xref: /openbmc/linux/tools/perf/util/session.c (revision 114067b6)
1 #define _FILE_OFFSET_BITS 64
2 
3 #include <linux/kernel.h>
4 
5 #include <byteswap.h>
6 #include <unistd.h>
7 #include <sys/types.h>
8 #include <sys/mman.h>
9 
10 #include "evlist.h"
11 #include "evsel.h"
12 #include "session.h"
13 #include "tool.h"
14 #include "sort.h"
15 #include "util.h"
16 #include "cpumap.h"
17 
18 static int perf_session__open(struct perf_session *self, bool force)
19 {
20 	struct stat input_stat;
21 
22 	if (!strcmp(self->filename, "-")) {
23 		self->fd_pipe = true;
24 		self->fd = STDIN_FILENO;
25 
26 		if (perf_session__read_header(self, self->fd) < 0)
27 			pr_err("incompatible file format (rerun with -v to learn more)");
28 
29 		return 0;
30 	}
31 
32 	self->fd = open(self->filename, O_RDONLY);
33 	if (self->fd < 0) {
34 		int err = errno;
35 
36 		pr_err("failed to open %s: %s", self->filename, strerror(err));
37 		if (err == ENOENT && !strcmp(self->filename, "perf.data"))
38 			pr_err("  (try 'perf record' first)");
39 		pr_err("\n");
40 		return -errno;
41 	}
42 
43 	if (fstat(self->fd, &input_stat) < 0)
44 		goto out_close;
45 
46 	if (!force && input_stat.st_uid && (input_stat.st_uid != geteuid())) {
47 		pr_err("file %s not owned by current user or root\n",
48 		       self->filename);
49 		goto out_close;
50 	}
51 
52 	if (!input_stat.st_size) {
53 		pr_info("zero-sized file (%s), nothing to do!\n",
54 			self->filename);
55 		goto out_close;
56 	}
57 
58 	if (perf_session__read_header(self, self->fd) < 0) {
59 		pr_err("incompatible file format (rerun with -v to learn more)");
60 		goto out_close;
61 	}
62 
63 	if (!perf_evlist__valid_sample_type(self->evlist)) {
64 		pr_err("non matching sample_type");
65 		goto out_close;
66 	}
67 
68 	if (!perf_evlist__valid_sample_id_all(self->evlist)) {
69 		pr_err("non matching sample_id_all");
70 		goto out_close;
71 	}
72 
73 	self->size = input_stat.st_size;
74 	return 0;
75 
76 out_close:
77 	close(self->fd);
78 	self->fd = -1;
79 	return -1;
80 }
81 
82 void perf_session__update_sample_type(struct perf_session *self)
83 {
84 	self->sample_type = perf_evlist__sample_type(self->evlist);
85 	self->sample_size = __perf_evsel__sample_size(self->sample_type);
86 	self->sample_id_all = perf_evlist__sample_id_all(self->evlist);
87 	self->id_hdr_size = perf_evlist__id_hdr_size(self->evlist);
88 	self->host_machine.id_hdr_size = self->id_hdr_size;
89 }
90 
91 int perf_session__create_kernel_maps(struct perf_session *self)
92 {
93 	int ret = machine__create_kernel_maps(&self->host_machine);
94 
95 	if (ret >= 0)
96 		ret = machines__create_guest_kernel_maps(&self->machines);
97 	return ret;
98 }
99 
100 static void perf_session__destroy_kernel_maps(struct perf_session *self)
101 {
102 	machine__destroy_kernel_maps(&self->host_machine);
103 	machines__destroy_guest_kernel_maps(&self->machines);
104 }
105 
106 struct perf_session *perf_session__new(const char *filename, int mode,
107 				       bool force, bool repipe,
108 				       struct perf_tool *tool)
109 {
110 	struct perf_session *self;
111 	struct stat st;
112 	size_t len;
113 
114 	if (!filename || !strlen(filename)) {
115 		if (!fstat(STDIN_FILENO, &st) && S_ISFIFO(st.st_mode))
116 			filename = "-";
117 		else
118 			filename = "perf.data";
119 	}
120 
121 	len = strlen(filename);
122 	self = zalloc(sizeof(*self) + len);
123 
124 	if (self == NULL)
125 		goto out;
126 
127 	memcpy(self->filename, filename, len);
128 	/*
129 	 * On 64bit we can mmap the data file in one go. No need for tiny mmap
130 	 * slices. On 32bit we use 32MB.
131 	 */
132 #if BITS_PER_LONG == 64
133 	self->mmap_window = ULLONG_MAX;
134 #else
135 	self->mmap_window = 32 * 1024 * 1024ULL;
136 #endif
137 	self->machines = RB_ROOT;
138 	self->repipe = repipe;
139 	INIT_LIST_HEAD(&self->ordered_samples.samples);
140 	INIT_LIST_HEAD(&self->ordered_samples.sample_cache);
141 	INIT_LIST_HEAD(&self->ordered_samples.to_free);
142 	machine__init(&self->host_machine, "", HOST_KERNEL_ID);
143 	hists__init(&self->hists);
144 
145 	if (mode == O_RDONLY) {
146 		if (perf_session__open(self, force) < 0)
147 			goto out_delete;
148 		perf_session__update_sample_type(self);
149 	} else if (mode == O_WRONLY) {
150 		/*
151 		 * In O_RDONLY mode this will be performed when reading the
152 		 * kernel MMAP event, in perf_event__process_mmap().
153 		 */
154 		if (perf_session__create_kernel_maps(self) < 0)
155 			goto out_delete;
156 	}
157 
158 	if (tool && tool->ordering_requires_timestamps &&
159 	    tool->ordered_samples && !self->sample_id_all) {
160 		dump_printf("WARNING: No sample_id_all support, falling back to unordered processing\n");
161 		tool->ordered_samples = false;
162 	}
163 
164 out:
165 	return self;
166 out_delete:
167 	perf_session__delete(self);
168 	return NULL;
169 }
170 
171 static void machine__delete_dead_threads(struct machine *machine)
172 {
173 	struct thread *n, *t;
174 
175 	list_for_each_entry_safe(t, n, &machine->dead_threads, node) {
176 		list_del(&t->node);
177 		thread__delete(t);
178 	}
179 }
180 
181 static void perf_session__delete_dead_threads(struct perf_session *session)
182 {
183 	machine__delete_dead_threads(&session->host_machine);
184 }
185 
186 static void machine__delete_threads(struct machine *self)
187 {
188 	struct rb_node *nd = rb_first(&self->threads);
189 
190 	while (nd) {
191 		struct thread *t = rb_entry(nd, struct thread, rb_node);
192 
193 		rb_erase(&t->rb_node, &self->threads);
194 		nd = rb_next(nd);
195 		thread__delete(t);
196 	}
197 }
198 
199 static void perf_session__delete_threads(struct perf_session *session)
200 {
201 	machine__delete_threads(&session->host_machine);
202 }
203 
204 void perf_session__delete(struct perf_session *self)
205 {
206 	perf_session__destroy_kernel_maps(self);
207 	perf_session__delete_dead_threads(self);
208 	perf_session__delete_threads(self);
209 	machine__exit(&self->host_machine);
210 	close(self->fd);
211 	free(self);
212 }
213 
214 void machine__remove_thread(struct machine *self, struct thread *th)
215 {
216 	self->last_match = NULL;
217 	rb_erase(&th->rb_node, &self->threads);
218 	/*
219 	 * We may have references to this thread, for instance in some hist_entry
220 	 * instances, so just move them to a separate list.
