xref: /openbmc/linux/tools/perf/util/session.c (revision 246d4ce8)
1 #define _FILE_OFFSET_BITS 64
2 
3 #include <linux/kernel.h>
4 
5 #include <byteswap.h>
6 #include <unistd.h>
7 #include <sys/types.h>
8 #include <sys/mman.h>
9 
10 #include "evlist.h"
11 #include "evsel.h"
12 #include "session.h"
13 #include "sort.h"
14 #include "util.h"
15 #include "cpumap.h"
16 
17 static int perf_session__open(struct perf_session *self, bool force)
18 {
19 	struct stat input_stat;
20 
21 	if (!strcmp(self->filename, "-")) {
22 		self->fd_pipe = true;
23 		self->fd = STDIN_FILENO;
24 
25 		if (perf_session__read_header(self, self->fd) < 0)
26 			pr_err("incompatible file format");
27 
28 		return 0;
29 	}
30 
31 	self->fd = open(self->filename, O_RDONLY);
32 	if (self->fd < 0) {
33 		int err = errno;
34 
35 		pr_err("failed to open %s: %s", self->filename, strerror(err));
36 		if (err == ENOENT && !strcmp(self->filename, "perf.data"))
37 			pr_err("  (try 'perf record' first)");
38 		pr_err("\n");
39 		return -errno;
40 	}
41 
42 	if (fstat(self->fd, &input_stat) < 0)
43 		goto out_close;
44 
45 	if (!force && input_stat.st_uid && (input_stat.st_uid != geteuid())) {
46 		pr_err("file %s not owned by current user or root\n",
47 		       self->filename);
48 		goto out_close;
49 	}
50 
51 	if (!input_stat.st_size) {
52 		pr_info("zero-sized file (%s), nothing to do!\n",
53 			self->filename);
54 		goto out_close;
55 	}
56 
57 	if (perf_session__read_header(self, self->fd) < 0) {
58 		pr_err("incompatible file format");
59 		goto out_close;
60 	}
61 
62 	if (!perf_evlist__valid_sample_type(self->evlist)) {
63 		pr_err("non matching sample_type");
64 		goto out_close;
65 	}
66 
67 	if (!perf_evlist__valid_sample_id_all(self->evlist)) {
68 		pr_err("non matching sample_id_all");
69 		goto out_close;
70 	}
71 
72 	self->size = input_stat.st_size;
73 	return 0;
74 
75 out_close:
76 	close(self->fd);
77 	self->fd = -1;
78 	return -1;
79 }
80 
81 void perf_session__update_sample_type(struct perf_session *self)
82 {
83 	self->sample_type = perf_evlist__sample_type(self->evlist);
84 	self->sample_size = __perf_evsel__sample_size(self->sample_type);
85 	self->sample_id_all = perf_evlist__sample_id_all(self->evlist);
86 	self->id_hdr_size = perf_evlist__id_hdr_size(self->evlist);
87 }
88 
89 int perf_session__create_kernel_maps(struct perf_session *self)
90 {
91 	int ret = machine__create_kernel_maps(&self->host_machine);
92 
93 	if (ret >= 0)
94 		ret = machines__create_guest_kernel_maps(&self->machines);
95 	return ret;
96 }
97 
98 static void perf_session__destroy_kernel_maps(struct perf_session *self)
99 {
100 	machine__destroy_kernel_maps(&self->host_machine);
101 	machines__destroy_guest_kernel_maps(&self->machines);
102 }
103 
104 struct perf_session *perf_session__new(const char *filename, int mode,
105 				       bool force, bool repipe,
106 				       struct perf_event_ops *ops)
107 {
108 	size_t len = filename ? strlen(filename) + 1 : 0;
109 	struct perf_session *self = zalloc(sizeof(*self) + len);
110 
111 	if (self == NULL)
112 		goto out;
113 
114 	memcpy(self->filename, filename, len);
115 	/*
116 	 * On 64bit we can mmap the data file in one go. No need for tiny mmap
117 	 * slices. On 32bit we use 32MB.
118 	 */
119 #if BITS_PER_LONG == 64
120 	self->mmap_window = ULLONG_MAX;
121 #else
122 	self->mmap_window = 32 * 1024 * 1024ULL;
123 #endif
124 	self->machines = RB_ROOT;
125 	self->repipe = repipe;
126 	INIT_LIST_HEAD(&self->ordered_samples.samples);
127 	INIT_LIST_HEAD(&self->ordered_samples.sample_cache);
128 	INIT_LIST_HEAD(&self->ordered_samples.to_free);
129 	machine__init(&self->host_machine, "", HOST_KERNEL_ID);
130 
131 	if (mode == O_RDONLY) {
132 		if (perf_session__open(self, force) < 0)
133 			goto out_delete;
134 		perf_session__update_sample_type(self);
135 	} else if (mode == O_WRONLY) {
136 		/*
137 		 * In O_RDONLY mode this will be performed when reading the
138 		 * kernel MMAP event, in perf_event__process_mmap().
139 		 */
140 		if (perf_session__create_kernel_maps(self) < 0)
141 			goto out_delete;
142 	}
143 
144 	if (ops && ops->ordering_requires_timestamps &&
145 	    ops->ordered_samples && !self->sample_id_all) {
146 		dump_printf("WARNING: No sample_id_all support, falling back to unordered processing\n");
147 		ops->ordered_samples = false;
148 	}
149 
150 out:
151 	return self;
152 out_delete:
153 	perf_session__delete(self);
154 	return NULL;
155 }
156 
157 static void machine__delete_dead_threads(struct machine *machine)
158 {
159 	struct thread *n, *t;
160 
161 	list_for_each_entry_safe(t, n, &machine->dead_threads, node) {
162 		list_del(&t->node);
163 		thread__delete(t);
164 	}
165 }
166 
167 static void perf_session__delete_dead_threads(struct perf_session *session)
168 {
169 	machine__delete_dead_threads(&session->host_machine);
170 }
171 
172 static void machine__delete_threads(struct machine *self)
173 {
174 	struct rb_node *nd = rb_first(&self->threads);
175 
176 	while (nd) {
177 		struct thread *t = rb_entry(nd, struct thread, rb_node);
178 
179 		rb_erase(&t->rb_node, &self->threads);
180 		nd = rb_next(nd);
181 		thread__delete(t);
182 	}
183 }
184 
185 static void perf_session__delete_threads(struct perf_session *session)
186 {
187 	machine__delete_threads(&session->host_machine);
188 }
189 
190 void perf_session__delete(struct perf_session *self)
191 {
192 	perf_session__destroy_kernel_maps(self);
193 	perf_session__delete_dead_threads(self);
194 	perf_session__delete_threads(self);
195 	machine__exit(&self->host_machine);
196 	close(self->fd);
197 	free(self);
198 }
199 
200 void machine__remove_thread(struct machine *self, struct thread *th)
201 {
202 	self->last_match = NULL;
203 	rb_erase(&th->rb_node, &self->threads);
204 	/*
205 	 * We may have references to this thread, for instance in some hist_entry
206 	 * instances, so just move them to a separate list.
