xref: /openbmc/linux/tools/perf/util/machine.c (revision fca3aa16)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include "callchain.h"
7 #include "debug.h"
8 #include "event.h"
9 #include "evsel.h"
10 #include "hist.h"
11 #include "machine.h"
12 #include "map.h"
13 #include "sort.h"
14 #include "strlist.h"
15 #include "thread.h"
16 #include "vdso.h"
17 #include <stdbool.h>
18 #include <sys/types.h>
19 #include <sys/stat.h>
20 #include <unistd.h>
21 #include "unwind.h"
22 #include "linux/hash.h"
23 #include "asm/bug.h"
24 
25 #include "sane_ctype.h"
26 #include <symbol/kallsyms.h>
27 
28 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
29 
30 static void dsos__init(struct dsos *dsos)
31 {
32 	INIT_LIST_HEAD(&dsos->head);
33 	dsos->root = RB_ROOT;
34 	init_rwsem(&dsos->lock);
35 }
36 
37 static void machine__threads_init(struct machine *machine)
38 {
39 	int i;
40 
41 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
42 		struct threads *threads = &machine->threads[i];
43 		threads->entries = RB_ROOT;
44 		init_rwsem(&threads->lock);
45 		threads->nr = 0;
46 		INIT_LIST_HEAD(&threads->dead);
47 		threads->last_match = NULL;
48 	}
49 }
50 
51 static int machine__set_mmap_name(struct machine *machine)
52 {
53 	if (machine__is_host(machine))
54 		machine->mmap_name = strdup("[kernel.kallsyms]");
55 	else if (machine__is_default_guest(machine))
56 		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
57 	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
58 			  machine->pid) < 0)
59 		machine->mmap_name = NULL;
60 
61 	return machine->mmap_name ? 0 : -ENOMEM;
62 }
63 
64 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
65 {
66 	int err = -ENOMEM;
67 
68 	memset(machine, 0, sizeof(*machine));
69 	map_groups__init(&machine->kmaps, machine);
70 	RB_CLEAR_NODE(&machine->rb_node);
71 	dsos__init(&machine->dsos);
72 
73 	machine__threads_init(machine);
74 
75 	machine->vdso_info = NULL;
76 	machine->env = NULL;
77 
78 	machine->pid = pid;
79 
80 	machine->id_hdr_size = 0;
81 	machine->kptr_restrict_warned = false;
82 	machine->comm_exec = false;
83 	machine->kernel_start = 0;
84 
85 	memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps));
86 
87 	machine->root_dir = strdup(root_dir);
88 	if (machine->root_dir == NULL)
89 		return -ENOMEM;
90 
91 	if (machine__set_mmap_name(machine))
92 		goto out;
93 
94 	if (pid != HOST_KERNEL_ID) {
95 		struct thread *thread = machine__findnew_thread(machine, -1,
96 								pid);
97 		char comm[64];
98 
99 		if (thread == NULL)
100 			goto out;
101 
102 		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
103 		thread__set_comm(thread, comm, 0);
104 		thread__put(thread);
105 	}
106 
107 	machine->current_tid = NULL;
108 	err = 0;
109 
110 out:
111 	if (err) {
112 		zfree(&machine->root_dir);
113 		zfree(&machine->mmap_name);
114 	}
115 	return 0;
116 }
117 
118 struct machine *machine__new_host(void)
119 {
120 	struct machine *machine = malloc(sizeof(*machine));
121 
122 	if (machine != NULL) {
123 		machine__init(machine, "", HOST_KERNEL_ID);
124 
125 		if (machine__create_kernel_maps(machine) < 0)
126 			goto out_delete;
127 	}
128 
129 	return machine;
130 out_delete:
131 	free(machine);
132 	return NULL;
133 }
134 
135 struct machine *machine__new_kallsyms(void)
136 {
137 	struct machine *machine = machine__new_host();
138 	/*
139 	 * FIXME:
140 	 * 1) MAP__FUNCTION will go away when we stop loading separate maps for
141 	 *    functions and data objects.
142 	 * 2) We should switch to machine__load_kallsyms(), i.e. not explicitely
143 	 *    ask for not using the kcore parsing code, once this one is fixed
144 	 *    to create a map per module.
145 	 */
146 	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms", MAP__FUNCTION) <= 0) {
147 		machine__delete(machine);
148 		machine = NULL;
149 	}
150 
151 	return machine;
152 }
153 
154 static void dsos__purge(struct dsos *dsos)
155 {
156 	struct dso *pos, *n;
157 
158 	down_write(&dsos->lock);
159 
160 	list_for_each_entry_safe(pos, n, &dsos->head, node) {
161 		RB_CLEAR_NODE(&pos->rb_node);
162 		pos->root = NULL;
163 		list_del_init(&pos->node);
164 		dso__put(pos);
165 	}
166 
167 	up_write(&dsos->lock);
168 }
169 
170 static void dsos__exit(struct dsos *dsos)
171 {
172 	dsos__purge(dsos);
173 	exit_rwsem(&dsos->lock);
174 }
175 
176 void machine__delete_threads(struct machine *machine)
177 {
178 	struct rb_node *nd;
179 	int i;
180 
181 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
182 		struct threads *threads = &machine->threads[i];
183 		down_write(&threads->lock);
184 		nd = rb_first(&threads->entries);
185 		while (nd) {
186 			struct thread *t = rb_entry(nd, struct thread, rb_node);
187 
188 			nd = rb_next(nd);
189 			__machine__remove_thread(machine, t, false);
190 		}
191 		up_write(&threads->lock);
192 	}
193 }
194 
195 void machine__exit(struct machine *machine)
196 {
197 	int i;
198 
199 	if (machine == NULL)
200 		return;
201 
202 	machine__destroy_kernel_maps(machine);
203 	map_groups__exit(&machine->kmaps);
204 	dsos__exit(&machine->dsos);
205 	machine__exit_vdso(machine);
206 	zfree(&machine->root_dir);
207 	zfree(&machine->mmap_name);
208 	zfree(&machine->current_tid);
209 
210 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
211 		struct threads *threads = &machine->threads[i];
212 		exit_rwsem(&threads->lock);
213 	}
214 }
215 
216 void machine__delete(struct machine *machine)
217 {
218 	if (machine) {
219 		machine__exit(machine);
220 		free(machine);
221 	}
222 }
223 
224 void machines__init(struct machines *machines)
225 {
226 	machine__init(&machines->host, "", HOST_KERNEL_ID);
227 	machines->guests = RB_ROOT;
228 }
229 
230 void machines__exit(struct machines *machines)
231 {
232 	machine__exit(&machines->host);
233 	/* XXX exit guest */
234 }
235 
236 struct machine *machines__add(struct machines *machines, pid_t pid,
237 			      const char *root_dir)
238 {
239 	struct rb_node **p = &machines->guests.rb_node;
240 	struct rb_node *parent = NULL;
241 	struct machine *pos, *machine = malloc(sizeof(*machine));
242 
243 	if (machine == NULL)
244 		return NULL;
245 
246 	if (machine__init(machine, root_dir, pid) != 0) {
247 		free(machine);
248 		return NULL;
249 	}
250 
251 	while (*p != NULL) {
252 		parent = *p;
253 		pos = rb_entry(parent, struct machine, rb_node);
254 		if (pid < pos->pid)
255 			p = &(*p)->rb_left;
256 		else
257 			p = &(*p)->rb_right;
258 	}
259 
260 	rb_link_node(&machine->rb_node, parent, p);
261 	rb_insert_color(&machine->rb_node, &machines->guests);
262 
263 	return machine;
264 }
265 
266 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
267 {
268 	struct rb_node *nd;
269 
270 	machines->host.comm_exec = comm_exec;
271 
272 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
273 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
274 
275 		machine->comm_exec = comm_exec;
276 	}
277 }
278 
279 struct machine *machines__find(struct machines *machines, pid_t pid)
280 {
281 	struct rb_node **p = &machines->guests.rb_node;
282 	struct rb_node *parent = NULL;
283 	struct machine *machine;
284 	struct machine *default_machine = NULL;
285 
286 	if (pid == HOST_KERNEL_ID)
287 		return &machines->host;
288 
289 	while (*p != NULL) {
290 		parent = *p;
291 		machine = rb_entry(parent, struct machine, rb_node);
292 		if (pid < machine->pid)
293 			p = &(*p)->rb_left;
294 		else if (pid > machine->pid)
295 			p = &(*p)->rb_right;
296 		else
297 			return machine;
298 		if (!machine->pid)
299 			default_machine = machine;
300 	}
301 
302 	return default_machine;
303 }
304 
305 struct machine *machines__findnew(struct machines *machines, pid_t pid)
306 {
307 	char path[PATH_MAX];
308 	const char *root_dir = "";
309 	struct machine *machine = machines__find(machines, pid);
310 
311 	if (machine && (machine->pid == pid))
312 		goto out;
313 
314 	if ((pid != HOST_KERNEL_ID) &&
315 	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
316 	    (symbol_conf.guestmount)) {
317 		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
318 		if (access(path, R_OK)) {
319 			static struct strlist *seen;
320 
321 			if (!seen)
322 				seen = strlist__new(NULL, NULL);
323 
324 			if (!strlist__has_entry(seen, path)) {
325 				pr_err("Can't access file %s\n", path);
326 				strlist__add(seen, path);
327 			}
328 			machine = NULL;
329 			goto out;
330 		}
331 		root_dir = path;
332 	}
333 
334 	machine = machines__add(machines, pid, root_dir);
335 out:
336 	return machine;
337 }
338 
339 void machines__process_guests(struct machines *machines,
340 			      machine__process_t process, void *data)
341 {
342 	struct rb_node *nd;
343 
344 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
345 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
346 		process(pos, data);
347 	}
348 }
349 
350 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
351 {
352 	struct rb_node *node;
353 	struct machine *machine;
354 
355 	machines->host.id_hdr_size = id_hdr_size;
356 
357 	for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
358 		machine = rb_entry(node, struct machine, rb_node);
359 		machine->id_hdr_size = id_hdr_size;
360 	}
361 
362 	return;
363 }
364 
365 static void machine__update_thread_pid(struct machine *machine,
366 				       struct thread *th, pid_t pid)
367 {
368 	struct thread *leader;
369 
370 	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
371 		return;
372 
373 	th->pid_ = pid;
374 
375 	if (th->pid_ == th->tid)
376 		return;
377 
378 	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
379 	if (!leader)
380 		goto out_err;
381 
382 	if (!leader->mg)
383 		leader->mg = map_groups__new(machine);
384 
385 	if (!leader->mg)
386 		goto out_err;
387 
388 	if (th->mg == leader->mg)
389 		return;
390 
391 	if (th->mg) {
392 		/*
393 		 * Maps are created from MMAP events which provide the pid and
394 		 * tid.  Consequently there never should be any maps on a thread
395 		 * with an unknown pid.  Just print an error if there are.
