1 // SPDX-License-Identifier: GPL-2.0 2 #include <dirent.h> 3 #include <errno.h> 4 #include <inttypes.h> 5 #include <regex.h> 6 #include <stdlib.h> 7 #include "callchain.h" 8 #include "debug.h" 9 #include "dso.h" 10 #include "env.h" 11 #include "event.h" 12 #include "evsel.h" 13 #include "hist.h" 14 #include "machine.h" 15 #include "map.h" 16 #include "map_symbol.h" 17 #include "branch.h" 18 #include "mem-events.h" 19 #include "path.h" 20 #include "srcline.h" 21 #include "symbol.h" 22 #include "sort.h" 23 #include "strlist.h" 24 #include "target.h" 25 #include "thread.h" 26 #include "util.h" 27 #include "vdso.h" 28 #include <stdbool.h> 29 #include <sys/types.h> 30 #include <sys/stat.h> 31 #include <unistd.h> 32 #include "unwind.h" 33 #include "linux/hash.h" 34 #include "asm/bug.h" 35 #include "bpf-event.h" 36 #include <internal/lib.h> // page_size 37 #include "cgroup.h" 38 #include "arm64-frame-pointer-unwind-support.h" 39 40 #include <linux/ctype.h> 41 #include <symbol/kallsyms.h> 42 #include <linux/mman.h> 43 #include <linux/string.h> 44 #include <linux/zalloc.h> 45 46 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock); 47 48 static struct dso *machine__kernel_dso(struct machine *machine) 49 { 50 return machine->vmlinux_map->dso; 51 } 52 53 static void dsos__init(struct dsos *dsos) 54 { 55 INIT_LIST_HEAD(&dsos->head); 56 dsos->root = RB_ROOT; 57 init_rwsem(&dsos->lock); 58 } 59 60 static void machine__threads_init(struct machine *machine) 61 { 62 int i; 63 64 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 65 struct threads *threads = &machine->threads[i]; 66 threads->entries = RB_ROOT_CACHED; 67 init_rwsem(&threads->lock); 68 threads->nr = 0; 69 INIT_LIST_HEAD(&threads->dead); 70 threads->last_match = NULL; 71 } 72 } 73 74 static int machine__set_mmap_name(struct machine *machine) 75 { 76 if (machine__is_host(machine)) 77 machine->mmap_name = strdup("[kernel.kallsyms]"); 78 else if (machine__is_default_guest(machine)) 79 machine->mmap_name = strdup("[guest.kernel.kallsyms]"); 80 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]", 81 machine->pid) < 0) 82 machine->mmap_name = NULL; 83 84 return machine->mmap_name ? 0 : -ENOMEM; 85 } 86 87 static void thread__set_guest_comm(struct thread *thread, pid_t pid) 88 { 89 char comm[64]; 90 91 snprintf(comm, sizeof(comm), "[guest/%d]", pid); 92 thread__set_comm(thread, comm, 0); 93 } 94 95 int machine__init(struct machine *machine, const char *root_dir, pid_t pid) 96 { 97 int err = -ENOMEM; 98 99 memset(machine, 0, sizeof(*machine)); 100 machine->kmaps = maps__new(machine); 101 if (machine->kmaps == NULL) 102 return -ENOMEM; 103 104 RB_CLEAR_NODE(&machine->rb_node); 105 dsos__init(&machine->dsos); 106 107 machine__threads_init(machine); 108 109 machine->vdso_info = NULL; 110 machine->env = NULL; 111 112 machine->pid = pid; 113 114 machine->id_hdr_size = 0; 115 machine->kptr_restrict_warned = false; 116 machine->comm_exec = false; 117 machine->kernel_start = 0; 118 machine->vmlinux_map = NULL; 119 120 machine->root_dir = strdup(root_dir); 121 if (machine->root_dir == NULL) 122 goto out; 123 124 if (machine__set_mmap_name(machine)) 125 goto out; 126 127 if (pid != HOST_KERNEL_ID) { 128 struct thread *thread = machine__findnew_thread(machine, -1, 129 pid); 130 131 if (thread == NULL) 132 goto out; 133 134 thread__set_guest_comm(thread, pid); 135 thread__put(thread); 136 } 137 138 machine->current_tid = NULL; 139 err = 0; 140 141 out: 142 if (err) { 143 zfree(&machine->kmaps); 144 zfree(&machine->root_dir); 145 zfree(&machine->mmap_name); 146 } 147 return 0; 148 } 149 150 struct machine *machine__new_host(void) 151 { 152 struct machine *machine = malloc(sizeof(*machine)); 153 154 if (machine != NULL) { 155 machine__init(machine, "", HOST_KERNEL_ID); 156 157 if (machine__create_kernel_maps(machine) < 0) 158 goto out_delete; 159 } 160 161 return machine; 162 out_delete: 163 free(machine); 164 return NULL; 165 } 166 167 struct machine *machine__new_kallsyms(void) 168 { 169 struct machine *machine = machine__new_host(); 170 /* 171 * FIXME: 172 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly 173 * ask for not using the kcore parsing code, once this one is fixed 174 * to create a map per module. 175 */ 176 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) { 177 machine__delete(machine); 178 machine = NULL; 179 } 180 181 return machine; 182 } 183 184 static void dsos__purge(struct dsos *dsos) 185 { 186 struct dso *pos, *n; 187 188 down_write(&dsos->lock); 189 190 list_for_each_entry_safe(pos, n, &dsos->head, node) { 191 RB_CLEAR_NODE(&pos->rb_node); 192 pos->root = NULL; 193 list_del_init(&pos->node); 194 dso__put(pos); 195 } 196 197 up_write(&dsos->lock); 198 } 199 200 static void dsos__exit(struct dsos *dsos) 201 { 202 dsos__purge(dsos); 203 exit_rwsem(&dsos->lock); 204 } 205 206 void machine__delete_threads(struct machine *machine) 207 { 208 struct rb_node *nd; 209 int i; 210 211 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 212 struct threads *threads = &machine->threads[i]; 213 down_write(&threads->lock); 214 nd = rb_first_cached(&threads->entries); 215 while (nd) { 216 struct thread *t = rb_entry(nd, struct thread, rb_node); 217 218 nd = rb_next(nd); 219 __machine__remove_thread(machine, t, false); 220 } 221 up_write(&threads->lock); 222 } 223 } 224 225 void machine__exit(struct machine *machine) 226 { 227 int i; 228 229 if (machine == NULL) 230 return; 231 232 machine__destroy_kernel_maps(machine); 233 maps__delete(machine->kmaps); 234 dsos__exit(&machine->dsos); 235 machine__exit_vdso(machine); 236 zfree(&machine->root_dir); 237 zfree(&machine->mmap_name); 238 zfree(&machine->current_tid); 239 zfree(&machine->kallsyms_filename); 240 241 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 242 struct threads *threads = &machine->threads[i]; 243 struct thread *thread, *n; 244 /* 245 * Forget about the dead, at this point whatever threads were 246 * left in the dead lists better have a reference count taken 247 * by who is using them, and then, when they drop those references 248 * and it finally hits zero, thread__put() will check and see that 249 * its not in the dead threads list and will not try to remove it 250 * from there, just calling thread__delete() straight away. 251 */ 252 list_for_each_entry_safe(thread, n, &threads->dead, node) 253 list_del_init(&thread->node); 254 255 exit_rwsem(&threads->lock); 256 } 257 } 258 259 void machine__delete(struct machine *machine) 260 { 261 if (machine) { 262 machine__exit(machine); 263 free(machine); 264 } 265 } 266 267 void machines__init(struct machines *machines) 268 { 269 machine__init(&machines->host, "", HOST_KERNEL_ID); 270 machines->guests = RB_ROOT_CACHED; 271 } 272 273 void machines__exit(struct machines *machines) 274 { 275 machine__exit(&machines->host); 276 /* XXX exit guest */ 277 } 278 279 struct machine *machines__add(struct machines *machines, pid_t pid, 280 const char *root_dir) 281 { 282 struct rb_node **p = &machines->guests.rb_root.rb_node; 283 struct rb_node *parent = NULL; 284 struct machine *pos, *machine = malloc(sizeof(*machine)); 285 bool leftmost = true; 286 287 if (machine == NULL) 288 return NULL; 289 290 if (machine__init(machine, root_dir, pid) != 0) { 291 free(machine); 292 return NULL; 293 } 294 295 while (*p != NULL) { 296 parent = *p; 297 pos = rb_entry(parent, struct