207 	 */
208 	list_add_tail(&th->node, &self->dead_threads);
209 }
210 
211 static bool symbol__match_parent_regex(struct symbol *sym)
212 {
213 	if (sym->name && !regexec(&parent_regex, sym->name, 0, NULL, 0))
214 		return 1;
215 
216 	return 0;
217 }
218 
219 int perf_session__resolve_callchain(struct perf_session *self, struct perf_evsel *evsel,
220 				    struct thread *thread,
221 				    struct ip_callchain *chain,
222 				    struct symbol **parent)
223 {
224 	u8 cpumode = PERF_RECORD_MISC_USER;
225 	unsigned int i;
226 	int err;
227 
228 	callchain_cursor_reset(&evsel->hists.callchain_cursor);
229 
230 	for (i = 0; i < chain->nr; i++) {
231 		u64 ip;
232 		struct addr_location al;
233 
234 		if (callchain_param.order == ORDER_CALLEE)
235 			ip = chain->ips[i];
236 		else
237 			ip = chain->ips[chain->nr - i - 1];
238 
239 		if (ip >= PERF_CONTEXT_MAX) {
240 			switch (ip) {
241 			case PERF_CONTEXT_HV:
242 				cpumode = PERF_RECORD_MISC_HYPERVISOR;	break;
243 			case PERF_CONTEXT_KERNEL:
244 				cpumode = PERF_RECORD_MISC_KERNEL;	break;
245 			case PERF_CONTEXT_USER:
246 				cpumode = PERF_RECORD_MISC_USER;	break;
247 			default:
248 				break;
249 			}
250 			continue;
251 		}
252 
253 		al.filtered = false;
254 		thread__find_addr_location(thread, self, cpumode,
255 				MAP__FUNCTION, thread->pid, ip, &al, NULL);
256 		if (al.sym != NULL) {
257 			if (sort__has_parent && !*parent &&
258 			    symbol__match_parent_regex(al.sym))
259 				*parent = al.sym;
260 			if (!symbol_conf.use_callchain)
261 				break;
262 		}
263 
264 		err = callchain_cursor_append(&evsel->hists.callchain_cursor,
265 					      ip, al.map, al.sym);
266 		if (err)
267 			return err;
268 	}
269 
270 	return 0;
271 }
272 
273 static int process_event_synth_stub(union perf_event *event __used,
274 				    struct perf_session *session __used)
275 {
276 	dump_printf(": unhandled!\n");
277 	return 0;
278 }
279 
280 static int process_event_synth_attr_stub(union perf_event *event __used,
281 					 struct perf_evlist **pevlist __used)
282 {
283 	dump_printf(": unhandled!\n");
284 	return 0;
285 }
286 
287 static int process_event_sample_stub(union perf_event *event __used,
288 				     struct perf_sample *sample __used,
289 				     struct perf_evsel *evsel __used,
290 				     struct perf_session *session __used)
291 {
292 	dump_printf(": unhandled!\n");
293 	return 0;
294 }
295 
296 static int process_event_stub(union perf_event *event __used,
297 			      struct perf_sample *sample __used,
298 			      struct perf_session *session __used)
299 {
300 	dump_printf(": unhandled!\n");
301 	return 0;
302 }
303 
304 static int process_finished_round_stub(union perf_event *event __used,
305 				       struct perf_session *session __used,
306 				       struct perf_event_ops *ops __used)
307 {
308 	dump_printf(": unhandled!\n");
309 	return 0;
310 }
311 
312 static int process_finished_round(union perf_event *event,
313 				  struct perf_session *session,
314 				  struct perf_event_ops *ops);
315 
316 static void perf_event_ops__fill_defaults(struct perf_event_ops *handler)
317 {
318 	if (handler->sample == NULL)
319 		handler->sample = process_event_sample_stub;
320 	if (handler->mmap == NULL)
321 		handler->mmap = process_event_stub;
322 	if (handler->comm == NULL)
323 		handler->comm = process_event_stub;
324 	if (handler->fork == NULL)
325 		handler->fork = process_event_stub;
326 	if (handler->exit == NULL)
327 		handler->exit = process_event_stub;
328 	if (handler->lost == NULL)
329 		handler->lost = perf_event__process_lost;
330 	if (handler->read == NULL)
331 		handler->read = process_event_stub;
332 	if (handler->throttle == NULL)
333 		handler->throttle = process_event_stub;
334 	if (handler->unthrottle == NULL)
335 		handler->unthrottle = process_event_stub;
336 	if (handler->attr == NULL)
337 		handler->attr = process_event_synth_attr_stub;
338 	if (handler->event_type == NULL)
339 		handler->event_type = process_event_synth_stub;
340 	if (handler->tracing_data == NULL)
341 		handler->tracing_data = process_event_synth_stub;
342 	if (handler->build_id == NULL)
343 		handler->build_id = process_event_synth_stub;
344 	if (handler->finished_round == NULL) {
345 		if (handler->ordered_samples)
346 			handler->finished_round = process_finished_round;
347 		else
348 			handler->finished_round = process_finished_round_stub;
349 	}
350 }
351 
352 void mem_bswap_64(void *src, int byte_size)
353 {
354 	u64 *m = src;
355 
356 	while (byte_size > 0) {
357 		*m = bswap_64(*m);
358 		byte_size -= sizeof(u64);
359 		++m;
360 	}
361 }
362 
363 static void perf_event__all64_swap(union perf_event *event)
364 {
365 	struct perf_event_header *hdr = &event->header;
366 	mem_bswap_64(hdr + 1, event->header.size - sizeof(*hdr));
367 }
368 
369 static void perf_event__comm_swap(union perf_event *event)
370 {
371 	event->comm.pid = bswap_32(event->comm.pid);
372 	event->comm.tid = bswap_32(event->comm.tid);
373 }
374 
375 static void perf_event__mmap_swap(union perf_event *event)
376 {
377 	event->mmap.pid	  = bswap_32(event->mmap.pid);
378 	event->mmap.tid	  = bswap_32(event->mmap.tid);
379 	event->mmap.start = bswap_64(event->mmap.start);