396 		 */
397 		if (!map_groups__empty(th->mg))
398 			pr_err("Discarding thread maps for %d:%d\n",
399 			       th->pid_, th->tid);
400 		map_groups__put(th->mg);
401 	}
402 
403 	th->mg = map_groups__get(leader->mg);
404 out_put:
405 	thread__put(leader);
406 	return;
407 out_err:
408 	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
409 	goto out_put;
410 }
411 
412 /*
413  * Caller must eventually drop thread->refcnt returned with a successful
414  * lookup/new thread inserted.
415  */
416 static struct thread *____machine__findnew_thread(struct machine *machine,
417 						  struct threads *threads,
418 						  pid_t pid, pid_t tid,
419 						  bool create)
420 {
421 	struct rb_node **p = &threads->entries.rb_node;
422 	struct rb_node *parent = NULL;
423 	struct thread *th;
424 
425 	/*
426 	 * Front-end cache - TID lookups come in blocks,
427 	 * so most of the time we dont have to look up
428 	 * the full rbtree:
429 	 */
430 	th = threads->last_match;
431 	if (th != NULL) {
432 		if (th->tid == tid) {
433 			machine__update_thread_pid(machine, th, pid);
434 			return thread__get(th);
435 		}
436 
437 		threads->last_match = NULL;
438 	}
439 
440 	while (*p != NULL) {
441 		parent = *p;
442 		th = rb_entry(parent, struct thread, rb_node);
443 
444 		if (th->tid == tid) {
445 			threads->last_match = th;
446 			machine__update_thread_pid(machine, th, pid);
447 			return thread__get(th);
448 		}
449 
450 		if (tid < th->tid)
451 			p = &(*p)->rb_left;
452 		else
453 			p = &(*p)->rb_right;
454 	}
455 
456 	if (!create)
457 		return NULL;
458 
459 	th = thread__new(pid, tid);
460 	if (th != NULL) {
461 		rb_link_node(&th->rb_node, parent, p);
462 		rb_insert_color(&th->rb_node, &threads->entries);
463 
464 		/*
465 		 * We have to initialize map_groups separately
466 		 * after rb tree is updated.
467 		 *
468 		 * The reason is that we call machine__findnew_thread
469 		 * within thread__init_map_groups to find the thread
470 		 * leader and that would screwed the rb tree.
471 		 */
472 		if (thread__init_map_groups(th, machine)) {
473 			rb_erase_init(&th->rb_node, &threads->entries);
474 			RB_CLEAR_NODE(&th->rb_node);
475 			thread__put(th);
476 			return NULL;
477 		}
478 		/*
479 		 * It is now in the rbtree, get a ref
480 		 */
481 		thread__get(th);
482 		threads->last_match = th;
483 		++threads->nr;
484 	}
485 
486 	return th;
487 }
488 
489 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
490 {
491 	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
492 }
493 
494 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
495 				       pid_t tid)
496 {
497 	struct threads *threads = machine__threads(machine, tid);
498 	struct thread *th;
499 
500 	down_write(&threads->lock);
501 	th = __machine__findnew_thread(machine, pid, tid);
502 	up_write(&threads->lock);
503 	return th;
504 }
505 
506 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
507 				    pid_t tid)
508 {
509 	struct threads *threads = machine__threads(machine, tid);
510 	struct thread *th;
511 
512 	down_read(&threads->lock);
513 	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
514 	up_read(&threads->lock);
515 	return th;
516 }
517 
518 struct comm *machine__thread_exec_comm(struct machine *machine,
519 				       struct thread *thread)
520 {
521 	if (machine->comm_exec)
522 		return thread__exec_comm(thread);
523 	else
524 		return thread__comm(thread);
525 }
526 
527 int machine__process_comm_event(struct machine *machine, union perf_event *event,
528 				struct perf_sample *sample)
529 {
530 	struct thread *thread = machine__findnew_thread(machine,
531 							event->comm.pid,
532 							event->comm.tid);
533 	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
534 	int err = 0;
535 
536 	if (exec)
537 		machine->comm_exec = true;
538 
539 	if (dump_trace)
540 		perf_event__fprintf_comm(event, stdout);
541 
542 	if (thread == NULL ||
543 	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
544 		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
545 		err = -1;
546 	}
547 
548 	thread__put(thread);
549 
550 	return err;
551 }
552 
553 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
554 				      union perf_event *event,
555 				      struct perf_sample *sample __maybe_unused)
556 {
557 	struct thread *thread = machine__findnew_thread(machine,
558 							event->namespaces.pid,
559 							event->namespaces.tid);
560 	int err = 0;
561 
562 	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
563 		  "\nWARNING: kernel seems to support more namespaces than perf"
564 		  " tool.\nTry updating the perf tool..\n\n");
565 
566 	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
567 		  "\nWARNING: perf tool seems to support more namespaces than"
568 		  " the kernel.\nTry updating the kernel..\n\n");
569 
570 	if (dump_trace)
571 		perf_event__fprintf_namespaces(event, stdout);
572 
573 	if (thread == NULL ||
574 	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
575 		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
576 		err = -1;
577 	}
578 
579 	thread__put(thread);
580 
581 	return err;
582 }
583 
584 int machine__process_lost_event(struct machine *machine __maybe_unused,
585 				union perf_event *event, struct perf_sample *sample __maybe_unused)
586 {
587 	dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
588 		    event->lost.id, event->lost.lost);
589 	return 0;
590 }
591 
592 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
593 					union perf_event *event, struct perf_sample *sample)
594 {
595 	dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
596 		    sample->id, event->lost_samples.lost);
597 	return 0;
598 }
599 
600 static struct dso *machine__findnew_module_dso(struct machine *machine,
601 					       struct kmod_path *m,
602 					       const char *filename)
603 {
604 	struct dso *dso;
605 
606 	down_write(&machine->dsos.lock);
607 
608 	dso = __dsos__find(&machine->dsos, m->name, true);
609 	if (!dso) {
610 		dso = __dsos__addnew(&machine->dsos, m->name);
611 		if (dso == NULL)
612 			goto out_unlock;
613 
614 		dso__set_module_info(dso, m, machine);
615 		dso__set_long_name(dso, strdup(filename), true);
616 	}
617 
618 	dso__get(dso);
619 out_unlock:
620 	up_write(&machine->dsos.lock);
621 	return dso;
622 }
623 
624 int machine__process_aux_event(struct machine *machine __maybe_unused,
625 			       union perf_event *event)
626 {
627 	if (dump_trace)
628 		perf_event__fprintf_aux(event, stdout);
629 	return 0;
630 }
631 
632 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
633 					union perf_event *event)
634 {
635 	if (dump_trace)
636 		perf_event__fprintf_itrace_start(event, stdout);
637 	return 0;
638 }
639 
640 int machine__process_switch_event(struct machine *machine __maybe_unused,
641 				  union perf_event *event)
642 {
643 	if (dump_trace)
644 		perf_event__fprintf_switch(event, stdout);
645 	return 0;
646 }
647 
648 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
649 {
650 	const char *dup_filename;
651 
652 	if (!filename || !dso || !dso->long_name)
653 		return;
654 	if (dso->long_name[0] != '[')
655 		return;
656 	if (!strchr(filename, '/'))
657 		return;
658 
659 	dup_filename = strdup(filename);
660 	if (!dup_filename)
661 		return;
662 
663 	dso__set_long_name(dso, dup_filename, true);
664 }
665 
666 struct map *machine__findnew_module_map(struct machine *machine, u64 start,
667 					const char *filename)
668 {
669 	struct map *map = NULL;
670 	struct dso *dso = NULL;
671 	struct kmod_path m;
672 
673 	if (kmod_path__parse_name(&m, filename))
674 		return NULL;
675 
676 	map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
677 				       m.name);
678 	if (map) {
679 		/*
680 		 * If the map's dso is an offline module, give dso__load()
681 		 * a chance to find the file path of that module by fixing
682 		 * long_name.
