xref: /openbmc/linux/tools/perf/util/mem-events.c (revision 31d49ba0)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <stddef.h>
3 #include <stdlib.h>
4 #include <string.h>
5 #include <errno.h>
6 #include <sys/types.h>
7 #include <sys/stat.h>
8 #include <unistd.h>
9 #include <api/fs/fs.h>
10 #include <linux/kernel.h>
11 #include "map_symbol.h"
12 #include "mem-events.h"
13 #include "debug.h"
14 #include "symbol.h"
15 #include "pmu.h"
16 #include "pmus.h"
17 
18 unsigned int perf_mem_events__loads_ldlat = 30;
19 
20 #define E(t, n, s) { .tag = t, .name = n, .sysfs_name = s }
21 
22 static struct perf_mem_event perf_mem_events[PERF_MEM_EVENTS__MAX] = {
23 	E("ldlat-loads",	"cpu/mem-loads,ldlat=%u/P",	"cpu/events/mem-loads"),
24 	E("ldlat-stores",	"cpu/mem-stores/P",		"cpu/events/mem-stores"),
25 	E(NULL,			NULL,				NULL),
26 };
27 #undef E
28 
29 static char mem_loads_name[100];
30 static bool mem_loads_name__init;
31 
32 struct perf_mem_event * __weak perf_mem_events__ptr(int i)
33 {
34 	if (i >= PERF_MEM_EVENTS__MAX)
35 		return NULL;
36 
37 	return &perf_mem_events[i];
38 }
39 
40 char * __weak perf_mem_events__name(int i, char *pmu_name  __maybe_unused)
41 {
42 	struct perf_mem_event *e = perf_mem_events__ptr(i);
43 
44 	if (!e)
45 		return NULL;
46 
47 	if (i == PERF_MEM_EVENTS__LOAD) {
48 		if (!mem_loads_name__init) {
49 			mem_loads_name__init = true;
50 			scnprintf(mem_loads_name, sizeof(mem_loads_name),
51 				  e->name, perf_mem_events__loads_ldlat);
52 		}
53 		return mem_loads_name;
54 	}
55 
56 	return (char *)e->name;
57 }
58 
59 __weak bool is_mem_loads_aux_event(struct evsel *leader __maybe_unused)
60 {
61 	return false;
62 }
63 
64 int perf_mem_events__parse(const char *str)
65 {
66 	char *tok, *saveptr = NULL;
67 	bool found = false;
68 	char *buf;
69 	int j;
70 
71 	/* We need buffer that we know we can write to. */
72 	buf = malloc(strlen(str) + 1);
73 	if (!buf)
74 		return -ENOMEM;
75 
76 	strcpy(buf, str);
77 
78 	tok = strtok_r((char *)buf, ",", &saveptr);
79 
80 	while (tok) {
81 		for (j = 0; j < PERF_MEM_EVENTS__MAX; j++) {
82 			struct perf_mem_event *e = perf_mem_events__ptr(j);
83 
84 			if (!e->tag)
85 				continue;
86 
87 			if (strstr(e->tag, tok))
88 				e->record = found = true;
89 		}
90 
91 		tok = strtok_r(NULL, ",", &saveptr);
92 	}
93 
94 	free(buf);
95 
96 	if (found)
97 		return 0;
98 
99 	pr_err("failed: event '%s' not found, use '-e list' to get list of available events\n", str);
100 	return -1;
101 }
102 
103 static bool perf_mem_event__supported(const char *mnt, char *sysfs_name)
104 {
105 	char path[PATH_MAX];
106 	struct stat st;
107 
108 	scnprintf(path, PATH_MAX, "%s/devices/%s", mnt, sysfs_name);
109 	return !stat(path, &st);
110 }
111 
112 int perf_mem_events__init(void)
113 {
114 	const char *mnt = sysfs__mount();
115 	bool found = false;
116 	int j;
117 
118 	if (!mnt)
119 		return -ENOENT;
120 
121 	for (j = 0; j < PERF_MEM_EVENTS__MAX; j++) {
122 		struct perf_mem_event *e = perf_mem_events__ptr(j);
123 		char sysfs_name[100];
124 		struct perf_pmu *pmu = NULL;
125 
126 		/*
127 		 * If the event entry isn't valid, skip initialization
128 		 * and "e->supported" will keep false.