221 	 */
222 	list_add_tail(&th->node, &self->dead_threads);
223 }
224 
225 static bool symbol__match_parent_regex(struct symbol *sym)
226 {
227 	if (sym->name && !regexec(&parent_regex, sym->name, 0, NULL, 0))
228 		return 1;
229 
230 	return 0;
231 }
232 
233 static const u8 cpumodes[] = {
234 	PERF_RECORD_MISC_USER,
235 	PERF_RECORD_MISC_KERNEL,
236 	PERF_RECORD_MISC_GUEST_USER,
237 	PERF_RECORD_MISC_GUEST_KERNEL
238 };
239 #define NCPUMODES (sizeof(cpumodes)/sizeof(u8))
240 
241 static void ip__resolve_ams(struct machine *self, struct thread *thread,
242 			    struct addr_map_symbol *ams,
243 			    u64 ip)
244 {
245 	struct addr_location al;
246 	size_t i;
247 	u8 m;
248 
249 	memset(&al, 0, sizeof(al));
250 
251 	for (i = 0; i < NCPUMODES; i++) {
252 		m = cpumodes[i];
253 		/*
254 		 * We cannot use the header.misc hint to determine whether a
255 		 * branch stack address is user, kernel, guest, hypervisor.
256 		 * Branches may straddle the kernel/user/hypervisor boundaries.
257 		 * Thus, we have to try consecutively until we find a match
258 		 * or else, the symbol is unknown
259 		 */
260 		thread__find_addr_location(thread, self, m, MAP__FUNCTION,
261 				ip, &al, NULL);
262 		if (al.sym)
263 			goto found;
264 	}
265 found:
266 	ams->addr = ip;
267 	ams->al_addr = al.addr;
268 	ams->sym = al.sym;
269 	ams->map = al.map;
270 }
271 
272 struct branch_info *machine__resolve_bstack(struct machine *self,
273 					    struct thread *thr,
274 					    struct branch_stack *bs)
275 {
276 	struct branch_info *bi;
277 	unsigned int i;
278 
279 	bi = calloc(bs->nr, sizeof(struct branch_info));
280 	if (!bi)
281 		return NULL;
282 
283 	for (i = 0; i < bs->nr; i++) {
284 		ip__resolve_ams(self, thr, &bi[i].to, bs->entries[i].to);
285 		ip__resolve_ams(self, thr, &bi[i].from, bs->entries[i].from);
286 		bi[i].flags = bs->entries[i].flags;
287 	}
288 	return bi;
289 }
290 
291 int machine__resolve_callchain(struct machine *self,
292 			       struct perf_evsel *evsel __used,
293 			       struct thread *thread,
294 			       struct ip_callchain *chain,
295 			       struct symbol **parent)
296 {
297 	u8 cpumode = PERF_RECORD_MISC_USER;
298 	unsigned int i;
299 	int err;
300 
301 	callchain_cursor_reset(&callchain_cursor);
302 
303 	if (chain->nr > PERF_MAX_STACK_DEPTH) {
304 		pr_warning("corrupted callchain. skipping...\n");
305 		return 0;
306 	}
307 
308 	for (i = 0; i < chain->nr; i++) {
309 		u64 ip;
310 		struct addr_location al;
311 
312 		if (callchain_param.order == ORDER_CALLEE)
313 			ip = chain->ips[i];
314 		else
315 			ip = chain->ips[chain->nr - i - 1];
316 
317 		if (ip >= PERF_CONTEXT_MAX) {
318 			switch (ip) {
319 			case PERF_CONTEXT_HV:
320 				cpumode = PERF_RECORD_MISC_HYPERVISOR;	break;
321 			case PERF_CONTEXT_KERNEL:
322 				cpumode = PERF_RECORD_MISC_KERNEL;	break;
323 			case PERF_CONTEXT_USER:
324 				cpumode = PERF_RECORD_MISC_USER;	break;
325 			default:
326 				pr_debug("invalid callchain context: "
327 					 "%"PRId64"\n", (s64) ip);
328 				/*
329 				 * It seems the callchain is corrupted.
330 				 * Discard all.
331 				 */
332 				callchain_cursor_reset(&callchain_cursor);
333 				return 0;
334 			}
335 			continue;
336 		}
337 
338 		al.filtered = false;
339 		thread__find_addr_location(thread, self, cpumode,
340 					   MAP__FUNCTION, ip, &al, NULL);
341 		if (al.sym != NULL) {
342 			if (sort__has_parent && !*parent &&
343 			    symbol__match_parent_regex(al.sym))
344 				*parent = al.sym;
345 			if (!symbol_conf.use_callchain)
346 				break;
347 		}
348 
349 		err = callchain_cursor_append(&callchain_cursor,
350 					      ip, al.map, al.sym);
351 		if (err)
352 			return err;
353 	}
354 
355 	return 0;
356 }
357 
358 static int process_event_synth_tracing_data_stub(union perf_event *event __used,
359 						 struct perf_session *session __used)
360 {
361 	dump_printf(": unhandled!\n");
362 	return 0;
363 }
364 
365 static int process_event_synth_attr_stub(union perf_event *event __used,
366 					 struct perf_evlist **pevlist __used)
367 {
368 	dump_printf(": unhandled!\n");
369 	return 0;
370 }
371 
372 static int process_event_sample_stub(struct perf_tool *tool __used,
373 				     union perf_event *event __used,
374 				     struct perf_sample *sample __used,
375 				     struct perf_evsel *evsel __used,
376 				     struct machine *machine __used)
377 {
378 	dump_printf(": unhandled!\n");
379 	return 0;
380 }
381 
382 static int process_event_stub(struct perf_tool *tool __used,
383 			      union perf_event *event __used,
384 			      struct perf_sample *sample __used,
385 			      struct machine *machine __used)
386 {
387 	dump_printf(": unhandled!\n");
388 	return 0;
389 }
390 
391 static int process_finished_round_stub(struct perf_tool *tool __used,
392 				       union perf_event *event __used,
393 				       struct perf_session *perf_session __used)
394 {
395 	dump_printf(": unhandled!\n");
396 	return 0;
397 }
398 
399 static int process_event_type_stub(struct perf_tool *tool __used,
400 				   union perf_event *event __used)
401 {
402 	dump_printf(": unhandled!\n");
403 	return 0;
404 }
405 
406 static int process_finished_round(struct perf_tool *tool,
407 				  union perf_event *event,
408 				  struct perf_session *session);
409 
410 static void perf_tool__fill_defaults(struct perf_tool *tool)
411 {
412 	if (tool->sample == NULL)
413 		tool->sample = process_event_sample_stub;
414 	if (tool->mmap == NULL)
415 		tool->mmap = process_event_stub;
416 	if (tool->comm == NULL)
417 		tool->comm = process_event_stub;
418 	if (tool->fork == NULL)
419 		tool->fork = process_event_stub;
420 	if (tool->exit == NULL)
421 		tool->exit = process_event_stub;
422 	if (tool->lost == NULL)
423 		tool->lost = perf_event__process_lost;
424 	if (tool->read == NULL)
425 		tool->read = process_event_sample_stub;
426 	if (tool->throttle == NULL)
427 		tool->throttle = process_event_stub;
428 	if (tool->unthrottle == NULL)
429 		tool->unthrottle = process_event_stub;
430 	if (tool->attr == NULL)
431 		tool->attr = process_event_synth_attr_stub;
432 	if (tool->event_type == NULL)
433 		tool->event_type = process_event_type_stub;
434 	if (tool->tracing_data == NULL)
435 		tool->tracing_data = process_event_synth_tracing_data_stub;
