xref: /openbmc/linux/tools/perf/util/mem-events.c (revision 3031993b)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <stddef.h>
3 #include <stdlib.h>
4 #include <string.h>
5 #include <errno.h>
6 #include <sys/types.h>
7 #include <sys/stat.h>
8 #include <unistd.h>
9 #include <api/fs/fs.h>
10 #include <linux/kernel.h>
11 #include "map_symbol.h"
12 #include "mem-events.h"
13 #include "debug.h"
14 #include "symbol.h"
15 #include "pmu.h"
16 #include "pmu-hybrid.h"
17 
18 unsigned int perf_mem_events__loads_ldlat = 30;
19 
20 #define E(t, n, s) { .tag = t, .name = n, .sysfs_name = s }
21 
22 static struct perf_mem_event perf_mem_events[PERF_MEM_EVENTS__MAX] = {
23 	E("ldlat-loads",	"cpu/mem-loads,ldlat=%u/P",	"cpu/events/mem-loads"),
24 	E("ldlat-stores",	"cpu/mem-stores/P",		"cpu/events/mem-stores"),
25 	E(NULL,			NULL,				NULL),
26 };
27 #undef E
28 
29 static char mem_loads_name[100];
30 static bool mem_loads_name__init;
31 
32 struct perf_mem_event * __weak perf_mem_events__ptr(int i)
33 {
34 	if (i >= PERF_MEM_EVENTS__MAX)
35 		return NULL;
36 
37 	return &perf_mem_events[i];
38 }
39 
40 char * __weak perf_mem_events__name(int i, char *pmu_name  __maybe_unused)
41 {
42 	struct perf_mem_event *e = perf_mem_events__ptr(i);
43 
44 	if (!e)
45 		return NULL;
46 
47 	if (i == PERF_MEM_EVENTS__LOAD) {
48 		if (!mem_loads_name__init) {
49 			mem_loads_name__init = true;
50 			scnprintf(mem_loads_name, sizeof(mem_loads_name),
51 				  e->name, perf_mem_events__loads_ldlat);
52 		}
53 		return mem_loads_name;
54 	}
55 
56 	return (char *)e->name;
57 }
58 
59 __weak bool is_mem_loads_aux_event(struct evsel *leader __maybe_unused)
60 {
61 	return false;
62 }
63 
64 int perf_mem_events__parse(const char *str)
65 {
66 	char *tok, *saveptr = NULL;
67 	bool found = false;
68 	char *buf;
69 	int j;
70 
71 	/* We need buffer that we know we can write to. */
72 	buf = malloc(strlen(str) + 1);
73 	if (!buf)
74 		return -ENOMEM;
75 
76 	strcpy(buf, str);
77 
78 	tok = strtok_r((char *)buf, ",", &saveptr);
79 
80 	while (tok) {
81 		for (j = 0; j < PERF_MEM_EVENTS__MAX; j++) {
82 			struct perf_mem_event *e = perf_mem_events__ptr(j);
83 
84 			if (!e->tag)
85 				continue;
86 
87 			if (strstr(e->tag, tok))
88 				e->record = found = true;
89 		}
90 
91 		tok = strtok_r(NULL, ",", &saveptr);
92 	}
93 
94 	free(buf);
95 
96 	if (found)
97 		return 0;
98 
99 	pr_err("failed: event '%s' not found, use '-e list' to get list of available events\n", str);
100 	return -1;
101 }
102 
103 static bool perf_mem_event__supported(const char *mnt, char *sysfs_name)
104 {
105 	char path[PATH_MAX];
106 	struct stat st;
107 
108 	scnprintf(path, PATH_MAX, "%s/devices/%s", mnt, sysfs_name);
109 	return !stat(path, &st);
110 }
111 
112 int perf_mem_events__init(void)
113 {
114 	const char *mnt = sysfs__mount();
115 	bool found = false;
116 	int j;
117 
118 	if (!mnt)
119 		return -ENOENT;
120 
121 	for (j = 0; j < PERF_MEM_EVENTS__MAX; j++) {
122 		struct perf_mem_event *e = perf_mem_events__ptr(j);
123 		struct perf_pmu *pmu;
124 		char sysfs_name[100];
125 
126 		/*
127 		 * If the event entry isn't valid, skip initialization
128 		 * and "e->supported" will keep false.
