF_CONTEXT_KERNEL:
207 				cpumode = PERF_RECORD_MISC_KERNEL;	break;
208 			case PERF_CONTEXT_USER:
209 				cpumode = PERF_RECORD_MISC_USER;	break;
210 			default:
211 				break;
212 			}
213 			continue;
214 		}
215 
216 		al.filtered = false;
217 		thread__find_addr_location(thread, self, cpumode,
218 				MAP__FUNCTION, thread->pid, ip, &al, NULL);
219 		if (al.sym != NULL) {
220 			if (sort__has_parent && !*parent &&
221 			    symbol__match_parent_regex(al.sym))
222 				*parent = al.sym;
223 			if (!symbol_conf.use_callchain)
224 				break;
225 			syms[i].map = al.map;
226 			syms[i].sym = al.sym;
227 		}
228 	}
229 
230 	return syms;
231 }
232 
233 static int process_event_stub(event_t *event __used,
234 			      struct perf_session *session __used)
235 {
236 	dump_printf(": unhandled!\n");
237 	return 0;
238 }
239 
240 static int process_finished_round_stub(event_t *event __used,
241 				       struct perf_session *session __used,
242 				       struct perf_event_ops *ops __used)
243 {
244 	dump_printf(": unhandled!\n");
245 	return 0;
246 }
247 
248 static int process_finished_round(event_t *event,
249 				  struct perf_session *session,
250 				  struct perf_event_ops *ops);
251 
252 static void perf_event_ops__fill_defaults(struct perf_event_ops *handler)
253 {
254 	if (handler->sample == NULL)
255 		handler->sample = process_event_stub;
256 	if (handler->mmap == NULL)
257 		handler->mmap = process_event_stub;
258 	if (handler->comm == NULL)
259 		handler->comm = process_event_stub;
260 	if (handler->fork == NULL)
261 		handler->fork = process_event_stub;
262 	if (handler->exit == NULL)
263 		handler->exit = process_event_stub;
264 	if (handler->lost == NULL)
265 		handler->lost = event__process_lost;
266 	if (handler->read == NULL)
267 		handler->read = process_event_stub;
268 	if (handler->throttle == NULL)
269 		handler->throttle = process_event_stub;
270 	if (handler->unthrottle == NULL)
271 		handler->unthrottle = process_event_stub;
272 	if (handler->attr == NULL)
273 		handler->attr = process_event_stub;
274 	if (handler->event_type == NULL)
275 		handler->event_type = process_event_stub;
276 	if (handler->tracing_data == NULL)
277 		handler->tracing_data = process_event_stub;
278 	if (handler->build_id == NULL)
279 		handler->build_id = process_event_stub;
280 	if (handler->finished_round == NULL) {
281 		if (handler->ordered_samples)
282 			handler->finished_round = process_finished_round;
283 		else
284 			handler->finished_round = process_finished_round_stub;
285 	}
286 }
287 
288 void mem_bswap_64(void *src, int byte_size)
289 {
290 	u64 *m = src;
291 
292 	while (byte_size > 0) {
293 		*m = bswap_64(*m);
294 		byte_size -= sizeof(u64);
295 		++m;
296 	}
297 }
298 
299 static void event__all64_swap(event_t *self)
300 {
301 	struct perf_event_header *hdr = &self->header;
302 	mem_bswap_64(hdr + 1, self->header.size - sizeof(*hdr));
303 }
304 
305 static void event__comm_swap(event_t *self)
306 {
307 	self->comm.pid = bswap_32(self->comm.pid);
308 	self->comm.tid = bswap_32(self->comm.tid);
309 }
310 
311 static void event__mmap_swap(event_t *self)
312 {
313 	self->mmap.pid	 = bswap_32(self->mmap.pid);
314 	self->mmap.tid	 = bswap_32(self->mmap.tid);
315 	self->mmap.start = bswap_64(self->mmap.start);
316 	self->mmap.len	 = bswap_64(self->mmap.len);
317 	self->mmap.pgoff = bswap_64(self->mmap.pgoff);
318 }
319 
320 static void event__task_swap(event_t *self)
321 {
322 	self->fork.pid	= bswap_32(self->fork.pid);