129 		 */
130 		if (!e->tag)
131 			continue;
132 
133 		/*
134 		 * Scan all PMUs not just core ones, since perf mem/c2c on
135 		 * platforms like AMD uses IBS OP PMU which is independent
136 		 * of core PMU.
137 		 */
138 		while ((pmu = perf_pmus__scan(pmu)) != NULL) {
139 			scnprintf(sysfs_name, sizeof(sysfs_name), e->sysfs_name, pmu->name);
140 			e->supported |= perf_mem_event__supported(mnt, sysfs_name);
141 		}
142 
143 		if (e->supported)
144 			found = true;
145 	}
146 
147 	return found ? 0 : -ENOENT;
148 }
149 
150 void perf_mem_events__list(void)
151 {
152 	int j;
153 
154 	for (j = 0; j < PERF_MEM_EVENTS__MAX; j++) {
155 		struct perf_mem_event *e = perf_mem_events__ptr(j);
156 
157 		fprintf(stderr, "%-*s%-*s%s",
158 			e->tag ? 13 : 0,
159 			e->tag ? : "",
160 			e->tag && verbose > 0 ? 25 : 0,
161 			e->tag && verbose > 0 ? perf_mem_events__name(j, NULL) : "",
162 			e->supported ? ": available\n" : "");
163 	}
164 }
165 
166 static void perf_mem_events__print_unsupport_hybrid(struct perf_mem_event *e,
167 						    int idx)
168 {
169 	const char *mnt = sysfs__mount();
170 	char sysfs_name[100];
171 	struct perf_pmu *pmu = NULL;
172 
173 	while ((pmu = perf_pmus__scan(pmu)) != NULL) {
174 		scnprintf(sysfs_name, sizeof(sysfs_name), e->sysfs_name,
175 			  pmu->name);
176 		if (!perf_mem_event__supported(mnt, sysfs_name)) {
177 			pr_err("failed: event '%s' not supported\n",
178 			       perf_mem_events__name(idx, pmu->name));
179 		}
180 	}
181 }
182 
183 int perf_mem_events__record_args(const char **rec_argv, int *argv_nr,
184 				 char **rec_tmp, int *tmp_nr)
185 {
186 	int i = *argv_nr, k = 0;
187 	struct perf_mem_event *e;
188 	struct perf_pmu *pmu;
189 	char *s;
190 
191 	for (int j = 0; j < PERF_MEM_EVENTS__MAX; j++) {
192 		e = perf_mem_events__ptr(j);
193 		if (!e->record)
194 			continue;
195 
196 		if (perf_pmus__num_mem_pmus() == 1) {
197 			if (!e->supported) {
198 				pr_err("failed: event '%s' not supported\n",
199 				       perf_mem_events__name(j, NULL));
200 				return -1;
201 			}
202 
203 			rec_argv[i++] = "-e";
204 			rec_argv[i++] = perf_mem_events__name(j, NULL);
205 		} else {
206 			if (!e->supported) {
207 				perf_mem_events__print_unsupport_hybrid(e, j);
208 				return -1;
209 			}
210 
211 			while ((pmu = perf_pmus__scan(pmu)) != NULL) {
212 				rec_argv[i++] = "-e";
213 				s = perf_mem_events__name(j, pmu->name);
214 				if (s) {
215 					s = strdup(s);
216 					if (!s)
217 						return -1;
218 
219 					rec_argv[i++] = s;
220 					rec_tmp[k++] = s;
221 				}
222 			}
223 		}
224 	}
225 
226 	*argv_nr = i;
227 	*tmp_nr = k;
228 	return 0;
229 }
230 
231 static const char * const tlb_access[] = {
232 	"N/A",
233 	"HIT",
234 	"MISS",
235 	"L1",
236 	"L2",
237 	"Walker",
238 	"Fault",
239 };
240 
241 int perf_mem__tlb_scnprintf(char *out, size_t sz, struct mem_info *mem_info)
242 {
243 	size_t l = 0, i;
244 	u64 m = PERF_MEM_TLB_NA;
245 	u64 hit, miss;
246 