129 		 */
130 		if (!e->tag)
131 			continue;
132 
133 		if (!perf_pmu__has_hybrid()) {
134 			scnprintf(sysfs_name, sizeof(sysfs_name),
135 				  e->sysfs_name, "cpu");
136 			e->supported = perf_mem_event__supported(mnt, sysfs_name);
137 		} else {
138 			perf_pmu__for_each_hybrid_pmu(pmu) {
139 				scnprintf(sysfs_name, sizeof(sysfs_name),
140 					  e->sysfs_name, pmu->name);
141 				e->supported |= perf_mem_event__supported(mnt, sysfs_name);
142 			}
143 		}
144 
145 		if (e->supported)
146 			found = true;
147 	}
148 
149 	return found ? 0 : -ENOENT;
150 }
151 
152 void perf_mem_events__list(void)
153 {
154 	int j;
155 
156 	for (j = 0; j < PERF_MEM_EVENTS__MAX; j++) {
157 		struct perf_mem_event *e = perf_mem_events__ptr(j);
158 
159 		fprintf(stderr, "%-*s%-*s%s",
160 			e->tag ? 13 : 0,
161 			e->tag ? : "",
162 			e->tag && verbose > 0 ? 25 : 0,
163 			e->tag && verbose > 0 ? perf_mem_events__name(j, NULL) : "",
164 			e->supported ? ": available\n" : "");
165 	}
166 }
167 
168 static void perf_mem_events__print_unsupport_hybrid(struct perf_mem_event *e,
169 						    int idx)
170 {
171 	const char *mnt = sysfs__mount();
172 	char sysfs_name[100];
173 	struct perf_pmu *pmu;
174 
175 	perf_pmu__for_each_hybrid_pmu(pmu) {
176 		scnprintf(sysfs_name, sizeof(sysfs_name), e->sysfs_name,
177 			  pmu->name);
178 		if (!perf_mem_event__supported(mnt, sysfs_name)) {
179 			pr_err("failed: event '%s' not supported\n",
180 			       perf_mem_events__name(idx, pmu->name));
181 		}
182 	}
183 }
184 
185 int perf_mem_events__record_args(const char **rec_argv, int *argv_nr,
186 				 char **rec_tmp, int *tmp_nr)
187 {
188 	int i = *argv_nr, k = 0;
189 	struct perf_mem_event *e;
190 	struct perf_pmu *pmu;
191 	char *s;
192 
193 	for (int j = 0; j < PERF_MEM_EVENTS__MAX; j++) {
194 		e = perf_mem_events__ptr(j);
195 		if (!e->record)
196 			continue;
197 
198 		if (!perf_pmu__has_hybrid()) {
199 			if (!e->supported) {
200 				pr_err("failed: event '%s' not supported\n",
201 				       perf_mem_events__name(j, NULL));
202 				return -1;
203 			}
204 
205 			rec_argv[i++] = "-e";
206 			rec_argv[i++] = perf_mem_events__name(j, NULL);
207 		} else {
208 			if (!e->supported) {
209 				perf_mem_events__print_unsupport_hybrid(e, j);
210 				return -1;
211 			}
212 
213 			perf_pmu__for_each_hybrid_pmu(pmu) {
214 				rec_argv[i++] = "-e";
215 				s = perf_mem_events__name(j, pmu->name);
216 				if (s) {
217 					s = strdup(s);
218 					if (!s)
219 						return -1;
220 
221 					rec_argv[i++] = s;
222 					rec_tmp[k++] = s;
223 				}
224 			}
225 		}
226 	}
227 
228 	*argv_nr = i;
229 	*tmp_nr = k;
230 	return 0;
231 }
232 
233 static const char * const tlb_access[] = {
234 	"N/A",
235 	"HIT",
236 	"MISS",
237 	"L1",
238 	"L2",
239 	"Walker",
240 	"Fault",
241 };
242 
243 int perf_mem__tlb_scnprintf(char *out, size_t sz, struct mem_info *mem_info)
244 {
245 	size_t l = 0, i;
246 	u64 m = PERF_MEM_TLB_NA;
247 	u64 hit, miss;
248 
249 	sz -= 1; /* -1 for null termination */