380 	event->mmap.len	  = bswap_64(event->mmap.len);
381 	event->mmap.pgoff = bswap_64(event->mmap.pgoff);
382 }
383 
384 static void perf_event__task_swap(union perf_event *event)
385 {
386 	event->fork.pid	 = bswap_32(event->fork.pid);
387 	event->fork.tid	 = bswap_32(event->fork.tid);
388 	event->fork.ppid = bswap_32(event->fork.ppid);
389 	event->fork.ptid = bswap_32(event->fork.ptid);
390 	event->fork.time = bswap_64(event->fork.time);
391 }
392 
393 static void perf_event__read_swap(union perf_event *event)
394 {
395 	event->read.pid		 = bswap_32(event->read.pid);
396 	event->read.tid		 = bswap_32(event->read.tid);
397 	event->read.value	 = bswap_64(event->read.value);
398 	event->read.time_enabled = bswap_64(event->read.time_enabled);
399 	event->read.time_running = bswap_64(event->read.time_running);
400 	event->read.id		 = bswap_64(event->read.id);
401 }
402 
403 /* exported for swapping attributes in file header */
404 void perf_event__attr_swap(struct perf_event_attr *attr)
405 {
406 	attr->type		= bswap_32(attr->type);
407 	attr->size		= bswap_32(attr->size);
408 	attr->config		= bswap_64(attr->config);
409 	attr->sample_period	= bswap_64(attr->sample_period);
410 	attr->sample_type	= bswap_64(attr->sample_type);
411 	attr->read_format	= bswap_64(attr->read_format);
412 	attr->wakeup_events	= bswap_32(attr->wakeup_events);
413 	attr->bp_type		= bswap_32(attr->bp_type);
414 	attr->bp_addr		= bswap_64(attr->bp_addr);
415 	attr->bp_len		= bswap_64(attr->bp_len);
416 }
417 
418 static void perf_event__hdr_attr_swap(union perf_event *event)
419 {
420 	size_t size;
421 
422 	perf_event__attr_swap(&event->attr.attr);
423 
424 	size = event->header.size;
425 	size -= (void *)&event->attr.id - (void *)event;
426 	mem_bswap_64(event->attr.id, size);
427 }
428 
429 static void perf_event__event_type_swap(union perf_event *event)
430 {
431 	event->event_type.event_type.event_id =
432 		bswap_64(event->event_type.event_type.event_id);
433 }
434 
435 static void perf_event__tracing_data_swap(union perf_event *event)
436 {
437 	event->tracing_data.size = bswap_32(event->tracing_data.size);
438 }
439 
440 typedef void (*perf_event__swap_op)(union perf_event *event);
441 
442 static perf_event__swap_op perf_event__swap_ops[] = {
443 	[PERF_RECORD_MMAP]		  = perf_event__mmap_swap,
444 	[PERF_RECORD_COMM]		  = perf_event__comm_swap,
445 	[PERF_RECORD_FORK]		  = perf_event__task_swap,
446 	[PERF_RECORD_EXIT]		  = perf_event__task_swap,
447 	[PERF_RECORD_LOST]		  = perf_event__all64_swap,
448 	[PERF_RECORD_READ]		  = perf_event__read_swap,
449 	[PERF_RECORD_SAMPLE]		  = perf_event__all64_swap,
450 	[PERF_RECORD_HEADER_ATTR]	  = perf_event__hdr_attr_swap,
451 	[PERF_RECORD_HEADER_EVENT_TYPE]	  = perf_event__event_type_swap,
452 	[PERF_RECORD_HEADER_TRACING_DATA] = perf_event__tracing_data_swap,
453 	[PERF_RECORD_HEADER_BUILD_ID]	  = NULL,
454 	[PERF_RECORD_HEADER_MAX]	  = NULL,
455 };
456 
457 struct sample_queue {
458 	u64			timestamp;
459 	u64			file_offset;
460 	union perf_event	*event;
461 	struct list_head	list;
462 };
463 
464 static void perf_session_free_sample_buffers(struct perf_session *session)
465 {
466 	struct ordered_samples *os = &session->ordered_samples;
467 
468 	while (!list_empty(&os->to_free)) {
469 		struct sample_queue *sq;
470 
471 		sq = list_entry(os->to_free.next, struct sample_queue, list);
472 		list_del(&sq->list);
473 		free(sq);
474 	}
475 }
476 
477 static int perf_session_deliver_event(struct perf_session *session,
478 				      union perf_event *event,
479 				      struct perf_sample *sample,
480 				      struct perf_event_ops *ops,
481 				      u64 file_offset);
482 
483 static void flush_sample_queue(struct perf_session *s,
484 			       struct perf_event_ops *ops)
485 {
486 	struct ordered_samples *os = &s->ordered_samples;
487 	struct list_head *head = &os->samples;
488 	struct sample_queue *tmp, *iter;
489 	struct perf_sample sample;
490 	u64 limit = os->next_flush;
491 	u64 last_ts = os->last_sample ? os->last_sample->timestamp : 0ULL;
492 	unsigned idx = 0, progress_next = os->nr_samples / 16;
493 	int ret;
494 
495 	if (!ops->ordered_samples || !limit)
496 		return;
497 
498 	list_for_each_entry_safe(iter, tmp, head, list) {
499 		if (iter->timestamp > limit)
500 			break;
501 
502 		ret = perf_session__parse_sample(s, iter->event, &sample);
503 		if (ret)
504 			pr_err("Can't parse sample, err = %d\n", ret);
505 		else
506 			perf_session_deliver_event(s, iter->event, &sample, ops,
507 						   iter->file_offset);
508 
509 		os->last_flush = iter->timestamp;
510 		list_del(&iter->list);
511 		list_add(&iter->list, &os->sample_cache);
512 		if (++idx >= progress_next) {
513 			progress_next += os->nr_samples / 16;
514 			ui_progress__update(idx, os->nr_samples,
515 					    "Processing time ordered events...");
516 		}
517 	}
518 
519 	if (list_empty(head)) {
520 		os->last_sample = NULL;
521 	} else if (last_ts <= limit) {
522 		os->last_sample =
523 			list_entry(head->prev, struct sample_queue, list);
524 	}
525 
526 	os->nr_samples = 0;
527 }
528 
529 /*
530  * When perf record finishes a pass on every buffers, it records this pseudo
531  * event.
