xref: /openbmc/linux/tools/perf/util/session.c (revision 020bb75a)
1 #define _FILE_OFFSET_BITS 64
2 
3 #include <linux/kernel.h>
4 
5 #include <byteswap.h>
6 #include <unistd.h>
7 #include <sys/types.h>
8 #include <sys/mman.h>
9 
10 #include "session.h"
11 #include "sort.h"
12 #include "util.h"
13 
14 static int perf_session__open(struct perf_session *self, bool force)
15 {
16 	struct stat input_stat;
17 
18 	if (!strcmp(self->filename, "-")) {
19 		self->fd_pipe = true;
20 		self->fd = STDIN_FILENO;
21 
22 		if (perf_header__read(self, self->fd) < 0)
23 			pr_err("incompatible file format");
24 
25 		return 0;
26 	}
27 
28 	self->fd = open(self->filename, O_RDONLY);
29 	if (self->fd < 0) {
30 		int err = errno;
31 
32 		pr_err("failed to open %s: %s", self->filename, strerror(err));
33 		if (err == ENOENT && !strcmp(self->filename, "perf.data"))
34 			pr_err("  (try 'perf record' first)");
35 		pr_err("\n");
36 		return -errno;
37 	}
38 
39 	if (fstat(self->fd, &input_stat) < 0)
40 		goto out_close;
41 
42 	if (!force && input_stat.st_uid && (input_stat.st_uid != geteuid())) {
43 		pr_err("file %s not owned by current user or root\n",
44 		       self->filename);
45 		goto out_close;
46 	}
47 
48 	if (!input_stat.st_size) {
49 		pr_info("zero-sized file (%s), nothing to do!\n",
50 			self->filename);
51 		goto out_close;
52 	}
53 
54 	if (perf_header__read(self, self->fd) < 0) {
55 		pr_err("incompatible file format");
56 		goto out_close;
57 	}
58 
59 	self->size = input_stat.st_size;
60 	return 0;
61 
62 out_close:
63 	close(self->fd);
64 	self->fd = -1;
65 	return -1;
66 }
67 
68 void perf_session__update_sample_type(struct perf_session *self)
69 {
70 	self->sample_type = perf_header__sample_type(&self->header);
71 }
72 
73 int perf_session__create_kernel_maps(struct perf_session *self)
74 {
75 	int ret = machine__create_kernel_maps(&self->host_machine);
76 
77 	if (ret >= 0)
78 		ret = machines__create_guest_kernel_maps(&self->machines);
79 	return ret;
80 }
81 
82 static void perf_session__destroy_kernel_maps(struct perf_session *self)
83 {
84 	machine__destroy_kernel_maps(&self->host_machine);
85 	machines__destroy_guest_kernel_maps(&self->machines);
86 }
87 
88 struct perf_session *perf_session__new(const char *filename, int mode, bool force, bool repipe)
89 {
90 	size_t len = filename ? strlen(filename) + 1 : 0;
91 	struct perf_session *self = zalloc(sizeof(*self) + len);
92 
93 	if (self == NULL)
94 		goto out;
95 
96 	if (perf_header__init(&self->header) < 0)
97 		goto out_free;
98 
99 	memcpy(self->filename, filename, len);
100 	self->threads = RB_ROOT;
101 	INIT_LIST_HEAD(&self->dead_threads);
102 	self->hists_tree = RB_ROOT;
103 	self->last_match = NULL;
104 	/*
105 	 * On 64bit we can mmap the data file in one go. No need for tiny mmap
106 	 * slices. On 32bit we use 32MB.
107 	 */
108 #if BITS_PER_LONG == 64
109 	self->mmap_window = ULLONG_MAX;
110 #else
111 	self->mmap_window = 32 * 1024 * 1024ULL;
112 #endif
113 	self->machines = RB_ROOT;
114 	self->repipe = repipe;
115 	INIT_LIST_HEAD(&self->ordered_samples.samples);
116 	INIT_LIST_HEAD(&self->ordered_samples.sample_cache);
117 	machine__init(&self->host_machine, "", HOST_KERNEL_ID);
118 
119 	if (mode == O_RDONLY) {
120 		if (perf_session__open(self, force) < 0)
121 			goto out_delete;
122 	} else if (mode == O_WRONLY) {
123 		/*
124 		 * In O_RDONLY mode this will be performed when reading the
125 		 * kernel MMAP event, in event__process_mmap().