machine, rb_node); 298 if (pid < pos->pid) 299 p = &(*p)->rb_left; 300 else { 301 p = &(*p)->rb_right; 302 leftmost = false; 303 } 304 } 305 306 rb_link_node(&machine->rb_node, parent, p); 307 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost); 308 309 machine->machines = machines; 310 311 return machine; 312 } 313 314 void machines__set_comm_exec(struct machines *machines, bool comm_exec) 315 { 316 struct rb_node *nd; 317 318 machines->host.comm_exec = comm_exec; 319 320 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 321 struct machine *machine = rb_entry(nd, struct machine, rb_node); 322 323 machine->comm_exec = comm_exec; 324 } 325 } 326 327 struct machine *machines__find(struct machines *machines, pid_t pid) 328 { 329 struct rb_node **p = &machines->guests.rb_root.rb_node; 330 struct rb_node *parent = NULL; 331 struct machine *machine; 332 struct machine *default_machine = NULL; 333 334 if (pid == HOST_KERNEL_ID) 335 return &machines->host; 336 337 while (*p != NULL) { 338 parent = *p; 339 machine = rb_entry(parent, struct machine, rb_node); 340 if (pid < machine->pid) 341 p = &(*p)->rb_left; 342 else if (pid > machine->pid) 343 p = &(*p)->rb_right; 344 else 345 return machine; 346 if (!machine->pid) 347 default_machine = machine; 348 } 349 350 return default_machine; 351 } 352 353 struct machine *machines__findnew(struct machines *machines, pid_t pid) 354 { 355 char path[PATH_MAX]; 356 const char *root_dir = ""; 357 struct machine *machine = machines__find(machines, pid); 358 359 if (machine && (machine->pid == pid)) 360 goto out; 361 362 if ((pid != HOST_KERNEL_ID) && 363 (pid != DEFAULT_GUEST_KERNEL_ID) && 364 (symbol_conf.guestmount)) { 365 sprintf(path, "%s/%d", symbol_conf.guestmount, pid); 366 if (access(path, R_OK)) { 367 static struct strlist *seen; 368 369 if (!seen) 370 seen = strlist__new(NULL, NULL); 371 372 if (!strlist__has_entry(seen, path)) { 373 pr_err("Can't access file %s\n", path); 374 strlist__add(seen, path); 375 } 376 machine = NULL; 377 goto out; 378 } 379 root_dir = path; 380 } 381 382 machine = machines__add(machines, pid, root_dir); 383 out: 384 return machine; 385 } 386 387 struct machine *machines__find_guest(struct machines *machines, pid_t pid) 388 { 389 struct machine *machine = machines__find(machines, pid); 390 391 if (!machine) 392 machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID); 393 return machine; 394 } 395 396 /* 397 * A common case for KVM test programs is that the test program acts as the 398 * hypervisor, creating, running and destroying the virtual machine, and 399 * providing the guest object code from its own object code. In this case, 400 * the VM is not running an OS, but only the functions loaded into it by the 401 * hypervisor test program, and conveniently, loaded at the same virtual 402 * addresses. 403 * 404 * Normally to resolve addresses, MMAP events are needed to map addresses 405 * back to the object code and debug symbols for that object code. 406 * 407 * Currently, there is no way to get such mapping information from guests 408 * but, in the scenario described above, the guest has the same mappings 409 * as the hypervisor, so support for that scenario can be achieved. 410 * 411 * To support that, copy the host thread's maps to the guest thread's maps. 412 * Note, we do not discover the guest until we encounter a guest event, 413 * which works well because it is not until then that we know that the host 414 * thread's maps have been set up. 415 * 416 * This function returns the guest thread. Apart from keeping the data 417 * structures sane, using a thread belonging to the guest machine, instead 418 * of the host thread, allows it to have its own comm (refer 419 * thread__set_guest_comm()). 