xref: /openbmc/linux/tools/perf/util/session.c (revision 207b5792)
1 #define _FILE_OFFSET_BITS 64
2 
3 #include <linux/kernel.h>
4 
5 #include <byteswap.h>
6 #include <unistd.h>
7 #include <sys/types.h>
8 #include <sys/mman.h>
9 
10 #include "evlist.h"
11 #include "evsel.h"
12 #include "session.h"
13 #include "tool.h"
14 #include "sort.h"
15 #include "util.h"
16 #include "cpumap.h"
17 
18 static int perf_session__open(struct perf_session *self, bool force)
19 {
20 	struct stat input_stat;
21 
22 	if (!strcmp(self->filename, "-")) {
23 		self->fd_pipe = true;
24 		self->fd = STDIN_FILENO;
25 
26 		if (perf_session__read_header(self, self->fd) < 0)
27 			pr_err("incompatible file format (rerun with -v to learn more)");
28 
29 		return 0;
30 	}
31 
32 	self->fd = open(self->filename, O_RDONLY);
33 	if (self->fd < 0) {
34 		int err = errno;
35 
36 		pr_err("failed to open %s: %s", self->filename, strerror(err));
37 		if (err == ENOENT && !strcmp(self->filename, "perf.data"))
38 			pr_err("  (try 'perf record' first)");
39 		pr_err("\n");
40 		return -errno;
41 	}
42 
43 	if (fstat(self->fd, &input_stat) < 0)
44 		goto out_close;
45 
46 	if (!force && input_stat.st_uid && (input_stat.st_uid != geteuid())) {
47 		pr_err("file %s not owned by current user or root\n",
48 		       self->filename);
49 		goto out_close;
50 	}
51 
52 	if (!input_stat.st_size) {
53 		pr_info("zero-sized file (%s), nothing to do!\n",
54 			self->filename);
55 		goto out_close;
56 	}
57 
58 	if (perf_session__read_header(self, self->fd) < 0) {
59 		pr_err("incompatible file format (rerun with -v to learn more)");
60 		goto out_close;
61 	}
62 
63 	if (!perf_evlist__valid_sample_type(self->evlist)) {
64 		pr_err("non matching sample_type");
65 		goto out_close;
66 	}
67 
68 	if (!perf_evlist__valid_sample_id_all(self->evlist)) {
69 		pr_err("non matching sample_id_all");
70 		goto out_close;
71 	}
72 
73 	self->size = input_stat.st_size;
74 	return 0;
75 
76 out_close:
77 	close(self->fd);
78 	self->fd = -1;
79 	return -1;
80 }
81 
82 void perf_session__update_sample_type(struct perf_session *self)
83 {
84 	self->sample_type = perf_evlist__sample_type(self->evlist);
85 	self->sample_size = __perf_evsel__sample_size(self->sample_type);
86 	self->sample_id_all = perf_evlist__sample_id_all(self->evlist);
87 	self->id_hdr_size = perf_evlist__id_hdr_size(self->evlist);
88 	self->host_machine.id_hdr_size = self->id_hdr_size;
89 }
90 
91 int perf_session__create_kernel_maps(struct perf_session *self)
92 {
93 	int ret = machine__create_kernel_maps(&self->host_machine);
94 
95 	if (ret >= 0)
96 		ret = machines__create_guest_kernel_maps(&self->machines);
97 	return ret;
98 }
99 
100 static void perf_session__destroy_kernel_maps(struct perf_session *self)
101 {
102 	machine__destroy_kernel_maps(&self->host_machine);
103 	machines__destroy_guest_kernel_maps(&self->machines);
104 }
105 
106 struct perf_session *perf_session__new(const char *filename, int mode,
107 				       bool force, bool repipe,
108 				       struct perf_tool *tool)
109 {
110 	struct perf_session *self;
111 	struct stat st;
112 	size_t len;
113 
114 	if (!filename || !strlen(filename)) {
115 		if (!fstat(STDIN_FILENO, &st) && S_ISFIFO(st.st_mode))
116 			filename = "-";
117 		else
118 			filename = "perf.data";
119 	}
120 
121 	len = strlen(filename);
122 	self = zalloc(sizeof(*self) + len);
123 
124 	if (self == NULL)
125 		goto out;
126 
127 	memcpy(self->filename, filename, len);
128 	/*
129 	 * On 64bit we can mmap the data file in one go. No need for tiny mmap
130 	 * slices. On 32bit we use 32MB.
131 	 */
132 #if BITS_PER_LONG == 64
133 	self->mmap_window = ULLONG_MAX;
134 #else
135 	self->mmap_window = 32 * 1024 * 1024ULL;
136 #endif
137 	self->machines = RB_ROOT;
138 	self->repipe = repipe;
139 	INIT_LIST_HEAD(&self->ordered_samples.samples);
140 	INIT_LIST_HEAD(&self->ordered_samples.sample_cache);
141 	INIT_LIST_HEAD(&self->ordered_samples.to_free);
142 	machine__init(&self->host_machine, "", HOST_KERNEL_ID);
143 	hists__init(&self->hists);
144 
145 	if (mode == O_RDONLY) {
146 		if (perf_session__open(self, force) < 0)
147 			goto out_delete;
148 		perf_session__update_sample_type(self);
149 	} else if (mode == O_WRONLY) {
150 		/*
151 		 * In O_RDONLY mode this will be performed when reading the
152 		 * kernel MMAP event, in perf_event__process_mmap().
153 		 */
154 		if (perf_session__create_kernel_maps(self) < 0)
155 			goto out_delete;
156 	}
157 
158 	if (tool && tool->ordering_requires_timestamps &&
159 	    tool->ordered_samples && !self->sample_id_all) {
160 		dump_printf("WARNING: No sample_id_all support, falling back to unordered processing\n");
161 		tool->ordered_samples = false;
162 	}
163 
164 out:
165 	return self;
166 out_delete:
167 	perf_session__delete(self);
168 	return NULL;
169 }
170 
171 static void machine__delete_dead_threads(struct machine *machine)
172 {
173 	struct thread *n, *t;
174 
175 	list_for_each_entry_safe(t, n, &machine->dead_threads, node) {
176 		list_del(&t->node);
177 		thread__delete(t);
178 	}
179 }
180 
181 static void perf_session__delete_dead_threads(struct perf_session *session)
182 {
183 	machine__delete_dead_threads(&session->host_machine);
184 }
185 
186 static void machine__delete_threads(struct machine *self)
187 {
188 	struct rb_node *nd = rb_first(&self->threads);
189 
190 	while (nd) {
191 		struct thread *t = rb_entry(nd, struct thread, rb_node);
192 
193 		rb_erase(&t->rb_node, &self->threads);
194 		nd = rb_next(nd);
195 		thread__delete(t);
196 	}
197 }
198 
199 static void perf_session__delete_threads(struct perf_session *session)
200 {
201 	machine__delete_threads(&session->host_machine);
202 }
203 
204 void perf_session__delete(struct perf_session *self)
205 {
206 	perf_session__destroy_kernel_maps(self);
207 	perf_session__delete_dead_threads(self);
208 	perf_session__delete_threads(self);
209 	machine__exit(&self->host_machine);
210 	close(self->fd);
211 	free(self);
212 }
213 
214 void machine__remove_thread(struct machine *self, struct thread *th)
215 {
216 	self->last_match = NULL;
217 	rb_erase(&th->rb_node, &self->threads);
218 	/*
219 	 * We may have references to this thread, for instance in some hist_entry
220 	 * instances, so just move them to a separate list.