683 		 */
684 		dso__adjust_kmod_long_name(map->dso, filename);
685 		goto out;
686 	}
687 
688 	dso = machine__findnew_module_dso(machine, &m, filename);
689 	if (dso == NULL)
690 		goto out;
691 
692 	map = map__new2(start, dso, MAP__FUNCTION);
693 	if (map == NULL)
694 		goto out;
695 
696 	map_groups__insert(&machine->kmaps, map);
697 
698 	/* Put the map here because map_groups__insert alread got it */
699 	map__put(map);
700 out:
701 	/* put the dso here, corresponding to  machine__findnew_module_dso */
702 	dso__put(dso);
703 	free(m.name);
704 	return map;
705 }
706 
707 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
708 {
709 	struct rb_node *nd;
710 	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
711 
712 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
713 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
714 		ret += __dsos__fprintf(&pos->dsos.head, fp);
715 	}
716 
717 	return ret;
718 }
719 
720 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
721 				     bool (skip)(struct dso *dso, int parm), int parm)
722 {
723 	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
724 }
725 
726 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
727 				     bool (skip)(struct dso *dso, int parm), int parm)
728 {
729 	struct rb_node *nd;
730 	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
731 
732 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
733 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
734 		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
735 	}
736 	return ret;
737 }
738 
739 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
740 {
741 	int i;
742 	size_t printed = 0;
743 	struct dso *kdso = machine__kernel_map(machine)->dso;
744 
745 	if (kdso->has_build_id) {
746 		char filename[PATH_MAX];
747 		if (dso__build_id_filename(kdso, filename, sizeof(filename),
748 					   false))
749 			printed += fprintf(fp, "[0] %s\n", filename);
750 	}
751 
752 	for (i = 0; i < vmlinux_path__nr_entries; ++i)
753 		printed += fprintf(fp, "[%d] %s\n",
754 				   i + kdso->has_build_id, vmlinux_path[i]);
755 
756 	return printed;
757 }
758 
759 size_t machine__fprintf(struct machine *machine, FILE *fp)
760 {
761 	struct rb_node *nd;
762 	size_t ret;
763 	int i;
764 
765 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
766 		struct threads *threads = &machine->threads[i];
767 
768 		down_read(&threads->lock);
769 
770 		ret = fprintf(fp, "Threads: %u\n", threads->nr);
771 
772 		for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
773 			struct thread *pos = rb_entry(nd, struct thread, rb_node);
774 
775 			ret += thread__fprintf(pos, fp);
776 		}
777 
778 		up_read(&threads->lock);
779 	}
780 	return ret;
781 }
782 
783 static struct dso *machine__get_kernel(struct machine *machine)
784 {
785 	const char *vmlinux_name = machine->mmap_name;
786 	struct dso *kernel;
787 
788 	if (machine__is_host(machine)) {
789 		if (symbol_conf.vmlinux_name)
790 			vmlinux_name = symbol_conf.vmlinux_name;
791 
792 		kernel = machine__findnew_kernel(machine, vmlinux_name,
793 						 "[kernel]", DSO_TYPE_KERNEL);
794 	} else {
795 		if (symbol_conf.default_guest_vmlinux_name)
796 			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
797 
798 		kernel = machine__findnew_kernel(machine, vmlinux_name,
799 						 "[guest.kernel]",
800 						 DSO_TYPE_GUEST_KERNEL);
801 	}
802 
803 	if (kernel != NULL && (!kernel->has_build_id))
804 		dso__read_running_kernel_build_id(kernel, machine);
805 
806 	return kernel;
807 }
808 
809 struct process_args {
810 	u64 start;
811 };
812 
813 static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
814 					   size_t bufsz)
815 {
816 	if (machine__is_default_guest(machine))
817 		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
818 	else
819 		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
820 }
821 
822 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
823 
824 /* Figure out the start address of kernel map from /proc/kallsyms.
825  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
826  * symbol_name if it's not that important.
827  */
828 static int machine__get_running_kernel_start(struct machine *machine,
829 					     const char **symbol_name, u64 *start)
830 {
831 	char filename[PATH_MAX];
832 	int i, err = -1;
833 	const char *name;
834 	u64 addr = 0;
835 
836 	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
837 
838 	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
839 		return 0;
840 
841 	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
842 		err = kallsyms__get_function_start(filename, name, &addr);
843 		if (!err)
844 			break;
845 	}
846 
847 	if (err)
848 		return -1;
849 
850 	if (symbol_name)
851 		*symbol_name = name;
852 
853 	*start = addr;
854 	return 0;
855 }
856 
857 static int
858 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
859 {
860 	int type;
861 
862 	/* In case of renewal the kernel map, destroy previous one */
863 	machine__destroy_kernel_maps(machine);
864 
865 	for (type = 0; type < MAP__NR_TYPES; ++type) {
866 		struct kmap *kmap;
867 		struct map *map;
868 
869 		machine->vmlinux_maps[type] = map__new2(0, kernel, type);
870 		if (machine->vmlinux_maps[type] == NULL)
871 			return -1;
872 
873 		machine->vmlinux_maps[type]->map_ip =
874 			machine->vmlinux_maps[type]->unmap_ip =
875 				identity__map_ip;
876 		map = __machine__kernel_map(machine, type);
877 		kmap = map__kmap(map);
878 		if (!kmap)
879 			return -1;
880 
881 		kmap->kmaps = &machine->kmaps;
882 		map_groups__insert(&machine->kmaps, map);
883 	}
884 
885 	return 0;
886 }
887 
888 void machine__destroy_kernel_maps(struct machine *machine)
889 {
890 	int type;
891 
892 	for (type = 0; type < MAP__NR_TYPES; ++type) {
893 		struct kmap *kmap;
894 		struct map *map = __machine__kernel_map(machine, type);
895 
896 		if (map == NULL)
897 			continue;
898 
899 		kmap = map__kmap(map);
900 		map_groups__remove(&machine->kmaps, map);
901 		if (kmap && kmap->ref_reloc_sym) {
902 			/*
903 			 * ref_reloc_sym is shared among all maps, so free just
904 			 * on one of them.
905 			 */
906 			if (type == MAP__FUNCTION) {
907 				zfree((char **)&kmap->ref_reloc_sym->name);
908 				zfree(&kmap->ref_reloc_sym);
909 			} else
910 				kmap->ref_reloc_sym = NULL;
911 		}
912 
913 		map__put(machine->vmlinux_maps[type]);
914 		machine->vmlinux_maps[type] = NULL;
915 	}
916 }
917 
918 int machines__create_guest_kernel_maps(struct machines *machines)
919 {
920 	int ret = 0;
921 	struct dirent **namelist = NULL;
922 	int i, items = 0;
923 	char path[PATH_MAX];
924 	pid_t pid;
925 	char *endp;
926 
927 	if (symbol_conf.default_guest_vmlinux_name ||
928 	    symbol_conf.default_guest_modules ||
929 	    symbol_conf.default_guest_kallsyms) {
930 		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
931 	}
932 
933 	if (symbol_conf.guestmount) {
934 		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
935 		if (items <= 0)
936 			return -ENOENT;
937 		for (i = 0; i < items; i++) {
938 			if (!isdigit(namelist[i]->d_name[0])) {
939 				/* Filter out . and .. */
940 				continue;
941 			}
942 			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
943 			if ((*endp != '\0') ||
944 			    (endp == namelist[i]->d_name) ||
945 			    (errno == ERANGE)) {
946 				pr_debug("invalid directory (%s). Skipping.\n",
947 					 namelist[i]->d_name);
948 				continue;
949 			}
950 			sprintf(path, "%s/%s/proc/kallsyms",
951 				symbol_conf.guestmount,
952 				namelist[i]->d_name);
953 			ret = access(path, R_OK);
954 			if (ret) {
955 				pr_debug("Can't access file %s\n", path);
956 				goto failure;
957 			}
958 			machines__create_kernel_maps(machines, pid);
959 		}
960 failure:
961 		free(namelist);
962 	}
963 
964 	return ret;
965 }
966 
967 void machines__destroy_kernel_maps(struct machines *machines)
968 {
969 	struct rb_node *next = rb_first(&machines->guests);
970 
971 	machine__destroy_kernel_maps(&machines->host);
972 
973 	while (next) {
974 		struct machine *pos = rb_entry(next, struct machine, rb_node);
975 
976 		next = rb_next(&pos->rb_node);
977 		rb_erase(&pos->rb_node, &machines->guests);
978 		machine__delete(pos);
979 	}
980 }
981 
982 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
983 {
984 	struct machine *machine = machines__findnew(machines, pid);
985 
986 	if (machine == NULL)
987 		return -1;
988 
989 	return machine__create_kernel_maps(machine);
990 }
991 
992 int machine__load_kallsyms(struct machine *machine, const char *filename,
993 			     enum map_type type)
994 {
995 	struct map *map = machine__kernel_map(machine);
996 	int ret = __dso__load_kallsyms(map->dso, filename, map, true);
997 
998 	if (ret > 0) {
999 		dso__set_loaded(map->dso, type);
1000 		/*
1001 		 * Since /proc/kallsyms will have multiple sessions for the
1002 		 * kernel, with modules between them, fixup the end of all
1003 		 * sections.
