1 #include <linux/list.h> 2 #include <linux/compiler.h> 3 #include <linux/string.h> 4 #include "ordered-events.h" 5 #include "session.h" 6 #include "asm/bug.h" 7 #include "debug.h" 8 9 #define pr_N(n, fmt, ...) \ 10 eprintf(n, debug_ordered_events, fmt, ##__VA_ARGS__) 11 12 #define pr(fmt, ...) pr_N(1, pr_fmt(fmt), ##__VA_ARGS__) 13 14 static void queue_event(struct ordered_events *oe, struct ordered_event *new) 15 { 16 struct ordered_event *last = oe->last; 17 u64 timestamp = new->timestamp; 18 struct list_head *p; 19 20 ++oe->nr_events; 21 oe->last = new; 22 23 pr_oe_time2(timestamp, "queue_event nr_events %u\n", oe->nr_events); 24 25 if (!last) { 26 list_add(&new->list, &oe->events); 27 oe->max_timestamp = timestamp; 28 return; 29 } 30 31 /* 32 * last event might point to some random place in the list as it's 33 * the last queued event. We expect that the new event is close to 34 * this. 35 */ 36 if (last->timestamp <= timestamp) { 37 while (last->timestamp <= timestamp) { 38 p = last->list.next; 39 if (p == &oe->events) { 40 list_add_tail(&new->list, &oe->events); 41 oe->max_timestamp = timestamp; 42 return; 43 } 44 last = list_entry(p, struct ordered_event, list); 45 } 46 list_add_tail(&new->list, &last->list); 47 } else { 48 while (last->timestamp > timestamp) { 49 p = last->list.prev; 50 if (p == &oe->events) { 51 list_add(&new->list, &oe->events); 52 return; 53 } 54 last = list_entry(p, struct ordered_event, list); 55 } 56 list_add(&new->list, &last->list); 57 } 58 } 59 60 static union perf_event *__dup_event(struct ordered_events *oe, 61 union perf_event *event) 62 { 63 union perf_event *new_event = NULL; 64 65 if (oe->cur_alloc_size < oe->max_alloc_size) { 66 new_event = memdup(event, event->header.size); 67 if (new_event) 68 oe->cur_alloc_size += event->header.size; 69 } 70 71 return new_event; 72 } 73 74 static union perf_event *dup_event(struct ordered_events *oe, 75 union perf_event *event) 76 { 77 return oe->copy_on_queue ? __dup_event(oe, event) : event; 78 } 79 80 static void free_dup_event(struct ordered_events *oe, union perf_event *event) 81 { 82 if (oe->copy_on_queue) { 83 oe->cur_alloc_size -= event->header.size; 84 free(event); 85 } 86 } 87 88 #define MAX_SAMPLE_BUFFER (64 * 1024 / sizeof(struct ordered_event)) 89 static struct ordered_event *alloc_event(struct ordered_events *oe, 90 union perf_event *event) 91 { 92 struct list_head *cache = &oe->cache; 93 struct ordered_event *new = NULL; 94 union perf_event *new_event; 95 96 new_event = dup_event(oe, event); 97 if (!new_event) 98 return NULL; 99 100 if (!list_empty(cache)) { 101 new = list_entry(cache->next, struct ordered_event, list); 102 list_del(&new->list); 103 } else if (oe->buffer) { 104 new = oe->buffer + oe->buffer_idx; 105 if (++oe->buffer_idx == MAX_SAMPLE_BUFFER) 106 oe->buffer = NULL; 107 } else if (oe->cur_alloc_size < oe->max_alloc_size) { 108 size_t size = MAX_SAMPLE_BUFFER * sizeof(*new); 109 110 oe->buffer = malloc(size); 111 if (!oe->buffer) { 112 free_dup_event(oe, new_event); 113 return NULL; 114 } 115 116 pr("alloc size %" PRIu64 "B (+%zu), max %" PRIu64 "B\n", 117 oe->cur_alloc_size, size, oe->max_alloc_size); 118 119 oe->cur_alloc_size += size; 120 list_add(&oe->buffer->list, &oe->to_free); 121 122 /* First entry is abused to maintain the to_free list. */ 123 oe->buffer_idx = 2; 124 new = oe->buffer + 1; 125 } else { 126 pr("allocation limit reached %" PRIu64 "B\n", oe->max_alloc_size); 127 } 128 129 new->event = new_event; 130 return new; 131 } 132 133 static struct ordered_event * 134 ordered_events__new_event(struct ordered_events *oe, u64 timestamp, 135 union perf_event *event) 136 { 137 struct ordered_event *new; 138 139 new = alloc_event(oe, event); 140 if (new) { 141 new->timestamp = timestamp; 142 queue_event(oe, new); 143 } 144 145 return new; 146 } 147 148 void ordered_events__delete(struct ordered_events *oe, struct ordered_event *event) 149 { 150 list_move(&event->list, &oe->cache); 151 