221 	 */
222 	list_add_tail(&th->node, &self->dead_threads);
223 }
224 
225 static bool symbol__match_parent_regex(struct symbol *sym)
226 {
227 	if (sym->name && !regexec(&parent_regex, sym->name, 0, NULL, 0))
228 		return 1;
229 
230 	return 0;
231 }
232 
233 static const u8 cpumodes[] = {
234 	PERF_RECORD_MISC_USER,
235 	PERF_RECORD_MISC_KERNEL,
236 	PERF_RECORD_MISC_GUEST_USER,
237 	PERF_RECORD_MISC_GUEST_KERNEL
238 };
239 #define NCPUMODES (sizeof(cpumodes)/sizeof(u8))
240 
241 static void ip__resolve_ams(struct machine *self, struct thread *thread,
242 			    struct addr_map_symbol *ams,
243 			    u64 ip)
244 {
245 	struct addr_location al;
246 	size_t i;
247 	u8 m;
248 
249 	memset(&al, 0, sizeof(al));
250 
251 	for (i = 0; i < NCPUMODES; i++) {
252 		m = cpumodes[i];
253 		/*
254 		 * We cannot use the header.misc hint to determine whether a
255 		 * branch stack address is user, kernel, guest, hypervisor.
256 		 * Branches may straddle the kernel/user/hypervisor boundaries.
257 		 * Thus, we have to try consecutively until we find a match
258 		 * or else, the symbol is unknown
259 		 */
260 		thread__find_addr_location(thread, self, m, MAP__FUNCTION,
261 				ip, &al, NULL);
262 		if (al.sym)
263 			goto found;
264 	}
265 found:
266 	ams->addr = ip;
267 	ams->al_addr = al.addr;
268 	ams->sym = al.sym;
269 	ams->map = al.map;
270 }
271 
272 struct branch_info *machine__resolve_bstack(struct machine *self,
273 					    struct thread *thr,
274 					    struct branch_stack *bs)
275 {
276 	struct branch_info *bi;
277 	unsigned int i;
278 
279 	bi = calloc(bs->nr, sizeof(struct branch_info));
280 	if (!bi)
281 		return NULL;
282 
283 	for (i = 0; i < bs->nr; i++) {
284 		ip__resolve_ams(self, thr, &bi[i].to, bs->entries[i].to);
285 		ip__resolve_ams(self, thr, &bi[i].from, bs->entries[i].from);
286 		bi[i].flags = bs->entries[i].flags;
287 	}
288 	return bi;
289 }
290 
291 int machine__resolve_callchain(struct machine *self,
292 			       struct perf_evsel *evsel __used,
293 			       struct thread *thread,
294 			       struct ip_callchain *chain,
295 			       struct symbol **parent)
296 {
297 	u8 cpumode = PERF_RECORD_MISC_USER;
298 	unsigned int i;
299 	int err;
300 
301 	callchain_cursor_reset(&callchain_cursor);
302 
303 	if (chain->nr > PERF_MAX_STACK_DEPTH) {
304 		pr_warning("corrupted callchain. skipping...\n");
305 		return 0;
306 	}
307 
308 	for (i = 0; i < chain->nr; i++) {
309 		u64 ip;
310 		struct addr_location al;
311 
312 		if (callchain_param.order == ORDER_CALLEE)
313 			ip = chain->ips[i];
314 		else
315 			ip = chain->ips[chain->nr - i - 1];
316 
317 		if (ip >= PERF_CONTEXT_MAX) {
318 			switch (ip) {
319 			case PERF_CONTEXT_HV:
320 				cpumode = PERF_RECORD_MISC_HYPERVISOR;	break;
321 			case PERF_CONTEXT_KERNEL:
322 				cpumode = PERF_RECORD_MISC_KERNEL;	break;
323 			case PERF_CONTEXT_USER:
324 				cpumode = PERF_RECORD_MISC_USER;	break;
325 			default:
326 				pr_debug("invalid callchain context: "
327 					 "%"PRId64"\n", (s64) ip);
328 				/*
329 				 * It seems the callchain is corrupted.
330 				 * Discard all.
331 				 */
332 				callchain_cursor_reset(&callchain_cursor);
333 				return 0;
334 			}
335 			continue;
336 		}
337 
338 		al.filtered = false;
339 		thread__find_addr_location(thread, self, cpumode,
340 					   MAP__FUNCTION, ip, &al, NULL);
341 		if (al.sym != NULL) {
342 			if (sort__has_parent && !*parent &&
343 			    symbol__match_parent_regex(al.sym))
344 				*parent = al.sym;
345 			if (!symbol_conf.use_callchain)
346 				break;
347 		}
348 
349 		err = callchain_cursor_append(&callchain_cursor,
350 					      ip, al.map, al.sym);
351 		if (err)
352 			return err;
353 	}
354 
355 	return 0;
356 }
357 
358 static int process_event_synth_tracing_data_stub(union perf_event *event __used,
359 						 struct perf_session *session __used)
360 {
361 	dump_printf(": unhandled!\n");
362 	return 0;
363 }
364 
365 static int process_event_synth_attr_stub(union perf_event *event __used,
366 					 struct perf_evlist **pevlist __used)
367 {
368 	dump_printf(": unhandled!\n");
369 	return 0;
370 }
371 
372 static int process_event_sample_stub(struct perf_tool *tool __used,
373 				     union perf_event *event __used,
374 				     struct perf_sample *sample __used,
375 				     struct perf_evsel *evsel __used,
376 				     struct machine *machine __used)
377 {
378 	dump_printf(": unhandled!\n");
379 	return 0;
380 }
381 
382 static int process_event_stub(struct perf_tool *tool __used,
383 			      union perf_event *event __used,
384 			      struct perf_sample *sample __used,
385 			      struct machine *machine __used)
386 {
387 	dump_printf(": unhandled!\n");
388 	return 0;
389 }
390 
391 static int process_finished_round_stub(struct perf_tool *tool __used,
392 				       union perf_event *event __used,
393 				       struct perf_session *perf_session __used)
394 {
395 	dump_printf(": unhandled!\n");
396 	return 0;
397 }
398 
399 static int process_event_type_stub(struct perf_tool *tool __used,
400 				   union perf_event *event __used)
401 {
402 	dump_printf(": unhandled!\n");
403 	return 0;
404 }
405 
406 static int process_finished_round(struct perf_tool *tool,
407 				  union perf_event *event,
408 				  struct perf_session *session);
409 
410 static void perf_tool__fill_defaults(struct perf_tool *tool)
411 {
412 	if (tool->sample == NULL)
413 		tool->sample = process_event_sample_stub;
414 	if (tool->mmap == NULL)
415 		tool->mmap = process_event_stub;
416 	if (tool->comm == NULL)
417 		tool->comm = process_event_stub;
418 	if (tool->fork == NULL)
419 		tool->fork = process_event_stub;
420 	if (tool->exit == NULL)
421 		tool->exit = process_event_stub;
422 	if (tool->lost == NULL)