323 	self->fork.tid	= bswap_32(self->fork.tid);
324 	self->fork.ppid	= bswap_32(self->fork.ppid);
325 	self->fork.ptid	= bswap_32(self->fork.ptid);
326 	self->fork.time	= bswap_64(self->fork.time);
327 }
328 
329 static void event__read_swap(event_t *self)
330 {
331 	self->read.pid		= bswap_32(self->read.pid);
332 	self->read.tid		= bswap_32(self->read.tid);
333 	self->read.value	= bswap_64(self->read.value);
334 	self->read.time_enabled	= bswap_64(self->read.time_enabled);
335 	self->read.time_running	= bswap_64(self->read.time_running);
336 	self->read.id		= bswap_64(self->read.id);
337 }
338 
339 static void event__attr_swap(event_t *self)
340 {
341 	size_t size;
342 
343 	self->attr.attr.type		= bswap_32(self->attr.attr.type);
344 	self->attr.attr.size		= bswap_32(self->attr.attr.size);
345 	self->attr.attr.config		= bswap_64(self->attr.attr.config);
346 	self->attr.attr.sample_period	= bswap_64(self->attr.attr.sample_period);
347 	self->attr.attr.sample_type	= bswap_64(self->attr.attr.sample_type);
348 	self->attr.attr.read_format	= bswap_64(self->attr.attr.read_format);
349 	self->attr.attr.wakeup_events	= bswap_32(self->attr.attr.wakeup_events);
350 	self->attr.attr.bp_type		= bswap_32(self->attr.attr.bp_type);
351 	self->attr.attr.bp_addr		= bswap_64(self->attr.attr.bp_addr);
352 	self->attr.attr.bp_len		= bswap_64(self->attr.attr.bp_len);
353 
354 	size = self->header.size;
355 	size -= (void *)&self->attr.id - (void *)self;
356 	mem_bswap_64(self->attr.id, size);
357 }
358 
359 static void event__event_type_swap(event_t *self)
360 {
361 	self->event_type.event_type.event_id =
362 		bswap_64(self->event_type.event_type.event_id);
363 }
364 
365 static void event__tracing_data_swap(event_t *self)
366 {
367 	self->tracing_data.size = bswap_32(self->tracing_data.size);
368 }
369 
370 typedef void (*event__swap_op)(event_t *self);
371 
372 static event__swap_op event__swap_ops[] = {
373 	[PERF_RECORD_MMAP]   = event__mmap_swap,
374 	[PERF_RECORD_COMM]   = event__comm_swap,
375 	[PERF_RECORD_FORK]   = event__task_swap,
376 	[PERF_RECORD_EXIT]   = event__task_swap,
377 	[PERF_RECORD_LOST]   = event__all64_swap,
378 	[PERF_RECORD_READ]   = event__read_swap,
379 	[PERF_RECORD_SAMPLE] = event__all64_swap,
380 	[PERF_RECORD_HEADER_ATTR]   = event__attr_swap,
381 	[PERF_RECORD_HEADER_EVENT_TYPE]   = event__event_type_swap,
382 	[PERF_RECORD_HEADER_TRACING_DATA]   = event__tracing_data_swap,
383 	[PERF_RECORD_HEADER_BUILD_ID]   = NULL,
384 	[PERF_RECORD_HEADER_MAX]    = NULL,
385 };
386 
387 struct sample_queue {
388 	u64			timestamp;
389 	struct sample_event	*event;
390 	struct list_head	list;
391 };
392 
393 static void flush_sample_queue(struct perf_session *s,
394 			       struct perf_event_ops *ops)
395 {
396 	struct list_head *head = &s->ordered_samples.samples_head;
397 	u64 limit = s->ordered_samples.next_flush;
398 	struct sample_queue *tmp, *iter;
399 
400 	if (!ops->ordered_samples || !limit)
401 		return;
402 
403 	list_for_each_entry_safe(iter, tmp, head, list) {
404 		if (iter->timestamp > limit)
405 			return;
406 
407 		if (iter == s->ordered_samples.last_inserted)
408 			s->ordered_samples.last_inserted = NULL;
409 
410 		ops->sample((event_t *)iter->event, s);
411 
412 		s->ordered_samples.last_flush = iter->timestamp;
413 		list_del(&iter->list);
414 		free(iter->event);
415 		free(iter);
416 	}
417 }
418 
419 /*
420  * When perf record finishes a pass on every buffers, it records this pseudo
421  * event.