532  * We record the max timestamp t found in the pass n.
533  * Assuming these timestamps are monotonic across cpus, we know that if
534  * a buffer still has events with timestamps below t, they will be all
535  * available and then read in the pass n + 1.
536  * Hence when we start to read the pass n + 2, we can safely flush every
537  * events with timestamps below t.
538  *
539  *    ============ PASS n =================
540  *       CPU 0         |   CPU 1
541  *                     |
542  *    cnt1 timestamps  |   cnt2 timestamps
543  *          1          |         2
544  *          2          |         3
545  *          -          |         4  <--- max recorded
546  *
547  *    ============ PASS n + 1 ==============
548  *       CPU 0         |   CPU 1
549  *                     |
550  *    cnt1 timestamps  |   cnt2 timestamps
551  *          3          |         5
552  *          4          |         6
553  *          5          |         7 <---- max recorded
554  *
555  *      Flush every events below timestamp 4
556  *
557  *    ============ PASS n + 2 ==============
558  *       CPU 0         |   CPU 1
559  *                     |
560  *    cnt1 timestamps  |   cnt2 timestamps
561  *          6          |         8
562  *          7          |         9
563  *          -          |         10
564  *
565  *      Flush every events below timestamp 7
566  *      etc...
567  */
568 static int process_finished_round(union perf_event *event __used,
569 				  struct perf_session *session,
570 				  struct perf_event_ops *ops)
571 {
572 	flush_sample_queue(session, ops);
573 	session->ordered_samples.next_flush = session->ordered_samples.max_timestamp;
574 
575 	return 0;
576 }
577 
578 /* The queue is ordered by time */
579 static void __queue_event(struct sample_queue *new, struct perf_session *s)
580 {
581 	struct ordered_samples *os = &s->ordered_samples;
582 	struct sample_queue *sample = os->last_sample;
583 	u64 timestamp = new->timestamp;
584 	struct list_head *p;
585 
586 	++os->nr_samples;
587 	os->last_sample = new;
588 
589 	if (!sample) {
590 		list_add(&new->list, &os->samples);
591 		os->max_timestamp = timestamp;
592 		return;
593 	}
594 
595 	/*
596 	 * last_sample might point to some random place in the list as it's
597 	 * the last queued event. We expect that the new event is close to
598 	 * this.
599 	 */
600 	if (sample->timestamp <= timestamp) {
601 		while (sample->timestamp <= timestamp) {
602 			p = sample->list.next;
603 			if (p == &os->samples) {
604 				list_add_tail(&new->list, &os->samples);
605 				os->max_timestamp = timestamp;
606 				return;
607 			}
608 			sample = list_entry(p, struct sample_queue, list);
609 		}
610 		list_add_tail(&new->list, &sample->list);
611 	} else {
612 		while (sample->timestamp > timestamp) {
613 			p = sample->list.prev;
614 			if (p == &os->samples) {
615 				list_add(&new->list, &os->samples);
616 				return;
617 			}
618 			sample = list_entry(p, struct sample_queue, list);
619 		}
620 		list_add(&new->list, &sample->list);
621 	}
622 }
623 
624 #define MAX_SAMPLE_BUFFER	(64 * 1024 / sizeof(struct sample_queue))
625 
626 static int perf_session_queue_event(struct perf_session *s, union perf_event *event,
627 				    struct perf_sample *sample, u64 file_offset)
628 {
629 	struct ordered_samples *os = &s->ordered_samples;
630 	struct list_head *sc = &os->sample_cache;
631 	u64 timestamp = sample->time;
632 	struct sample_queue *new;
633 
634 	if (!timestamp || timestamp == ~0ULL)
635 		return -ETIME;
636 
637 	if (timestamp < s->ordered_samples.last_flush) {
638 		printf("Warning: Timestamp below last timeslice flush\n");
639 		return -EINVAL;
640 	}
641 
642 	if (!list_empty(sc)) {
643 		new = list_entry(sc->next, struct sample_queue, list);
644 		list_del(&new->list);
645 	} else if (os->sample_buffer) {
646 		new = os->sample_buffer + os->sample_buffer_idx;
647 		if (++os->sample_buffer_idx == MAX_SAMPLE_BUFFER)
648 			os->sample_buffer = NULL;
649 	} else {
650 		os->sample_buffer = malloc(MAX_SAMPLE_BUFFER * sizeof(*new));
651 		if (!os->sample_buffer)
652 			return -ENOMEM;
653 		list_add(&os->sample_buffer->list, &os->to_free);
654 		os->sample_buffer_idx = 2;
655 		new = os->sample_buffer + 1;
656 	}
657 
658 	new->timestamp = timestamp;
659 	new->file_offset = file_offset;
660 	new->event = event;
661 
662 	__queue_event(new, s);
663 
664 	return 0;
665 }
666 
667 static void callchain__printf(struct perf_sample *sample)
668 {
669 	unsigned int i;
670 
671 	printf("... chain: nr:%" PRIu64 "\n", sample->callchain->nr);
672 
673 	for (i = 0; i < sample->callchain->nr; i++)
674 		printf("..... %2d: %016" PRIx64 "\n",
675 		       i, sample->callchain->ips[i]);
676 }
677 
678 static void perf_session__print_tstamp(struct perf_session *session,
679 				       union perf_event *event,
680 				       struct perf_sample *sample)
681 {
682 	if (event->header.type != PERF_RECORD_SAMPLE &&
683 	    !session->sample_id_all) {
684 		fputs("-1 -1 ", stdout);
685 		return;
686 	}
687 
688 	if ((session->sample_type & PERF_SAMPLE_CPU))
689 		printf("%u ", sample->cpu);
690 
691 	if (session->sample_type & PERF_SAMPLE_TIME)
692 		printf("%" PRIu64 " ", sample->time);