423 		tool->lost = perf_event__process_lost;
424 	if (tool->read == NULL)
425 		tool->read = process_event_sample_stub;
426 	if (tool->throttle == NULL)
427 		tool->throttle = process_event_stub;
428 	if (tool->unthrottle == NULL)
429 		tool->unthrottle = process_event_stub;
430 	if (tool->attr == NULL)
431 		tool->attr = process_event_synth_attr_stub;
432 	if (tool->event_type == NULL)
433 		tool->event_type = process_event_type_stub;
434 	if (tool->tracing_data == NULL)
435 		tool->tracing_data = process_event_synth_tracing_data_stub;
436 	if (tool->build_id == NULL)
437 		tool->build_id = process_finished_round_stub;
438 	if (tool->finished_round == NULL) {
439 		if (tool->ordered_samples)
440 			tool->finished_round = process_finished_round;
441 		else
442 			tool->finished_round = process_finished_round_stub;
443 	}
444 }
445 
446 void mem_bswap_32(void *src, int byte_size)
447 {
448 	u32 *m = src;
449 	while (byte_size > 0) {
450 		*m = bswap_32(*m);
451 		byte_size -= sizeof(u32);
452 		++m;
453 	}
454 }
455 
456 void mem_bswap_64(void *src, int byte_size)
457 {
458 	u64 *m = src;
459 
460 	while (byte_size > 0) {
461 		*m = bswap_64(*m);
462 		byte_size -= sizeof(u64);
463 		++m;
464 	}
465 }
466 
467 static void swap_sample_id_all(union perf_event *event, void *data)
468 {
469 	void *end = (void *) event + event->header.size;
470 	int size = end - data;
471 
472 	BUG_ON(size % sizeof(u64));
473 	mem_bswap_64(data, size);
474 }
475 
476 static void perf_event__all64_swap(union perf_event *event,
477 				   bool sample_id_all __used)
478 {
479 	struct perf_event_header *hdr = &event->header;
480 	mem_bswap_64(hdr + 1, event->header.size - sizeof(*hdr));
481 }
482 
483 static void perf_event__comm_swap(union perf_event *event, bool sample_id_all)
484 {
485 	event->comm.pid = bswap_32(event->comm.pid);
486 	event->comm.tid = bswap_32(event->comm.tid);
487 
488 	if (sample_id_all) {
489 		void *data = &event->comm.comm;
490 
491 		data += ALIGN(strlen(data) + 1, sizeof(u64));
492 		swap_sample_id_all(event, data);
493 	}
494 }
495 
496 static void perf_event__mmap_swap(union perf_event *event,
497 				  bool sample_id_all)
498 {
499 	event->mmap.pid	  = bswap_32(event->mmap.pid);
500 	event->mmap.tid	  = bswap_32(event->mmap.tid);
501 	event->mmap.start = bswap_64(event->mmap.start);
502 	event->mmap.len	  = bswap_64(event->mmap.len);
503 	event->mmap.pgoff = bswap_64(event->mmap.pgoff);
504 
505 	if (sample_id_all) {
506 		void *data = &event->mmap.filename;
507 
508 		data += ALIGN(strlen(data) + 1, sizeof(u64));
509 		swap_sample_id_all(event, data);
510 	}
511 }
512 
513 static void perf_event__task_swap(union perf_event *event, bool sample_id_all)
514 {
515 	event->fork.pid	 = bswap_32(event->fork.pid);
516 	event->fork.tid	 = bswap_32(event->fork.tid);
517 	event->fork.ppid = bswap_32(event->fork.ppid);
518 	event->fork.ptid = bswap_32(event->fork.ptid);
519 	event->fork.time = bswap_64(event->fork.time);
520 
521 	if (sample_id_all)
522 		swap_sample_id_all(event, &event->fork + 1);
523 }
524 
525 static void perf_event__read_swap(union perf_event *event, bool sample_id_all)
526 {
527 	event->read.pid		 = bswap_32(event->read.pid);
528 	event->read.tid		 = bswap_32(event->read.tid);
529 	event->read.value	 = bswap_64(event->read.value);
530 	event->read.time_enabled = bswap_64(event->read.time_enabled);
531 	event->read.time_running = bswap_64(event->read.time_running);
532 	event->read.id		 = bswap_64(event->read.id);
533 
534 	if (sample_id_all)
535 		swap_sample_id_all(event, &event->read + 1);
536 }
537 
538 static u8 revbyte(u8 b)
539 {
540 	int rev = (b >> 4) | ((b & 0xf) << 4);
541 	rev = ((rev & 0xcc) >> 2) | ((rev & 0x33) << 2);
542 	rev = ((rev & 0xaa) >> 1) | ((rev & 0x55) << 1);
543 	return (u8) rev;
544 }
545 
546 /*
547  * XXX this is hack in attempt to carry flags bitfield
548  * throught endian village. ABI says:
549  *
550  * Bit-fields are allocated from right to left (least to most significant)
551  * on little-endian implementations and from left to right (most to least
552  * significant) on big-endian implementations.
553  *
554  * The above seems to be byte specific, so we need to reverse each
555  * byte of the bitfield. 'Internet' also says this might be implementation
556  * specific and we probably need proper fix and carry perf_event_attr
557  * bitfield flags in separate data file FEAT_ section. Thought this seems
558  * to work for now.
559  */
560 static void swap_bitfield(u8 *p, unsigned len)
561 {
562 	unsigned i;
563 
564 	for (i = 0; i < len; i++) {
565 		*p = revbyte(*p);
566 		p++;
567 	}
568 }
569 
570 /* exported for swapping attributes in file header */
571 void perf_event__attr_swap(struct perf_event_attr *attr)
572 {
573 	attr->type		= bswap_32(attr->type);
574 	attr->size		= bswap_32(attr->size);
575 	attr->config		= bswap_64(attr->config);
576 	attr->sample_period	= bswap_64(attr->sample_period);
577 	attr->sample_type	= bswap_64(attr->sample_type);
578 	attr->read_format	= bswap_64(attr->read_format);
579 	attr->wakeup_events	= bswap_32(attr->wakeup_events);
580 	attr->bp_type		= bswap_32(attr->bp_type);
581 	attr->bp_addr		= bswap_64(attr->bp_addr);
582 	attr->bp_len		= bswap_64(attr->bp_len);
583 
584 	swap_bitfield((u8 *) (&attr->read_format + 1), sizeof(u64));
585 }
586 
587 static void perf_event__hdr_attr_swap(union perf_event *event,
588 				      bool sample_id_all __used)
589 {
590 	size_t size;
591 
592 	perf_event__attr_swap(&event->attr.attr);
593 
594 	size = event->header.size;
595 	size -= (void *)&event->attr.id - (void *)event;
596 	mem_bswap_64(event->attr.id, size);
597 }
598 
599 static void perf_event__event_type_swap(union perf_event *event,
600 					bool sample_id_all __used)