1004 		 */
1005 		__map_groups__fixup_end(&machine->kmaps, type);
1006 	}
1007 
1008 	return ret;
1009 }
1010 
1011 int machine__load_vmlinux_path(struct machine *machine, enum map_type type)
1012 {
1013 	struct map *map = machine__kernel_map(machine);
1014 	int ret = dso__load_vmlinux_path(map->dso, map);
1015 
1016 	if (ret > 0)
1017 		dso__set_loaded(map->dso, type);
1018 
1019 	return ret;
1020 }
1021 
1022 static void map_groups__fixup_end(struct map_groups *mg)
1023 {
1024 	int i;
1025 	for (i = 0; i < MAP__NR_TYPES; ++i)
1026 		__map_groups__fixup_end(mg, i);
1027 }
1028 
1029 static char *get_kernel_version(const char *root_dir)
1030 {
1031 	char version[PATH_MAX];
1032 	FILE *file;
1033 	char *name, *tmp;
1034 	const char *prefix = "Linux version ";
1035 
1036 	sprintf(version, "%s/proc/version", root_dir);
1037 	file = fopen(version, "r");
1038 	if (!file)
1039 		return NULL;
1040 
1041 	version[0] = '\0';
1042 	tmp = fgets(version, sizeof(version), file);
1043 	fclose(file);
1044 
1045 	name = strstr(version, prefix);
1046 	if (!name)
1047 		return NULL;
1048 	name += strlen(prefix);
1049 	tmp = strchr(name, ' ');
1050 	if (tmp)
1051 		*tmp = '\0';
1052 
1053 	return strdup(name);
1054 }
1055 
1056 static bool is_kmod_dso(struct dso *dso)
1057 {
1058 	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1059 	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1060 }
1061 
1062 static int map_groups__set_module_path(struct map_groups *mg, const char *path,
1063 				       struct kmod_path *m)
1064 {
1065 	struct map *map;
1066 	char *long_name;
1067 
1068 	map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
1069 	if (map == NULL)
1070 		return 0;
1071 
1072 	long_name = strdup(path);
1073 	if (long_name == NULL)
1074 		return -ENOMEM;
1075 
1076 	dso__set_long_name(map->dso, long_name, true);
1077 	dso__kernel_module_get_build_id(map->dso, "");
1078 
1079 	/*
1080 	 * Full name could reveal us kmod compression, so
1081 	 * we need to update the symtab_type if needed.
1082 	 */
1083 	if (m->comp && is_kmod_dso(map->dso))
1084 		map->dso->symtab_type++;
1085 
1086 	return 0;
1087 }
1088 
1089 static int map_groups__set_modules_path_dir(struct map_groups *mg,
1090 				const char *dir_name, int depth)
1091 {
1092 	struct dirent *dent;
1093 	DIR *dir = opendir(dir_name);
1094 	int ret = 0;
1095 
1096 	if (!dir) {
1097 		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1098 		return -1;
1099 	}
1100 
1101 	while ((dent = readdir(dir)) != NULL) {
1102 		char path[PATH_MAX];
1103 		struct stat st;
1104 
1105 		/*sshfs might return bad dent->d_type, so we have to stat*/
1106 		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1107 		if (stat(path, &st))
1108 			continue;
1109 
1110 		if (S_ISDIR(st.st_mode)) {
1111 			if (!strcmp(dent->d_name, ".") ||
1112 			    !strcmp(dent->d_name, ".."))
1113 				continue;
1114 
1115 			/* Do not follow top-level source and build symlinks */
1116 			if (depth == 0) {
1117 				if (!strcmp(dent->d_name, "source") ||
1118 				    !strcmp(dent->d_name, "build"))
1119 					continue;
1120 			}
1121 
1122 			ret = map_groups__set_modules_path_dir(mg, path,
1123 							       depth + 1);
1124 			if (ret < 0)
1125 				goto out;
1126 		} else {
1127 			struct kmod_path m;
1128 
1129 			ret = kmod_path__parse_name(&m, dent->d_name);
1130 			if (ret)
1131 				goto out;
1132 
1133 			if (m.kmod)
1134 				ret = map_groups__set_module_path(mg, path, &m);
1135 
1136 			free(m.name);
1137 
1138 			if (ret)
1139 				goto out;
1140 		}
1141 	}
1142 
1143 out:
1144 	closedir(dir);
1145 	return ret;
1146 }
1147 
1148 static int machine__set_modules_path(struct machine *machine)
1149 {
1150 	char *version;
1151 	char modules_path[PATH_MAX];
1152 
1153 	version = get_kernel_version(machine->root_dir);
1154 	if (!version)
1155 		return -1;
1156 
1157 	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1158 		 machine->root_dir, version);
1159 	free(version);
1160 
1161 	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1162 }
1163 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1164 				const char *name __maybe_unused)
1165 {
1166 	return 0;
1167 }
1168 
1169 static int machine__create_module(void *arg, const char *name, u64 start,
1170 				  u64 size)
1171 {
1172 	struct machine *machine = arg;
1173 	struct map *map;
1174 
1175 	if (arch__fix_module_text_start(&start, name) < 0)
1176 		return -1;
1177 
1178 	map = machine__findnew_module_map(machine, start, name);
1179 	if (map == NULL)
1180 		return -1;
1181 	map->end = start + size;
1182 
1183 	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1184 
1185 	return 0;
1186 }
1187 
1188 static int machine__create_modules(struct machine *machine)
1189 {
1190 	const char *modules;
1191 	char path[PATH_MAX];
1192 
1193 	if (machine__is_default_guest(machine)) {
1194 		modules = symbol_conf.default_guest_modules;
1195 	} else {
1196 		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1197 		modules = path;
1198 	}
1199 
1200 	if (symbol__restricted_filename(modules, "/proc/modules"))
1201 		return -1;
1202 
1203 	if (modules__parse(modules, machine, machine__create_module))
1204 		return -1;
1205 
1206 	if (!machine__set_modules_path(machine))
1207 		return 0;
1208 
1209 	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1210 
1211 	return 0;
1212 }
1213 
1214 static void machine__set_kernel_mmap(struct machine *machine,
1215 				     u64 start, u64 end)
1216 {
1217 	int i;
1218 
1219 	for (i = 0; i < MAP__NR_TYPES; i++) {
1220 		machine->vmlinux_maps[i]->start = start;
1221 		machine->vmlinux_maps[i]->end   = end;
1222 
1223 		/*
1224 		 * Be a bit paranoid here, some perf.data file came with
1225 		 * a zero sized synthesized MMAP event for the kernel.
1226 		 */
1227 		if (start == 0 && end == 0)
1228 			machine->vmlinux_maps[i]->end = ~0ULL;
1229 	}
1230 }
1231 
1232 int machine__create_kernel_maps(struct machine *machine)
1233 {
1234 	struct dso *kernel = machine__get_kernel(machine);
1235 	const char *name = NULL;
1236 	u64 addr = 0;
1237 	int ret;
1238 
1239 	if (kernel == NULL)
1240 		return -1;
1241 
1242 	ret = __machine__create_kernel_maps(machine, kernel);
1243 	dso__put(kernel);
1244 	if (ret < 0)
1245 		return -1;
1246 
1247 	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1248 		if (machine__is_host(machine))
1249 			pr_debug("Problems creating module maps, "
1250 				 "continuing anyway...\n");
1251 		else
1252 			pr_debug("Problems creating module maps for guest %d, "
1253 				 "continuing anyway...\n", machine->pid);
1254 	}
1255 
1256 	if (!machine__get_running_kernel_start(machine, &name, &addr)) {
1257 		if (name &&
1258 		    maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name, addr)) {
1259 			machine__destroy_kernel_maps(machine);
1260 			return -1;
1261 		}
1262 		machine__set_kernel_mmap(machine, addr, 0);
1263 	}
1264 
1265 	/*
1266 	 * Now that we have all the maps created, just set the ->end of them:
1267 	 */
1268 	map_groups__fixup_end(&machine->kmaps);
1269 	return 0;
1270 }
1271 
1272 static bool machine__uses_kcore(struct machine *machine)
1273 {
1274 	struct dso *dso;
1275 
1276 	list_for_each_entry(dso, &machine->dsos.head, node) {
1277 		if (dso__is_kcore(dso))
1278 			return true;
1279 	}
1280 
1281 	return false;
1282 }
1283 
1284 static int machine__process_kernel_mmap_event(struct machine *machine,
1285 					      union perf_event *event)
1286 {
1287 	struct map *map;
1288 	enum dso_kernel_type kernel_type;
1289 	bool is_kernel_mmap;
1290 
1291 	/* If we have maps from kcore then we do not need or want any others */
1292 	if (machine__uses_kcore(machine))
1293 		return 0;
1294 
1295 	if (machine__is_host(machine))
1296 		kernel_type = DSO_TYPE_KERNEL;
1297 	else
1298 		kernel_type = DSO_TYPE_GUEST_KERNEL;
1299 
1300 	is_kernel_mmap = memcmp(event->mmap.filename,
1301 				machine->mmap_name,
1302 				strlen(machine->mmap_name) - 1) == 0;
1303 	if (event->mmap.filename[0] == '/' ||
1304 	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1305 		map = machine__findnew_module_map(machine, event->mmap.start,
1306 						  event->mmap.filename);
1307 		if (map == NULL)
1308 			goto out_problem;
1309 
1310 		map->end = map->start + event->mmap.len;
1311 	} else if (is_kernel_mmap) {
1312 		const char *symbol_name = (event->mmap.filename +
1313 				strlen(machine->mmap_name));
1314 		/*
1315 		 * Should be there already, from the build-id table in
1316 		 * the header.