420 */ 421 static struct thread *findnew_guest_code(struct machine *machine, 422 struct machine *host_machine, 423 pid_t pid) 424 { 425 struct thread *host_thread; 426 struct thread *thread; 427 int err; 428 429 if (!machine) 430 return NULL; 431 432 thread = machine__findnew_thread(machine, -1, pid); 433 if (!thread) 434 return NULL; 435 436 /* Assume maps are set up if there are any */ 437 if (thread->maps->nr_maps) 438 return thread; 439 440 host_thread = machine__find_thread(host_machine, -1, pid); 441 if (!host_thread) 442 goto out_err; 443 444 thread__set_guest_comm(thread, pid); 445 446 /* 447 * Guest code can be found in hypervisor process at the same address 448 * so copy host maps. 449 */ 450 err = maps__clone(thread, host_thread->maps); 451 thread__put(host_thread); 452 if (err) 453 goto out_err; 454 455 return thread; 456 457 out_err: 458 thread__zput(thread); 459 return NULL; 460 } 461 462 struct thread *machines__findnew_guest_code(struct machines *machines, pid_t pid) 463 { 464 struct machine *host_machine = machines__find(machines, HOST_KERNEL_ID); 465 struct machine *machine = machines__findnew(machines, pid); 466 467 return findnew_guest_code(machine, host_machine, pid); 468 } 469 470 struct thread *machine__findnew_guest_code(struct machine *machine, pid_t pid) 471 { 472 struct machines *machines = machine->machines; 473 struct machine *host_machine; 474 475 if (!machines) 476 return NULL; 477 478 host_machine = machines__find(machines, HOST_KERNEL_ID); 479 480 return findnew_guest_code(machine, host_machine, pid); 481 } 482 483 void machines__process_guests(struct machines *machines, 484 machine__process_t process, void *data) 485 { 486 struct rb_node *nd; 487 488 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 489 struct machine *pos = rb_entry(nd, struct machine, rb_node); 490 process(pos, data); 491 } 492 } 493 494 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size) 495 { 496 struct rb_node *node; 497 struct machine *machine; 498 499 machines->host.id_hdr_size = id_hdr_size; 500 501 for (node = rb_first_cached(&machines->guests); node; 502 node = rb_next(node)) { 503 machine = rb_entry(node, struct machine, rb_node); 504 machine->id_hdr_size = id_hdr_size; 505 } 506 507 return; 508 } 509 510 static void machine__update_thread_pid(struct machine *machine, 511 struct thread *th, pid_t pid) 512 { 513 struct thread *leader; 514 515 if (pid == th->pid_ || pid == -1 || th->pid_ != -1) 516 return; 517 518 th->pid_ = pid; 519 520 if (th->pid_ == th->tid) 521 return; 522 523 leader = __machine__findnew_thread(machine, th->pid_, th->pid_); 524 if (!leader) 525 goto out_err; 526 527 if (!leader->maps) 528 leader->maps = maps__new(machine); 529 530 if (!leader->maps) 531 goto out_err; 532 533 if (th->maps == leader->maps) 534 return; 535 536 if (th->maps) { 537 /* 538 * Maps are created from MMAP events which provide the pid and 539 * tid. Consequently there never should be any maps on a thread 540 * with an unknown pid. Just print an error if there are. 541 */ 542 if (!maps__empty(th->maps)) 543 pr_err("Discarding thread maps for %d:%d\n", 544 th->pid_, th->tid); 545 maps__put(th->maps); 546 } 547 548 th->maps = maps__get(leader->maps); 549 out_put: 550 thread__put(leader); 551 return; 552 out_err: 553 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid); 554 goto out_put; 555 } 556 557 /* 558 * Front-end cache - TID lookups come in blocks, 559 * so most of the time we dont have to look up 560 * the full rbtree: 561 */ 562 static struct thread* 563 __threads__get_last_match(struct threads *threads, struct machine *machine, 564 int pid, int tid) 565 { 566 struct thread *th; 567 568 th = threads->last_match; 569 if (th != NULL) { 570 if (th->tid == tid) { 571 machine__update_thread_pid(machine, th, pid); 572 return thread__get(th); 573 } 574 575 threads->last_match = NULL; 576 } 577 578 return NULL; 579 } 580 581 static struct thread* 582 threads__get_last_match(struct threads *threads, struct machine *machine, 583 int pid, int tid) 584 { 585 struct thread *th = NULL; 586 587 if (perf_singlethreaded) 588 th = __threads__get_last_match(threads, machine, pid, tid); 589 590 return th; 591 } 592 593 static void 594 __threads__set_last_match(struct threads *threads, struct thread *th) 595 { 596 threads->last_match = th; 597 } 598 599 static void 600 threads__set_last_match(struct threads *threads, struct thread *th) 601 { 602 if (perf_singlethreaded) 603 __threads__set_last_match(threads, th); 604 } 605 606 /* 607 * Caller must eventually drop thread->refcnt returned with a successful 608 * lookup/new thread inserted. 609 */ 610 static struct thread *____machine__findnew_thread(struct machine *machine, 611 struct threads *threads, 612 pid_t pid, pid_t tid, 613 bool create) 614 { 615 struct rb_node **p = &threads->entries.rb_root.rb_node; 616 struct rb_node *parent = NULL; 617 struct thread *th; 618 bool leftmost = true; 619 620 th = threads__get_last_match(threads, machine, pid, tid); 621 if (th) 622 return th; 623 624 while (*p != NULL) { 625 parent = *p; 626 th = rb_entry(parent, struct thread, rb_node); 627 628 if (th->tid == tid) { 629 threads__set_last_match(threads, th); 630 machine__update_thread_pid(machine, th, pid); 631 return thread__get(th); 632 } 633 634 if (tid < th->tid) 635 p = &(*p)->rb_left; 636 else { 637 p = &(*p)->rb_right; 638 leftmost = false; 639 } 640 } 641 642 if (!create) 643 return NULL; 644 645 th = thread__new(pid, tid); 646 if (th != NULL) { 647 rb_link_node(&th->rb_node, parent, p); 648 rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost); 649 650 /* 651 * We have to initialize maps separately after rb tree is updated. 652 * 653 * The reason is that we call machine__findnew_thread 654 * within thread__init_maps to find the thread 655 * leader and that would screwed the rb tree. 656 */ 657 if (thread__init_maps(th, machine)) { 658 rb_erase_cached(&th->rb_node, &threads->entries); 659 RB_CLEAR_NODE(&th->rb_node); 660 thread__put(th); 661 return NULL; 662 } 663 /* 664 * It is now in the rbtree, get a ref 665 */ 666 thread__get(th); 667 threads__set_last_match(threads, th); 668 ++threads->nr; 669 } 670 671 return th; 672 } 673 674 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid) 675 { 676 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true); 677 } 678 679 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, 680 pid_t tid) 681 { 682 struct threads *threads = machine__threads(machine, tid); 683 struct thread *th; 684 685 down_write(&threads->lock); 686 th = __machine__findnew_thread(machine, pid, tid); 687 up_write(&threads->lock); 688 return th; 689 } 690 691 struct thread *machine__find_thread(struct machine *machine, pid_t pid, 692 pid_t tid) 693 { 694 struct threads *threads = machine__threads(machine, tid); 695 struct thread *th; 696 697 down_read(&threads->lock); 698 th = ____machine__findnew_thread(machine, threads, pid, tid, false); 699 up_read(&threads->lock); 700 return th; 701 } 702 703 /* 704 * Threads are identified by pid and tid, and the idle task has pid == tid == 0. 705 * So here a single thread is created for that, but actually there is a separate 706 * idle task per cpu, so there should be one 'struct thread' per cpu, but there 707 * is only 1. That causes problems for some tools, requiring workarounds. For 708 * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu(). 