601 {
602 	event->event_type.event_type.event_id =
603 		bswap_64(event->event_type.event_type.event_id);
604 }
605 
606 static void perf_event__tracing_data_swap(union perf_event *event,
607 					  bool sample_id_all __used)
608 {
609 	event->tracing_data.size = bswap_32(event->tracing_data.size);
610 }
611 
612 typedef void (*perf_event__swap_op)(union perf_event *event,
613 				    bool sample_id_all);
614 
615 static perf_event__swap_op perf_event__swap_ops[] = {
616 	[PERF_RECORD_MMAP]		  = perf_event__mmap_swap,
617 	[PERF_RECORD_COMM]		  = perf_event__comm_swap,
618 	[PERF_RECORD_FORK]		  = perf_event__task_swap,
619 	[PERF_RECORD_EXIT]		  = perf_event__task_swap,
620 	[PERF_RECORD_LOST]		  = perf_event__all64_swap,
621 	[PERF_RECORD_READ]		  = perf_event__read_swap,
622 	[PERF_RECORD_SAMPLE]		  = perf_event__all64_swap,
623 	[PERF_RECORD_HEADER_ATTR]	  = perf_event__hdr_attr_swap,
624 	[PERF_RECORD_HEADER_EVENT_TYPE]	  = perf_event__event_type_swap,
625 	[PERF_RECORD_HEADER_TRACING_DATA] = perf_event__tracing_data_swap,
626 	[PERF_RECORD_HEADER_BUILD_ID]	  = NULL,
627 	[PERF_RECORD_HEADER_MAX]	  = NULL,
628 };
629 
630 struct sample_queue {
631 	u64			timestamp;
632 	u64			file_offset;
633 	union perf_event	*event;
634 	struct list_head	list;
635 };
636 
637 static void perf_session_free_sample_buffers(struct perf_session *session)
638 {
639 	struct ordered_samples *os = &session->ordered_samples;
640 
641 	while (!list_empty(&os->to_free)) {
642 		struct sample_queue *sq;
643 
644 		sq = list_entry(os->to_free.next, struct sample_queue, list);
645 		list_del(&sq->list);
646 		free(sq);
647 	}
648 }
649 
650 static int perf_session_deliver_event(struct perf_session *session,
651 				      union perf_event *event,
652 				      struct perf_sample *sample,
653 				      struct perf_tool *tool,
654 				      u64 file_offset);
655 
656 static void flush_sample_queue(struct perf_session *s,
657 			       struct perf_tool *tool)
658 {
659 	struct ordered_samples *os = &s->ordered_samples;
660 	struct list_head *head = &os->samples;
661 	struct sample_queue *tmp, *iter;
662 	struct perf_sample sample;
663 	u64 limit = os->next_flush;
664 	u64 last_ts = os->last_sample ? os->last_sample->timestamp : 0ULL;
665 	unsigned idx = 0, progress_next = os->nr_samples / 16;
666 	int ret;
667 
668 	if (!tool->ordered_samples || !limit)
669 		return;
670 
671 	list_for_each_entry_safe(iter, tmp, head, list) {
672 		if (iter->timestamp > limit)
673 			break;
674 
675 		ret = perf_session__parse_sample(s, iter->event, &sample);
676 		if (ret)
677 			pr_err("Can't parse sample, err = %d\n", ret);
678 		else
679 			perf_session_deliver_event(s, iter->event, &sample, tool,
680 						   iter->file_offset);
681 
682 		os->last_flush = iter->timestamp;
683 		list_del(&iter->list);
684 		list_add(&iter->list, &os->sample_cache);
685 		if (++idx >= progress_next) {
686 			progress_next += os->nr_samples / 16;
687 			ui_progress__update(idx, os->nr_samples,
688 					    "Processing time ordered events...");
689 		}
690 	}
691 
692 	if (list_empty(head)) {
693 		os->last_sample = NULL;
694 	} else if (last_ts <= limit) {
695 		os->last_sample =
696 			list_entry(head->prev, struct sample_queue, list);
697 	}
698 
699 	os->nr_samples = 0;
700 }
701 
702 /*
703  * When perf record finishes a pass on every buffers, it records this pseudo
704  * event.
705  * We record the max timestamp t found in the pass n.
706  * Assuming these timestamps are monotonic across cpus, we know that if
707  * a buffer still has events with timestamps below t, they will be all
708  * available and then read in the pass n + 1.
709  * Hence when we start to read the pass n + 2, we can safely flush every
710  * events with timestamps below t.
711  *
712  *    ============ PASS n =================
713  *       CPU 0         |   CPU 1
714  *                     |
715  *    cnt1 timestamps  |   cnt2 timestamps
716  *          1          |         2
717  *          2          |         3
718  *          -          |         4  <--- max recorded
719  *
720  *    ============ PASS n + 1 ==============
721  *       CPU 0         |   CPU 1
722  *                     |
723  *    cnt1 timestamps  |   cnt2 timestamps
724  *          3          |         5
725  *          4          |         6
726  *          5          |         7 <---- max recorded
727  *
728  *      Flush every events below timestamp 4
729  *
730  *    ============ PASS n + 2 ==============
731  *       CPU 0         |   CPU 1
732  *                     |
733  *    cnt1 timestamps  |   cnt2 timestamps
734  *          6          |         8
735  *          7          |         9
736  *          -          |         10
737  *
738  *      Flush every events below timestamp 7
739  *      etc...
740  */
741 static int process_finished_round(struct perf_tool *tool,
742 				  union perf_event *event __used,
743 				  struct perf_session *session)
744 {
745 	flush_sample_queue(session, tool);
746 	session->ordered_samples.next_flush = session->ordered_samples.max_timestamp;
747 
748 	return 0;
749 }
750 
751 /* The queue is ordered by time */
752 static void __queue_event(struct sample_queue *new, struct perf_session *s)
753 {
754 	struct ordered_samples *os = &s->ordered_samples;
755 	struct sample_queue *sample = os->last_sample;
756 	u64 timestamp = new->timestamp;
757 	struct list_head *p;
758 
759 	++os->nr_samples;
760 	os->last_sample = new;
761 
762 	if (!sample) {
763 		list_add(&new->list, &os->samples);
764 		os->max_timestamp = timestamp;
765 		return;
766 	}
767 
768 	/*
769 	 * last_sample might point to some random place in the list as it's
770 	 * the last queued event. We expect that the new event is close to
771 	 * this.