436 	if (tool->build_id == NULL)
437 		tool->build_id = process_finished_round_stub;
438 	if (tool->finished_round == NULL) {
439 		if (tool->ordered_samples)
440 			tool->finished_round = process_finished_round;
441 		else
442 			tool->finished_round = process_finished_round_stub;
443 	}
444 }
445 
446 void mem_bswap_64(void *src, int byte_size)
447 {
448 	u64 *m = src;
449 
450 	while (byte_size > 0) {
451 		*m = bswap_64(*m);
452 		byte_size -= sizeof(u64);
453 		++m;
454 	}
455 }
456 
457 static void perf_event__all64_swap(union perf_event *event)
458 {
459 	struct perf_event_header *hdr = &event->header;
460 	mem_bswap_64(hdr + 1, event->header.size - sizeof(*hdr));
461 }
462 
463 static void perf_event__comm_swap(union perf_event *event)
464 {
465 	event->comm.pid = bswap_32(event->comm.pid);
466 	event->comm.tid = bswap_32(event->comm.tid);
467 }
468 
469 static void perf_event__mmap_swap(union perf_event *event)
470 {
471 	event->mmap.pid	  = bswap_32(event->mmap.pid);
472 	event->mmap.tid	  = bswap_32(event->mmap.tid);
473 	event->mmap.start = bswap_64(event->mmap.start);
474 	event->mmap.len	  = bswap_64(event->mmap.len);
475 	event->mmap.pgoff = bswap_64(event->mmap.pgoff);
476 }
477 
478 static void perf_event__task_swap(union perf_event *event)
479 {
480 	event->fork.pid	 = bswap_32(event->fork.pid);
481 	event->fork.tid	 = bswap_32(event->fork.tid);
482 	event->fork.ppid = bswap_32(event->fork.ppid);
483 	event->fork.ptid = bswap_32(event->fork.ptid);
484 	event->fork.time = bswap_64(event->fork.time);
485 }
486 
487 static void perf_event__read_swap(union perf_event *event)
488 {
489 	event->read.pid		 = bswap_32(event->read.pid);
490 	event->read.tid		 = bswap_32(event->read.tid);
491 	event->read.value	 = bswap_64(event->read.value);
492 	event->read.time_enabled = bswap_64(event->read.time_enabled);
493 	event->read.time_running = bswap_64(event->read.time_running);
494 	event->read.id		 = bswap_64(event->read.id);
495 }
496 
497 static u8 revbyte(u8 b)
498 {
499 	int rev = (b >> 4) | ((b & 0xf) << 4);
500 	rev = ((rev & 0xcc) >> 2) | ((rev & 0x33) << 2);
501 	rev = ((rev & 0xaa) >> 1) | ((rev & 0x55) << 1);
502 	return (u8) rev;
503 }
504 
505 /*
506  * XXX this is hack in attempt to carry flags bitfield
507  * throught endian village. ABI says:
508  *
509  * Bit-fields are allocated from right to left (least to most significant)
510  * on little-endian implementations and from left to right (most to least
511  * significant) on big-endian implementations.
512  *
513  * The above seems to be byte specific, so we need to reverse each
514  * byte of the bitfield. 'Internet' also says this might be implementation
515  * specific and we probably need proper fix and carry perf_event_attr
516  * bitfield flags in separate data file FEAT_ section. Thought this seems
517  * to work for now.
518  */
519 static void swap_bitfield(u8 *p, unsigned len)
520 {
521 	unsigned i;
522 
523 	for (i = 0; i < len; i++) {
524 		*p = revbyte(*p);
525 		p++;
526 	}
527 }
528 
529 /* exported for swapping attributes in file header */
530 void perf_event__attr_swap(struct perf_event_attr *attr)
531 {
532 	attr->type		= bswap_32(attr->type);
533 	attr->size		= bswap_32(attr->size);
534 	attr->config		= bswap_64(attr->config);
535 	attr->sample_period	= bswap_64(attr->sample_period);
536 	attr->sample_type	= bswap_64(attr->sample_type);
537 	attr->read_format	= bswap_64(attr->read_format);
538 	attr->wakeup_events	= bswap_32(attr->wakeup_events);
539 	attr->bp_type		= bswap_32(attr->bp_type);
540 	attr->bp_addr		= bswap_64(attr->bp_addr);
541 	attr->bp_len		= bswap_64(attr->bp_len);
542 
543 	swap_bitfield((u8 *) (&attr->read_format + 1), sizeof(u64));
544 }
545 
546 static void perf_event__hdr_attr_swap(union perf_event *event)
547 {
548 	size_t size;
549 
550 	perf_event__attr_swap(&event->attr.attr);
551 
552 	size = event->header.size;
553 	size -= (void *)&event->attr.id - (void *)event;
554 	mem_bswap_64(event->attr.id, size);
555 }
556 
557 static void perf_event__event_type_swap(union perf_event *event)
558 {
559 	event->event_type.event_type.event_id =
560 		bswap_64(event->event_type.event_type.event_id);
561 }
562 
563 static void perf_event__tracing_data_swap(union perf_event *event)
564 {
565 	event->tracing_data.size = bswap_32(event->tracing_data.size);
566 }
567 
568 typedef void (*perf_event__swap_op)(union perf_event *event);
569 
570 static perf_event__swap_op perf_event__swap_ops[] = {
571 	[PERF_RECORD_MMAP]		  = perf_event__mmap_swap,
572 	[PERF_RECORD_COMM]		  = perf_event__comm_swap,
573 	[PERF_RECORD_FORK]		  = perf_event__task_swap,
574 	[PERF_RECORD_EXIT]		  = perf_event__task_swap,
575 	[PERF_RECORD_LOST]		  = perf_event__all64_swap,
576 	[PERF_RECORD_READ]		  = perf_event__read_swap,
577 	[PERF_RECORD_SAMPLE]		  = perf_event__all64_swap,
578 	[PERF_RECORD_HEADER_ATTR]	  = perf_event__hdr_attr_swap,
579 	[PERF_RECORD_HEADER_EVENT_TYPE]	  = perf_event__event_type_swap,
580 	[PERF_RECORD_HEADER_TRACING_DATA] = perf_event__tracing_data_swap,
581 	[PERF_RECORD_HEADER_BUILD_ID]	  = NULL,
582 	[PERF_RECORD_HEADER_MAX]	  = NULL,
583 };
584 
585 struct sample_queue {
586 	u64			timestamp;
587 	u64			file_offset;
588 	union perf_event	*event;
589 	struct list_head	list;
590 };
591 
592 static void perf_session_free_sample_buffers(struct perf_session *session)
593 {
594 	struct ordered_samples *os = &session->ordered_samples;
595 
596 	while (!list_empty(&os->to_free)) {
597 		struct sample_queue *sq;
598 
599 		sq = list_entry(os->to_free.next, struct sample_queue, list);
600 		list_del(&sq->list);
601 		free(sq);
602 	}
603 }
604 
605 static int perf_session_deliver_event(struct perf_session *session,
606 				      union perf_event *event,
607 				      struct perf_sample *sample,
608 				      struct perf_tool *tool,
609 				      u64 file_offset);
610 
611 static void flush_sample_queue(struct perf_session *s,
612 			       struct perf_tool *tool)
613 {
614 	struct ordered_samples *os = &s->ordered_samples;
615 	struct list_head *head = &os->samples;
616 	struct sample_queue *tmp, *iter;
617 	struct perf_sample sample;
618 	u64 limit = os->next_flush;
619 	u64 last_ts = os->last_sample ? os->last_sample->timestamp : 0ULL;
620 	unsigned idx = 0, progress_next = os->nr_samples / 16;