709 */ 710 struct thread *machine__idle_thread(struct machine *machine) 711 { 712 struct thread *thread = machine__findnew_thread(machine, 0, 0); 713 714 if (!thread || thread__set_comm(thread, "swapper", 0) || 715 thread__set_namespaces(thread, 0, NULL)) 716 pr_err("problem inserting idle task for machine pid %d\n", machine->pid); 717 718 return thread; 719 } 720 721 struct comm *machine__thread_exec_comm(struct machine *machine, 722 struct thread *thread) 723 { 724 if (machine->comm_exec) 725 return thread__exec_comm(thread); 726 else 727 return thread__comm(thread); 728 } 729 730 int machine__process_comm_event(struct machine *machine, union perf_event *event, 731 struct perf_sample *sample) 732 { 733 struct thread *thread = machine__findnew_thread(machine, 734 event->comm.pid, 735 event->comm.tid); 736 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC; 737 int err = 0; 738 739 if (exec) 740 machine->comm_exec = true; 741 742 if (dump_trace) 743 perf_event__fprintf_comm(event, stdout); 744 745 if (thread == NULL || 746 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) { 747 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n"); 748 err = -1; 749 } 750 751 thread__put(thread); 752 753 return err; 754 } 755 756 int machine__process_namespaces_event(struct machine *machine __maybe_unused, 757 union perf_event *event, 758 struct perf_sample *sample __maybe_unused) 759 { 760 struct thread *thread = machine__findnew_thread(machine, 761 event->namespaces.pid, 762 event->namespaces.tid); 763 int err = 0; 764 765 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES, 766 "\nWARNING: kernel seems to support more namespaces than perf" 767 " tool.\nTry updating the perf tool..\n\n"); 768 769 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES, 770 "\nWARNING: perf tool seems to support more namespaces than" 771 " the kernel.\nTry updating the kernel..\n\n"); 772 773 if (dump_trace) 774 perf_event__fprintf_namespaces(event, stdout); 775 776 if (thread == NULL || 777 thread__set_namespaces(thread, sample->time, &event->namespaces)) { 778 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n"); 779 err = -1; 780 } 781 782 thread__put(thread); 783 784 return err; 785 } 786 787 int machine__process_cgroup_event(struct machine *machine, 788 union perf_event *event, 789 struct perf_sample *sample __maybe_unused) 790 { 791 struct cgroup *cgrp; 792 793 if (dump_trace) 794 perf_event__fprintf_cgroup(event, stdout); 795 796 cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path); 797 if (cgrp == NULL) 798 return -ENOMEM; 799 800 return 0; 801 } 802 803 int machine__process_lost_event(struct machine *machine __maybe_unused, 804 union perf_event *event, struct perf_sample *sample __maybe_unused) 805 { 806 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n", 807 event->lost.id, event->lost.lost); 808 return 0; 809 } 810 811 int machine__process_lost_samples_event(struct machine *machine __maybe_unused, 812 union perf_event *event, struct perf_sample *sample) 813 { 814 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n", 815 sample->id, event->lost_samples.lost); 816 return 0; 817 } 818 819 static struct dso *machine__findnew_module_dso(struct machine *machine, 820 struct kmod_path *m, 821 const char *filename) 822 { 823 struct dso *dso; 824 825 down_write(&machine->dsos.lock); 826 827 dso = __dsos__find(&machine->dsos, m->name, true); 828 if (!dso) { 829 dso = __dsos__addnew(&machine->dsos, m->name); 830 if (dso == NULL) 831 goto out_unlock; 832 833 dso__set_module_info(dso, m, machine); 834 