772 	 */
773 	if (sample->timestamp <= timestamp) {
774 		while (sample->timestamp <= timestamp) {
775 			p = sample->list.next;
776 			if (p == &os->samples) {
777 				list_add_tail(&new->list, &os->samples);
778 				os->max_timestamp = timestamp;
779 				return;
780 			}
781 			sample = list_entry(p, struct sample_queue, list);
782 		}
783 		list_add_tail(&new->list, &sample->list);
784 	} else {
785 		while (sample->timestamp > timestamp) {
786 			p = sample->list.prev;
787 			if (p == &os->samples) {
788 				list_add(&new->list, &os->samples);
789 				return;
790 			}
791 			sample = list_entry(p, struct sample_queue, list);
792 		}
793 		list_add(&new->list, &sample->list);
794 	}
795 }
796 
797 #define MAX_SAMPLE_BUFFER	(64 * 1024 / sizeof(struct sample_queue))
798 
799 static int perf_session_queue_event(struct perf_session *s, union perf_event *event,
800 				    struct perf_sample *sample, u64 file_offset)
801 {
802 	struct ordered_samples *os = &s->ordered_samples;
803 	struct list_head *sc = &os->sample_cache;
804 	u64 timestamp = sample->time;
805 	struct sample_queue *new;
806 
807 	if (!timestamp || timestamp == ~0ULL)
808 		return -ETIME;
809 
810 	if (timestamp < s->ordered_samples.last_flush) {
811 		printf("Warning: Timestamp below last timeslice flush\n");
812 		return -EINVAL;
813 	}
814 
815 	if (!list_empty(sc)) {
816 		new = list_entry(sc->next, struct sample_queue, list);
817 		list_del(&new->list);
818 	} else if (os->sample_buffer) {
819 		new = os->sample_buffer + os->sample_buffer_idx;
820 		if (++os->sample_buffer_idx == MAX_SAMPLE_BUFFER)
821 			os->sample_buffer = NULL;
822 	} else {
823 		os->sample_buffer = malloc(MAX_SAMPLE_BUFFER * sizeof(*new));
824 		if (!os->sample_buffer)
825 			return -ENOMEM;
826 		list_add(&os->sample_buffer->list, &os->to_free);
827 		os->sample_buffer_idx = 2;
828 		new = os->sample_buffer + 1;
829 	}
830 
831 	new->timestamp = timestamp;
832 	new->file_offset = file_offset;
833 	new->event = event;
834 
835 	__queue_event(new, s);
836 
837 	return 0;
838 }
839 
840 static void callchain__printf(struct perf_sample *sample)
841 {
842 	unsigned int i;
843 
844 	printf("... chain: nr:%" PRIu64 "\n", sample->callchain->nr);
845 
846 	for (i = 0; i < sample->callchain->nr; i++)
847 		printf("..... %2d: %016" PRIx64 "\n",
848 		       i, sample->callchain->ips[i]);
849 }
850 
851 static void branch_stack__printf(struct perf_sample *sample)
852 {
853 	uint64_t i;
854 
855 	printf("... branch stack: nr:%" PRIu64 "\n", sample->branch_stack->nr);
856 
857 	for (i = 0; i < sample->branch_stack->nr; i++)
858 		printf("..... %2"PRIu64": %016" PRIx64 " -> %016" PRIx64 "\n",
859 			i, sample->branch_stack->entries[i].from,
860 			sample->branch_stack->entries[i].to);
861 }
862 
863 static void perf_session__print_tstamp(struct perf_session *session,
864 				       union perf_event *event,
865 				       struct perf_sample *sample)
866 {
867 	if (event->header.type != PERF_RECORD_SAMPLE &&
868 	    !session->sample_id_all) {
869 		fputs("-1 -1 ", stdout);
870 		return;
871 	}
872 
873 	if ((session->sample_type & PERF_SAMPLE_CPU))
874 		printf("%u ", sample->cpu);
875 
876 	if (session->sample_type & PERF_SAMPLE_TIME)
877 		printf("%" PRIu64 " ", sample->time);
878 }
879 
880 static void dump_event(struct perf_session *session, union perf_event *event,
881 		       u64 file_offset, struct perf_sample *sample)
882 {
883 	if (!dump_trace)
884 		return;
885 
886 	printf("\n%#" PRIx64 " [%#x]: event: %d\n",
887 	       file_offset, event->header.size, event->header.type);
888 
889 	trace_event(event);
890 
891 	if (sample)
892 		perf_session__print_tstamp(session, event, sample);
893 
894 	printf("%#" PRIx64 " [%#x]: PERF_RECORD_%s", file_offset,
895 	       event->header.size, perf_event__name(event->header.type));
896 }
897 
898 static void dump_sample(struct perf_session *session, union perf_event *event,
899 			struct perf_sample *sample)
900 {
901 	if (!dump_trace)
902 		return;
903 
904 	printf("(IP, %d): %d/%d: %#" PRIx64 " period: %" PRIu64 " addr: %#" PRIx64 "\n",
905 	       event->header.misc, sample->pid, sample->tid, sample->ip,
906 	       sample->period, sample->addr);
907 
908 	if (session->sample_type & PERF_SAMPLE_CALLCHAIN)
909 		callchain__printf(sample);
910 
911 	if (session->sample_type & PERF_SAMPLE_BRANCH_STACK)
912 		branch_stack__printf(sample);
913 }
914 
915 static struct machine *
916 	perf_session__find_machine_for_cpumode(struct perf_session *session,
917 					       union perf_event *event)
918 {
919 	const u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
920 
921 	if (cpumode == PERF_RECORD_MISC_GUEST_KERNEL && perf_guest) {
922 		u32 pid;
923 
924 		if (event->header.type == PERF_RECORD_MMAP)
925 			pid = event->mmap.pid;
926 		else
927 			pid = event->ip.pid;
928 
929 		return perf_session__findnew_machine(session, pid);
930 	}
931 
932 	return perf_session__find_host_machine(session);
933 }
934 
935 static int perf_session_deliver_event(struct perf_session *session,
936 				      union perf_event *event,
937 				      struct perf_sample *sample,
938 				      struct perf_tool *tool,
939 				      u64 file_offset)
940 {
941 	struct perf_evsel *evsel;
942 	struct machine *machine;
943 
944 	dump_event(session, event, file_offset, sample);
945 
946 	evsel = perf_evlist__id2evsel(session->evlist, sample->id);
947 	if (evsel != NULL && event->header.type != PERF_RECORD_SAMPLE) {
948 		/*
949 		 * XXX We're leaving PERF_RECORD_SAMPLE unnacounted here
950 		 * because the tools right now may apply filters, discarding
951 		 * some of the samples. For consistency, in the future we
952 		 * should have something like nr_filtered_samples and remove
953 		 * the sample->period from total_sample_period, etc, KISS for
954 		 * now tho.
955 		 *
956 		 * Also testing against NULL allows us to handle files without
957 		 * attr.sample_id_all and/or without PERF_SAMPLE_ID. In the
958 		 * future probably it'll be a good idea to restrict event
959 		 * processing via perf_session to files with both set.