693 }
694 
695 static void dump_event(struct perf_session *session, union perf_event *event,
696 		       u64 file_offset, struct perf_sample *sample)
697 {
698 	if (!dump_trace)
699 		return;
700 
701 	printf("\n%#" PRIx64 " [%#x]: event: %d\n",
702 	       file_offset, event->header.size, event->header.type);
703 
704 	trace_event(event);
705 
706 	if (sample)
707 		perf_session__print_tstamp(session, event, sample);
708 
709 	printf("%#" PRIx64 " [%#x]: PERF_RECORD_%s", file_offset,
710 	       event->header.size, perf_event__name(event->header.type));
711 }
712 
713 static void dump_sample(struct perf_session *session, union perf_event *event,
714 			struct perf_sample *sample)
715 {
716 	if (!dump_trace)
717 		return;
718 
719 	printf("(IP, %d): %d/%d: %#" PRIx64 " period: %" PRIu64 " addr: %#" PRIx64 "\n",
720 	       event->header.misc, sample->pid, sample->tid, sample->ip,
721 	       sample->period, sample->addr);
722 
723 	if (session->sample_type & PERF_SAMPLE_CALLCHAIN)
724 		callchain__printf(sample);
725 }
726 
727 static int perf_session_deliver_event(struct perf_session *session,
728 				      union perf_event *event,
729 				      struct perf_sample *sample,
730 				      struct perf_event_ops *ops,
731 				      u64 file_offset)
732 {
733 	struct perf_evsel *evsel;
734 
735 	dump_event(session, event, file_offset, sample);
736 
737 	evsel = perf_evlist__id2evsel(session->evlist, sample->id);
738 	if (evsel != NULL && event->header.type != PERF_RECORD_SAMPLE) {
739 		/*
740 		 * XXX We're leaving PERF_RECORD_SAMPLE unnacounted here
741 		 * because the tools right now may apply filters, discarding
742 		 * some of the samples. For consistency, in the future we
743 		 * should have something like nr_filtered_samples and remove
744 		 * the sample->period from total_sample_period, etc, KISS for
745 		 * now tho.
746 		 *
747 		 * Also testing against NULL allows us to handle files without
748 		 * attr.sample_id_all and/or without PERF_SAMPLE_ID. In the
749 		 * future probably it'll be a good idea to restrict event
750 		 * processing via perf_session to files with both set.
751 		 */
752 		hists__inc_nr_events(&evsel->hists, event->header.type);
753 	}
754 
755 	switch (event->header.type) {
756 	case PERF_RECORD_SAMPLE:
757 		dump_sample(session, event, sample);
758 		if (evsel == NULL) {
759 			++session->hists.stats.nr_unknown_id;
760 			return -1;
761 		}
762 		return ops->sample(event, sample, evsel, session);
763 	case PERF_RECORD_MMAP:
764 		return ops->mmap(event, sample, session);
765 	case PERF_RECORD_COMM:
766 		return ops->comm(event, sample, session);
767 	case PERF_RECORD_FORK:
768 		return ops->fork(event, sample, session);
769 	case PERF_RECORD_EXIT:
770 		return ops->exit(event, sample, session);
771 	case PERF_RECORD_LOST:
772 		return ops->lost(event, sample, session);
773 	case PERF_RECORD_READ:
774 		return ops->read(event, sample, session);
775 	case PERF_RECORD_THROTTLE:
776 		return ops->throttle(event, sample, session);
777 	case PERF_RECORD_UNTHROTTLE:
778 		return ops->unthrottle(event, sample, session);
779 	default:
780 		++session->hists.stats.nr_unknown_events;
781 		return -1;
782 	}
783 }
784 
785 static int perf_session__preprocess_sample(struct perf_session *session,
786 					   union perf_event *event, struct perf_sample *sample)
787 {
788 	if (event->header.type != PERF_RECORD_SAMPLE ||
789 	    !(session->sample_type & PERF_SAMPLE_CALLCHAIN))
790 		return 0;
791 
792 	if (!ip_callchain__valid(sample->callchain, event)) {
793 		pr_debug("call-chain problem with event, skipping it.\n");
794 		++session->hists.stats.nr_invalid_chains;
795 		session->hists.stats.total_invalid_chains += sample->period;
796 		return -EINVAL;
797 	}
798 	return 0;
799 }
800 
801 static int perf_session__process_user_event(struct perf_session *session, union perf_event *event,
802 					    struct perf_event_ops *ops, u64 file_offset)
803 {
804 	int err;
805 
806 	dump_event(session, event, file_offset, NULL);
807 
808 	/* These events are processed right away */
809 	switch (event->header.type) {
810 	case PERF_RECORD_HEADER_ATTR:
811 		err = ops->attr(event, &session->evlist);
812 		if (err == 0)
813 			perf_session__update_sample_type(session);
814 		return err;
815 	case PERF_RECORD_HEADER_EVENT_TYPE:
816 		return ops->event_type(event, session);
817 	case PERF_RECORD_HEADER_TRACING_DATA:
818 		/* setup for reading amidst mmap */
819 		lseek(session->fd, file_offset, SEEK_SET);
820 		return ops->tracing_data(event, session);
821 	case PERF_RECORD_HEADER_BUILD_ID:
822 		return ops->build_id(event, session);
823 	case PERF_RECORD_FINISHED_ROUND:
824 		return ops->finished_round(event, session, ops);
825 	default:
826 		return -EINVAL;
827 	}
828 }
829 
830 static int perf_session__process_event(struct perf_session *session,
831 				       union perf_event *event,
832 				       struct perf_event_ops *ops,
833 				       u64 file_offset)
834 {
835 	struct perf_sample sample;
836 	int ret;
837 
838 	if (session->header.needs_swap &&
839 	    perf_event__swap_ops[event->header.type])
840 		perf_event__swap_ops[event->header.type](event);
841 
842 	if (event->header.type >= PERF_RECORD_HEADER_MAX)