dso__set_long_name(dso, strdup(filename), true); 835 dso->kernel = DSO_SPACE__KERNEL; 836 } 837 838 dso__get(dso); 839 out_unlock: 840 up_write(&machine->dsos.lock); 841 return dso; 842 } 843 844 int machine__process_aux_event(struct machine *machine __maybe_unused, 845 union perf_event *event) 846 { 847 if (dump_trace) 848 perf_event__fprintf_aux(event, stdout); 849 return 0; 850 } 851 852 int machine__process_itrace_start_event(struct machine *machine __maybe_unused, 853 union perf_event *event) 854 { 855 if (dump_trace) 856 perf_event__fprintf_itrace_start(event, stdout); 857 return 0; 858 } 859 860 int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused, 861 union perf_event *event) 862 { 863 if (dump_trace) 864 perf_event__fprintf_aux_output_hw_id(event, stdout); 865 return 0; 866 } 867 868 int machine__process_switch_event(struct machine *machine __maybe_unused, 869 union perf_event *event) 870 { 871 if (dump_trace) 872 perf_event__fprintf_switch(event, stdout); 873 return 0; 874 } 875 876 static int machine__process_ksymbol_register(struct machine *machine, 877 union perf_event *event, 878 struct perf_sample *sample __maybe_unused) 879 { 880 struct symbol *sym; 881 struct map *map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr); 882 883 if (!map) { 884 struct dso *dso = dso__new(event->ksymbol.name); 885 886 if (dso) { 887 dso->kernel = DSO_SPACE__KERNEL; 888 map = map__new2(0, dso); 889 dso__put(dso); 890 } 891 892 if (!dso || !map) { 893 return -ENOMEM; 894 } 895 896 if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) { 897 map->dso->binary_type = DSO_BINARY_TYPE__OOL; 898 map->dso->data.file_size = event->ksymbol.len; 899 dso__set_loaded(map->dso); 900 } 901 902 map->start = event->ksymbol.addr; 903 map->end = map->start + event->ksymbol.len; 904 maps__insert(machine__kernel_maps(machine), map); 905 map__put(map); 906 dso__set_loaded(dso); 907 908 if (is_bpf_image(event->ksymbol.name)) { 909 dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE; 910 dso__set_long_name(dso, "", false); 911 } 912 } 913 914 sym = symbol__new(map->map_ip(map, map->start), 915 event->ksymbol.len, 916 0, 0, event->ksymbol.name); 917 if (!sym) 918 return -ENOMEM; 919 dso__insert_symbol(map->dso, sym); 920 return 0; 921 } 922 923 static int machine__process_ksymbol_unregister(struct machine *machine, 924 union perf_event *event, 925 struct perf_sample *sample __maybe_unused) 926 { 927 struct symbol *sym; 928 struct map *map; 929 930 map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr); 931 if (!map) 932 return 0; 933 934 if (map != machine->vmlinux_map) 935 maps__remove(machine__kernel_maps(machine), map); 936 else { 937 sym = dso__find_symbol(map->dso, map->map_ip(map, map->start)); 938 if (sym) 939 dso__delete_symbol(map->dso, sym); 940 } 941 942 return 0; 943 } 944 945 int machine__process_ksymbol(struct machine *machine __maybe_unused, 946 union perf_event *event, 947 struct perf_sample *sample) 948 { 949 if (dump_trace) 950 perf_event__fprintf_ksymbol(event, stdout); 951 952 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER) 953 return machine__process_ksymbol_unregister(machine, event, 954 sample); 955 return machine__process_ksymbol_register(machine, event, sample); 956 } 957 958 int machine__process_text_poke(struct machine *machine, union perf_event *event, 959 struct perf_sample *sample __maybe_unused) 960 { 961 struct map *map = maps__find(machine__kernel_maps(machine), event->text_poke.addr); 962 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 963 964 if (dump_trace) 965 perf_event__fprintf_text_poke(event, machine, stdout); 966 967 if (!event->text_poke.new_len) 968 return 0; 969 