960 		 */
961 		hists__inc_nr_events(&evsel->hists, event->header.type);
962 	}
963 
964 	machine = perf_session__find_machine_for_cpumode(session, event);
965 
966 	switch (event->header.type) {
967 	case PERF_RECORD_SAMPLE:
968 		dump_sample(session, event, sample);
969 		if (evsel == NULL) {
970 			++session->hists.stats.nr_unknown_id;
971 			return 0;
972 		}
973 		if (machine == NULL) {
974 			++session->hists.stats.nr_unprocessable_samples;
975 			return 0;
976 		}
977 		return tool->sample(tool, event, sample, evsel, machine);
978 	case PERF_RECORD_MMAP:
979 		return tool->mmap(tool, event, sample, machine);
980 	case PERF_RECORD_COMM:
981 		return tool->comm(tool, event, sample, machine);
982 	case PERF_RECORD_FORK:
983 		return tool->fork(tool, event, sample, machine);
984 	case PERF_RECORD_EXIT:
985 		return tool->exit(tool, event, sample, machine);
986 	case PERF_RECORD_LOST:
987 		if (tool->lost == perf_event__process_lost)
988 			session->hists.stats.total_lost += event->lost.lost;
989 		return tool->lost(tool, event, sample, machine);
990 	case PERF_RECORD_READ:
991 		return tool->read(tool, event, sample, evsel, machine);
992 	case PERF_RECORD_THROTTLE:
993 		return tool->throttle(tool, event, sample, machine);
994 	case PERF_RECORD_UNTHROTTLE:
995 		return tool->unthrottle(tool, event, sample, machine);
996 	default:
997 		++session->hists.stats.nr_unknown_events;
998 		return -1;
999 	}
1000 }
1001 
1002 static int perf_session__preprocess_sample(struct perf_session *session,
1003 					   union perf_event *event, struct perf_sample *sample)
1004 {
1005 	if (event->header.type != PERF_RECORD_SAMPLE ||
1006 	    !(session->sample_type & PERF_SAMPLE_CALLCHAIN))
1007 		return 0;
1008 
1009 	if (!ip_callchain__valid(sample->callchain, event)) {
1010 		pr_debug("call-chain problem with event, skipping it.\n");
1011 		++session->hists.stats.nr_invalid_chains;
1012 		session->hists.stats.total_invalid_chains += sample->period;
1013 		return -EINVAL;
1014 	}
1015 	return 0;
1016 }
1017 
1018 static int perf_session__process_user_event(struct perf_session *session, union perf_event *event,
1019 					    struct perf_tool *tool, u64 file_offset)
1020 {
1021 	int err;
1022 
1023 	dump_event(session, event, file_offset, NULL);
1024 
1025 	/* These events are processed right away */
1026 	switch (event->header.type) {
1027 	case PERF_RECORD_HEADER_ATTR:
1028 		err = tool->attr(event, &session->evlist);
1029 		if (err == 0)
1030 			perf_session__update_sample_type(session);
1031 		return err;
1032 	case PERF_RECORD_HEADER_EVENT_TYPE:
1033 		return tool->event_type(tool, event);
1034 	case PERF_RECORD_HEADER_TRACING_DATA:
1035 		/* setup for reading amidst mmap */
1036 		lseek(session->fd, file_offset, SEEK_SET);
1037 		return tool->tracing_data(event, session);
1038 	case PERF_RECORD_HEADER_BUILD_ID:
1039 		return tool->build_id(tool, event, session);
1040 	case PERF_RECORD_FINISHED_ROUND:
1041 		return tool->finished_round(tool, event, session);
1042 	default:
1043 		return -EINVAL;
1044 	}
1045 }
1046 
1047 static void event_swap(union perf_event *event, bool sample_id_all)
1048 {
1049 	perf_event__swap_op swap;
1050 
1051 	swap = perf_event__swap_ops[event->header.type];
1052 	if (swap)
1053 		swap(event, sample_id_all);
1054 }
1055 
1056 static int perf_session__process_event(struct perf_session *session,
1057 				       union perf_event *event,
1058 				       struct perf_tool *tool,
1059 				       u64 file_offset)
1060 {
1061 	struct perf_sample sample;
1062 	int ret;
1063 
1064 	if (session->header.needs_swap)
1065 		event_swap(event, session->sample_id_all);
1066 
1067 	if (event->header.type >= PERF_RECORD_HEADER_MAX)
1068 		return -EINVAL;
1069 
1070 	hists__inc_nr_events(&session->hists, event->header.type);
1071 
1072 	if (event->header.type >= PERF_RECORD_USER_TYPE_START)
1073 		return perf_session__process_user_event(session, event, tool, file_offset);
1074 
1075 	/*
1076 	 * For all kernel events we get the sample data
1077 	 */
1078 	ret = perf_session__parse_sample(session, event, &sample);
1079 	if (ret)
1080 		return ret;
1081 
1082 	/* Preprocess sample records - precheck callchains */
1083 	if (perf_session__preprocess_sample(session, event, &sample))
1084 		return 0;
1085 
1086 	if (tool->ordered_samples) {
1087 		ret = perf_session_queue_event(session, event, &sample,
1088 					       file_offset);
1089 		if (ret != -ETIME)
1090 			return ret;
1091 	}
1092 
1093 	return perf_session_deliver_event(session, event, &sample, tool,
1094 					  file_offset);
1095 }
1096 
1097 void perf_event_header__bswap(struct perf_event_header *self)
1098 {
1099 	self->type = bswap_32(self->type);
1100 	self->misc = bswap_16(self->misc);
1101 	self->size = bswap_16(self->size);
1102 }
1103 
1104 struct thread *perf_session__findnew(struct perf_session *session, pid_t pid)
1105 {
1106 	return machine__findnew_thread(&session->host_machine, pid);
1107 }
1108 
1109 static struct thread *perf_session__register_idle_thread(struct perf_session *self)
1110 {
1111 	struct thread *thread = perf_session__findnew(self, 0);
1112 
1113 	if (thread == NULL || thread__set_comm(thread, "swapper")) {
1114 		pr_err("problem inserting idle task.\n");
1115 		thread = NULL;
1116 	}
1117 
1118 	return thread;
1119 }
1120 
1121 static void perf_session__warn_about_errors(const struct perf_session *session,
1122 					    const struct perf_tool *tool)
1123 {
1124 	if (tool->lost == perf_event__process_lost &&
1125 	    session->hists.stats.nr_events[PERF_RECORD_LOST] != 0) {
1126 		ui__warning("Processed %d events and lost %d chunks!\n\n"
1127 			    "Check IO/CPU overload!\n\n",
1128 			    session->hists.stats.nr_events[0],
1129 			    session->hists.stats.nr_events[PERF_RECORD_LOST]);
1130 	}
1131 
1132 	if (session->hists.stats.nr_unknown_events != 0) {
1133 		ui__warning("Found %u unknown events!\n\n"
1134 			    "Is this an older tool processing a perf.data "
1135 			    "file generated by a more recent tool?\n\n"
1136 			    "If that is not the case, consider "
1137 			    "reporting to linux-kernel@vger.kernel.org.\n\n",
1138 			    session->hists.stats.nr_unknown_events);
1139 	}
1140 
1141 	if (session->hists.stats.nr_unknown_id != 0) {
1142 		ui__warning("%u samples with id not present in the header\n",
1143 			    session->hists.stats.nr_unknown_id);
1144 	}
1145 
1146  	if (session->hists.stats.nr_invalid_chains != 0) {
1147  		ui__warning("Found invalid callchains!\n\n"
1148  			    "%u out of %u events were discarded for this reason.\n\n"
1149  			    "Consider reporting to linux-kernel@vger.kernel.org.\n\n",
1150  			    session->hists.stats.nr_invalid_chains,
1151  			    session->hists.stats.nr_events[PERF_RECORD_SAMPLE]);
1152  	}
1153 
1154 	if (session->hists.stats.nr_unprocessable_samples != 0) {
1155 		ui__warning("%u unprocessable samples recorded.\n"
1156 			    "Do you have a KVM guest running and not using 'perf kvm'?\n",
1157 			    session->hists.stats.nr_unprocessable_samples);
1158 	}
1159 }
1160 
1161 #define session_done()	(*(volatile int *)(&session_done))
1162 volatile int session_done;
1163 
1164 static int __perf_session__process_pipe_events(struct perf_session *self,
1165 					       struct perf_tool *tool)
1166 {
1167 	union perf_event *event;
1168 	uint32_t size, cur_size = 0;
1169 	void *buf = NULL;
1170 	int skip = 0;
1171 	u64 head;
1172 	int err;
1173 	void *p;
1174 
1175 	perf_tool__fill_defaults(tool);
1176 
1177 	head = 0;
1178 	cur_size = sizeof(union perf_event);
1179 
1180 	buf = malloc(cur_size);
1181 	if (!buf)
1182 		return -errno;
1183 more:
1184 	event = buf;
1185 	err = readn(self->fd, event, sizeof(struct perf_event_header));
1186 	if (err <= 0) {
1187 		if (err == 0)
1188 			goto done;
1189 
1190 		pr_err("failed to read event header\n");
1191 		goto out_err;
1192 	}
1193 
1194 	if (self->header.needs_swap)
1195 		perf_event_header__bswap(&event->header);
1196 
1197 	size = event->header.size;
1198 	if (size == 0)
1199 		size = 8;
1200 
1201 	if (size > cur_size) {
1202 		void *new = realloc(buf, size);
1203 		if (!new) {
1204 			pr_err("failed to allocate memory to read event\n");
1205 			goto out_err;
1206 		}
1207 		buf = new;
1208 		cur_size = size;
1209 		event = buf;
1210 	}
1211 	p = event;
1212 	p += sizeof(struct perf_event_header);
1213 
1214 	if (size - sizeof(struct perf_event_header)) {
1215 		err = readn(self->fd, p, size - sizeof(struct perf_event_header));
1216 		if (err <= 0) {
1217 			if (err == 0) {
1218 				pr_err("unexpected end of event stream\n");
1219 				goto done;
1220 			}
1221 
1222 			pr_err("failed to read event data\n");
1223 			goto out_err;
1224 		}
1225 	}
1226 
1227 	if ((skip = perf_session__process_event(self, event, tool, head)) < 0) {
1228 		pr_err("%#" PRIx64 " [%#x]: failed to process type: %d\n",
1229 		       head, event->header.size, event->header.type);
1230 		err = -EINVAL;
1231 		goto out_err;
1232 	}
1233 
1234 	head += size;
1235 
1236 	if (skip > 0)
1237 		head += skip;
1238 
1239 	if (!session_done())
1240 		goto more;
1241 done:
1242 	err = 0;
1243 out_err:
1244 	free(buf);
1245 	perf_session__warn_about_errors(self, tool);
1246 	perf_session_free_sample_buffers(self);
1247 	return err;
1248 }
1249 
1250 static union perf_event *
1251 fetch_mmaped_event(struct perf_session *session,
1252 		   u64 head, size_t mmap_size, char *buf)
1253 {
1254 	union perf_event *event;
1255 
1256 	/*
1257 	 * Ensure we have enough space remaining to read
1258 	 * the size of the event in the headers.