621 	int ret;
622 
623 	if (!tool->ordered_samples || !limit)
624 		return;
625 
626 	list_for_each_entry_safe(iter, tmp, head, list) {
627 		if (iter->timestamp > limit)
628 			break;
629 
630 		ret = perf_session__parse_sample(s, iter->event, &sample);
631 		if (ret)
632 			pr_err("Can't parse sample, err = %d\n", ret);
633 		else
634 			perf_session_deliver_event(s, iter->event, &sample, tool,
635 						   iter->file_offset);
636 
637 		os->last_flush = iter->timestamp;
638 		list_del(&iter->list);
639 		list_add(&iter->list, &os->sample_cache);
640 		if (++idx >= progress_next) {
641 			progress_next += os->nr_samples / 16;
642 			ui_progress__update(idx, os->nr_samples,
643 					    "Processing time ordered events...");
644 		}
645 	}
646 
647 	if (list_empty(head)) {
648 		os->last_sample = NULL;
649 	} else if (last_ts <= limit) {
650 		os->last_sample =
651 			list_entry(head->prev, struct sample_queue, list);
652 	}
653 
654 	os->nr_samples = 0;
655 }
656 
657 /*
658  * When perf record finishes a pass on every buffers, it records this pseudo
659  * event.
660  * We record the max timestamp t found in the pass n.
661  * Assuming these timestamps are monotonic across cpus, we know that if
662  * a buffer still has events with timestamps below t, they will be all
663  * available and then read in the pass n + 1.
664  * Hence when we start to read the pass n + 2, we can safely flush every
665  * events with timestamps below t.
666  *
667  *    ============ PASS n =================
668  *       CPU 0         |   CPU 1
669  *                     |
670  *    cnt1 timestamps  |   cnt2 timestamps
671  *          1          |         2
672  *          2          |         3
673  *          -          |         4  <--- max recorded
674  *
675  *    ============ PASS n + 1 ==============
676  *       CPU 0         |   CPU 1
677  *                     |
678  *    cnt1 timestamps  |   cnt2 timestamps
679  *          3          |         5
680  *          4          |         6
681  *          5          |         7 <---- max recorded
682  *
683  *      Flush every events below timestamp 4
684  *
685  *    ============ PASS n + 2 ==============
686  *       CPU 0         |   CPU 1
687  *                     |
688  *    cnt1 timestamps  |   cnt2 timestamps
689  *          6          |         8
690  *          7          |         9
691  *          -          |         10
692  *
693  *      Flush every events below timestamp 7
694  *      etc...
695  */
696 static int process_finished_round(struct perf_tool *tool,
697 				  union perf_event *event __used,
698 				  struct perf_session *session)
699 {
700 	flush_sample_queue(session, tool);
701 	session->ordered_samples.next_flush = session->ordered_samples.max_timestamp;
702 
703 	return 0;
704 }
705 
706 /* The queue is ordered by time */
707 static void __queue_event(struct sample_queue *new, struct perf_session *s)
708 {
709 	struct ordered_samples *os = &s->ordered_samples;
710 	struct sample_queue *sample = os->last_sample;
711 	u64 timestamp = new->timestamp;
712 	struct list_head *p;
713 
714 	++os->nr_samples;
715 	os->last_sample = new;
716 
717 	if (!sample) {
718 		list_add(&new->list, &os->samples);
719 		os->max_timestamp = timestamp;
720 		return;
721 	}
722 
723 	/*
724 	 * last_sample might point to some random place in the list as it's
725 	 * the last queued event. We expect that the new event is close to
726 	 * this.
727 	 */
728 	if (sample->timestamp <= timestamp) {
729 		while (sample->timestamp <= timestamp) {
730 			p = sample->list.next;
731 			if (p == &os->samples) {
732 				list_add_tail(&new->list, &os->samples);
733 				os->max_timestamp = timestamp;
734 				return;
735 			}
736 			sample = list_entry(p, struct sample_queue, list);
737 		}
738 		list_add_tail(&new->list, &sample->list);
739 	} else {
740 		while (sample->timestamp > timestamp) {
741 			p = sample->list.prev;
742 			if (p == &os->samples) {
743 				list_add(&new->list, &os->samples);
744 				return;
745 			}
746 			sample = list_entry(p, struct sample_queue, list);
747 		}
748 		list_add(&new->list, &sample->list);
749 	}
750 }
751 
752 #define MAX_SAMPLE_BUFFER	(64 * 1024 / sizeof(struct sample_queue))
753 
754 static int perf_session_queue_event(struct perf_session *s, union perf_event *event,
755 				    struct perf_sample *sample, u64 file_offset)
756 {
757 	struct ordered_samples *os = &s->ordered_samples;
758 	struct list_head *sc = &os->sample_cache;
759 	u64 timestamp = sample->time;
760 	struct sample_queue *new;
761 
762 	if (!timestamp || timestamp == ~0ULL)
763 		return -ETIME;
764 
765 	if (timestamp < s->ordered_samples.last_flush) {
766 		printf("Warning: Timestamp below last timeslice flush\n");
767 		return -EINVAL;
768 	}
769 
770 	if (!list_empty(sc)) {
771 		new = list_entry(sc->next, struct sample_queue, list);
772 		list_del(&new->list);
773 	} else if (os->sample_buffer) {
774 		new = os->sample_buffer + os->sample_buffer_idx;
775 		if (++os->sample_buffer_idx == MAX_SAMPLE_BUFFER)
776 			os->sample_buffer = NULL;
777 	} else {
778 		os->sample_buffer = malloc(MAX_SAMPLE_BUFFER * sizeof(*new));
779 		if (!os->sample_buffer)
780 			return -ENOMEM;
781 		list_add(&os->sample_buffer->list, &os->to_free);
782 		os->sample_buffer_idx = 2;
783 		new = os->sample_buffer + 1;
784 	}
785 
786 	new->timestamp = timestamp;
787 	new->file_offset = file_offset;
788 	new->event = event;
789 
790 	__queue_event(new, s);
791 
792 	return 0;
793 }
794 
795 static void callchain__printf(struct perf_sample *sample)
796 {
797 	unsigned int i;
798 
799 	printf("... chain: nr:%" PRIu64 "\n", sample->callchain->nr);
800 
801 	for (i = 0; i < sample->callchain->nr; i++)
802 		printf("..... %2d: %016" PRIx64 "\n",
803 		       i, sample->callchain->ips[i]);
804 }
805 
806 static void branch_stack__printf(struct perf_sample *sample)
807 {
808 	uint64_t i;
809 
810 	printf("... branch stack: nr:%" PRIu64 "\n", sample->branch_stack->nr);
811 
812 	for (i = 0; i < sample->branch_stack->nr; i++)
813 		printf("..... %2"PRIu64": %016" PRIx64 " -> %016" PRIx64 "\n",
814 			i, sample->branch_stack->entries[i].from,
815 			sample->branch_stack->entries[i].to);
816 }
817 
818 static void perf_session__print_tstamp(struct perf_session *session,