247 	sz -= 1; /* -1 for null termination */
248 	out[0] = '\0';
249 
250 	if (mem_info)
251 		m = mem_info->data_src.mem_dtlb;
252 
253 	hit = m & PERF_MEM_TLB_HIT;
254 	miss = m & PERF_MEM_TLB_MISS;
255 
256 	/* already taken care of */
257 	m &= ~(PERF_MEM_TLB_HIT|PERF_MEM_TLB_MISS);
258 
259 	for (i = 0; m && i < ARRAY_SIZE(tlb_access); i++, m >>= 1) {
260 		if (!(m & 0x1))
261 			continue;
262 		if (l) {
263 			strcat(out, " or ");
264 			l += 4;
265 		}
266 		l += scnprintf(out + l, sz - l, tlb_access[i]);
267 	}
268 	if (*out == '\0')
269 		l += scnprintf(out, sz - l, "N/A");
270 	if (hit)
271 		l += scnprintf(out + l, sz - l, " hit");
272 	if (miss)
273 		l += scnprintf(out + l, sz - l, " miss");
274 
275 	return l;
276 }
277 
278 static const char * const mem_lvl[] = {
279 	"N/A",
280 	"HIT",
281 	"MISS",
282 	"L1",
283 	"LFB/MAB",
284 	"L2",
285 	"L3",
286 	"Local RAM",
287 	"Remote RAM (1 hop)",
288 	"Remote RAM (2 hops)",
289 	"Remote Cache (1 hop)",
290 	"Remote Cache (2 hops)",
291 	"I/O",
292 	"Uncached",
293 };
294 
295 static const char * const mem_lvlnum[] = {
296 	[PERF_MEM_LVLNUM_UNC] = "Uncached",
297 	[PERF_MEM_LVLNUM_CXL] = "CXL",
298 	[PERF_MEM_LVLNUM_IO] = "I/O",
299 	[PERF_MEM_LVLNUM_ANY_CACHE] = "Any cache",
300 	[PERF_MEM_LVLNUM_LFB] = "LFB/MAB",
301 	[PERF_MEM_LVLNUM_RAM] = "RAM",
302 	[PERF_MEM_LVLNUM_PMEM] = "PMEM",
303 	[PERF_MEM_LVLNUM_NA] = "N/A",
304 };
305 
306 static const char * const mem_hops[] = {
307 	"N/A",
308 	/*
309 	 * While printing, 'Remote' will be added to represent
310 	 * 'Remote core, same node' accesses as remote field need
311 	 * to be set with mem_hops field.
312 	 */
313 	"core, same node",
314 	"node, same socket",
315 	"socket, same board",
316 	"board",
317 };
318 
319 static int perf_mem__op_scnprintf(char *out, size_t sz, struct mem_info *mem_info)
320 {
321 	u64 op = PERF_MEM_LOCK_NA;
322 	int l;
323 
324 	if (mem_info)
325 		op = mem_info->data_src.mem_op;
326 
327 	if (op & PERF_MEM_OP_NA)
328 		l = scnprintf(out, sz, "N/A");
329 	else if (op & PERF_MEM_OP_LOAD)
330 		l = scnprintf(out, sz, "LOAD");
331 	else if (op & PERF_MEM_OP_STORE)
332 		l = scnprintf(out, sz, "STORE");
333 	else if (op & PERF_MEM_OP_PFETCH)
334 		l = scnprintf(out, sz, "PFETCH");
335 	else if (op & PERF_MEM_OP_EXEC)
336 		l = scnprintf(out, sz, "EXEC");
337 	else
338 		l = scnprintf(out, sz, "No");
339 
340 	return l;
341 }
342 
343 int perf_mem__lvl_scnprintf(char *out, size_t sz, struct mem_info *mem_info)
344 {
345 	union perf_mem_data_src data_src;
346 	int printed = 0;
347 	size_t l = 0;
348 	size_t i;
349 	int lvl;
350 	char hit_miss[5] = {0};
351 
352 	sz -= 1; /* -1 for null termination */
353 	out[0] = '\0';
354 
355 	if (!mem_info)
356 		goto na;
357 
358 	data_src = mem_info->data_src;
359 
360 	if (data_src.mem_lvl & PERF_MEM_LVL_HIT)
361 		memcpy(hit_miss, "hit", 3);
362 	else if (data_src.mem_lvl & PERF_MEM_LVL_MISS)
363 		memcpy(hit_miss, "miss", 4);
364 
365 	lvl = data_src.mem_lvl_num;