126 		 */
127 		if (perf_session__create_kernel_maps(self) < 0)
128 			goto out_delete;
129 	}
130 
131 	perf_session__update_sample_type(self);
132 out:
133 	return self;
134 out_free:
135 	free(self);
136 	return NULL;
137 out_delete:
138 	perf_session__delete(self);
139 	return NULL;
140 }
141 
142 static void perf_session__delete_dead_threads(struct perf_session *self)
143 {
144 	struct thread *n, *t;
145 
146 	list_for_each_entry_safe(t, n, &self->dead_threads, node) {
147 		list_del(&t->node);
148 		thread__delete(t);
149 	}
150 }
151 
152 static void perf_session__delete_threads(struct perf_session *self)
153 {
154 	struct rb_node *nd = rb_first(&self->threads);
155 
156 	while (nd) {
157 		struct thread *t = rb_entry(nd, struct thread, rb_node);
158 
159 		rb_erase(&t->rb_node, &self->threads);
160 		nd = rb_next(nd);
161 		thread__delete(t);
162 	}
163 }
164 
165 void perf_session__delete(struct perf_session *self)
166 {
167 	perf_header__exit(&self->header);
168 	perf_session__destroy_kernel_maps(self);
169 	perf_session__delete_dead_threads(self);
170 	perf_session__delete_threads(self);
171 	machine__exit(&self->host_machine);
172 	close(self->fd);
173 	free(self);
174 }
175 
176 void perf_session__remove_thread(struct perf_session *self, struct thread *th)
177 {
178 	self->last_match = NULL;
179 	rb_erase(&th->rb_node, &self->threads);
180 	/*
181 	 * We may have references to this thread, for instance in some hist_entry
182 	 * instances, so just move them to a separate list.
183 	 */
184 	list_add_tail(&th->node, &self->dead_threads);
185 }
186 
187 static bool symbol__match_parent_regex(struct symbol *sym)
188 {
189 	if (sym->name && !regexec(&parent_regex, sym->name, 0, NULL, 0))
190 		return 1;
191 
192 	return 0;
193 }
194 
195 struct map_symbol *perf_session__resolve_callchain(struct perf_session *self,
196 						   struct thread *thread,
197 						   struct ip_callchain *chain,
198 						   struct symbol **parent)
199 {
200 	u8 cpumode = PERF_RECORD_MISC_USER;
201 	unsigned int i;
202 	struct map_symbol *syms = calloc(chain->nr, sizeof(*syms));
203 
204 	if (!syms)
205 		return NULL;
206 
207 	for (i = 0; i < chain->nr; i++) {
208 		u64 ip = chain->ips[i];
209 		struct addr_location al;
210 
211 		if (ip >= PERF_CONTEXT_MAX) {
212 			switch (ip) {
213 			case PERF_CONTEXT_HV:
214 				cpumode = PERF_RECORD_MISC_HYPERVISOR;	break;
215 			case PERF_CONTEXT_KERNEL:
216 				cpumode = PERF_RECORD_MISC_KERNEL;	break;
217 			case PERF_CONTEXT_USER:
218 				cpumode = PERF_RECORD_MISC_USER;	break;
219 			default:
220 				break;
221 			}
222 			continue;
223 		}
224 
225 		al.filtered = false;
226 		thread__find_addr_location(thread, self, cpumode,
227 				MAP__FUNCTION, thread->pid, ip, &al, NULL);
228 		if (al.sym != NULL) {
229 			if (sort__has_parent && !*parent &&
230 			    symbol__match_parent_regex(al.sym))
231 				*parent = al.sym;
232 			if (!symbol_conf.use_callchain)
233 				break;
234 			syms[i].map = al.map;
235 			syms[i].sym = al.sym;
236 		}
237 	}
238 
239 	return syms;
240 }
241 
242 static int process_event_stub(event_t *event __used,
243 			      struct perf_session *session __used)
244 {
245 	dump_printf(": unhandled!\n");
246 	return 0;
247 }
248 
249 static int process_finished_round_stub(event_t *event __used,
250 				       struct perf_session *session __used,
251 				       struct perf_event_ops *ops __used)
252 {