819 				       union perf_event *event,
820 				       struct perf_sample *sample)
821 {
822 	if (event->header.type != PERF_RECORD_SAMPLE &&
823 	    !session->sample_id_all) {
824 		fputs("-1 -1 ", stdout);
825 		return;
826 	}
827 
828 	if ((session->sample_type & PERF_SAMPLE_CPU))
829 		printf("%u ", sample->cpu);
830 
831 	if (session->sample_type & PERF_SAMPLE_TIME)
832 		printf("%" PRIu64 " ", sample->time);
833 }
834 
835 static void dump_event(struct perf_session *session, union perf_event *event,
836 		       u64 file_offset, struct perf_sample *sample)
837 {
838 	if (!dump_trace)
839 		return;
840 
841 	printf("\n%#" PRIx64 " [%#x]: event: %d\n",
842 	       file_offset, event->header.size, event->header.type);
843 
844 	trace_event(event);
845 
846 	if (sample)
847 		perf_session__print_tstamp(session, event, sample);
848 
849 	printf("%#" PRIx64 " [%#x]: PERF_RECORD_%s", file_offset,
850 	       event->header.size, perf_event__name(event->header.type));
851 }
852 
853 static void dump_sample(struct perf_session *session, union perf_event *event,
854 			struct perf_sample *sample)
855 {
856 	if (!dump_trace)
857 		return;
858 
859 	printf("(IP, %d): %d/%d: %#" PRIx64 " period: %" PRIu64 " addr: %#" PRIx64 "\n",
860 	       event->header.misc, sample->pid, sample->tid, sample->ip,
861 	       sample->period, sample->addr);
862 
863 	if (session->sample_type & PERF_SAMPLE_CALLCHAIN)
864 		callchain__printf(sample);
865 
866 	if (session->sample_type & PERF_SAMPLE_BRANCH_STACK)
867 		branch_stack__printf(sample);
868 }
869 
870 static struct machine *
871 	perf_session__find_machine_for_cpumode(struct perf_session *session,
872 					       union perf_event *event)
873 {
874 	const u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
875 
876 	if (cpumode == PERF_RECORD_MISC_GUEST_KERNEL && perf_guest) {
877 		u32 pid;
878 
879 		if (event->header.type == PERF_RECORD_MMAP)
880 			pid = event->mmap.pid;
881 		else
882 			pid = event->ip.pid;
883 
884 		return perf_session__find_machine(session, pid);
885 	}
886 
887 	return perf_session__find_host_machine(session);
888 }
889 
890 static int perf_session_deliver_event(struct perf_session *session,
891 				      union perf_event *event,
892 				      struct perf_sample *sample,
893 				      struct perf_tool *tool,
894 				      u64 file_offset)
895 {
896 	struct perf_evsel *evsel;
897 	struct machine *machine;
898 
899 	dump_event(session, event, file_offset, sample);
900 
901 	evsel = perf_evlist__id2evsel(session->evlist, sample->id);
902 	if (evsel != NULL && event->header.type != PERF_RECORD_SAMPLE) {
903 		/*
904 		 * XXX We're leaving PERF_RECORD_SAMPLE unnacounted here
905 		 * because the tools right now may apply filters, discarding
906 		 * some of the samples. For consistency, in the future we
907 		 * should have something like nr_filtered_samples and remove
908 		 * the sample->period from total_sample_period, etc, KISS for
909 		 * now tho.
910 		 *
911 		 * Also testing against NULL allows us to handle files without
912 		 * attr.sample_id_all and/or without PERF_SAMPLE_ID. In the
913 		 * future probably it'll be a good idea to restrict event
914 		 * processing via perf_session to files with both set.
915 		 */
916 		hists__inc_nr_events(&evsel->hists, event->header.type);
917 	}
918 
919 	machine = perf_session__find_machine_for_cpumode(session, event);
920 
921 	switch (event->header.type) {
922 	case PERF_RECORD_SAMPLE:
923 		dump_sample(session, event, sample);
924 		if (evsel == NULL) {
925 			++session->hists.stats.nr_unknown_id;
926 			return 0;
927 		}
928 		if (machine == NULL) {
929 			++session->hists.stats.nr_unprocessable_samples;
930 			return 0;
931 		}
932 		return tool->sample(tool, event, sample, evsel, machine);
933 	case PERF_RECORD_MMAP:
934 		return tool->mmap(tool, event, sample, machine);
935 	case PERF_RECORD_COMM:
936 		return tool->comm(tool, event, sample, machine);
937 	case PERF_RECORD_FORK:
938 		return tool->fork(tool, event, sample, machine);
939 	case PERF_RECORD_EXIT:
940 		return tool->exit(tool, event, sample, machine);
941 	case PERF_RECORD_LOST:
942 		if (tool->lost == perf_event__process_lost)
943 			session->hists.stats.total_lost += event->lost.lost;
944 		return tool->lost(tool, event, sample, machine);
945 	case PERF_RECORD_READ:
946 		return tool->read(tool, event, sample, evsel, machine);
947 	case PERF_RECORD_THROTTLE:
948 		return tool->throttle(tool, event, sample, machine);
949 	case PERF_RECORD_UNTHROTTLE:
950 		return tool->unthrottle(tool, event, sample, machine);
951 	default:
952 		++session->hists.stats.nr_unknown_events;
953 		return -1;
954 	}
955 }
956 
957 static int perf_session__preprocess_sample(struct perf_session *session,
958 					   union perf_event *event, struct perf_sample *sample)
959 {
960 	if (event->header.type != PERF_RECORD_SAMPLE ||
961 	    !(session->sample_type & PERF_SAMPLE_CALLCHAIN))
962 		return 0;
963 
964 	if (!ip_callchain__valid(sample->callchain, event)) {
965 		pr_debug("call-chain problem with event, skipping it.\n");
966 		++session->hists.stats.nr_invalid_chains;
967 		session->hists.stats.total_invalid_chains += sample->period;
968 		return -EINVAL;
969 	}
970 	return 0;
971 }
972 
973 static int perf_session__process_user_event(struct perf_session *session, union perf_event *event,
974 					    struct perf_tool *tool, u64 file_offset)
975 {
976 	int err;
977 
978 	dump_event(session, event, file_offset, NULL);
979 
980 	/* These events are processed right away */
981 	switch (event->header.type) {
982 	case PERF_RECORD_HEADER_ATTR:
983 		err = tool->attr(event, &session->evlist);
984 		if (err == 0)
985 			perf_session__update_sample_type(session);
986 		return err;
987 	case PERF_RECORD_HEADER_EVENT_TYPE:
988 		return tool->event_type(tool, event);
989 	case PERF_RECORD_HEADER_TRACING_DATA:
990 		/* setup for reading amidst mmap */
991 		lseek(session->fd, file_offset, SEEK_SET);
992 		return tool->tracing_data(event, session);
993 	case PERF_RECORD_HEADER_BUILD_ID:
994 		return tool->build_id(tool, event, session);
995 	case PERF_RECORD_FINISHED_ROUND:
996 		return tool->finished_round(tool, event, session);
997 	default:
998 		return -EINVAL;
999 	}
1000 }
1001 