366 	if (lvl && lvl != PERF_MEM_LVLNUM_NA) {
367 		if (data_src.mem_remote) {
368 			strcat(out, "Remote ");
369 			l += 7;
370 		}
371 
372 		if (data_src.mem_hops)
373 			l += scnprintf(out + l, sz - l, "%s ", mem_hops[data_src.mem_hops]);
374 
375 		if (mem_lvlnum[lvl])
376 			l += scnprintf(out + l, sz - l, mem_lvlnum[lvl]);
377 		else
378 			l += scnprintf(out + l, sz - l, "L%d", lvl);
379 
380 		l += scnprintf(out + l, sz - l, " %s", hit_miss);
381 		return l;
382 	}
383 
384 	lvl = data_src.mem_lvl;
385 	if (!lvl)
386 		goto na;
387 
388 	lvl &= ~(PERF_MEM_LVL_NA | PERF_MEM_LVL_HIT | PERF_MEM_LVL_MISS);
389 	if (!lvl)
390 		goto na;
391 
392 	for (i = 0; lvl && i < ARRAY_SIZE(mem_lvl); i++, lvl >>= 1) {
393 		if (!(lvl & 0x1))
394 			continue;
395 		if (printed++) {
396 			strcat(out, " or ");
397 			l += 4;
398 		}
399 		l += scnprintf(out + l, sz - l, mem_lvl[i]);
400 	}
401 
402 	if (printed) {
403 		l += scnprintf(out + l, sz - l, " %s", hit_miss);
404 		return l;
405 	}
406 
407 na:
408 	strcat(out, "N/A");
409 	return 3;
410 }
411 
412 static const char * const snoop_access[] = {
413 	"N/A",
414 	"None",
415 	"Hit",
416 	"Miss",
417 	"HitM",
418 };
419 
420 static const char * const snoopx_access[] = {
421 	"Fwd",
422 	"Peer",
423 };
424 
425 int perf_mem__snp_scnprintf(char *out, size_t sz, struct mem_info *mem_info)
426 {
427 	size_t i, l = 0;
428 	u64 m = PERF_MEM_SNOOP_NA;
429 
430 	sz -= 1; /* -1 for null termination */
431 	out[0] = '\0';
432 
433 	if (mem_info)
434 		m = mem_info->data_src.mem_snoop;
435 
436 	for (i = 0; m && i < ARRAY_SIZE(snoop_access); i++, m >>= 1) {
437 		if (!(m & 0x1))
438 			continue;
439 		if (l) {
440 			strcat(out, " or ");
441 			l += 4;
442 		}
443 		l += scnprintf(out + l, sz - l, snoop_access[i]);
444 	}
445 
446 	m = 0;
447 	if (mem_info)
448 		m = mem_info->data_src.mem_snoopx;
449 
450 	for (i = 0; m && i < ARRAY_SIZE(snoopx_access); i++, m >>= 1) {
451 		if (!(m & 0x1))
452 			continue;
453 
454 		if (l) {
455 			strcat(out, " or ");
456 			l += 4;
457 		}
458 		l += scnprintf(out + l, sz - l, snoopx_access[i]);
459 	}
460 
461 	if (*out == '\0')
462 		l += scnprintf(out, sz - l, "N/A");
463 
464 	return l;
465 }
466 
467 int perf_mem__lck_scnprintf(char *out, size_t sz, struct mem_info *mem_info)
468 {
469 	u64 mask = PERF_MEM_LOCK_NA;
470 	int l;
471 
472 	if (mem_info)
473 		mask = mem_info->data_src.mem_lock;
474 
475 	if (mask & PERF_MEM_LOCK_NA)
476 		l = scnprintf(out, sz, "N/A");
477 	else if (mask & PERF_MEM_LOCK_LOCKED)
478 		l = scnprintf(out, sz, "Yes");
479 	else
480 		l = scnprintf(out, sz, "No");
481 
482 	return l;
483 }
484 
485 int perf_mem__blk_scnprintf(char *out, size_t sz, struct mem_info *mem_info)
486 {
487 	size_t l = 0;
488 	u64 mask = PERF_MEM_BLK_NA;
489 
490 	sz -= 1; /* -1 for null termination */
491 	out[0] = '\0';
492 
493 	if (mem_info)
494 		mask = mem_info->data_src.mem_blk;
495 
496 	if (!mask || (mask & PERF_MEM_BLK_NA)) {