250 	out[0] = '\0';
251 
252 	if (mem_info)
253 		m = mem_info->data_src.mem_dtlb;
254 
255 	hit = m & PERF_MEM_TLB_HIT;
256 	miss = m & PERF_MEM_TLB_MISS;
257 
258 	/* already taken care of */
259 	m &= ~(PERF_MEM_TLB_HIT|PERF_MEM_TLB_MISS);
260 
261 	for (i = 0; m && i < ARRAY_SIZE(tlb_access); i++, m >>= 1) {
262 		if (!(m & 0x1))
263 			continue;
264 		if (l) {
265 			strcat(out, " or ");
266 			l += 4;
267 		}
268 		l += scnprintf(out + l, sz - l, tlb_access[i]);
269 	}
270 	if (*out == '\0')
271 		l += scnprintf(out, sz - l, "N/A");
272 	if (hit)
273 		l += scnprintf(out + l, sz - l, " hit");
274 	if (miss)
275 		l += scnprintf(out + l, sz - l, " miss");
276 
277 	return l;
278 }
279 
280 static const char * const mem_lvl[] = {
281 	"N/A",
282 	"HIT",
283 	"MISS",
284 	"L1",
285 	"LFB/MAB",
286 	"L2",
287 	"L3",
288 	"Local RAM",
289 	"Remote RAM (1 hop)",
290 	"Remote RAM (2 hops)",
291 	"Remote Cache (1 hop)",
292 	"Remote Cache (2 hops)",
293 	"I/O",
294 	"Uncached",
295 };
296 
297 static const char * const mem_lvlnum[] = {
298 	[PERF_MEM_LVLNUM_CXL] = "CXL",
299 	[PERF_MEM_LVLNUM_IO] = "I/O",
300 	[PERF_MEM_LVLNUM_ANY_CACHE] = "Any cache",
301 	[PERF_MEM_LVLNUM_LFB] = "LFB/MAB",
302 	[PERF_MEM_LVLNUM_RAM] = "RAM",
303 	[PERF_MEM_LVLNUM_PMEM] = "PMEM",
304 	[PERF_MEM_LVLNUM_NA] = "N/A",
305 };
306 
307 static const char * const mem_hops[] = {
308 	"N/A",
309 	/*
310 	 * While printing, 'Remote' will be added to represent
311 	 * 'Remote core, same node' accesses as remote field need
312 	 * to be set with mem_hops field.
313 	 */
314 	"core, same node",
315 	"node, same socket",
316 	"socket, same board",
317 	"board",
318 };
319 
320 static int perf_mem__op_scnprintf(char *out, size_t sz, struct mem_info *mem_info)
321 {
322 	u64 op = PERF_MEM_LOCK_NA;
323 	int l;
324 
325 	if (mem_info)
326 		op = mem_info->data_src.mem_op;
327 
328 	if (op & PERF_MEM_OP_NA)
329 		l = scnprintf(out, sz, "N/A");
330 	else if (op & PERF_MEM_OP_LOAD)
331 		l = scnprintf(out, sz, "LOAD");
332 	else if (op & PERF_MEM_OP_STORE)
333 		l = scnprintf(out, sz, "STORE");
334 	else if (op & PERF_MEM_OP_PFETCH)
335 		l = scnprintf(out, sz, "PFETCH");
336 	else if (op & PERF_MEM_OP_EXEC)
337 		l = scnprintf(out, sz, "EXEC");
338 	else
339 		l = scnprintf(out, sz, "No");
340 
341 	return l;
342 }
343 
344 int perf_mem__lvl_scnprintf(char *out, size_t sz, struct mem_info *mem_info)
345 {
346 	size_t i, l = 0;
347 	u64 m =  PERF_MEM_LVL_NA;
348 	u64 hit, miss;
349 	int printed = 0;
350 
351 	if (mem_info)
352 		m  = mem_info->data_src.mem_lvl;
353 
354 	sz -= 1; /* -1 for null termination */
355 	out[0] = '\0';
356 
357 	hit = m & PERF_MEM_LVL_HIT;
358 	miss = m & PERF_MEM_LVL_MISS;
359 
360 	/* already taken care of */
361 	m &= ~(PERF_MEM_LVL_HIT|PERF_MEM_LVL_MISS);
362 
363 	if (mem_info && mem_info->data_src.mem_remote) {
364 		strcat(out, "Remote ");
365 		l += 7;
366 	}
367 
368 	/*
369 	 * Incase mem_hops field is set, we can skip printing data source via
370 	 * PERF_MEM_LVL namespace.