422  * We record the max timestamp t found in the pass n.
423  * Assuming these timestamps are monotonic across cpus, we know that if
424  * a buffer still has events with timestamps below t, they will be all
425  * available and then read in the pass n + 1.
426  * Hence when we start to read the pass n + 2, we can safely flush every
427  * events with timestamps below t.
428  *
429  *    ============ PASS n =================
430  *       CPU 0         |   CPU 1
431  *                     |
432  *    cnt1 timestamps  |   cnt2 timestamps
433  *          1          |         2
434  *          2          |         3
435  *          -          |         4  <--- max recorded
436  *
437  *    ============ PASS n + 1 ==============
438  *       CPU 0         |   CPU 1
439  *                     |
440  *    cnt1 timestamps  |   cnt2 timestamps
441  *          3          |         5
442  *          4          |         6
443  *          5          |         7 <---- max recorded
444  *
445  *      Flush every events below timestamp 4
446  *
447  *    ============ PASS n + 2 ==============
448  *       CPU 0         |   CPU 1
449  *                     |
450  *    cnt1 timestamps  |   cnt2 timestamps
451  *          6          |         8
452  *          7          |         9
453  *          -          |         10
454  *
455  *      Flush every events below timestamp 7
456  *      etc...
457  */
458 static int process_finished_round(event_t *event __used,
459 				  struct perf_session *session,
460 				  struct perf_event_ops *ops)
461 {
462 	flush_sample_queue(session, ops);
463 	session->ordered_samples.next_flush = session->ordered_samples.max_timestamp;
464 
465 	return 0;
466 }
467 
468 static void __queue_sample_end(struct sample_queue *new, struct list_head *head)
469 {
470 	struct sample_queue *iter;
471 
472 	list_for_each_entry_reverse(iter, head, list) {
473 		if (iter->timestamp < new->timestamp) {
474 			list_add(&new->list, &iter->list);
475 			return;
476 		}
477 	}
478 
479 	list_add(&new->list, head);
480 }
481 
482 static void __queue_sample_before(struct sample_queue *new,
483 				  struct sample_queue *iter,
484 				  struct list_head *head)
485 {
486 	list_for_each_entry_continue_reverse(iter, head, list) {
487 		if (iter->timestamp < new->timestamp) {
488 			list_add(&new->list, &iter->list);
489 			return;
490 		}
491 	}
492 
493 	list_add(&new->list, head);
494 }
495 
496 static void __queue_sample_after(struct sample_queue *new,
497 				 struct sample_queue *iter,
498 				 struct list_head *head)
499 {
500 	list_for_each_entry_continue(iter, head, list) {
501 		if (iter->timestamp > new->timestamp) {
502 			list_add_tail(&new->list, &iter->list);
503 			return;
504 		}
505 	}
506 	list_add_tail(&new->list, head);
507 }
508 
509 /* The queue is ordered by time */
510 static void __queue_sample_event(struct sample_queue *new,
511 				 struct perf_session *s)
512 {
513 	struct sample_queue *last_inserted = s->ordered_samples.last_inserted;
514 	struct list_head *head = &s->ordered_samples.samples_head;
515 
516 
517 	if (!last_inserted) {
518 		__queue_sample_end(new, head);
519 		return;
520 	}
521 
522 	/*
523 	 * Most of the time the current event has a timestamp
524 	 * very close to the last event inserted, unless we just switched
525 	 * to another event buffer. Having a sorting based on a list and
526 	 * on the last inserted event that is close to the current one is
527 	 * probably more efficient than an rbtree based sorting.