1259 	 */
1260 	if (head + sizeof(event->header) > mmap_size)
1261 		return NULL;
1262 
1263 	event = (union perf_event *)(buf + head);
1264 
1265 	if (session->header.needs_swap)
1266 		perf_event_header__bswap(&event->header);
1267 
1268 	if (head + event->header.size > mmap_size)
1269 		return NULL;
1270 
1271 	return event;
1272 }
1273 
1274 int __perf_session__process_events(struct perf_session *session,
1275 				   u64 data_offset, u64 data_size,
1276 				   u64 file_size, struct perf_tool *tool)
1277 {
1278 	u64 head, page_offset, file_offset, file_pos, progress_next;
1279 	int err, mmap_prot, mmap_flags, map_idx = 0;
1280 	size_t	page_size, mmap_size;
1281 	char *buf, *mmaps[8];
1282 	union perf_event *event;
1283 	uint32_t size;
1284 
1285 	perf_tool__fill_defaults(tool);
1286 
1287 	page_size = sysconf(_SC_PAGESIZE);
1288 
1289 	page_offset = page_size * (data_offset / page_size);
1290 	file_offset = page_offset;
1291 	head = data_offset - page_offset;
1292 
1293 	if (data_offset + data_size < file_size)
1294 		file_size = data_offset + data_size;
1295 
1296 	progress_next = file_size / 16;
1297 
1298 	mmap_size = session->mmap_window;
1299 	if (mmap_size > file_size)
1300 		mmap_size = file_size;
1301 
1302 	memset(mmaps, 0, sizeof(mmaps));
1303 
1304 	mmap_prot  = PROT_READ;
1305 	mmap_flags = MAP_SHARED;
1306 
1307 	if (session->header.needs_swap) {
1308 		mmap_prot  |= PROT_WRITE;
1309 		mmap_flags = MAP_PRIVATE;
1310 	}
1311 remap:
1312 	buf = mmap(NULL, mmap_size, mmap_prot, mmap_flags, session->fd,
1313 		   file_offset);
1314 	if (buf == MAP_FAILED) {
1315 		pr_err("failed to mmap file\n");
1316 		err = -errno;
1317 		goto out_err;
1318 	}
1319 	mmaps[map_idx] = buf;
1320 	map_idx = (map_idx + 1) & (ARRAY_SIZE(mmaps) - 1);
1321 	file_pos = file_offset + head;
1322 
1323 more:
1324 	event = fetch_mmaped_event(session, head, mmap_size, buf);
1325 	if (!event) {
1326 		if (mmaps[map_idx]) {
1327 			munmap(mmaps[map_idx], mmap_size);
1328 			mmaps[map_idx] = NULL;
1329 		}
1330 
1331 		page_offset = page_size * (head / page_size);
1332 		file_offset += page_offset;
1333 		head -= page_offset;
1334 		goto remap;
1335 	}
1336 
1337 	size = event->header.size;
1338 
1339 	if (size == 0 ||
1340 	    perf_session__process_event(session, event, tool, file_pos) < 0) {
1341 		pr_err("%#" PRIx64 " [%#x]: failed to process type: %d\n",
1342 		       file_offset + head, event->header.size,
1343 		       event->header.type);
1344 		err = -EINVAL;
1345 		goto out_err;
1346 	}
1347 
1348 	head += size;
1349 	file_pos += size;
1350 
1351 	if (file_pos >= progress_next) {
1352 		progress_next += file_size / 16;
1353 		ui_progress__update(file_pos, file_size,
1354 				    "Processing events...");
1355 	}
1356 
1357 	if (file_pos < file_size)
1358 		goto more;
1359 
1360 	err = 0;
1361 	/* do the final flush for ordered samples */
1362 	session->ordered_samples.next_flush = ULLONG_MAX;
1363 	flush_sample_queue(session, tool);
1364 out_err:
1365 	perf_session__warn_about_errors(session, tool);
1366 	perf_session_free_sample_buffers(session);
1367 	return err;
1368 }
1369 
1370 int perf_session__process_events(struct perf_session *self,
1371 				 struct perf_tool *tool)
1372 {
1373 	int err;
1374 
1375 	if (perf_session__register_idle_thread(self) == NULL)
1376 		return -ENOMEM;
1377 
1378 	if (!self->fd_pipe)
1379 		err = __perf_session__process_events(self,
1380 						     self->header.data_offset,
1381 						     self->header.data_size,
1382 						     self->size, tool);
1383 	else
1384 		err = __perf_session__process_pipe_events(self, tool);
1385 
1386 	return err;
1387 }
1388 
1389 bool perf_session__has_traces(struct perf_session *self, const char *msg)
1390 {
1391 	if (!(self->sample_type & PERF_SAMPLE_RAW)) {
1392 		pr_err("No trace sample to read. Did you call 'perf %s'?\n", msg);
1393 		return false;
1394 	}
1395 
1396 	return true;
1397 }
1398 
1399 int maps__set_kallsyms_ref_reloc_sym(struct map **maps,
1400 				     const char *symbol_name, u64 addr)
1401 {
1402 	char *bracket;
1403 	enum map_type i;
1404 	struct ref_reloc_sym *ref;
1405 
1406 	ref = zalloc(sizeof(struct ref_reloc_sym));
1407 	if (ref == NULL)
1408 		return -ENOMEM;
1409 
1410 	ref->name = strdup(symbol_name);
1411 	if (ref->name == NULL) {
1412 		free(ref);
1413 		return -ENOMEM;
1414 	}
1415 
1416 	bracket = strchr(ref->name, ']');
1417 	if (bracket)
1418 		*bracket = '\0';
1419 
1420 	ref->addr = addr;
1421 
1422 	for (i = 0; i < MAP__NR_TYPES; ++i) {
1423 		struct kmap *kmap = map__kmap(maps[i]);
1424 		kmap->ref_reloc_sym = ref;
1425 	}
1426 
1427 	return 0;
1428 }
1429 
1430 size_t perf_session__fprintf_dsos(struct perf_session *self, FILE *fp)
1431 {
1432 	return __dsos__fprintf(&self->host_machine.kernel_dsos, fp) +
1433 	       __dsos__fprintf(&self->host_machine.user_dsos, fp) +
1434 	       machines__fprintf_dsos(&self->machines, fp);
1435 }
1436 
1437 size_t perf_session__fprintf_dsos_buildid(struct perf_session *self, FILE *fp,
1438 					  bool with_hits)
1439 {
1440 	size_t ret = machine__fprintf_dsos_buildid(&self->host_machine, fp, with_hits);
1441 	return ret + machines__fprintf_dsos_buildid(&self->machines, fp, with_hits);
1442 }
1443 
1444 size_t perf_session__fprintf_nr_events(struct perf_session *session, FILE *fp)
1445 {
1446 	struct perf_evsel *pos;
1447 	size_t ret = fprintf(fp, "Aggregated stats:\n");
1448 
1449 	ret += hists__fprintf_nr_events(&session->hists, fp);
1450 
1451 	list_for_each_entry(pos, &session->evlist->entries, node) {
1452 		ret += fprintf(fp, "%s stats:\n", event_name(pos));
1453 		ret += hists__fprintf_nr_events(&pos->hists, fp);
1454 	}
1455 
1456 	return ret;
1457 }
1458 
1459 size_t perf_session__fprintf(struct perf_session *session, FILE *fp)
1460 {
1461 	/*
1462 	 * FIXME: Here we have to actually print all the machines in this
1463 	 * session, not just the host...