1317 		 */
1318 		struct dso *kernel = NULL;
1319 		struct dso *dso;
1320 
1321 		down_read(&machine->dsos.lock);
1322 
1323 		list_for_each_entry(dso, &machine->dsos.head, node) {
1324 
1325 			/*
1326 			 * The cpumode passed to is_kernel_module is not the
1327 			 * cpumode of *this* event. If we insist on passing
1328 			 * correct cpumode to is_kernel_module, we should
1329 			 * record the cpumode when we adding this dso to the
1330 			 * linked list.
1331 			 *
1332 			 * However we don't really need passing correct
1333 			 * cpumode.  We know the correct cpumode must be kernel
1334 			 * mode (if not, we should not link it onto kernel_dsos
1335 			 * list).
1336 			 *
1337 			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1338 			 * is_kernel_module() treats it as a kernel cpumode.
1339 			 */
1340 
1341 			if (!dso->kernel ||
1342 			    is_kernel_module(dso->long_name,
1343 					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1344 				continue;
1345 
1346 
1347 			kernel = dso;
1348 			break;
1349 		}
1350 
1351 		up_read(&machine->dsos.lock);
1352 
1353 		if (kernel == NULL)
1354 			kernel = machine__findnew_dso(machine, machine->mmap_name);
1355 		if (kernel == NULL)
1356 			goto out_problem;
1357 
1358 		kernel->kernel = kernel_type;
1359 		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1360 			dso__put(kernel);
1361 			goto out_problem;
1362 		}
1363 
1364 		if (strstr(kernel->long_name, "vmlinux"))
1365 			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1366 
1367 		machine__set_kernel_mmap(machine, event->mmap.start,
1368 					 event->mmap.start + event->mmap.len);
1369 
1370 		/*
1371 		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1372 		 * symbol. Effectively having zero here means that at record
1373 		 * time /proc/sys/kernel/kptr_restrict was non zero.
1374 		 */
1375 		if (event->mmap.pgoff != 0) {
1376 			maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
1377 							 symbol_name,
1378 							 event->mmap.pgoff);
1379 		}
1380 
1381 		if (machine__is_default_guest(machine)) {
1382 			/*
1383 			 * preload dso of guest kernel and modules
1384 			 */
1385 			dso__load(kernel, machine__kernel_map(machine));
1386 		}
1387 	}
1388 	return 0;
1389 out_problem:
1390 	return -1;
1391 }
1392 
1393 int machine__process_mmap2_event(struct machine *machine,
1394 				 union perf_event *event,
1395 				 struct perf_sample *sample)
1396 {
1397 	struct thread *thread;
1398 	struct map *map;
1399 	enum map_type type;
1400 	int ret = 0;
1401 
1402 	if (dump_trace)
1403 		perf_event__fprintf_mmap2(event, stdout);
1404 
1405 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1406 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1407 		ret = machine__process_kernel_mmap_event(machine, event);
1408 		if (ret < 0)
1409 			goto out_problem;
1410 		return 0;
1411 	}
1412 
1413 	thread = machine__findnew_thread(machine, event->mmap2.pid,
1414 					event->mmap2.tid);
1415 	if (thread == NULL)
1416 		goto out_problem;
1417 
1418 	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1419 		type = MAP__VARIABLE;
1420 	else
1421 		type = MAP__FUNCTION;
1422 
1423 	map = map__new(machine, event->mmap2.start,
1424 			event->mmap2.len, event->mmap2.pgoff,
1425 			event->mmap2.maj,
1426 			event->mmap2.min, event->mmap2.ino,
1427 			event->mmap2.ino_generation,
1428 			event->mmap2.prot,
1429 			event->mmap2.flags,
1430 			event->mmap2.filename, type, thread);
1431 
1432 	if (map == NULL)
1433 		goto out_problem_map;
1434 
1435 	ret = thread__insert_map(thread, map);
1436 	if (ret)
1437 		goto out_problem_insert;
1438 
1439 	thread__put(thread);
1440 	map__put(map);
1441 	return 0;
1442 
1443 out_problem_insert:
1444 	map__put(map);
1445 out_problem_map:
1446 	thread__put(thread);
1447 out_problem:
1448 	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1449 	return 0;
1450 }
1451 
1452 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1453 				struct perf_sample *sample)
1454 {
1455 	struct thread *thread;
1456 	struct map *map;
1457 	enum map_type type;
1458 	int ret = 0;
1459 
1460 	if (dump_trace)
1461 		perf_event__fprintf_mmap(event, stdout);
1462 
1463 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1464 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1465 		ret = machine__process_kernel_mmap_event(machine, event);
1466 		if (ret < 0)
1467 			goto out_problem;
1468 		return 0;
1469 	}
1470 
1471 	thread = machine__findnew_thread(machine, event->mmap.pid,
1472 					 event->mmap.tid);
1473 	if (thread == NULL)
1474 		goto out_problem;
1475 
1476 	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1477 		type = MAP__VARIABLE;
1478 	else
1479 		type = MAP__FUNCTION;
1480 
1481 	map = map__new(machine, event->mmap.start,
1482 			event->mmap.len, event->mmap.pgoff,
1483 			0, 0, 0, 0, 0, 0,
1484 			event->mmap.filename,
1485 			type, thread);
1486 
1487 	if (map == NULL)
1488 		goto out_problem_map;
1489 
1490 	ret = thread__insert_map(thread, map);
1491 	if (ret)
1492 		goto out_problem_insert;
1493 
1494 	thread__put(thread);
1495 	map__put(map);
1496 	return 0;
1497 
1498 out_problem_insert:
1499 	map__put(map);
1500 out_problem_map:
1501 	thread__put(thread);
1502 out_problem:
1503 	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1504 	return 0;
1505 }
1506 
1507 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1508 {
1509 	struct threads *threads = machine__threads(machine, th->tid);
1510 
1511 	if (threads->last_match == th)
1512 		threads->last_match = NULL;
1513 
1514 	BUG_ON(refcount_read(&th->refcnt) == 0);
1515 	if (lock)
1516 		down_write(&threads->lock);
1517 	rb_erase_init(&th->rb_node, &threads->entries);
1518 	RB_CLEAR_NODE(&th->rb_node);
1519 	--threads->nr;
1520 	/*
1521 	 * Move it first to the dead_threads list, then drop the reference,
1522 	 * if this is the last reference, then the thread__delete destructor
1523 	 * will be called and we will remove it from the dead_threads list.
1524 	 */
1525 	list_add_tail(&th->node, &threads->dead);
1526 	if (lock)
1527 		up_write(&threads->lock);
1528 	thread__put(th);
1529 }
1530 
1531 void machine__remove_thread(struct machine *machine, struct thread *th)
1532 {
1533 	return __machine__remove_thread(machine, th, true);
1534 }
1535 
1536 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1537 				struct perf_sample *sample)
1538 {
1539 	struct thread *thread = machine__find_thread(machine,
1540 						     event->fork.pid,
1541 						     event->fork.tid);
1542 	struct thread *parent = machine__findnew_thread(machine,
1543 							event->fork.ppid,
1544 							event->fork.ptid);
1545 	int err = 0;
1546 
1547 	if (dump_trace)
1548 		perf_event__fprintf_task(event, stdout);
1549 
1550 	/*
1551 	 * There may be an existing thread that is not actually the parent,
1552 	 * either because we are processing events out of order, or because the
1553 	 * (fork) event that would have removed the thread was lost. Assume the
1554 	 * latter case and continue on as best we can.