528 	 */
529 	if (last_inserted->timestamp >= new->timestamp)
530 		__queue_sample_before(new, last_inserted, head);
531 	else
532 		__queue_sample_after(new, last_inserted, head);
533 }
534 
535 static int queue_sample_event(event_t *event, struct sample_data *data,
536 			      struct perf_session *s)
537 {
538 	u64 timestamp = data->time;
539 	struct sample_queue *new;
540 
541 
542 	if (timestamp < s->ordered_samples.last_flush) {
543 		printf("Warning: Timestamp below last timeslice flush\n");
544 		return -EINVAL;
545 	}
546 
547 	new = malloc(sizeof(*new));
548 	if (!new)
549 		return -ENOMEM;
550 
551 	new->timestamp = timestamp;
552 
553 	new->event = malloc(event->header.size);
554 	if (!new->event) {
555 		free(new);
556 		return -ENOMEM;
557 	}
558 
559 	memcpy(new->event, event, event->header.size);
560 
561 	__queue_sample_event(new, s);
562 	s->ordered_samples.last_inserted = new;
563 
564 	if (new->timestamp > s->ordered_samples.max_timestamp)
565 		s->ordered_samples.max_timestamp = new->timestamp;
566 
567 	return 0;
568 }
569 
570 static int perf_session__process_sample(event_t *event, struct perf_session *s,
571 					struct perf_event_ops *ops)
572 {
573 	struct sample_data data;
574 
575 	if (!ops->ordered_samples)
576 		return ops->sample(event, s);
577 
578 	bzero(&data, sizeof(struct sample_data));
579 	event__parse_sample(event, s->sample_type, &data);
580 
581 	queue_sample_event(event, &data, s);
582 
583 	return 0;
584 }
585 
586 static int perf_session__process_event(struct perf_session *self,
587 				       event_t *event,
588 				       struct perf_event_ops *ops,
589 				       u64 offset, u64 head)
590 {
591 	trace_event(event);
592 
593 	if (event->header.type < PERF_RECORD_HEADER_MAX) {
594 		dump_printf("%#Lx [%#x]: PERF_RECORD_%s",
595 			    offset + head, event->header.size,
596 			    event__name[event->header.type]);
597 		hists__inc_nr_events(&self->hists, event->header.type);
598 	}
599 
600 	if (self->header.needs_swap && event__swap_ops[event->header.type])
601 		event__swap_ops[event->header.type](event);
602 
603 	switch (event->header.type) {
604 	case PERF_RECORD_SAMPLE:
605 		return perf_session__process_sample(event, self, ops);
606 	case PERF_RECORD_MMAP:
607 		return ops->mmap(event, self);
608 	case PERF_RECORD_COMM:
609 		return ops->comm(event, self);
610 	case PERF_RECORD_FORK:
611 		return ops->fork(event, self);
612 	case PERF_RECORD_EXIT:
613 		return ops->exit(event, self);
614 	case PERF_RECORD_LOST:
615 		return ops->lost(event, self);
616 	case PERF_RECORD_READ:
617 		return ops->read(event, self);
618 	case PERF_RECORD_THROTTLE:
619 		return ops->throttle(event, self);
620 	case PERF_RECORD_UNTHROTTLE:
621 		return ops->unthrottle(event, self);
622 	case PERF_RECORD_HEADER_ATTR:
623 		return ops->attr(event, self);
624 	case PERF_RECORD_HEADER_EVENT_TYPE:
625 		return ops->event_type(event, self);
626 	case PERF_RECORD_HEADER_TRACING_DATA:
627 		/* setup for reading amidst mmap */
628 		lseek(self->fd, offset + head, SEEK_SET);
629 		return ops->tracing_data(event, self);
630 	case PERF_RECORD_HEADER_BUILD_ID:
631 		return ops->build_id(event, self);
632 	case PERF_RECORD_FINISHED_ROUND:
633 		return ops->finished_round(event, self, ops);
634 	default:
635 		++self->hists.stats.nr_unknown_events;
636 		return -1;
637 	}
638 }
639 
640 void perf_event_header__bswap(struct perf_event_header *self)
641 {
642 	self->type = bswap_32(self->type);
643 	self->misc = bswap_16(self->misc);
644 	self->size = bswap_16(self->size);
645 }
646 
647 static struct thread *perf_session__register_idle_thread(struct perf_session *self)
648 {
649 	struct thread *thread = perf_session__findnew(self, 0);
650 
651 	if (thread == NULL || thread__set_comm(thread, "swapper")) {
652 		pr_err("problem inserting idle task.\n");
653 		thread = NULL;
654 	}
655 
656 	return thread;
657 }
658 
659 int do_read(int fd, void *buf, size_t size)
660 {
661 	void *buf_start = buf;
662 
663 	while (size) {
664 		int ret = read(fd, buf, size);
665 
666 		if (ret <= 0)
667 			return ret;
668 
669 		size -= ret;
670 		buf += ret;
671 	}
672 
673 	return buf - buf_start;
674 }