1002 static int perf_session__process_event(struct perf_session *session,
1003 				       union perf_event *event,
1004 				       struct perf_tool *tool,
1005 				       u64 file_offset)
1006 {
1007 	struct perf_sample sample;
1008 	int ret;
1009 
1010 	if (session->header.needs_swap &&
1011 	    perf_event__swap_ops[event->header.type])
1012 		perf_event__swap_ops[event->header.type](event);
1013 
1014 	if (event->header.type >= PERF_RECORD_HEADER_MAX)
1015 		return -EINVAL;
1016 
1017 	hists__inc_nr_events(&session->hists, event->header.type);
1018 
1019 	if (event->header.type >= PERF_RECORD_USER_TYPE_START)
1020 		return perf_session__process_user_event(session, event, tool, file_offset);
1021 
1022 	/*
1023 	 * For all kernel events we get the sample data
1024 	 */
1025 	ret = perf_session__parse_sample(session, event, &sample);
1026 	if (ret)
1027 		return ret;
1028 
1029 	/* Preprocess sample records - precheck callchains */
1030 	if (perf_session__preprocess_sample(session, event, &sample))
1031 		return 0;
1032 
1033 	if (tool->ordered_samples) {
1034 		ret = perf_session_queue_event(session, event, &sample,
1035 					       file_offset);
1036 		if (ret != -ETIME)
1037 			return ret;
1038 	}
1039 
1040 	return perf_session_deliver_event(session, event, &sample, tool,
1041 					  file_offset);
1042 }
1043 
1044 void perf_event_header__bswap(struct perf_event_header *self)
1045 {
1046 	self->type = bswap_32(self->type);
1047 	self->misc = bswap_16(self->misc);
1048 	self->size = bswap_16(self->size);
1049 }
1050 
1051 struct thread *perf_session__findnew(struct perf_session *session, pid_t pid)
1052 {
1053 	return machine__findnew_thread(&session->host_machine, pid);
1054 }
1055 
1056 static struct thread *perf_session__register_idle_thread(struct perf_session *self)
1057 {
1058 	struct thread *thread = perf_session__findnew(self, 0);
1059 
1060 	if (thread == NULL || thread__set_comm(thread, "swapper")) {
1061 		pr_err("problem inserting idle task.\n");
1062 		thread = NULL;
1063 	}
1064 
1065 	return thread;
1066 }
1067 
1068 static void perf_session__warn_about_errors(const struct perf_session *session,
1069 					    const struct perf_tool *tool)
1070 {
1071 	if (tool->lost == perf_event__process_lost &&
1072 	    session->hists.stats.nr_events[PERF_RECORD_LOST] != 0) {
1073 		ui__warning("Processed %d events and lost %d chunks!\n\n"
1074 			    "Check IO/CPU overload!\n\n",
1075 			    session->hists.stats.nr_events[0],
1076 			    session->hists.stats.nr_events[PERF_RECORD_LOST]);
1077 	}
1078 
1079 	if (session->hists.stats.nr_unknown_events != 0) {
1080 		ui__warning("Found %u unknown events!\n\n"
1081 			    "Is this an older tool processing a perf.data "
1082 			    "file generated by a more recent tool?\n\n"
1083 			    "If that is not the case, consider "
1084 			    "reporting to linux-kernel@vger.kernel.org.\n\n",
1085 			    session->hists.stats.nr_unknown_events);
1086 	}
1087 
1088 	if (session->hists.stats.nr_unknown_id != 0) {
1089 		ui__warning("%u samples with id not present in the header\n",
1090 			    session->hists.stats.nr_unknown_id);
1091 	}
1092 
1093  	if (session->hists.stats.nr_invalid_chains != 0) {
1094  		ui__warning("Found invalid callchains!\n\n"
1095  			    "%u out of %u events were discarded for this reason.\n\n"
1096  			    "Consider reporting to linux-kernel@vger.kernel.org.\n\n",
1097  			    session->hists.stats.nr_invalid_chains,
1098  			    session->hists.stats.nr_events[PERF_RECORD_SAMPLE]);
1099  	}
1100 
1101 	if (session->hists.stats.nr_unprocessable_samples != 0) {
1102 		ui__warning("%u unprocessable samples recorded.\n"
1103 			    "Do you have a KVM guest running and not using 'perf kvm'?\n",
1104 			    session->hists.stats.nr_unprocessable_samples);
1105 	}
1106 }
1107 
1108 #define session_done()	(*(volatile int *)(&session_done))
1109 volatile int session_done;
1110 
1111 static int __perf_session__process_pipe_events(struct perf_session *self,
1112 					       struct perf_tool *tool)
1113 {
1114 	union perf_event *event;
1115 	uint32_t size, cur_size = 0;
1116 	void *buf = NULL;
1117 	int skip = 0;
1118 	u64 head;
1119 	int err;
1120 	void *p;
1121 
1122 	perf_tool__fill_defaults(tool);
1123 
1124 	head = 0;
1125 	cur_size = sizeof(union perf_event);
1126 
1127 	buf = malloc(cur_size);
1128 	if (!buf)
1129 		return -errno;
1130 more:
1131 	event = buf;
1132 	err = readn(self->fd, event, sizeof(struct perf_event_header));
1133 	if (err <= 0) {
1134 		if (err == 0)
1135 			goto done;
1136 
1137 		pr_err("failed to read event header\n");
1138 		goto out_err;
1139 	}
1140 
1141 	if (self->header.needs_swap)
1142 		perf_event_header__bswap(&event->header);
1143 
1144 	size = event->header.size;
1145 	if (size == 0)
1146 		size = 8;
1147 
1148 	if (size > cur_size) {
1149 		void *new = realloc(buf, size);
1150 		if (!new) {
1151 			pr_err("failed to allocate memory to read event\n");
1152 			goto out_err;
1153 		}
1154 		buf = new;
1155 		cur_size = size;
1156 		event = buf;
1157 	}
1158 	p = event;
1159 	p += sizeof(struct perf_event_header);
1160 
1161 	if (size - sizeof(struct perf_event_header)) {
1162 		err = readn(self->fd, p, size - sizeof(struct perf_event_header));
1163 		if (err <= 0) {
1164 			if (err == 0) {
1165 				pr_err("unexpected end of event stream\n");
1166 				goto done;
1167 			}
1168 
1169 			pr_err("failed to read event data\n");
1170 			goto out_err;
1171 		}
1172 	}
1173 
1174 	if ((skip = perf_session__process_event(self, event, tool, head)) < 0) {
1175 		pr_err("%#" PRIx64 " [%#x]: failed to process type: %d\n",
1176 		       head, event->header.size, event->header.type);
1177 		err = -EINVAL;
1178 		goto out_err;
1179 	}
1180 
1181 	head += size;
1182 
1183 	if (skip > 0)
1184 		head += skip;
1185 
1186 	if (!session_done())
1187 		goto more;
1188 done:
1189 	err = 0;
1190 out_err:
1191 	free(buf);
1192 	perf_session__warn_about_errors(self, tool);
1193 	perf_session_free_sample_buffers(self);
1194 	return err;
1195 }
1196 
1197 static union perf_event *
1198 fetch_mmaped_event(struct perf_session *session,
1199 		   u64 head, size_t mmap_size, char *buf)
1200 {
1201 	union perf_event *event;
1202 
1203 	/*
1204 	 * Ensure we have enough space remaining to read
1205 	 * the size of the event in the headers.