253 	dump_printf(": unhandled!\n");
254 	return 0;
255 }
256 
257 static int process_finished_round(event_t *event,
258 				  struct perf_session *session,
259 				  struct perf_event_ops *ops);
260 
261 static void perf_event_ops__fill_defaults(struct perf_event_ops *handler)
262 {
263 	if (handler->sample == NULL)
264 		handler->sample = process_event_stub;
265 	if (handler->mmap == NULL)
266 		handler->mmap = process_event_stub;
267 	if (handler->comm == NULL)
268 		handler->comm = process_event_stub;
269 	if (handler->fork == NULL)
270 		handler->fork = process_event_stub;
271 	if (handler->exit == NULL)
272 		handler->exit = process_event_stub;
273 	if (handler->lost == NULL)
274 		handler->lost = event__process_lost;
275 	if (handler->read == NULL)
276 		handler->read = process_event_stub;
277 	if (handler->throttle == NULL)
278 		handler->throttle = process_event_stub;
279 	if (handler->unthrottle == NULL)
280 		handler->unthrottle = process_event_stub;
281 	if (handler->attr == NULL)
282 		handler->attr = process_event_stub;
283 	if (handler->event_type == NULL)
284 		handler->event_type = process_event_stub;
285 	if (handler->tracing_data == NULL)
286 		handler->tracing_data = process_event_stub;
287 	if (handler->build_id == NULL)
288 		handler->build_id = process_event_stub;
289 	if (handler->finished_round == NULL) {
290 		if (handler->ordered_samples)
291 			handler->finished_round = process_finished_round;
292 		else
293 			handler->finished_round = process_finished_round_stub;
294 	}
295 }
296 
297 void mem_bswap_64(void *src, int byte_size)
298 {
299 	u64 *m = src;
300 
301 	while (byte_size > 0) {
302 		*m = bswap_64(*m);
303 		byte_size -= sizeof(u64);
304 		++m;
305 	}
306 }
307 
308 static void event__all64_swap(event_t *self)
309 {
310 	struct perf_event_header *hdr = &self->header;
311 	mem_bswap_64(hdr + 1, self->header.size - sizeof(*hdr));
312 }
313 
314 static void event__comm_swap(event_t *self)
315 {
316 	self->comm.pid = bswap_32(self->comm.pid);
317 	self->comm.tid = bswap_32(self->comm.tid);
318 }
319 
320 static void event__mmap_swap(event_t *self)
321 {
322 	self->mmap.pid	 = bswap_32(self->mmap.pid);
323 	self->mmap.tid	 = bswap_32(self->mmap.tid);
324 	self->mmap.start = bswap_64(self->mmap.start);
325 	self->mmap.len	 = bswap_64(self->mmap.len);
326 	self->mmap.pgoff = bswap_64(self->mmap.pgoff);
327 }
328 
329 static void event__task_swap(event_t *self)
330 {
331 	self->fork.pid	= bswap_32(self->fork.pid);
332 	self->fork.tid	= bswap_32(self->fork.tid);
333 	self->fork.ppid	= bswap_32(self->fork.ppid);
334 	self->fork.ptid	= bswap_32(self->fork.ptid);
335 	self->fork.time	= bswap_64(self->fork.time);
336 }
337 
338 static void event__read_swap(event_t *self)
339 {
340 	self->read.pid		= bswap_32(self->read.pid);
341 	self->read.tid		= bswap_32(self->read.tid);
342 	self->read.value	= bswap_64(self->read.value);
343 	self->read.time_enabled	= bswap_64(self->read.time_enabled);
344 	self->read.time_running	= bswap_64(self->read.time_running);
345 	self->read.id		= bswap_64(self->read.id);
346 }
347 
348 static void event__attr_swap(event_t *self)
349 {
350 	size_t size;
351 
352 	self->attr.attr.type		= bswap_32(self->attr.attr.type);
353 	self->attr.attr.size		= bswap_32(self->attr.attr.size);
354 	self->attr.attr.config		= bswap_64(self->attr.attr.config);
355 	self->attr.attr.sample_period	= bswap_64(self->attr.attr.sample_period);