675 
676 #define session_done()	(*(volatile int *)(&session_done))
677 volatile int session_done;
678 
679 static int __perf_session__process_pipe_events(struct perf_session *self,
680 					       struct perf_event_ops *ops)
681 {
682 	event_t event;
683 	uint32_t size;
684 	int skip = 0;
685 	u64 head;
686 	int err;
687 	void *p;
688 
689 	perf_event_ops__fill_defaults(ops);
690 
691 	head = 0;
692 more:
693 	err = do_read(self->fd, &event, sizeof(struct perf_event_header));
694 	if (err <= 0) {
695 		if (err == 0)
696 			goto done;
697 
698 		pr_err("failed to read event header\n");
699 		goto out_err;
700 	}
701 
702 	if (self->header.needs_swap)
703 		perf_event_header__bswap(&event.header);
704 
705 	size = event.header.size;
706 	if (size == 0)
707 		size = 8;
708 
709 	p = &event;
710 	p += sizeof(struct perf_event_header);
711 
712 	if (size - sizeof(struct perf_event_header)) {
713 		err = do_read(self->fd, p,
714 			      size - sizeof(struct perf_event_header));
715 		if (err <= 0) {
716 			if (err == 0) {
717 				pr_err("unexpected end of event stream\n");
718 				goto done;
719 			}
720 
721 			pr_err("failed to read event data\n");
722 			goto out_err;
723 		}
724 	}
725 
726 	if (size == 0 ||
727 	    (skip = perf_session__process_event(self, &event, ops,
728 						0, head)) < 0) {
729 		dump_printf("%#Lx [%#x]: skipping unknown header type: %d\n",
730 			    head, event.header.size, event.header.type);
731 		/*
732 		 * assume we lost track of the stream, check alignment, and
733 		 * increment a single u64 in the hope to catch on again 'soon'.
734 		 */
735 		if (unlikely(head & 7))
736 			head &= ~7ULL;
737 
738 		size = 8;
739 	}
740 
741 	head += size;
742 
743 	dump_printf("\n%#Lx [%#x]: event: %d\n",
744 		    head, event.header.size, event.header.type);
745 
746 	if (skip > 0)
747 		head += skip;
748 
749 	if (!session_done())
750 		goto more;
751 done:
752 	err = 0;
753 out_err:
754 	return err;
755 }
756 
757 int __perf_session__process_events(struct perf_session *self,
758 				   u64 data_offset, u64 data_size,
759 				   u64 file_size, struct perf_event_ops *ops)
760 {
761 	int err, mmap_prot, mmap_flags;
762 	u64 head, shift;
763 	u64 offset = 0;
764 	size_t	page_size;
765 	event_t *event;
766 	uint32_t size;
767 	char *buf;
768 	struct ui_progress *progress = ui_progress__new("Processing events...",
769 							self->size);
770 	if (progress == NULL)
771 		return -1;
772 
773 	perf_event_ops__fill_defaults(ops);
774 
775 	page_size = sysconf(_SC_PAGESIZE);
776 
777 	head = data_offset;
778 	shift = page_size * (head / page_size);
779 	offset += shift;
780 	head -= shift;
781 
782 	mmap_prot  = PROT_READ;
783 	mmap_flags = MAP_SHARED;
784 
785 	if (self->header.needs_swap) {
786 		mmap_prot  |= PROT_WRITE;
787 		mmap_flags = MAP_PRIVATE;
788 	}
789 remap:
790 	buf = mmap(NULL, page_size * self->mmap_window, mmap_prot,
791 		   mmap_flags, self->fd, offset);
792 	if (buf == MAP_FAILED) {
793 		pr_err("failed to mmap file\n");
794 		err = -errno;
795 		goto out_err;
796 	}
797 
798 more:
799 	event = (event_t *)(buf + head);
800 	ui_progress__update(progress, offset);
801 
802 	if (self->header.needs_swap)
803 		perf_event_header__bswap(&event->header);
804 	size = event->header.size;
805 	if (size == 0)
806 		size = 8;
807 
808 	if (head + event->header.size >= page_size * self->mmap_window) {
809 		int munmap_ret;
810 
811 		shift = page_size * (head / page_size);
812 
813 		munmap_ret = munmap(buf, page_size * self->mmap_window);
814 		assert(munmap_ret == 0);
815 
816 		offset += shift;
817 		head -= shift;
818 		goto remap;
819 	}
820 
821 	size = event->header.size;
822 
823 	dump_printf("\n%#Lx [%#x]: event: %d\n",
824 		    offset + head, event->header.size, event->header.type);
825 
826 	if (size == 0 ||
827 	    perf_session__process_event(self, event, ops, offset, head) < 0) {
828 		dump_printf("%#Lx [%#x]: skipping unknown header type: %d\n",
829 			    offset + head, event->header.size,
830 			    event->header.type);
831 		/*
832 		 * assume we lost track of the stream, check alignment, and
833 		 * increment a single u64 in the hope to catch on again 'soon'.