497 		l += scnprintf(out + l, sz - l, " N/A");
498 		return l;
499 	}
500 	if (mask & PERF_MEM_BLK_DATA)
501 		l += scnprintf(out + l, sz - l, " Data");
502 	if (mask & PERF_MEM_BLK_ADDR)
503 		l += scnprintf(out + l, sz - l, " Addr");
504 
505 	return l;
506 }
507 
508 int perf_script__meminfo_scnprintf(char *out, size_t sz, struct mem_info *mem_info)
509 {
510 	int i = 0;
511 
512 	i += scnprintf(out, sz, "|OP ");
513 	i += perf_mem__op_scnprintf(out + i, sz - i, mem_info);
514 	i += scnprintf(out + i, sz - i, "|LVL ");
515 	i += perf_mem__lvl_scnprintf(out + i, sz, mem_info);
516 	i += scnprintf(out + i, sz - i, "|SNP ");
517 	i += perf_mem__snp_scnprintf(out + i, sz - i, mem_info);
518 	i += scnprintf(out + i, sz - i, "|TLB ");
519 	i += perf_mem__tlb_scnprintf(out + i, sz - i, mem_info);
520 	i += scnprintf(out + i, sz - i, "|LCK ");
521 	i += perf_mem__lck_scnprintf(out + i, sz - i, mem_info);
522 	i += scnprintf(out + i, sz - i, "|BLK ");
523 	i += perf_mem__blk_scnprintf(out + i, sz - i, mem_info);
524 
525 	return i;
526 }
527 
528 int c2c_decode_stats(struct c2c_stats *stats, struct mem_info *mi)
529 {
530 	union perf_mem_data_src *data_src = &mi->data_src;
531 	u64 daddr  = mi->daddr.addr;
532 	u64 op     = data_src->mem_op;
533 	u64 lvl    = data_src->mem_lvl;
534 	u64 snoop  = data_src->mem_snoop;
535 	u64 snoopx = data_src->mem_snoopx;
536 	u64 lock   = data_src->mem_lock;
537 	u64 blk    = data_src->mem_blk;
538 	/*
539 	 * Skylake might report unknown remote level via this
540 	 * bit, consider it when evaluating remote HITMs.
541 	 *
542 	 * Incase of power, remote field can also be used to denote cache
543 	 * accesses from the another core of same node. Hence, setting
544 	 * mrem only when HOPS is zero along with set remote field.
545 	 */
546 	bool mrem  = (data_src->mem_remote && !data_src->mem_hops);
547 	int err = 0;
548 
549 #define HITM_INC(__f)		\
550 do {				\
551 	stats->__f++;		\
552 	stats->tot_hitm++;	\
553 } while (0)
554 
555 #define PEER_INC(__f)		\
556 do {				\
557 	stats->__f++;		\
558 	stats->tot_peer++;	\
559 } while (0)
560 
561 #define P(a, b) PERF_MEM_##a##_##b
562 
563 	stats->nr_entries++;
564 
565 	if (lock & P(LOCK, LOCKED)) stats->locks++;
566 
567 	if (blk & P(BLK, DATA)) stats->blk_data++;
568 	if (blk & P(BLK, ADDR)) stats->blk_addr++;
569 
570 	if (op & P(OP, LOAD)) {
571 		/* load */
572 		stats->load++;
573 
574 		if (!daddr) {
575 			stats->ld_noadrs++;
576 			return -1;
577 		}
578 
579 		if (lvl & P(LVL, HIT)) {
580 			if (lvl & P(LVL, UNC)) stats->ld_uncache++;
581 			if (lvl & P(LVL, IO))  stats->ld_io++;
582 			if (lvl & P(LVL, LFB)) stats->ld_fbhit++;
583 			if (lvl & P(LVL, L1 )) stats->ld_l1hit++;
584 			if (lvl & P(LVL, L2)) {
585 				stats->ld_l2hit++;
586 
587 				if (snoopx & P(SNOOPX, PEER))
588 					PEER_INC(lcl_peer);
589 			}
590 			if (lvl & P(LVL, L3 )) {
591 				if (snoop & P(SNOOP, HITM))
592 					HITM_INC(lcl_hitm);
593 				else
594 					stats->ld_llchit++;