356 	self->attr.attr.sample_type	= bswap_64(self->attr.attr.sample_type);
357 	self->attr.attr.read_format	= bswap_64(self->attr.attr.read_format);
358 	self->attr.attr.wakeup_events	= bswap_32(self->attr.attr.wakeup_events);
359 	self->attr.attr.bp_type		= bswap_32(self->attr.attr.bp_type);
360 	self->attr.attr.bp_addr		= bswap_64(self->attr.attr.bp_addr);
361 	self->attr.attr.bp_len		= bswap_64(self->attr.attr.bp_len);
362 
363 	size = self->header.size;
364 	size -= (void *)&self->attr.id - (void *)self;
365 	mem_bswap_64(self->attr.id, size);
366 }
367 
368 static void event__event_type_swap(event_t *self)
369 {
370 	self->event_type.event_type.event_id =
371 		bswap_64(self->event_type.event_type.event_id);
372 }
373 
374 static void event__tracing_data_swap(event_t *self)
375 {
376 	self->tracing_data.size = bswap_32(self->tracing_data.size);
377 }
378 
379 typedef void (*event__swap_op)(event_t *self);
380 
381 static event__swap_op event__swap_ops[] = {
382 	[PERF_RECORD_MMAP]   = event__mmap_swap,
383 	[PERF_RECORD_COMM]   = event__comm_swap,
384 	[PERF_RECORD_FORK]   = event__task_swap,
385 	[PERF_RECORD_EXIT]   = event__task_swap,
386 	[PERF_RECORD_LOST]   = event__all64_swap,
387 	[PERF_RECORD_READ]   = event__read_swap,
388 	[PERF_RECORD_SAMPLE] = event__all64_swap,
389 	[PERF_RECORD_HEADER_ATTR]   = event__attr_swap,
390 	[PERF_RECORD_HEADER_EVENT_TYPE]   = event__event_type_swap,
391 	[PERF_RECORD_HEADER_TRACING_DATA]   = event__tracing_data_swap,
392 	[PERF_RECORD_HEADER_BUILD_ID]   = NULL,
393 	[PERF_RECORD_HEADER_MAX]    = NULL,
394 };
395 
396 struct sample_queue {
397 	u64			timestamp;
398 	event_t			*event;
399 	struct list_head	list;
400 };
401 
402 static void perf_session_free_sample_buffers(struct perf_session *session)
403 {
404 	struct ordered_samples *os = &session->ordered_samples;
405 
406 	while (!list_empty(&os->sample_cache)) {
407 		struct sample_queue *sq;
408 
409 		sq = list_entry(os->sample_cache.next, struct sample_queue, list);
410 		list_del(&sq->list);
411 		free(sq);
412 	}
413 }
414 
415 static void flush_sample_queue(struct perf_session *s,
416 			       struct perf_event_ops *ops)
417 {
418 	struct ordered_samples *os = &s->ordered_samples;
419 	struct list_head *head = &os->samples;
420 	struct sample_queue *tmp, *iter;
421 	u64 limit = os->next_flush;
422 	u64 last_ts = os->last_sample ? os->last_sample->timestamp : 0ULL;
423 
424 	if (!ops->ordered_samples || !limit)
425 		return;
426 
427 	list_for_each_entry_safe(iter, tmp, head, list) {
428 		if (iter->timestamp > limit)
429 			break;
430 
431 		ops->sample(iter->event, s);
432 
433 		os->last_flush = iter->timestamp;
434 		list_del(&iter->list);
435 		list_add(&iter->list, &os->sample_cache);
436 	}
437 
438 	if (list_empty(head)) {
439 		os->last_sample = NULL;
440 	} else if (last_ts <= limit) {
441 		os->last_sample =
442 			list_entry(head->prev, struct sample_queue, list);
443 	}
444 }
445 
446 /*
447  * When perf record finishes a pass on every buffers, it records this pseudo
448  * event.
449  * We record the max timestamp t found in the pass n.
450  * Assuming these timestamps are monotonic across cpus, we know that if
451  * a buffer still has events with timestamps below t, they will be all
452  * available and then read in the pass n + 1.
453  * Hence when we start to read the pass n + 2, we can safely flush every
454  * events with timestamps below t.