1555 	 */
1556 	if (parent->pid_ != (pid_t)event->fork.ppid) {
1557 		dump_printf("removing erroneous parent thread %d/%d\n",
1558 			    parent->pid_, parent->tid);
1559 		machine__remove_thread(machine, parent);
1560 		thread__put(parent);
1561 		parent = machine__findnew_thread(machine, event->fork.ppid,
1562 						 event->fork.ptid);
1563 	}
1564 
1565 	/* if a thread currently exists for the thread id remove it */
1566 	if (thread != NULL) {
1567 		machine__remove_thread(machine, thread);
1568 		thread__put(thread);
1569 	}
1570 
1571 	thread = machine__findnew_thread(machine, event->fork.pid,
1572 					 event->fork.tid);
1573 
1574 	if (thread == NULL || parent == NULL ||
1575 	    thread__fork(thread, parent, sample->time) < 0) {
1576 		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1577 		err = -1;
1578 	}
1579 	thread__put(thread);
1580 	thread__put(parent);
1581 
1582 	return err;
1583 }
1584 
1585 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1586 				struct perf_sample *sample __maybe_unused)
1587 {
1588 	struct thread *thread = machine__find_thread(machine,
1589 						     event->fork.pid,
1590 						     event->fork.tid);
1591 
1592 	if (dump_trace)
1593 		perf_event__fprintf_task(event, stdout);
1594 
1595 	if (thread != NULL) {
1596 		thread__exited(thread);
1597 		thread__put(thread);
1598 	}
1599 
1600 	return 0;
1601 }
1602 
1603 int machine__process_event(struct machine *machine, union perf_event *event,
1604 			   struct perf_sample *sample)
1605 {
1606 	int ret;
1607 
1608 	switch (event->header.type) {
1609 	case PERF_RECORD_COMM:
1610 		ret = machine__process_comm_event(machine, event, sample); break;
1611 	case PERF_RECORD_MMAP:
1612 		ret = machine__process_mmap_event(machine, event, sample); break;
1613 	case PERF_RECORD_NAMESPACES:
1614 		ret = machine__process_namespaces_event(machine, event, sample); break;
1615 	case PERF_RECORD_MMAP2:
1616 		ret = machine__process_mmap2_event(machine, event, sample); break;
1617 	case PERF_RECORD_FORK:
1618 		ret = machine__process_fork_event(machine, event, sample); break;
1619 	case PERF_RECORD_EXIT:
1620 		ret = machine__process_exit_event(machine, event, sample); break;
1621 	case PERF_RECORD_LOST:
1622 		ret = machine__process_lost_event(machine, event, sample); break;
1623 	case PERF_RECORD_AUX:
1624 		ret = machine__process_aux_event(machine, event); break;
1625 	case PERF_RECORD_ITRACE_START:
1626 		ret = machine__process_itrace_start_event(machine, event); break;
1627 	case PERF_RECORD_LOST_SAMPLES:
1628 		ret = machine__process_lost_samples_event(machine, event, sample); break;
1629 	case PERF_RECORD_SWITCH:
1630 	case PERF_RECORD_SWITCH_CPU_WIDE:
1631 		ret = machine__process_switch_event(machine, event); break;
1632 	default:
1633 		ret = -1;
1634 		break;
1635 	}
1636 
1637 	return ret;
1638 }
1639 
1640 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1641 {
1642 	if (!regexec(regex, sym->name, 0, NULL, 0))
1643 		return 1;
1644 	return 0;
1645 }
1646 
1647 static void ip__resolve_ams(struct thread *thread,
1648 			    struct addr_map_symbol *ams,
1649 			    u64 ip)
1650 {
1651 	struct addr_location al;
1652 
1653 	memset(&al, 0, sizeof(al));
1654 	/*
1655 	 * We cannot use the header.misc hint to determine whether a
1656 	 * branch stack address is user, kernel, guest, hypervisor.
1657 	 * Branches may straddle the kernel/user/hypervisor boundaries.
1658 	 * Thus, we have to try consecutively until we find a match
1659 	 * or else, the symbol is unknown
1660 	 */
1661 	thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1662 
1663 	ams->addr = ip;
1664 	ams->al_addr = al.addr;
1665 	ams->sym = al.sym;
1666 	ams->map = al.map;
1667 	ams->phys_addr = 0;
1668 }
1669 
1670 static void ip__resolve_data(struct thread *thread,
1671 			     u8 m, struct addr_map_symbol *ams,
1672 			     u64 addr, u64 phys_addr)
1673 {
1674 	struct addr_location al;
1675 
1676 	memset(&al, 0, sizeof(al));
1677 
1678 	thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1679 	if (al.map == NULL) {
1680 		/*
1681 		 * some shared data regions have execute bit set which puts
1682 		 * their mapping in the MAP__FUNCTION type array.
1683 		 * Check there as a fallback option before dropping the sample.
1684 		 */
1685 		thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1686 	}
1687 
1688 	ams->addr = addr;
1689 	ams->al_addr = al.addr;
1690 	ams->sym = al.sym;
1691 	ams->map = al.map;
1692 	ams->phys_addr = phys_addr;
1693 }
1694 
1695 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1696 				     struct addr_location *al)
1697 {
1698 	struct mem_info *mi = mem_info__new();
1699 
1700 	if (!mi)
1701 		return NULL;
1702 
1703 	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1704 	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
1705 			 sample->addr, sample->phys_addr);
1706 	mi->data_src.val = sample->data_src;
1707 
1708 	return mi;
1709 }
1710 
1711 static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
1712 {
1713 	char *srcline = NULL;
1714 
1715 	if (!map || callchain_param.key == CCKEY_FUNCTION)
1716 		return srcline;
1717 
1718 	srcline = srcline__tree_find(&map->dso->srclines, ip);
1719 	if (!srcline) {
1720 		bool show_sym = false;
1721 		bool show_addr = callchain_param.key == CCKEY_ADDRESS;
1722 
1723 		srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
1724 				      sym, show_sym, show_addr, ip);
1725 		srcline__tree_insert(&map->dso->srclines, ip, srcline);
1726 	}
1727 
1728 	return srcline;
1729 }
1730 
1731 struct iterations {
1732 	int nr_loop_iter;
1733 	u64 cycles;
1734 };
1735 
1736 static int add_callchain_ip(struct thread *thread,
1737 			    struct callchain_cursor *cursor,
1738 			    struct symbol **parent,
1739 			    struct addr_location *root_al,
1740 			    u8 *cpumode,
1741 			    u64 ip,
1742 			    bool branch,
1743 			    struct branch_flags *flags,
1744 			    struct iterations *iter,
1745 			    u64 branch_from)
1746 {
1747 	struct addr_location al;
1748 	int nr_loop_iter = 0;
1749 	u64 iter_cycles = 0;
1750 	const char *srcline = NULL;
1751 
1752 	al.filtered = 0;
1753 	al.sym = NULL;
1754 	if (!cpumode) {
1755 		thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
1756 						   ip, &al);
1757 	} else {
1758 		if (ip >= PERF_CONTEXT_MAX) {
1759 			switch (ip) {
1760 			case PERF_CONTEXT_HV:
1761 				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
1762 				break;
1763 			case PERF_CONTEXT_KERNEL:
1764 				*cpumode = PERF_RECORD_MISC_KERNEL;
1765 				break;
1766 			case PERF_CONTEXT_USER:
1767 				*cpumode = PERF_RECORD_MISC_USER;
1768 				break;
1769 			default:
1770 				pr_debug("invalid callchain context: "
1771 					 "%"PRId64"\n", (s64) ip);
1772 				/*
1773 				 * It seems the callchain is corrupted.
1774 				 * Discard all.