595 
596 				if (snoopx & P(SNOOPX, PEER))
597 					PEER_INC(lcl_peer);
598 			}
599 
600 			if (lvl & P(LVL, LOC_RAM)) {
601 				stats->lcl_dram++;
602 				if (snoop & P(SNOOP, HIT))
603 					stats->ld_shared++;
604 				else
605 					stats->ld_excl++;
606 			}
607 
608 			if ((lvl & P(LVL, REM_RAM1)) ||
609 			    (lvl & P(LVL, REM_RAM2)) ||
610 			     mrem) {
611 				stats->rmt_dram++;
612 				if (snoop & P(SNOOP, HIT))
613 					stats->ld_shared++;
614 				else
615 					stats->ld_excl++;
616 			}
617 		}
618 
619 		if ((lvl & P(LVL, REM_CCE1)) ||
620 		    (lvl & P(LVL, REM_CCE2)) ||
621 		     mrem) {
622 			if (snoop & P(SNOOP, HIT)) {
623 				stats->rmt_hit++;
624 			} else if (snoop & P(SNOOP, HITM)) {
625 				HITM_INC(rmt_hitm);
626 			} else if (snoopx & P(SNOOPX, PEER)) {
627 				stats->rmt_hit++;
628 				PEER_INC(rmt_peer);
629 			}
630 		}
631 
632 		if ((lvl & P(LVL, MISS)))
633 			stats->ld_miss++;
634 
635 	} else if (op & P(OP, STORE)) {
636 		/* store */
637 		stats->store++;
638 
639 		if (!daddr) {
640 			stats->st_noadrs++;
641 			return -1;
642 		}
643 
644 		if (lvl & P(LVL, HIT)) {
645 			if (lvl & P(LVL, UNC)) stats->st_uncache++;
646 			if (lvl & P(LVL, L1 )) stats->st_l1hit++;
647 		}
648 		if (lvl & P(LVL, MISS))
649 			if (lvl & P(LVL, L1)) stats->st_l1miss++;
650 		if (lvl & P(LVL, NA))
651 			stats->st_na++;
652 	} else {
653 		/* unparsable data_src? */
654 		stats->noparse++;
655 		return -1;
656 	}
657 
658 	if (!mi->daddr.ms.map || !mi->iaddr.ms.map) {
659 		stats->nomap++;
660 		return -1;
661 	}
662 
663 #undef P
664 #undef HITM_INC
665 	return err;
666 }
667 
668 void c2c_add_stats(struct c2c_stats *stats, struct c2c_stats *add)
669 {
670 	stats->nr_entries	+= add->nr_entries;
671 
672 	stats->locks		+= add->locks;
673 	stats->store		+= add->store;
674 	stats->st_uncache	+= add->st_uncache;
675 	stats->st_noadrs	+= add->st_noadrs;
676 	stats->st_l1hit		+= add->st_l1hit;
677 	stats->st_l1miss	+= add->st_l1miss;
678 	stats->st_na		+= add->st_na;
679 	stats->load		+= add->load;
680 	stats->ld_excl		+= add->ld_excl;
681 	stats->ld_shared	+= add->ld_shared;
682 	stats->ld_uncache	+= add->ld_uncache;
683 	stats->ld_io		+= add->ld_io;
684 	stats->ld_miss		+= add->ld_miss;
685 	stats->ld_noadrs	+= add->ld_noadrs;
686 	stats->ld_fbhit		+= add->ld_fbhit;
687 	stats->ld_l1hit		+= add->ld_l1hit;
688 	stats->ld_l2hit		+= add->ld_l2hit;
689 	stats->ld_llchit	+= add->ld_llchit;
690 	stats->lcl_hitm		+= add->lcl_hitm;
691 	stats->rmt_hitm		+= add->rmt_hitm;
692 	stats->tot_hitm		+= add->tot_hitm;
693 	stats->lcl_peer		+= add->lcl_peer;
694 	stats->rmt_peer		+= add->rmt_peer;
695 	stats->tot_peer		+= add->tot_peer;
696 	stats->rmt_hit		+= add->rmt_hit;
697 	stats->lcl_dram		+= add->lcl_dram;
698 	stats->rmt_dram		+= add->rmt_dram;
699 	stats->blk_data		+= add->blk_data;
700 	stats->blk_addr		+= add->blk_addr;
701 	stats->nomap		+= add->nomap;
702 	stats->noparse		+= add->noparse;
703 }
704