371 	 */
372 	if (mem_info && mem_info->data_src.mem_hops) {
373 		l += scnprintf(out + l, sz - l, "%s ", mem_hops[mem_info->data_src.mem_hops]);
374 	} else {
375 		for (i = 0; m && i < ARRAY_SIZE(mem_lvl); i++, m >>= 1) {
376 			if (!(m & 0x1))
377 				continue;
378 			if (printed++) {
379 				strcat(out, " or ");
380 				l += 4;
381 			}
382 			l += scnprintf(out + l, sz - l, mem_lvl[i]);
383 		}
384 	}
385 
386 	if (mem_info && mem_info->data_src.mem_lvl_num) {
387 		int lvl = mem_info->data_src.mem_lvl_num;
388 		if (printed++) {
389 			strcat(out, " or ");
390 			l += 4;
391 		}
392 		if (mem_lvlnum[lvl])
393 			l += scnprintf(out + l, sz - l, mem_lvlnum[lvl]);
394 		else
395 			l += scnprintf(out + l, sz - l, "L%d", lvl);
396 	}
397 
398 	if (l == 0)
399 		l += scnprintf(out + l, sz - l, "N/A");
400 	if (hit)
401 		l += scnprintf(out + l, sz - l, " hit");
402 	if (miss)
403 		l += scnprintf(out + l, sz - l, " miss");
404 
405 	return l;
406 }
407 
408 static const char * const snoop_access[] = {
409 	"N/A",
410 	"None",
411 	"Hit",
412 	"Miss",
413 	"HitM",
414 };
415 
416 static const char * const snoopx_access[] = {
417 	"Fwd",
418 	"Peer",
419 };
420 
421 int perf_mem__snp_scnprintf(char *out, size_t sz, struct mem_info *mem_info)
422 {
423 	size_t i, l = 0;
424 	u64 m = PERF_MEM_SNOOP_NA;
425 
426 	sz -= 1; /* -1 for null termination */
427 	out[0] = '\0';
428 
429 	if (mem_info)
430 		m = mem_info->data_src.mem_snoop;
431 
432 	for (i = 0; m && i < ARRAY_SIZE(snoop_access); i++, m >>= 1) {
433 		if (!(m & 0x1))
434 			continue;
435 		if (l) {
436 			strcat(out, " or ");
437 			l += 4;
438 		}
439 		l += scnprintf(out + l, sz - l, snoop_access[i]);
440 	}
441 
442 	m = 0;
443 	if (mem_info)
444 		m = mem_info->data_src.mem_snoopx;
445 
446 	for (i = 0; m && i < ARRAY_SIZE(snoopx_access); i++, m >>= 1) {
447 		if (!(m & 0x1))
448 			continue;
449 
450 		if (l) {
451 			strcat(out, " or ");
452 			l += 4;
453 		}
454 		l += scnprintf(out + l, sz - l, snoopx_access[i]);
455 	}
456 
457 	if (*out == '\0')
458 		l += scnprintf(out, sz - l, "N/A");
459 
460 	return l;
461 }
462 
463 int perf_mem__lck_scnprintf(char *out, size_t sz, struct mem_info *mem_info)
464 {
465 	u64 mask = PERF_MEM_LOCK_NA;
466 	int l;
467 
468 	if (mem_info)
469 		mask = mem_info->data_src.mem_lock;
470 
471 	if (mask & PERF_MEM_LOCK_NA)
472 		l = scnprintf(out, sz, "N/A");
473 	else if (mask & PERF_MEM_LOCK_LOCKED)
474 		l = scnprintf(out, sz, "Yes");
475 	else
476 		l = scnprintf(out, sz, "No");
477 
478 	return l;
479 }
480 
481 int perf_mem__blk_scnprintf(char *out, size_t sz, struct mem_info *mem_info)
482 {
483 	size_t l = 0;
484 	u64 mask = PERF_MEM_BLK_NA;
485 
486 	sz -= 1; /* -1 for null termination */
487 	out[0] = '\0';
488 
489 	if (mem_info)
490 		mask = mem_info->data_src.mem_blk;
491 
492 	if (!mask || (mask & PERF_MEM_BLK_NA)) {
493 		l += scnprintf(out + l, sz - l, " N/A");
494 		return l;