oe->nr_events--; 152 free_dup_event(oe, event->event); 153 } 154 155 int ordered_events__queue(struct ordered_events *oe, union perf_event *event, 156 struct perf_sample *sample, u64 file_offset) 157 { 158 u64 timestamp = sample->time; 159 struct ordered_event *oevent; 160 161 if (!timestamp || timestamp == ~0ULL) 162 return -ETIME; 163 164 if (timestamp < oe->last_flush) { 165 pr_oe_time(timestamp, "out of order event\n"); 166 pr_oe_time(oe->last_flush, "last flush, last_flush_type %d\n", 167 oe->last_flush_type); 168 169 oe->nr_unordered_events++; 170 } 171 172 oevent = ordered_events__new_event(oe, timestamp, event); 173 if (!oevent) { 174 ordered_events__flush(oe, OE_FLUSH__HALF); 175 oevent = ordered_events__new_event(oe, timestamp, event); 176 } 177 178 if (!oevent) 179 return -ENOMEM; 180 181 oevent->file_offset = file_offset; 182 return 0; 183 } 184 185 static int __ordered_events__flush(struct ordered_events *oe) 186 { 187 struct list_head *head = &oe->events; 188 struct ordered_event *tmp, *iter; 189 u64 limit = oe->next_flush; 190 u64 last_ts = oe->last ? oe->last->timestamp : 0ULL; 191 bool show_progress = limit == ULLONG_MAX; 192 struct ui_progress prog; 193 int ret; 194 195 if (!limit) 196 return 0; 197 198 if (show_progress) 199 ui_progress__init(&prog, oe->nr_events, "Processing time ordered events..."); 200 201 list_for_each_entry_safe(iter, tmp, head, list) { 202 if (session_done()) 203 return 0; 204 205 if (iter->timestamp > limit) 206 break; 207 ret = oe->deliver(oe, iter); 208 if (ret) 209 return ret; 210 211 ordered_events__delete(oe, iter); 212 oe->last_flush = iter->timestamp; 213 214 if (show_progress) 215 ui_progress__update(&prog, 1); 216 } 217 218 if (list_empty(head)) 219 oe->last = NULL; 220 else if (last_ts <= limit) 221 oe->last = list_entry(head->prev, struct ordered_event, list); 222 223 if (show_progress) 224 ui_progress__finish(); 225 226 return 0; 227 } 228 229 int ordered_events__flush(struct ordered_events *oe, enum oe_flush how) 230 { 231 static const char * const str[] = { 232 "NONE", 233 "FINAL", 234 "ROUND", 235 "HALF ", 236 }; 237 int err; 238 239 if (oe->nr_events == 0) 240 return 0; 241 242 switch (how) { 243 case OE_FLUSH__FINAL: 244 oe->next_flush = ULLONG_MAX; 245 break; 246 247 case OE_FLUSH__HALF: 248 { 249 struct ordered_event *first, *last; 250 struct list_head *head = &oe->events; 251 252 first = list_entry(head->next, struct ordered_event, list); 253 last = oe->last; 254 255 /* Warn if we are called before any event got allocated. */ 256 if (WARN_ONCE(!last || list_empty(head), "empty queue")) 257 return 0; 258 259 oe->next_flush = first->timestamp; 260 oe->next_flush += (last->timestamp - first->timestamp) / 2; 261 break; 262 } 263 264 case OE_FLUSH__ROUND: 265 case OE_FLUSH__NONE: 266 default: 267 break; 268 }; 269 270 pr_oe_time(oe->next_flush, "next_flush - ordered_events__flush PRE %s, nr_events %u\n", 271 str[how], oe->nr_events); 272 pr_oe_time(oe->max_timestamp, "max_timestamp\n"); 273 274 err = __ordered_events__flush(oe); 275 276 if (!err) { 277 if (how == OE_FLUSH__ROUND) 278 oe->next_flush = oe->max_timestamp; 279 280 oe->last_flush_type = how; 281 } 282 283 pr_oe_time(oe->next_flush, "next_flush - ordered_events__flush POST %s, nr_events %u\n", 284 str[how], oe->nr_events); 285 pr_oe_time(oe->last_flush, "last_flush\n"); 286 287 return err; 288 } 289 290 void ordered_events__init(struct ordered_events *oe, ordered_events__deliver_t deliver) 291 { 292 INIT_LIST_HEAD(&oe->events); 293 INIT_LIST_HEAD(&oe->cache); 294 INIT_LIST_HEAD(&oe->to_free); 295 oe->max_alloc_size = (u64) -1; 296 oe->cur_alloc_size = 0; 297 oe->deliver = deliver; 298 } 299 300 void ordered_events__free(struct ordered_events *oe) 301 { 302 while (!list_empty(&oe->to_free)) { 303 struct ordered_event *event; 304 305 event = list_entry(oe->to_free.next, struct ordered_event, list); 306 list_del(&event->list); 307 free_dup_event(oe, event->event); 308 free(event); 309 } 310 } 311