1206 	 */
1207 	if (head + sizeof(event->header) > mmap_size)
1208 		return NULL;
1209 
1210 	event = (union perf_event *)(buf + head);
1211 
1212 	if (session->header.needs_swap)
1213 		perf_event_header__bswap(&event->header);
1214 
1215 	if (head + event->header.size > mmap_size)
1216 		return NULL;
1217 
1218 	return event;
1219 }
1220 
1221 int __perf_session__process_events(struct perf_session *session,
1222 				   u64 data_offset, u64 data_size,
1223 				   u64 file_size, struct perf_tool *tool)
1224 {
1225 	u64 head, page_offset, file_offset, file_pos, progress_next;
1226 	int err, mmap_prot, mmap_flags, map_idx = 0;
1227 	size_t	page_size, mmap_size;
1228 	char *buf, *mmaps[8];
1229 	union perf_event *event;
1230 	uint32_t size;
1231 
1232 	perf_tool__fill_defaults(tool);
1233 
1234 	page_size = sysconf(_SC_PAGESIZE);
1235 
1236 	page_offset = page_size * (data_offset / page_size);
1237 	file_offset = page_offset;
1238 	head = data_offset - page_offset;
1239 
1240 	if (data_offset + data_size < file_size)
1241 		file_size = data_offset + data_size;
1242 
1243 	progress_next = file_size / 16;
1244 
1245 	mmap_size = session->mmap_window;
1246 	if (mmap_size > file_size)
1247 		mmap_size = file_size;
1248 
1249 	memset(mmaps, 0, sizeof(mmaps));
1250 
1251 	mmap_prot  = PROT_READ;
1252 	mmap_flags = MAP_SHARED;
1253 
1254 	if (session->header.needs_swap) {
1255 		mmap_prot  |= PROT_WRITE;
1256 		mmap_flags = MAP_PRIVATE;
1257 	}
1258 remap:
1259 	buf = mmap(NULL, mmap_size, mmap_prot, mmap_flags, session->fd,
1260 		   file_offset);
1261 	if (buf == MAP_FAILED) {
1262 		pr_err("failed to mmap file\n");
1263 		err = -errno;
1264 		goto out_err;
1265 	}
1266 	mmaps[map_idx] = buf;
1267 	map_idx = (map_idx + 1) & (ARRAY_SIZE(mmaps) - 1);
1268 	file_pos = file_offset + head;
1269 
1270 more:
1271 	event = fetch_mmaped_event(session, head, mmap_size, buf);
1272 	if (!event) {
1273 		if (mmaps[map_idx]) {
1274 			munmap(mmaps[map_idx], mmap_size);
1275 			mmaps[map_idx] = NULL;
1276 		}
1277 
1278 		page_offset = page_size * (head / page_size);
1279 		file_offset += page_offset;
1280 		head -= page_offset;
1281 		goto remap;
1282 	}
1283 
1284 	size = event->header.size;
1285 
1286 	if (size == 0 ||
1287 	    perf_session__process_event(session, event, tool, file_pos) < 0) {
1288 		pr_err("%#" PRIx64 " [%#x]: failed to process type: %d\n",
1289 		       file_offset + head, event->header.size,
1290 		       event->header.type);
1291 		err = -EINVAL;
1292 		goto out_err;
1293 	}
1294 
1295 	head += size;
1296 	file_pos += size;
1297 
1298 	if (file_pos >= progress_next) {
1299 		progress_next += file_size / 16;
1300 		ui_progress__update(file_pos, file_size,
1301 				    "Processing events...");
1302 	}
1303 
1304 	if (file_pos < file_size)
1305 		goto more;
1306 
1307 	err = 0;
1308 	/* do the final flush for ordered samples */
1309 	session->ordered_samples.next_flush = ULLONG_MAX;
1310 	flush_sample_queue(session, tool);
1311 out_err:
1312 	perf_session__warn_about_errors(session, tool);
1313 	perf_session_free_sample_buffers(session);
1314 	return err;
1315 }
1316 
1317 int perf_session__process_events(struct perf_session *self,
1318 				 struct perf_tool *tool)
1319 {
1320 	int err;
1321 
1322 	if (perf_session__register_idle_thread(self) == NULL)
1323 		return -ENOMEM;
1324 
1325 	if (!self->fd_pipe)
1326 		err = __perf_session__process_events(self,
1327 						     self->header.data_offset,
1328 						     self->header.data_size,
1329 						     self->size, tool);
1330 	else
1331 		err = __perf_session__process_pipe_events(self, tool);
1332 
1333 	return err;
1334 }
1335 
1336 bool perf_session__has_traces(struct perf_session *self, const char *msg)
1337 {
1338 	if (!(self->sample_type & PERF_SAMPLE_RAW)) {
1339 		pr_err("No trace sample to read. Did you call 'perf %s'?\n", msg);
1340 		return false;
1341 	}
1342 
1343 	return true;
1344 }
1345 
1346 int maps__set_kallsyms_ref_reloc_sym(struct map **maps,
1347 				     const char *symbol_name, u64 addr)
1348 {
1349 	char *bracket;
1350 	enum map_type i;
1351 	struct ref_reloc_sym *ref;
1352 
1353 	ref = zalloc(sizeof(struct ref_reloc_sym));
1354 	if (ref == NULL)
1355 		return -ENOMEM;
1356 
1357 	ref->name = strdup(symbol_name);
1358 	if (ref->name == NULL) {
1359 		free(ref);
1360 		return -ENOMEM;
1361 	}
1362 
1363 	bracket = strchr(ref->name, ']');
1364 	if (bracket)
1365 		*bracket = '\0';
1366 
1367 	ref->addr = addr;
1368 
1369 	for (i = 0; i < MAP__NR_TYPES; ++i) {
1370 		struct kmap *kmap = map__kmap(maps[i]);
1371 		kmap->ref_reloc_sym = ref;
1372 	}
1373 
1374 	return 0;
1375 }
1376 
1377 size_t perf_session__fprintf_dsos(struct perf_session *self, FILE *fp)
1378 {
1379 	return __dsos__fprintf(&self->host_machine.kernel_dsos, fp) +
1380 	       __dsos__fprintf(&self->host_machine.user_dsos, fp) +
1381 	       machines__fprintf_dsos(&self->machines, fp);
1382 }
1383 
1384 size_t perf_session__fprintf_dsos_buildid(struct perf_session *self, FILE *fp,
1385 					  bool with_hits)
1386 {
1387 	size_t ret = machine__fprintf_dsos_buildid(&self->host_machine, fp, with_hits);
1388 	return ret + machines__fprintf_dsos_buildid(&self->machines, fp, with_hits);
1389 }
1390 
1391 size_t perf_session__fprintf_nr_events(struct perf_session *session, FILE *fp)
1392 {
1393 	struct perf_evsel *pos;
1394 	size_t ret = fprintf(fp, "Aggregated stats:\n");
1395 
1396 	ret += hists__fprintf_nr_events(&session->hists, fp);
1397 
1398 	list_for_each_entry(pos, &session->evlist->entries, node) {
1399 		ret += fprintf(fp, "%s stats:\n", event_name(pos));
1400 		ret += hists__fprintf_nr_events(&pos->hists, fp);
1401 	}
1402 
1403 	return ret;
1404 }
1405 
1406 size_t perf_session__fprintf(struct perf_session *session, FILE *fp)
1407 {
1408 	/*
1409 	 * FIXME: Here we have to actually print all the machines in this
1410 	 * session, not just the host...