455  *
456  *    ============ PASS n =================
457  *       CPU 0         |   CPU 1
458  *                     |
459  *    cnt1 timestamps  |   cnt2 timestamps
460  *          1          |         2
461  *          2          |         3
462  *          -          |         4  <--- max recorded
463  *
464  *    ============ PASS n + 1 ==============
465  *       CPU 0         |   CPU 1
466  *                     |
467  *    cnt1 timestamps  |   cnt2 timestamps
468  *          3          |         5
469  *          4          |         6
470  *          5          |         7 <---- max recorded
471  *
472  *      Flush every events below timestamp 4
473  *
474  *    ============ PASS n + 2 ==============
475  *       CPU 0         |   CPU 1
476  *                     |
477  *    cnt1 timestamps  |   cnt2 timestamps
478  *          6          |         8
479  *          7          |         9
480  *          -          |         10
481  *
482  *      Flush every events below timestamp 7
483  *      etc...
484  */
485 static int process_finished_round(event_t *event __used,
486 				  struct perf_session *session,
487 				  struct perf_event_ops *ops)
488 {
489 	flush_sample_queue(session, ops);
490 	session->ordered_samples.next_flush = session->ordered_samples.max_timestamp;
491 
492 	return 0;
493 }
494 
495 /* The queue is ordered by time */
496 static void __queue_sample_event(struct sample_queue *new,
497 				 struct perf_session *s)
498 {
499 	struct ordered_samples *os = &s->ordered_samples;
500 	struct sample_queue *sample = os->last_sample;
501 	u64 timestamp = new->timestamp;
502 	struct list_head *p;
503 
504 	os->last_sample = new;
505 
506 	if (!sample) {
507 		list_add(&new->list, &os->samples);
508 		os->max_timestamp = timestamp;
509 		return;
510 	}
511 
512 	/*
513 	 * last_sample might point to some random place in the list as it's
514 	 * the last queued event. We expect that the new event is close to
515 	 * this.
516 	 */
517 	if (sample->timestamp <= timestamp) {
518 		while (sample->timestamp <= timestamp) {
519 			p = sample->list.next;
520 			if (p == &os->samples) {
521 				list_add_tail(&new->list, &os->samples);
522 				os->max_timestamp = timestamp;
523 				return;
524 			}
525 			sample = list_entry(p, struct sample_queue, list);
526 		}
527 		list_add_tail(&new->list, &sample->list);
528 	} else {
529 		while (sample->timestamp > timestamp) {
530 			p = sample->list.prev;
531 			if (p == &os->samples) {
532 				list_add(&new->list, &os->samples);
533 				return;
534 			}
535 			sample = list_entry(p, struct sample_queue, list);
536 		}
537 		list_add(&new->list, &sample->list);
538 	}
539 }
540 
541 static int queue_sample_event(event_t *event, struct sample_data *data,
542 			      struct perf_session *s)
543 {
544 	struct list_head *sc = &s->ordered_samples.sample_cache;
545 	u64 timestamp = data->time;
546 	struct sample_queue *new;
547 
548 	if (timestamp < s->ordered_samples.last_flush) {
549 		printf("Warning: Timestamp below last timeslice flush\n");
550 		return -EINVAL;
551 	}
552 
553 	if (!list_empty(sc)) {
554 		new = list_entry(sc->next, struct sample_queue, list);
555 		list_del(&new->list);
556 	} else {
557 		new = malloc(sizeof(*new));
558 		if (!new)
559 			return -ENOMEM;
560 	}
561 
562 	new->timestamp = timestamp;
563 	new->event = event;
564 
565 	__queue_sample_event(new, s);
566 
567 	return 0;
568 }
569 
570 static int perf_session__process_sample(event_t *event, struct perf_session *s,
571 					struct perf_event_ops *ops)
572 {
573 	struct sample_data data;
574 
575 	if (!ops->ordered_samples)
576 		return ops->sample(event, s);
577 
578 	bzero(&data, sizeof(struct sample_data));
579 	event__parse_sample(event, s->sample_type, &data);
580 
581 	queue_sample_event(event, &data, s);
582 
583 	return 0;
584 }
585 
586 static int perf_session__process_event(struct perf_session *self,
587 				       event_t *event,
588 				       struct perf_event_ops *ops,
589 				       u64 file_offset)
590 {
591 	trace_event(event);