495 	}
496 	if (mask & PERF_MEM_BLK_DATA)
497 		l += scnprintf(out + l, sz - l, " Data");
498 	if (mask & PERF_MEM_BLK_ADDR)
499 		l += scnprintf(out + l, sz - l, " Addr");
500 
501 	return l;
502 }
503 
504 int perf_script__meminfo_scnprintf(char *out, size_t sz, struct mem_info *mem_info)
505 {
506 	int i = 0;
507 
508 	i += scnprintf(out, sz, "|OP ");
509 	i += perf_mem__op_scnprintf(out + i, sz - i, mem_info);
510 	i += scnprintf(out + i, sz - i, "|LVL ");
511 	i += perf_mem__lvl_scnprintf(out + i, sz, mem_info);
512 	i += scnprintf(out + i, sz - i, "|SNP ");
513 	i += perf_mem__snp_scnprintf(out + i, sz - i, mem_info);
514 	i += scnprintf(out + i, sz - i, "|TLB ");
515 	i += perf_mem__tlb_scnprintf(out + i, sz - i, mem_info);
516 	i += scnprintf(out + i, sz - i, "|LCK ");
517 	i += perf_mem__lck_scnprintf(out + i, sz - i, mem_info);
518 	i += scnprintf(out + i, sz - i, "|BLK ");
519 	i += perf_mem__blk_scnprintf(out + i, sz - i, mem_info);
520 
521 	return i;
522 }
523 
524 int c2c_decode_stats(struct c2c_stats *stats, struct mem_info *mi)
525 {
526 	union perf_mem_data_src *data_src = &mi->data_src;
527 	u64 daddr  = mi->daddr.addr;
528 	u64 op     = data_src->mem_op;
529 	u64 lvl    = data_src->mem_lvl;
530 	u64 snoop  = data_src->mem_snoop;
531 	u64 snoopx = data_src->mem_snoopx;
532 	u64 lock   = data_src->mem_lock;
533 	u64 blk    = data_src->mem_blk;
534 	/*
535 	 * Skylake might report unknown remote level via this
536 	 * bit, consider it when evaluating remote HITMs.
537 	 *
538 	 * Incase of power, remote field can also be used to denote cache
539 	 * accesses from the another core of same node. Hence, setting
540 	 * mrem only when HOPS is zero along with set remote field.
541 	 */
542 	bool mrem  = (data_src->mem_remote && !data_src->mem_hops);
543 	int err = 0;
544 
545 #define HITM_INC(__f)		\
546 do {				\
547 	stats->__f++;		\
548 	stats->tot_hitm++;	\
549 } while (0)
550 
551 #define PEER_INC(__f)		\
552 do {				\
553 	stats->__f++;		\
554 	stats->tot_peer++;	\
555 } while (0)
556 
557 #define P(a, b) PERF_MEM_##a##_##b
558 
559 	stats->nr_entries++;
560 
561 	if (lock & P(LOCK, LOCKED)) stats->locks++;
562 
563 	if (blk & P(BLK, DATA)) stats->blk_data++;
564 	if (blk & P(BLK, ADDR)) stats->blk_addr++;
565 
566 	if (op & P(OP, LOAD)) {
567 		/* load */
568 		stats->load++;
569 
570 		if (!daddr) {
571 			stats->ld_noadrs++;
572 			return -1;
573 		}
574 
575 		if (lvl & P(LVL, HIT)) {
576 			if (lvl & P(LVL, UNC)) stats->ld_uncache++;
577 			if (lvl & P(LVL, IO))  stats->ld_io++;
578 			if (lvl & P(LVL, LFB)) stats->ld_fbhit++;
579 			if (lvl & P(LVL, L1 )) stats->ld_l1hit++;
580 			if (lvl & P(LVL, L2)) {
581 				stats->ld_l2hit++;
582 
583 				if (snoopx & P(SNOOPX, PEER))
584 					PEER_INC(lcl_peer);
585 			}
586 			if (lvl & P(LVL, L3 )) {
587 				if (snoop & P(SNOOP, HITM))
588 					HITM_INC(lcl_hitm);
589 				else
590 					stats->ld_llchit++;
591 