843 		return -EINVAL;
844 
845 	hists__inc_nr_events(&session->hists, event->header.type);
846 
847 	if (event->header.type >= PERF_RECORD_USER_TYPE_START)
848 		return perf_session__process_user_event(session, event, ops, file_offset);
849 
850 	/*
851 	 * For all kernel events we get the sample data
852 	 */
853 	ret = perf_session__parse_sample(session, event, &sample);
854 	if (ret)
855 		return ret;
856 
857 	/* Preprocess sample records - precheck callchains */
858 	if (perf_session__preprocess_sample(session, event, &sample))
859 		return 0;
860 
861 	if (ops->ordered_samples) {
862 		ret = perf_session_queue_event(session, event, &sample,
863 					       file_offset);
864 		if (ret != -ETIME)
865 			return ret;
866 	}
867 
868 	return perf_session_deliver_event(session, event, &sample, ops,
869 					  file_offset);
870 }
871 
872 void perf_event_header__bswap(struct perf_event_header *self)
873 {
874 	self->type = bswap_32(self->type);
875 	self->misc = bswap_16(self->misc);
876 	self->size = bswap_16(self->size);
877 }
878 
879 struct thread *perf_session__findnew(struct perf_session *session, pid_t pid)
880 {
881 	return machine__findnew_thread(&session->host_machine, pid);
882 }
883 
884 static struct thread *perf_session__register_idle_thread(struct perf_session *self)
885 {
886 	struct thread *thread = perf_session__findnew(self, 0);
887 
888 	if (thread == NULL || thread__set_comm(thread, "swapper")) {
889 		pr_err("problem inserting idle task.\n");
890 		thread = NULL;
891 	}
892 
893 	return thread;
894 }
895 
896 static void perf_session__warn_about_errors(const struct perf_session *session,
897 					    const struct perf_event_ops *ops)
898 {
899 	if (ops->lost == perf_event__process_lost &&
900 	    session->hists.stats.nr_events[PERF_RECORD_LOST] != 0) {
901 		ui__warning("Processed %d events and lost %d chunks!\n\n"
902 			    "Check IO/CPU overload!\n\n",
903 			    session->hists.stats.nr_events[0],
904 			    session->hists.stats.nr_events[PERF_RECORD_LOST]);
905 	}
906 
907 	if (session->hists.stats.nr_unknown_events != 0) {
908 		ui__warning("Found %u unknown events!\n\n"
909 			    "Is this an older tool processing a perf.data "
910 			    "file generated by a more recent tool?\n\n"
911 			    "If that is not the case, consider "
912 			    "reporting to linux-kernel@vger.kernel.org.\n\n",
913 			    session->hists.stats.nr_unknown_events);
914 	}
915 
916 	if (session->hists.stats.nr_unknown_id != 0) {
917 		ui__warning("%u samples with id not present in the header\n",
918 			    session->hists.stats.nr_unknown_id);
919 	}
920 
921  	if (session->hists.stats.nr_invalid_chains != 0) {
922  		ui__warning("Found invalid callchains!\n\n"
923  			    "%u out of %u events were discarded for this reason.\n\n"
924  			    "Consider reporting to linux-kernel@vger.kernel.org.\n\n",
925  			    session->hists.stats.nr_invalid_chains,
926  			    session->hists.stats.nr_events[PERF_RECORD_SAMPLE]);
927  	}
928 }
929 
930 #define session_done()	(*(volatile int *)(&session_done))
931 volatile int session_done;
932 
933 static int __perf_session__process_pipe_events(struct perf_session *self,
934 					       struct perf_event_ops *ops)
935 {
936 	union perf_event event;
937 	uint32_t size;
938 	int skip = 0;
939 	u64 head;
940 	int err;
941 	void *p;
942 
943 	perf_event_ops__fill_defaults(ops);
944 
945 	head = 0;
946 more:
947 	err = readn(self->fd, &event, sizeof(struct perf_event_header));
948 	if (err <= 0) {
949 		if (err == 0)
950 			goto done;
951 
952 		pr_err("failed to read event header\n");
953 		goto out_err;
954 	}
955 
956 	if (self->header.needs_swap)
957 		perf_event_header__bswap(&event.header);
958 
959 	size = event.header.size;
960 	if (size == 0)
961 		size = 8;
962 
963 	p = &event;
964 	p += sizeof(struct perf_event_header);
965 
966 	if (size - sizeof(struct perf_event_header)) {
967 		err = readn(self->fd, p, size - sizeof(struct perf_event_header));
968 		if (err <= 0) {
969 			if (err == 0) {
970 				pr_err("unexpected end of event stream\n");
971 				goto done;
972 			}
973 
974 			pr_err("failed to read event data\n");
975 			goto out_err;
976 		}
977 	}
978 
979 	if (size == 0 ||
980 	    (skip = perf_session__process_event(self, &event, ops, head)) < 0) {
981 		dump_printf("%#" PRIx64 " [%#x]: skipping unknown header type: %d\n",
982 			    head, event.header.size, event.header.type);
983 		/*
984 		 * assume we lost track of the stream, check alignment, and
985 		 * increment a single u64 in the hope to catch on again 'soon'.
986 		 */
987 		if (unlikely(head & 7))
988 			head &= ~7ULL;
989 
990 		size = 8;
991 	}
992 
993 	head += size;
994 
995 	if (skip > 0)
996 		head += skip;
997 
998 	if (!session_done())
999 		goto more;
1000 done:
1001 	err = 0;
1002 out_err:
1003 	perf_session__warn_about_errors(self, ops);
1004 	perf_session_free_sample_buffers(self);
1005 	return err;
1006 }
1007 
1008 static union perf_event *
1009 fetch_mmaped_event(struct perf_session *session,
1010 		   u64 head, size_t mmap_size, char *buf)
1011 {
1012 	union perf_event *event;
1013 
1014 	/*
1015 	 * Ensure we have enough space remaining to read
1016 	 * the size of the event in the headers.