592 
593 	if (event->header.type < PERF_RECORD_HEADER_MAX) {
594 		dump_printf("%#Lx [%#x]: PERF_RECORD_%s",
595 			    file_offset, event->header.size,
596 			    event__name[event->header.type]);
597 		hists__inc_nr_events(&self->hists, event->header.type);
598 	}
599 
600 	if (self->header.needs_swap && event__swap_ops[event->header.type])
601 		event__swap_ops[event->header.type](event);
602 
603 	switch (event->header.type) {
604 	case PERF_RECORD_SAMPLE:
605 		return perf_session__process_sample(event, self, ops);
606 	case PERF_RECORD_MMAP:
607 		return ops->mmap(event, self);
608 	case PERF_RECORD_COMM:
609 		return ops->comm(event, self);
610 	case PERF_RECORD_FORK:
611 		return ops->fork(event, self);
612 	case PERF_RECORD_EXIT:
613 		return ops->exit(event, self);
614 	case PERF_RECORD_LOST:
615 		return ops->lost(event, self);
616 	case PERF_RECORD_READ:
617 		return ops->read(event, self);
618 	case PERF_RECORD_THROTTLE:
619 		return ops->throttle(event, self);
620 	case PERF_RECORD_UNTHROTTLE:
621 		return ops->unthrottle(event, self);
622 	case PERF_RECORD_HEADER_ATTR:
623 		return ops->attr(event, self);
624 	case PERF_RECORD_HEADER_EVENT_TYPE:
625 		return ops->event_type(event, self);
626 	case PERF_RECORD_HEADER_TRACING_DATA:
627 		/* setup for reading amidst mmap */
628 		lseek(self->fd, file_offset, SEEK_SET);
629 		return ops->tracing_data(event, self);
630 	case PERF_RECORD_HEADER_BUILD_ID:
631 		return ops->build_id(event, self);
632 	case PERF_RECORD_FINISHED_ROUND:
633 		return ops->finished_round(event, self, ops);
634 	default:
635 		++self->hists.stats.nr_unknown_events;
636 		return -1;
637 	}
638 }
639 
640 void perf_event_header__bswap(struct perf_event_header *self)
641 {
642 	self->type = bswap_32(self->type);
643 	self->misc = bswap_16(self->misc);
644 	self->size = bswap_16(self->size);
645 }
646 
647 static struct thread *perf_session__register_idle_thread(struct perf_session *self)
648 {
649 	struct thread *thread = perf_session__findnew(self, 0);
650 
651 	if (thread == NULL || thread__set_comm(thread, "swapper")) {
652 		pr_err("problem inserting idle task.\n");
653 		thread = NULL;
654 	}
655 
656 	return thread;
657 }
658 
659 int do_read(int fd, void *buf, size_t size)
660 {
661 	void *buf_start = buf;
662 
663 	while (size) {
664 		int ret = read(fd, buf, size);
665 
666 		if (ret <= 0)
667 			return ret;
668 
669 		size -= ret;
670 		buf += ret;
671 	}
672 
673 	return buf - buf_start;
674 }
675 
676 #define session_done()	(*(volatile int *)(&session_done))
677 volatile int session_done;
678 
679 static int __perf_session__process_pipe_events(struct perf_session *self,
680 					       struct perf_event_ops *ops)
681 {
682 	event_t event;
683 	uint32_t size;
684 	int skip = 0;
685 	u64 head;
686 	int err;
687 	void *p;
688 
689 	perf_event_ops__fill_defaults(ops);
690 
691 	head = 0;
692 more:
693 	err = do_read(self->fd, &event, sizeof(struct perf_event_header));
694 	if (err <= 0) {
695 		if (err == 0)
696 			goto done;
697 
698 		pr_err("failed to read event header\n");
699 		goto out_err;
700 	}
701 
702 	if (self->header.needs_swap)
703 		perf_event_header__bswap(&event.header);
704 
705 	size = event.header.size;
706 	if (size == 0)
707 		size = 8;
708 
709 	p = &event;
710 	p += sizeof(struct perf_event_header);
711 
712 	if (size - sizeof(struct perf_event_header)) {
713 		err = do_read(self->fd, p,
714 			      size - sizeof(struct perf_event_header));
715 		if (err <= 0) {
716 			if (err == 0) {
717 				pr_err("unexpected end of event stream\n");
718 				goto done;
719 			}
720 
721 			pr_err("failed to read event data\n");
722 			goto out_err;
723 		}
724 	}
725 
726 	if (size == 0 ||
727 	    (skip = perf_session__process_event(self, &event, ops, head)) < 0) {
728 		dump_printf("%#Lx [%#x]: skipping unknown header type: %d\n",
729 			    head, event.header.size, event.header.type);
730 		/*
731 		 * assume we lost track of the stream, check alignment, and
732 		 * increment a single u64 in the hope to catch on again 'soon'.