592 				if (snoopx & P(SNOOPX, PEER))
593 					PEER_INC(lcl_peer);
594 			}
595 
596 			if (lvl & P(LVL, LOC_RAM)) {
597 				stats->lcl_dram++;
598 				if (snoop & P(SNOOP, HIT))
599 					stats->ld_shared++;
600 				else
601 					stats->ld_excl++;
602 			}
603 
604 			if ((lvl & P(LVL, REM_RAM1)) ||
605 			    (lvl & P(LVL, REM_RAM2)) ||
606 			     mrem) {
607 				stats->rmt_dram++;
608 				if (snoop & P(SNOOP, HIT))
609 					stats->ld_shared++;
610 				else
611 					stats->ld_excl++;
612 			}
613 		}
614 
615 		if ((lvl & P(LVL, REM_CCE1)) ||
616 		    (lvl & P(LVL, REM_CCE2)) ||
617 		     mrem) {
618 			if (snoop & P(SNOOP, HIT)) {
619 				stats->rmt_hit++;
620 			} else if (snoop & P(SNOOP, HITM)) {
621 				HITM_INC(rmt_hitm);
622 			} else if (snoopx & P(SNOOPX, PEER)) {
623 				stats->rmt_hit++;
624 				PEER_INC(rmt_peer);
625 			}
626 		}
627 
628 		if ((lvl & P(LVL, MISS)))
629 			stats->ld_miss++;
630 
631 	} else if (op & P(OP, STORE)) {
632 		/* store */
633 		stats->store++;
634 
635 		if (!daddr) {
636 			stats->st_noadrs++;
637 			return -1;
638 		}
639 
640 		if (lvl & P(LVL, HIT)) {
641 			if (lvl & P(LVL, UNC)) stats->st_uncache++;
642 			if (lvl & P(LVL, L1 )) stats->st_l1hit++;
643 		}
644 		if (lvl & P(LVL, MISS))
645 			if (lvl & P(LVL, L1)) stats->st_l1miss++;
646 		if (lvl & P(LVL, NA))
647 			stats->st_na++;
648 	} else {
649 		/* unparsable data_src? */
650 		stats->noparse++;
651 		return -1;
652 	}
653 
654 	if (!mi->daddr.ms.map || !mi->iaddr.ms.map) {
655 		stats->nomap++;
656 		return -1;
657 	}
658 
659 #undef P
660 #undef HITM_INC
661 	return err;
662 }
663 
664 void c2c_add_stats(struct c2c_stats *stats, struct c2c_stats *add)
665 {
666 	stats->nr_entries	+= add->nr_entries;
667 
668 	stats->locks		+= add->locks;
669 	stats->store		+= add->store;
670 	stats->st_uncache	+= add->st_uncache;
671 	stats->st_noadrs	+= add->st_noadrs;
672 	stats->st_l1hit		+= add->st_l1hit;
673 	stats->st_l1miss	+= add->st_l1miss;
674 	stats->st_na		+= add->st_na;
675 	stats->load		+= add->load;
676 	stats->ld_excl		+= add->ld_excl;
677 	stats->ld_shared	+= add->ld_shared;
678 	stats->ld_uncache	+= add->ld_uncache;
679 	stats->ld_io		+= add->ld_io;
680 	stats->ld_miss		+= add->ld_miss;
681 	stats->ld_noadrs	+= add->ld_noadrs;
682 	stats->ld_fbhit		+= add->ld_fbhit;
683 	stats->ld_l1hit		+= add->ld_l1hit;
684 	stats->ld_l2hit		+= add->ld_l2hit;
685 	stats->ld_llchit	+= add->ld_llchit;
686 	stats->lcl_hitm		+= add->lcl_hitm;
687 	stats->rmt_hitm		+= add->rmt_hitm;
688 	stats->tot_hitm		+= add->tot_hitm;
689 	stats->lcl_peer		+= add->lcl_peer;
690 	stats->rmt_peer		+= add->rmt_peer;
691 	stats->tot_peer		+= add->tot_peer;
692 	stats->rmt_hit		+= add->rmt_hit;
693 	stats->lcl_dram		+= add->lcl_dram;
694 	stats->rmt_dram		+= add->rmt_dram;
695 	stats->blk_data		+= add->blk_data;
696 	stats->blk_addr		+= add->blk_addr;
697 	stats->nomap		+= add->nomap;
698 	stats->noparse		+= add->noparse;
699 }
700