1017 	 */
1018 	if (head + sizeof(event->header) > mmap_size)
1019 		return NULL;
1020 
1021 	event = (union perf_event *)(buf + head);
1022 
1023 	if (session->header.needs_swap)
1024 		perf_event_header__bswap(&event->header);
1025 
1026 	if (head + event->header.size > mmap_size)
1027 		return NULL;
1028 
1029 	return event;
1030 }
1031 
1032 int __perf_session__process_events(struct perf_session *session,
1033 				   u64 data_offset, u64 data_size,
1034 				   u64 file_size, struct perf_event_ops *ops)
1035 {
1036 	u64 head, page_offset, file_offset, file_pos, progress_next;
1037 	int err, mmap_prot, mmap_flags, map_idx = 0;
1038 	size_t	page_size, mmap_size;
1039 	char *buf, *mmaps[8];
1040 	union perf_event *event;
1041 	uint32_t size;
1042 
1043 	perf_event_ops__fill_defaults(ops);
1044 
1045 	page_size = sysconf(_SC_PAGESIZE);
1046 
1047 	page_offset = page_size * (data_offset / page_size);
1048 	file_offset = page_offset;
1049 	head = data_offset - page_offset;
1050 
1051 	if (data_offset + data_size < file_size)
1052 		file_size = data_offset + data_size;
1053 
1054 	progress_next = file_size / 16;
1055 
1056 	mmap_size = session->mmap_window;
1057 	if (mmap_size > file_size)
1058 		mmap_size = file_size;
1059 
1060 	memset(mmaps, 0, sizeof(mmaps));
1061 
1062 	mmap_prot  = PROT_READ;
1063 	mmap_flags = MAP_SHARED;
1064 
1065 	if (session->header.needs_swap) {
1066 		mmap_prot  |= PROT_WRITE;
1067 		mmap_flags = MAP_PRIVATE;
1068 	}
1069 remap:
1070 	buf = mmap(NULL, mmap_size, mmap_prot, mmap_flags, session->fd,
1071 		   file_offset);
1072 	if (buf == MAP_FAILED) {
1073 		pr_err("failed to mmap file\n");
1074 		err = -errno;
1075 		goto out_err;
1076 	}
1077 	mmaps[map_idx] = buf;
1078 	map_idx = (map_idx + 1) & (ARRAY_SIZE(mmaps) - 1);
1079 	file_pos = file_offset + head;
1080 
1081 more:
1082 	event = fetch_mmaped_event(session, head, mmap_size, buf);
1083 	if (!event) {
1084 		if (mmaps[map_idx]) {
1085 			munmap(mmaps[map_idx], mmap_size);
1086 			mmaps[map_idx] = NULL;
1087 		}
1088 
1089 		page_offset = page_size * (head / page_size);
1090 		file_offset += page_offset;
1091 		head -= page_offset;
1092 		goto remap;
1093 	}
1094 
1095 	size = event->header.size;
1096 
1097 	if (size == 0 ||
1098 	    perf_session__process_event(session, event, ops, file_pos) < 0) {
1099 		dump_printf("%#" PRIx64 " [%#x]: skipping unknown header type: %d\n",
1100 			    file_offset + head, event->header.size,
1101 			    event->header.type);
1102 		/*
1103 		 * assume we lost track of the stream, check alignment, and
1104 		 * increment a single u64 in the hope to catch on again 'soon'.
1105 		 */
1106 		if (unlikely(head & 7))
1107 			head &= ~7ULL;
1108 
1109 		size = 8;
1110 	}
1111 
1112 	head += size;
1113 	file_pos += size;
1114 
1115 	if (file_pos >= progress_next) {
1116 		progress_next += file_size / 16;
1117 		ui_progress__update(file_pos, file_size,
1118 				    "Processing events...");
1119 	}
1120 
1121 	if (file_pos < file_size)
1122 		goto more;
1123 
1124 	err = 0;
1125 	/* do the final flush for ordered samples */
1126 	session->ordered_samples.next_flush = ULLONG_MAX;
1127 	flush_sample_queue(session, ops);
1128 out_err:
1129 	perf_session__warn_about_errors(session, ops);
1130 	perf_session_free_sample_buffers(session);
1131 	return err;
1132 }
1133 
1134 int perf_session__process_events(struct perf_session *self,
1135 				 struct perf_event_ops *ops)
1136 {
1137 	int err;
1138 
1139 	if (perf_session__register_idle_thread(self) == NULL)
1140 		return -ENOMEM;
1141 
1142 	if (!self->fd_pipe)
1143 		err = __perf_session__process_events(self,
1144 						     self->header.data_offset,
1145 						     self->header.data_size,
1146 						     self->size, ops);
1147 	else
1148 		err = __perf_session__process_pipe_events(self, ops);
1149 
1150 	return err;
1151 }
1152 
1153 bool perf_session__has_traces(struct perf_session *self, const char *msg)
1154 {
1155 	if (!(self->sample_type & PERF_SAMPLE_RAW)) {
1156 		pr_err("No trace sample to read. Did you call 'perf %s'?\n", msg);
1157 		return false;
1158 	}
1159 
1160 	return true;
1161 }
1162 
1163 int perf_session__set_kallsyms_ref_reloc_sym(struct map **maps,
1164 					     const char *symbol_name,
1165 					     u64 addr)
1166 {
1167 	char *bracket;
1168 	enum map_type i;
1169 	struct ref_reloc_sym *ref;
1170 
1171 	ref = zalloc(sizeof(struct ref_reloc_sym));
1172 	if (ref == NULL)
1173 		return -ENOMEM;
1174 
1175 	ref->name = strdup(symbol_name);
1176 	if (ref->name == NULL) {
1177 		free(ref);
1178 		return -ENOMEM;
1179 	}
1180 
1181 	bracket = strchr(ref->name, ']');
1182 	if (bracket)
1183 		*bracket = '\0';
1184 
1185 	ref->addr = addr;
1186 
1187 	for (i = 0; i < MAP__NR_TYPES; ++i) {
1188 		struct kmap *kmap = map__kmap(maps[i]);
1189 		kmap->ref_reloc_sym = ref;
1190 	}
1191 
1192 	return 0;
1193 }
1194 
1195 size_t perf_session__fprintf_dsos(struct perf_session *self, FILE *fp)
1196 {
1197 	return __dsos__fprintf(&self->host_machine.kernel_dsos, fp) +
1198 	       __dsos__fprintf(&self->host_machine.user_dsos, fp) +
1199 	       machines__fprintf_dsos(&self->machines, fp);
1200 }
1201 
1202 size_t perf_session__fprintf_dsos_buildid(struct perf_session *self, FILE *fp,
1203 					  bool with_hits)
1204 {
1205 	size_t ret = machine__fprintf_dsos_buildid(&self->host_machine, fp, with_hits);
1206 	return ret + machines__fprintf_dsos_buildid(&self->machines, fp, with_hits);
1207 }
1208 
1209 size_t perf_session__fprintf_nr_events(struct perf_session *session, FILE *fp)
1210 {
1211 	struct perf_evsel *pos;
1212 	size_t ret = fprintf(fp, "Aggregated stats:\n");
1213 
1214 	ret += hists__fprintf_nr_events(&session->hists, fp);
1215 
1216 	list_for_each_entry(pos, &session->evlist->entries, node) {
1217 		ret += fprintf(fp, "%s stats:\n", event_name(pos));
1218 		ret += hists__fprintf_nr_events(&pos->hists, fp);
1219 	}
1220 
1221 	return ret;
1222 }
1223 
1224 size_t perf_session__fprintf(struct perf_session *session, FILE *fp)
1225 {
1226 	/*
1227 	 * FIXME: Here we have to actually print all the machines in this
1228 	 * session, not just the host...