733 		 */
734 		if (unlikely(head & 7))
735 			head &= ~7ULL;
736 
737 		size = 8;
738 	}
739 
740 	head += size;
741 
742 	dump_printf("\n%#Lx [%#x]: event: %d\n",
743 		    head, event.header.size, event.header.type);
744 
745 	if (skip > 0)
746 		head += skip;
747 
748 	if (!session_done())
749 		goto more;
750 done:
751 	err = 0;
752 out_err:
753 	perf_session_free_sample_buffers(self);
754 	return err;
755 }
756 
757 int __perf_session__process_events(struct perf_session *session,
758 				   u64 data_offset, u64 data_size,
759 				   u64 file_size, struct perf_event_ops *ops)
760 {
761 	u64 head, page_offset, file_offset, file_pos, progress_next;
762 	int err, mmap_prot, mmap_flags, map_idx = 0;
763 	struct ui_progress *progress;
764 	size_t	page_size, mmap_size;
765 	char *buf, *mmaps[8];
766 	event_t *event;
767 	uint32_t size;
768 
769 	perf_event_ops__fill_defaults(ops);
770 
771 	page_size = sysconf(_SC_PAGESIZE);
772 
773 	page_offset = page_size * (data_offset / page_size);
774 	file_offset = page_offset;
775 	head = data_offset - page_offset;
776 
777 	if (data_offset + data_size < file_size)
778 		file_size = data_offset + data_size;
779 
780 	progress_next = file_size / 16;
781 	progress = ui_progress__new("Processing events...", file_size);
782 	if (progress == NULL)
783 		return -1;
784 
785 	mmap_size = session->mmap_window;
786 	if (mmap_size > file_size)
787 		mmap_size = file_size;
788 
789 	memset(mmaps, 0, sizeof(mmaps));
790 
791 	mmap_prot  = PROT_READ;
792 	mmap_flags = MAP_SHARED;
793 
794 	if (session->header.needs_swap) {
795 		mmap_prot  |= PROT_WRITE;
796 		mmap_flags = MAP_PRIVATE;
797 	}
798 remap:
799 	buf = mmap(NULL, mmap_size, mmap_prot, mmap_flags, session->fd,
800 		   file_offset);
801 	if (buf == MAP_FAILED) {
802 		pr_err("failed to mmap file\n");
803 		err = -errno;
804 		goto out_err;
805 	}
806 	mmaps[map_idx] = buf;
807 	map_idx = (map_idx + 1) & (ARRAY_SIZE(mmaps) - 1);
808 	file_pos = file_offset + head;
809 
810 more:
811 	event = (event_t *)(buf + head);
812 
813 	if (session->header.needs_swap)
814 		perf_event_header__bswap(&event->header);
815 	size = event->header.size;
816 	if (size == 0)
817 		size = 8;
818 
819 	if (head + event->header.size >= mmap_size) {
820 		if (mmaps[map_idx]) {
821 			munmap(mmaps[map_idx], mmap_size);
822 			mmaps[map_idx] = NULL;
823 		}
824 
825 		page_offset = page_size * (head / page_size);
826 		file_offset += page_offset;
827 		head -= page_offset;
828 		goto remap;
829 	}
830 
831 	size = event->header.size;
832 
833 	dump_printf("\n%#Lx [%#x]: event: %d\n",
834 		    file_pos, event->header.size, event->header.type);
835 
836 	if (size == 0 ||
837 	    perf_session__process_event(session, event, ops, file_pos) < 0) {
838 		dump_printf("%#Lx [%#x]: skipping unknown header type: %d\n",
839 			    file_offset + head, event->header.size,
840 			    event->header.type);
841 		/*
842 		 * assume we lost track of the stream, check alignment, and
843 		 * increment a single u64 in the hope to catch on again 'soon'.