1775 				 */
1776 				callchain_cursor_reset(cursor);
1777 				return 1;
1778 			}
1779 			return 0;
1780 		}
1781 		thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
1782 					   ip, &al);
1783 	}
1784 
1785 	if (al.sym != NULL) {
1786 		if (perf_hpp_list.parent && !*parent &&
1787 		    symbol__match_regex(al.sym, &parent_regex))
1788 			*parent = al.sym;
1789 		else if (have_ignore_callees && root_al &&
1790 		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
1791 			/* Treat this symbol as the root,
1792 			   forgetting its callees. */
1793 			*root_al = al;
1794 			callchain_cursor_reset(cursor);
1795 		}
1796 	}
1797 
1798 	if (symbol_conf.hide_unresolved && al.sym == NULL)
1799 		return 0;
1800 
1801 	if (iter) {
1802 		nr_loop_iter = iter->nr_loop_iter;
1803 		iter_cycles = iter->cycles;
1804 	}
1805 
1806 	srcline = callchain_srcline(al.map, al.sym, al.addr);
1807 	return callchain_cursor_append(cursor, al.addr, al.map, al.sym,
1808 				       branch, flags, nr_loop_iter,
1809 				       iter_cycles, branch_from, srcline);
1810 }
1811 
1812 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1813 					   struct addr_location *al)
1814 {
1815 	unsigned int i;
1816 	const struct branch_stack *bs = sample->branch_stack;
1817 	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1818 
1819 	if (!bi)
1820 		return NULL;
1821 
1822 	for (i = 0; i < bs->nr; i++) {
1823 		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1824 		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1825 		bi[i].flags = bs->entries[i].flags;
1826 	}
1827 	return bi;
1828 }
1829 
1830 static void save_iterations(struct iterations *iter,
1831 			    struct branch_entry *be, int nr)
1832 {
1833 	int i;
1834 
1835 	iter->nr_loop_iter = nr;
1836 	iter->cycles = 0;
1837 
1838 	for (i = 0; i < nr; i++)
1839 		iter->cycles += be[i].flags.cycles;
1840 }
1841 
1842 #define CHASHSZ 127
1843 #define CHASHBITS 7
1844 #define NO_ENTRY 0xff
1845 
1846 #define PERF_MAX_BRANCH_DEPTH 127
1847 
1848 /* Remove loops. */
1849 static int remove_loops(struct branch_entry *l, int nr,
1850 			struct iterations *iter)
1851 {
1852 	int i, j, off;
1853 	unsigned char chash[CHASHSZ];
1854 
1855 	memset(chash, NO_ENTRY, sizeof(chash));
1856 
1857 	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
1858 
1859 	for (i = 0; i < nr; i++) {
1860 		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
1861 
1862 		/* no collision handling for now */
1863 		if (chash[h] == NO_ENTRY) {
1864 			chash[h] = i;
1865 		} else if (l[chash[h]].from == l[i].from) {
1866 			bool is_loop = true;
1867 			/* check if it is a real loop */
1868 			off = 0;
1869 			for (j = chash[h]; j < i && i + off < nr; j++, off++)
1870 				if (l[j].from != l[i + off].from) {
1871 					is_loop = false;
1872 					break;
1873 				}
1874 			if (is_loop) {
1875 				j = nr - (i + off);
1876 				if (j > 0) {
1877 					save_iterations(iter + i + off,
1878 						l + i, off);
1879 
1880 					memmove(iter + i, iter + i + off,
1881 						j * sizeof(*iter));
1882 
1883 					memmove(l + i, l + i + off,
1884 						j * sizeof(*l));
1885 				}
1886 
1887 				nr -= off;
1888 			}
1889 		}
1890 	}
1891 	return nr;
1892 }
1893 
1894 /*
1895  * Recolve LBR callstack chain sample
1896  * Return:
1897  * 1 on success get LBR callchain information
1898  * 0 no available LBR callchain information, should try fp
1899  * negative error code on other errors.
1900  */
1901 static int resolve_lbr_callchain_sample(struct thread *thread,
1902 					struct callchain_cursor *cursor,
1903 					struct perf_sample *sample,
1904 					struct symbol **parent,
1905 					struct addr_location *root_al,
1906 					int max_stack)
1907 {
1908 	struct ip_callchain *chain = sample->callchain;
1909 	int chain_nr = min(max_stack, (int)chain->nr), i;
1910 	u8 cpumode = PERF_RECORD_MISC_USER;
1911 	u64 ip, branch_from = 0;
1912 
1913 	for (i = 0; i < chain_nr; i++) {
1914 		if (chain->ips[i] == PERF_CONTEXT_USER)
1915 			break;
1916 	}
1917 
1918 	/* LBR only affects the user callchain */
1919 	if (i != chain_nr) {
1920 		struct branch_stack *lbr_stack = sample->branch_stack;
1921 		int lbr_nr = lbr_stack->nr, j, k;
1922 		bool branch;
1923 		struct branch_flags *flags;
1924 		/*
1925 		 * LBR callstack can only get user call chain.
1926 		 * The mix_chain_nr is kernel call chain
1927 		 * number plus LBR user call chain number.
1928 		 * i is kernel call chain number,
1929 		 * 1 is PERF_CONTEXT_USER,
1930 		 * lbr_nr + 1 is the user call chain number.
1931 		 * For details, please refer to the comments
1932 		 * in callchain__printf
1933 		 */
1934 		int mix_chain_nr = i + 1 + lbr_nr + 1;
1935 
1936 		for (j = 0; j < mix_chain_nr; j++) {
1937 			int err;
1938 			branch = false;
1939 			flags = NULL;
1940 
1941 			if (callchain_param.order == ORDER_CALLEE) {
1942 				if (j < i + 1)
1943 					ip = chain->ips[j];
1944 				else if (j > i + 1) {
1945 					k = j - i - 2;
1946 					ip = lbr_stack->entries[k].from;
1947 					branch = true;
1948 					flags = &lbr_stack->entries[k].flags;
1949 				} else {
1950 					ip = lbr_stack->entries[0].to;
1951 					branch = true;
1952 					flags = &lbr_stack->entries[0].flags;
1953 					branch_from =
1954 						lbr_stack->entries[0].from;
1955 				}
1956 			} else {
1957 				if (j < lbr_nr) {
1958 					k = lbr_nr - j - 1;
1959 					ip = lbr_stack->entries[k].from;
1960 					branch = true;
1961 					flags = &lbr_stack->entries[k].flags;
1962 				}
1963 				else if (j > lbr_nr)
1964 					ip = chain->ips[i + 1 - (j - lbr_nr)];
1965 				else {
1966 					ip = lbr_stack->entries[0].to;
1967 					branch = true;
1968 					flags = &lbr_stack->entries[0].flags;
1969 					branch_from =
1970 						lbr_stack->entries[0].from;
1971 				}
1972 			}
1973 
1974 			err = add_callchain_ip(thread, cursor, parent,
1975 					       root_al, &cpumode, ip,
1976 					       branch, flags, NULL,
1977 					       branch_from);
1978 			if (err)
1979 				return (err < 0) ? err : 0;
1980 		}
1981 		return 1;
1982 	}
1983 
1984 	return 0;
1985 }
1986 
1987 static int thread__resolve_callchain_sample(struct thread *thread,
1988 					    struct callchain_cursor *cursor,
1989 					    struct perf_evsel *evsel,
1990 					    struct perf_sample *sample,
1991 					    struct symbol **parent,
1992 					    struct addr_location *root_al,
1993 					    int max_stack)
1994 {
1995 	struct branch_stack *branch = sample->branch_stack;
1996 	struct ip_callchain *chain = sample->callchain;
1997 	int chain_nr = 0;
1998 	u8 cpumode = PERF_RECORD_MISC_USER;
1999 	int i, j, err, nr_entries;
2000 	int skip_idx = -1;
2001 	int first_call = 0;
2002 
2003 	if (chain)
2004 		chain_nr = chain->nr;
2005 
2006 	if (perf_evsel__has_branch_callstack(evsel)) {
2007 		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2008 						   root_al, max_stack);
2009 		if (err)
2010 			return (err < 0) ? err : 0;
2011 	}
2012 
2013 	/*
2014 	 * Based on DWARF debug information, some architectures skip
2015 	 * a callchain entry saved by the kernel.
2016 	 */
2017 	skip_idx = arch_skip_callchain_idx(thread, chain);
2018 
2019 	/*
2020 	 * Add branches to call stack for easier browsing. This gives
2021 	 * more context for a sample than just the callers.
2022 	 *
2023 	 * This uses individual histograms of paths compared to the
2024 	 * aggregated histograms the normal LBR mode uses.
2025 	 *
2026 	 * Limitations for now:
2027 	 * - No extra filters
2028 	 * - No annotations (should annotate somehow)
2029 	 */
2030 
2031 	if (branch && callchain_param.branch_callstack) {
2032 		int nr = min(max_stack, (int)branch->nr);
2033 		struct branch_entry be[nr];
2034 		struct iterations iter[nr];
2035 
2036 		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2037 			pr_warning("corrupted branch chain. skipping...\n");
2038 			goto check_calls;
2039 		}
2040 
2041 		for (i = 0; i < nr; i++) {
2042 			if (callchain_param.order == ORDER_CALLEE) {
2043 				be[i] = branch->entries[i];
2044 
2045 				if (chain == NULL)
2046 					continue;
2047 
2048 				/*
2049 				 * Check for overlap into the callchain.
2050 				 * The return address is one off compared to
2051 				 * the branch entry. To adjust for this
2052 				 * assume the calling instruction is not longer
2053 				 * than 8 bytes.