1464 	 */
1465 	return machine__fprintf(&session->host_machine, fp);
1466 }
1467 
1468 void perf_session__remove_thread(struct perf_session *session,
1469 				 struct thread *th)
1470 {
1471 	/*
1472 	 * FIXME: This one makes no sense, we need to remove the thread from
1473 	 * the machine it belongs to, perf_session can have many machines, so
1474 	 * doing it always on ->host_machine is wrong.  Fix when auditing all
1475 	 * the 'perf kvm' code.
1476 	 */
1477 	machine__remove_thread(&session->host_machine, th);
1478 }
1479 
1480 struct perf_evsel *perf_session__find_first_evtype(struct perf_session *session,
1481 					      unsigned int type)
1482 {
1483 	struct perf_evsel *pos;
1484 
1485 	list_for_each_entry(pos, &session->evlist->entries, node) {
1486 		if (pos->attr.type == type)
1487 			return pos;
1488 	}
1489 	return NULL;
1490 }
1491 
1492 void perf_event__print_ip(union perf_event *event, struct perf_sample *sample,
1493 			  struct machine *machine, struct perf_evsel *evsel,
1494 			  int print_sym, int print_dso, int print_symoffset)
1495 {
1496 	struct addr_location al;
1497 	struct callchain_cursor_node *node;
1498 
1499 	if (perf_event__preprocess_sample(event, machine, &al, sample,
1500 					  NULL) < 0) {
1501 		error("problem processing %d event, skipping it.\n",
1502 			event->header.type);
1503 		return;
1504 	}
1505 
1506 	if (symbol_conf.use_callchain && sample->callchain) {
1507 
1508 		if (machine__resolve_callchain(machine, evsel, al.thread,
1509 						sample->callchain, NULL) != 0) {
1510 			if (verbose)
1511 				error("Failed to resolve callchain. Skipping\n");
1512 			return;
1513 		}
1514 		callchain_cursor_commit(&callchain_cursor);
1515 
1516 		while (1) {
1517 			node = callchain_cursor_current(&callchain_cursor);
1518 			if (!node)
1519 				break;
1520 
1521 			printf("\t%16" PRIx64, node->ip);
1522 			if (print_sym) {
1523 				printf(" ");
1524 				symbol__fprintf_symname(node->sym, stdout);
1525 			}
1526 			if (print_dso) {
1527 				printf(" (");
1528 				map__fprintf_dsoname(node->map, stdout);
1529 				printf(")");
1530 			}
1531 			printf("\n");
1532 
1533 			callchain_cursor_advance(&callchain_cursor);
1534 		}
1535 
1536 	} else {
1537 		printf("%16" PRIx64, sample->ip);
1538 		if (print_sym) {
1539 			printf(" ");
1540 			if (print_symoffset)
1541 				symbol__fprintf_symname_offs(al.sym, &al,
1542 							     stdout);
1543 			else
1544 				symbol__fprintf_symname(al.sym, stdout);
1545 		}
1546 
1547 		if (print_dso) {
1548 			printf(" (");
1549 			map__fprintf_dsoname(al.map, stdout);
1550 			printf(")");
1551 		}
1552 	}
1553 }
1554 
1555 int perf_session__cpu_bitmap(struct perf_session *session,
1556 			     const char *cpu_list, unsigned long *cpu_bitmap)
1557 {
1558 	int i;
1559 	struct cpu_map *map;
1560 
1561 	for (i = 0; i < PERF_TYPE_MAX; ++i) {
1562 		struct perf_evsel *evsel;
1563 
1564 		evsel = perf_session__find_first_evtype(session, i);
1565 		if (!evsel)
1566 			continue;
1567 
1568 		if (!(evsel->attr.sample_type & PERF_SAMPLE_CPU)) {
1569 			pr_err("File does not contain CPU events. "
1570 			       "Remove -c option to proceed.\n");
1571 			return -1;
1572 		}
1573 	}
1574 
1575 	map = cpu_map__new(cpu_list);
1576 	if (map == NULL) {
1577 		pr_err("Invalid cpu_list\n");
1578 		return -1;
1579 	}
1580 
1581 	for (i = 0; i < map->nr; i++) {
1582 		int cpu = map->map[i];
1583 
1584 		if (cpu >= MAX_NR_CPUS) {
1585 			pr_err("Requested CPU %d too large. "
1586 			       "Consider raising MAX_NR_CPUS\n", cpu);
1587 			return -1;
1588 		}
1589 
1590 		set_bit(cpu, cpu_bitmap);
1591 	}
1592 
1593 	return 0;
1594 }
1595 
1596 void perf_session__fprintf_info(struct perf_session *session, FILE *fp,
1597 				bool full)
1598 {
1599 	struct stat st;
1600 	int ret;
1601 
1602 	if (session == NULL || fp == NULL)
1603 		return;
1604 
1605 	ret = fstat(session->fd, &st);
1606 	if (ret == -1)
1607 		return;
1608 
1609 	fprintf(fp, "# ========\n");
1610 	fprintf(fp, "# captured on: %s", ctime(&st.st_ctime));
1611 	perf_header__fprintf_info(session, fp, full);
1612 	fprintf(fp, "# ========\n#\n");
1613 }
1614