844 		 */
845 		if (unlikely(head & 7))
846 			head &= ~7ULL;
847 
848 		size = 8;
849 	}
850 
851 	head += size;
852 	file_pos += size;
853 
854 	if (file_pos >= progress_next) {
855 		progress_next += file_size / 16;
856 		ui_progress__update(progress, file_pos);
857 	}
858 
859 	if (file_pos < file_size)
860 		goto more;
861 
862 	err = 0;
863 	/* do the final flush for ordered samples */
864 	session->ordered_samples.next_flush = ULLONG_MAX;
865 	flush_sample_queue(session, ops);
866 out_err:
867 	ui_progress__delete(progress);
868 
869 	if (ops->lost == event__process_lost &&
870 	    session->hists.stats.total_lost != 0) {
871 		ui__warning("Processed %Lu events and LOST %Lu!\n\n"
872 			    "Check IO/CPU overload!\n\n",
873 			    session->hists.stats.total_period,
874 			    session->hists.stats.total_lost);
875 	}
876 
877 	if (session->hists.stats.nr_unknown_events != 0) {
878 		ui__warning("Found %u unknown events!\n\n"
879 			    "Is this an older tool processing a perf.data "
880 			    "file generated by a more recent tool?\n\n"
881 			    "If that is not the case, consider "
882 			    "reporting to linux-kernel@vger.kernel.org.\n\n",
883 			    session->hists.stats.nr_unknown_events);
884 	}
885 
886 	perf_session_free_sample_buffers(session);
887 	return err;
888 }
889 
890 int perf_session__process_events(struct perf_session *self,
891 				 struct perf_event_ops *ops)
892 {
893 	int err;
894 
895 	if (perf_session__register_idle_thread(self) == NULL)
896 		return -ENOMEM;
897 
898 	if (!self->fd_pipe)
899 		err = __perf_session__process_events(self,
900 						     self->header.data_offset,
901 						     self->header.data_size,
902 						     self->size, ops);
903 	else
904 		err = __perf_session__process_pipe_events(self, ops);
905 
906 	return err;
907 }
908 
909 bool perf_session__has_traces(struct perf_session *self, const char *msg)
910 {
911 	if (!(self->sample_type & PERF_SAMPLE_RAW)) {
912 		pr_err("No trace sample to read. Did you call 'perf %s'?\n", msg);
913 		return false;
914 	}
915 
916 	return true;
917 }
918 
919 int perf_session__set_kallsyms_ref_reloc_sym(struct map **maps,
920 					     const char *symbol_name,
921 					     u64 addr)
922 {
923 	char *bracket;
924 	enum map_type i;
925 	struct ref_reloc_sym *ref;
926 
927 	ref = zalloc(sizeof(struct ref_reloc_sym));
928 	if (ref == NULL)
929 		return -ENOMEM;
930 
931 	ref->name = strdup(symbol_name);
932 	if (ref->name == NULL) {
933 		free(ref);
934 		return -ENOMEM;
935 	}
936 
937 	bracket = strchr(ref->name, ']');
938 	if (bracket)
939 		*bracket = '\0';
940 
941 	ref->addr = addr;
942 
943 	for (i = 0; i < MAP__NR_TYPES; ++i) {
944 		struct kmap *kmap = map__kmap(maps[i]);
945 		kmap->ref_reloc_sym = ref;
946 	}
947 
948 	return 0;
949 }
950 
951 size_t perf_session__fprintf_dsos(struct perf_session *self, FILE *fp)
952 {
953 	return __dsos__fprintf(&self->host_machine.kernel_dsos, fp) +
954 	       __dsos__fprintf(&self->host_machine.user_dsos, fp) +
955 	       machines__fprintf_dsos(&self->machines, fp);
956 }
957 
958 size_t perf_session__fprintf_dsos_buildid(struct perf_session *self, FILE *fp,
959 					  bool with_hits)
960 {
961 	size_t ret = machine__fprintf_dsos_buildid(&self->host_machine, fp, with_hits);
962 	return ret + machines__fprintf_dsos_buildid(&self->machines, fp, with_hits);
963 }
964