834 		 */
835 		if (unlikely(head & 7))
836 			head &= ~7ULL;
837 
838 		size = 8;
839 	}
840 
841 	head += size;
842 
843 	if (offset + head >= data_offset + data_size)
844 		goto done;
845 
846 	if (offset + head < file_size)
847 		goto more;
848 done:
849 	err = 0;
850 	/* do the final flush for ordered samples */
851 	self->ordered_samples.next_flush = ULLONG_MAX;
852 	flush_sample_queue(self, ops);
853 out_err:
854 	ui_progress__delete(progress);
855 	return err;
856 }
857 
858 int perf_session__process_events(struct perf_session *self,
859 				 struct perf_event_ops *ops)
860 {
861 	int err;
862 
863 	if (perf_session__register_idle_thread(self) == NULL)
864 		return -ENOMEM;
865 
866 	if (!self->fd_pipe)
867 		err = __perf_session__process_events(self,
868 						     self->header.data_offset,
869 						     self->header.data_size,
870 						     self->size, ops);
871 	else
872 		err = __perf_session__process_pipe_events(self, ops);
873 
874 	return err;
875 }
876 
877 bool perf_session__has_traces(struct perf_session *self, const char *msg)
878 {
879 	if (!(self->sample_type & PERF_SAMPLE_RAW)) {
880 		pr_err("No trace sample to read. Did you call 'perf %s'?\n", msg);
881 		return false;
882 	}
883 
884 	return true;
885 }
886 
887 int perf_session__set_kallsyms_ref_reloc_sym(struct map **maps,
888 					     const char *symbol_name,
889 					     u64 addr)
890 {
891 	char *bracket;
892 	enum map_type i;
893 	struct ref_reloc_sym *ref;
894 
895 	ref = zalloc(sizeof(struct ref_reloc_sym));
896 	if (ref == NULL)
897 		return -ENOMEM;
898 
899 	ref->name = strdup(symbol_name);
900 	if (ref->name == NULL) {
901 		free(ref);
902 		return -ENOMEM;
903 	}
904 
905 	bracket = strchr(ref->name, ']');
906 	if (bracket)
907 		*bracket = '\0';
908 
909 	ref->addr = addr;
910 
911 	for (i = 0; i < MAP__NR_TYPES; ++i) {
912 		struct kmap *kmap = map__kmap(maps[i]);
913 		kmap->ref_reloc_sym = ref;
914 	}
915 
916 	return 0;
917 }
918 
919 size_t perf_session__fprintf_dsos(struct perf_session *self, FILE *fp)
920 {
921 	return __dsos__fprintf(&self->host_machine.kernel_dsos, fp) +
922 	       __dsos__fprintf(&self->host_machine.user_dsos, fp) +
923 	       machines__fprintf_dsos(&self->machines, fp);
924 }
925 
926 size_t perf_session__fprintf_dsos_buildid(struct perf_session *self, FILE *fp,
927 					  bool with_hits)
928 {
929 	size_t ret = machine__fprintf_dsos_buildid(&self->host_machine, fp, with_hits);
930 	return ret + machines__fprintf_dsos_buildid(&self->machines, fp, with_hits);
931 }
932