1229 	 */
1230 	return machine__fprintf(&session->host_machine, fp);
1231 }
1232 
1233 void perf_session__remove_thread(struct perf_session *session,
1234 				 struct thread *th)
1235 {
1236 	/*
1237 	 * FIXME: This one makes no sense, we need to remove the thread from
1238 	 * the machine it belongs to, perf_session can have many machines, so
1239 	 * doing it always on ->host_machine is wrong.  Fix when auditing all
1240 	 * the 'perf kvm' code.
1241 	 */
1242 	machine__remove_thread(&session->host_machine, th);
1243 }
1244 
1245 struct perf_evsel *perf_session__find_first_evtype(struct perf_session *session,
1246 					      unsigned int type)
1247 {
1248 	struct perf_evsel *pos;
1249 
1250 	list_for_each_entry(pos, &session->evlist->entries, node) {
1251 		if (pos->attr.type == type)
1252 			return pos;
1253 	}
1254 	return NULL;
1255 }
1256 
1257 void perf_session__print_ip(union perf_event *event, struct perf_evsel *evsel,
1258 			    struct perf_sample *sample,
1259 			    struct perf_session *session,
1260 			    int print_sym, int print_dso)
1261 {
1262 	struct addr_location al;
1263 	const char *symname, *dsoname;
1264 	struct callchain_cursor *cursor = &evsel->hists.callchain_cursor;
1265 	struct callchain_cursor_node *node;
1266 
1267 	if (perf_event__preprocess_sample(event, session, &al, sample,
1268 					  NULL) < 0) {
1269 		error("problem processing %d event, skipping it.\n",
1270 			event->header.type);
1271 		return;
1272 	}
1273 
1274 	if (symbol_conf.use_callchain && sample->callchain) {
1275 
1276 		if (perf_session__resolve_callchain(session, evsel, al.thread,
1277 						sample->callchain, NULL) != 0) {
1278 			if (verbose)
1279 				error("Failed to resolve callchain. Skipping\n");
1280 			return;
1281 		}
1282 		callchain_cursor_commit(cursor);
1283 
1284 		while (1) {
1285 			node = callchain_cursor_current(cursor);
1286 			if (!node)
1287 				break;
1288 
1289 			printf("\t%16" PRIx64, node->ip);
1290 			if (print_sym) {
1291 				if (node->sym && node->sym->name)
1292 					symname = node->sym->name;
1293 				else
1294 					symname = "";
1295 
1296 				printf(" %s", symname);
1297 			}
1298 			if (print_dso) {
1299 				if (node->map && node->map->dso && node->map->dso->name)
1300 					dsoname = node->map->dso->name;
1301 				else
1302 					dsoname = "";
1303 
1304 				printf(" (%s)", dsoname);
1305 			}
1306 			printf("\n");
1307 
1308 			callchain_cursor_advance(cursor);
1309 		}
1310 
1311 	} else {
1312 		printf("%16" PRIx64, sample->ip);
1313 		if (print_sym) {
1314 			if (al.sym && al.sym->name)
1315 				symname = al.sym->name;
1316 			else
1317 				symname = "";
1318 
1319 			printf(" %s", symname);
1320 		}
1321 
1322 		if (print_dso) {
1323 			if (al.map && al.map->dso && al.map->dso->name)
1324 				dsoname = al.map->dso->name;
1325 			else
1326 				dsoname = "";
1327 
1328 			printf(" (%s)", dsoname);
1329 		}
1330 	}
1331 }
1332 
1333 int perf_session__cpu_bitmap(struct perf_session *session,
1334 			     const char *cpu_list, unsigned long *cpu_bitmap)
1335 {
1336 	int i;
1337 	struct cpu_map *map;
1338 
1339 	for (i = 0; i < PERF_TYPE_MAX; ++i) {
1340 		struct perf_evsel *evsel;
1341 
1342 		evsel = perf_session__find_first_evtype(session, i);
1343 		if (!evsel)
1344 			continue;
1345 
1346 		if (!(evsel->attr.sample_type & PERF_SAMPLE_CPU)) {
1347 			pr_err("File does not contain CPU events. "
1348 			       "Remove -c option to proceed.\n");
1349 			return -1;
1350 		}
1351 	}
1352 
1353 	map = cpu_map__new(cpu_list);
1354 
1355 	for (i = 0; i < map->nr; i++) {
1356 		int cpu = map->map[i];
1357 
1358 		if (cpu >= MAX_NR_CPUS) {
1359 			pr_err("Requested CPU %d too large. "
1360 			       "Consider raising MAX_NR_CPUS\n", cpu);
1361 			return -1;
1362 		}
1363 
1364 		set_bit(cpu, cpu_bitmap);
1365 	}
1366 
1367 	return 0;
1368 }
1369 
1370 void perf_session__fprintf_info(struct perf_session *session, FILE *fp,
1371 				bool full)
1372 {
1373 	struct stat st;
1374 	int ret;
1375 
1376 	if (session == NULL || fp == NULL)
1377 		return;
1378 
1379 	ret = fstat(session->fd, &st);
1380 	if (ret == -1)
1381 		return;
1382 
1383 	fprintf(fp, "# ========\n");
1384 	fprintf(fp, "# captured on: %s", ctime(&st.st_ctime));
1385 	perf_header__fprintf_info(session, fp, full);
1386 	fprintf(fp, "# ========\n#\n");
1387 }
1388