2054 				 */
2055 				if (i == skip_idx ||
2056 				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2057 					first_call++;
2058 				else if (be[i].from < chain->ips[first_call] &&
2059 				    be[i].from >= chain->ips[first_call] - 8)
2060 					first_call++;
2061 			} else
2062 				be[i] = branch->entries[branch->nr - i - 1];
2063 		}
2064 
2065 		memset(iter, 0, sizeof(struct iterations) * nr);
2066 		nr = remove_loops(be, nr, iter);
2067 
2068 		for (i = 0; i < nr; i++) {
2069 			err = add_callchain_ip(thread, cursor, parent,
2070 					       root_al,
2071 					       NULL, be[i].to,
2072 					       true, &be[i].flags,
2073 					       NULL, be[i].from);
2074 
2075 			if (!err)
2076 				err = add_callchain_ip(thread, cursor, parent, root_al,
2077 						       NULL, be[i].from,
2078 						       true, &be[i].flags,
2079 						       &iter[i], 0);
2080 			if (err == -EINVAL)
2081 				break;
2082 			if (err)
2083 				return err;
2084 		}
2085 
2086 		if (chain_nr == 0)
2087 			return 0;
2088 
2089 		chain_nr -= nr;
2090 	}
2091 
2092 check_calls:
2093 	for (i = first_call, nr_entries = 0;
2094 	     i < chain_nr && nr_entries < max_stack; i++) {
2095 		u64 ip;
2096 
2097 		if (callchain_param.order == ORDER_CALLEE)
2098 			j = i;
2099 		else
2100 			j = chain->nr - i - 1;
2101 
2102 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2103 		if (j == skip_idx)
2104 			continue;
2105 #endif
2106 		ip = chain->ips[j];
2107 
2108 		if (ip < PERF_CONTEXT_MAX)
2109                        ++nr_entries;
2110 
2111 		err = add_callchain_ip(thread, cursor, parent,
2112 				       root_al, &cpumode, ip,
2113 				       false, NULL, NULL, 0);
2114 
2115 		if (err)
2116 			return (err < 0) ? err : 0;
2117 	}
2118 
2119 	return 0;
2120 }
2121 
2122 static int append_inlines(struct callchain_cursor *cursor,
2123 			  struct map *map, struct symbol *sym, u64 ip)
2124 {
2125 	struct inline_node *inline_node;
2126 	struct inline_list *ilist;
2127 	u64 addr;
2128 	int ret = 1;
2129 
2130 	if (!symbol_conf.inline_name || !map || !sym)
2131 		return ret;
2132 
2133 	addr = map__rip_2objdump(map, ip);
2134 
2135 	inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2136 	if (!inline_node) {
2137 		inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2138 		if (!inline_node)
2139 			return ret;
2140 		inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2141 	}
2142 
2143 	list_for_each_entry(ilist, &inline_node->val, list) {
2144 		ret = callchain_cursor_append(cursor, ip, map,
2145 					      ilist->symbol, false,
2146 					      NULL, 0, 0, 0, ilist->srcline);
2147 
2148 		if (ret != 0)
2149 			return ret;
2150 	}
2151 
2152 	return ret;
2153 }
2154 
2155 static int unwind_entry(struct unwind_entry *entry, void *arg)
2156 {
2157 	struct callchain_cursor *cursor = arg;
2158 	const char *srcline = NULL;
2159 
2160 	if (symbol_conf.hide_unresolved && entry->sym == NULL)
2161 		return 0;
2162 
2163 	if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
2164 		return 0;
2165 
2166 	srcline = callchain_srcline(entry->map, entry->sym, entry->ip);
2167 	return callchain_cursor_append(cursor, entry->ip,
2168 				       entry->map, entry->sym,
2169 				       false, NULL, 0, 0, 0, srcline);
2170 }
2171 
2172 static int thread__resolve_callchain_unwind(struct thread *thread,
2173 					    struct callchain_cursor *cursor,
2174 					    struct perf_evsel *evsel,
2175 					    struct perf_sample *sample,
2176 					    int max_stack)
2177 {
2178 	/* Can we do dwarf post unwind? */
2179 	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2180 	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
2181 		return 0;
2182 
2183 	/* Bail out if nothing was captured. */
2184 	if ((!sample->user_regs.regs) ||
2185 	    (!sample->user_stack.size))
2186 		return 0;
2187 
2188 	return unwind__get_entries(unwind_entry, cursor,
2189 				   thread, sample, max_stack);
2190 }
2191 
2192 int thread__resolve_callchain(struct thread *thread,
2193 			      struct callchain_cursor *cursor,
2194 			      struct perf_evsel *evsel,
2195 			      struct perf_sample *sample,
2196 			      struct symbol **parent,
2197 			      struct addr_location *root_al,
2198 			      int max_stack)
2199 {
2200 	int ret = 0;
2201 
2202 	callchain_cursor_reset(cursor);
2203 
2204 	if (callchain_param.order == ORDER_CALLEE) {
2205 		ret = thread__resolve_callchain_sample(thread, cursor,
2206 						       evsel, sample,
2207 						       parent, root_al,
2208 						       max_stack);
2209 		if (ret)
2210 			return ret;
2211 		ret = thread__resolve_callchain_unwind(thread, cursor,
2212 						       evsel, sample,
2213 						       max_stack);
2214 	} else {
2215 		ret = thread__resolve_callchain_unwind(thread, cursor,
2216 						       evsel, sample,
2217 						       max_stack);
2218 		if (ret)
2219 			return ret;
2220 		ret = thread__resolve_callchain_sample(thread, cursor,
2221 						       evsel, sample,
2222 						       parent, root_al,
2223 						       max_stack);
2224 	}
2225 
2226 	return ret;
2227 }
2228 
2229 int machine__for_each_thread(struct machine *machine,
2230 			     int (*fn)(struct thread *thread, void *p),
2231 			     void *priv)
2232 {
2233 	struct threads *threads;
2234 	struct rb_node *nd;
2235 	struct thread *thread;
2236 	int rc = 0;
2237 	int i;
2238 
2239 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2240 		threads = &machine->threads[i];
2241 		for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
2242 			thread = rb_entry(nd, struct thread, rb_node);
2243 			rc = fn(thread, priv);
2244 			if (rc != 0)
2245 				return rc;
2246 		}
2247 
2248 		list_for_each_entry(thread, &threads->dead, node) {
2249 			rc = fn(thread, priv);
2250 			if (rc != 0)
2251 				return rc;
2252 		}
2253 	}
2254 	return rc;
2255 }
2256 
2257 int machines__for_each_thread(struct machines *machines,
2258 			      int (*fn)(struct thread *thread, void *p),
2259 			      void *priv)
2260 {
2261 	struct rb_node *nd;
2262 	int rc = 0;
2263 
2264 	rc = machine__for_each_thread(&machines->host, fn, priv);
2265 	if (rc != 0)
2266 		return rc;
2267 
2268 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
2269 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
2270 
2271 		rc = machine__for_each_thread(machine, fn, priv);
2272 		if (rc != 0)
2273 			return rc;
2274 	}
2275 	return rc;
2276 }
2277 
2278 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2279 				  struct target *target, struct thread_map *threads,
2280 				  perf_event__handler_t process, bool data_mmap,
2281 				  unsigned int proc_map_timeout,
2282 				  unsigned int nr_threads_synthesize)
2283 {
2284 	if (target__has_task(target))
2285 		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
2286 	else if (target__has_cpu(target))
2287 		return perf_event__synthesize_threads(tool, process,
2288 						      machine, data_mmap,
2289 						      proc_map_timeout,
2290 						      nr_threads_synthesize);
2291 	/* command specified */
2292 	return 0;
2293 }
2294 
2295 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2296 {
2297 	if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
2298 		return -1;
2299 
2300 	return machine->current_tid[cpu];
2301 }
2302 
2303 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2304 			     pid_t tid)
2305 {
2306 	struct thread *thread;
2307 
2308 	if (cpu < 0)
2309 		return -EINVAL;
2310 
2311 	if (!machine->current_tid) {
2312 		int i;
2313 
2314 		machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
2315 		if (!machine->current_tid)
2316 			return -ENOMEM;
2317 		for (i = 0; i < MAX_NR_CPUS; i++)
2318 			machine->current_tid[i] = -1;
2319 	}
2320 
2321 	if (cpu >= MAX_NR_CPUS) {
2322 		pr_err("Requested CPU %d too large. ", cpu);
2323 		pr_err("Consider raising MAX_NR_CPUS\n");
2324 		return -EINVAL;
2325 	}
2326 
2327 	machine->current_tid[cpu] = tid;
2328 
2329 	thread = machine__findnew_thread(machine, pid, tid);
2330 	if (!thread)
2331 		return -ENOMEM;
2332 
2333 	thread->cpu = cpu;
2334 	thread__put(thread);
2335 
2336 	return 0;
2337 }
2338 
2339 int machine__get_kernel_start(struct machine *machine)
2340 {
2341 	struct map *map = machine__kernel_map(machine);
2342 	int err = 0;
2343 
2344 	/*
2345 	 * The only addresses above 2^63 are kernel addresses of a 64-bit
2346 	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
2347 	 * all addresses including kernel addresses are less than 2^32.  In
2348 	 * that case (32-bit system), if the kernel mapping is unknown, all
2349 	 * addresses will be assumed to be in user space - see
2350 	 * machine__kernel_ip().
2351 	 */
2352 	machine->kernel_start = 1ULL << 63;
2353 	if (map) {
2354 		err = map__load(map);
2355 		if (!err)
2356 			machine->kernel_start = map->start;
2357 	}
2358 	return err;
2359 }
2360 
2361 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2362 {
2363 	return dsos__findnew(&machine->dsos, filename);
2364 }
2365 
2366 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2367 {
2368 	struct machine *machine = vmachine;
2369 	struct map *map;
2370 	struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map);
2371 
2372 	if (sym == NULL)
2373 		return NULL;
2374 
2375 	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2376 	*addrp = map->unmap_ip(map, sym->start);
2377 	return sym->name;
2378 }
2379