1411 	 */
1412 	return machine__fprintf(&session->host_machine, fp);
1413 }
1414 
1415 void perf_session__remove_thread(struct perf_session *session,
1416 				 struct thread *th)
1417 {
1418 	/*
1419 	 * FIXME: This one makes no sense, we need to remove the thread from
1420 	 * the machine it belongs to, perf_session can have many machines, so
1421 	 * doing it always on ->host_machine is wrong.  Fix when auditing all
1422 	 * the 'perf kvm' code.
1423 	 */
1424 	machine__remove_thread(&session->host_machine, th);
1425 }
1426 
1427 struct perf_evsel *perf_session__find_first_evtype(struct perf_session *session,
1428 					      unsigned int type)
1429 {
1430 	struct perf_evsel *pos;
1431 
1432 	list_for_each_entry(pos, &session->evlist->entries, node) {
1433 		if (pos->attr.type == type)
1434 			return pos;
1435 	}
1436 	return NULL;
1437 }
1438 
1439 void perf_event__print_ip(union perf_event *event, struct perf_sample *sample,
1440 			  struct machine *machine, struct perf_evsel *evsel,
1441 			  int print_sym, int print_dso, int print_symoffset)
1442 {
1443 	struct addr_location al;
1444 	struct callchain_cursor_node *node;
1445 
1446 	if (perf_event__preprocess_sample(event, machine, &al, sample,
1447 					  NULL) < 0) {
1448 		error("problem processing %d event, skipping it.\n",
1449 			event->header.type);
1450 		return;
1451 	}
1452 
1453 	if (symbol_conf.use_callchain && sample->callchain) {
1454 
1455 		if (machine__resolve_callchain(machine, evsel, al.thread,
1456 						sample->callchain, NULL) != 0) {
1457 			if (verbose)
1458 				error("Failed to resolve callchain. Skipping\n");
1459 			return;
1460 		}
1461 		callchain_cursor_commit(&callchain_cursor);
1462 
1463 		while (1) {
1464 			node = callchain_cursor_current(&callchain_cursor);
1465 			if (!node)
1466 				break;
1467 
1468 			printf("\t%16" PRIx64, node->ip);
1469 			if (print_sym) {
1470 				printf(" ");
1471 				symbol__fprintf_symname(node->sym, stdout);
1472 			}
1473 			if (print_dso) {
1474 				printf(" (");
1475 				map__fprintf_dsoname(node->map, stdout);
1476 				printf(")");
1477 			}
1478 			printf("\n");
1479 
1480 			callchain_cursor_advance(&callchain_cursor);
1481 		}
1482 
1483 	} else {
1484 		printf("%16" PRIx64, sample->ip);
1485 		if (print_sym) {
1486 			printf(" ");
1487 			if (print_symoffset)
1488 				symbol__fprintf_symname_offs(al.sym, &al,
1489 							     stdout);
1490 			else
1491 				symbol__fprintf_symname(al.sym, stdout);
1492 		}
1493 
1494 		if (print_dso) {
1495 			printf(" (");
1496 			map__fprintf_dsoname(al.map, stdout);
1497 			printf(")");
1498 		}
1499 	}
1500 }
1501 
1502 int perf_session__cpu_bitmap(struct perf_session *session,
1503 			     const char *cpu_list, unsigned long *cpu_bitmap)
1504 {
1505 	int i;
1506 	struct cpu_map *map;
1507 
1508 	for (i = 0; i < PERF_TYPE_MAX; ++i) {
1509 		struct perf_evsel *evsel;
1510 
1511 		evsel = perf_session__find_first_evtype(session, i);
1512 		if (!evsel)
1513 			continue;
1514 
1515 		if (!(evsel->attr.sample_type & PERF_SAMPLE_CPU)) {
1516 			pr_err("File does not contain CPU events. "
1517 			       "Remove -c option to proceed.\n");
1518 			return -1;
1519 		}
1520 	}
1521 
1522 	map = cpu_map__new(cpu_list);
1523 	if (map == NULL) {
1524 		pr_err("Invalid cpu_list\n");
1525 		return -1;
1526 	}
1527 
1528 	for (i = 0; i < map->nr; i++) {
1529 		int cpu = map->map[i];
1530 
1531 		if (cpu >= MAX_NR_CPUS) {
1532 			pr_err("Requested CPU %d too large. "
1533 			       "Consider raising MAX_NR_CPUS\n", cpu);
1534 			return -1;
1535 		}
1536 
1537 		set_bit(cpu, cpu_bitmap);
1538 	}
1539 
1540 	return 0;
1541 }
1542 
1543 void perf_session__fprintf_info(struct perf_session *session, FILE *fp,
1544 				bool full)
1545 {
1546 	struct stat st;
1547 	int ret;
1548 
1549 	if (session == NULL || fp == NULL)
1550 		return;
1551 
1552 	ret = fstat(session->fd, &st);
1553 	if (ret == -1)
1554 		return;
1555 
1556 	fprintf(fp, "# ========\n");
1557 	fprintf(fp, "# captured on: %s", ctime(&st.st_ctime));
1558 	perf_header__fprintf_info(session, fp, full);
1559 	fprintf(fp, "# ========\n#\n");
1560 }
1561