970 if (cpumode != PERF_RECORD_MISC_KERNEL) { 971 pr_debug("%s: unsupported cpumode - ignoring\n", __func__); 972 return 0; 973 } 974 975 if (map && map->dso) { 976 u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len; 977 int ret; 978 979 /* 980 * Kernel maps might be changed when loading symbols so loading 981 * must be done prior to using kernel maps. 982 */ 983 map__load(map); 984 ret = dso__data_write_cache_addr(map->dso, map, machine, 985 event->text_poke.addr, 986 new_bytes, 987 event->text_poke.new_len); 988 if (ret != event->text_poke.new_len) 989 pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n", 990 event->text_poke.addr); 991 } else { 992 pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n", 993 event->text_poke.addr); 994 } 995 996 return 0; 997 } 998 999 static struct map *machine__addnew_module_map(struct machine *machine, u64 start, 1000 const char *filename) 1001 { 1002 struct map *map = NULL; 1003 struct kmod_path m; 1004 struct dso *dso; 1005 1006 if (kmod_path__parse_name(&m, filename)) 1007 return NULL; 1008 1009 dso = machine__findnew_module_dso(machine, &m, filename); 1010 if (dso == NULL) 1011 goto out; 1012 1013 map = map__new2(start, dso); 1014 if (map == NULL) 1015 goto out; 1016 1017 maps__insert(machine__kernel_maps(machine), map); 1018 1019 /* Put the map here because maps__insert already got it */ 1020 map__put(map); 1021 out: 1022 /* put the dso here, corresponding to machine__findnew_module_dso */ 1023 dso__put(dso); 1024 zfree(&m.name); 1025 return map; 1026 } 1027 1028 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp) 1029 { 1030 struct rb_node *nd; 1031 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp); 1032 1033 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 1034 struct machine *pos = rb_entry(nd, struct machine, rb_node); 1035 ret += __dsos__fprintf(&pos->dsos.head, fp); 1036 } 1037 1038 return ret; 1039 } 1040 1041 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp, 1042 bool (skip)(struct dso *dso, int parm), int parm) 1043 { 1044 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm); 1045 } 1046 1047 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp, 1048 bool (skip)(struct dso *dso, int parm), int parm) 1049 { 1050 struct rb_node *nd; 1051 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm); 1052 1053 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 1054 struct machine *pos = rb_entry(nd, struct machine, rb_node); 1055 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm); 1056 } 1057 return ret; 1058 } 1059 1060 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp) 1061 { 1062 int i; 1063 size_t printed = 0; 1064 struct dso *kdso = machine__kernel_dso(machine); 1065 1066 if (kdso->has_build_id) { 1067 char filename[PATH_MAX]; 1068 if (dso__build_id_filename(kdso, filename, sizeof(filename), 1069 false)) 1070 printed += fprintf(fp, "[0] %s\n", filename); 1071 } 1072 1073 for (i = 0; i < vmlinux_path__nr_entries; ++i) 1074 printed += fprintf(fp, "[%d] %s\n", 1075 i + kdso->has_build_id, vmlinux_path[i]); 1076 1077 return printed; 1078 } 1079 1080 size_t machine__fprintf(struct machine *machine, FILE *fp) 1081 { 1082 struct rb_node *nd; 1083 size_t ret; 1084 int i; 1085 1086 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 1087 struct threads *threads = &machine->threads[i]; 1088 1089 down_read(&threads->lock); 1090 1091 ret = fprintf(fp, "Threads: %u\n", threads->nr); 1092 1093 for (nd = rb_first_cached(&threads->entries); nd; 1094 nd = rb_next(nd)) { 1095 struct thread *pos = rb_entry(nd, struct thread, rb_node); 1096 1097 ret += thread__fprintf(pos, fp); 1098 } 1099 1100 up_read(&threads->lock); 1101 } 1102 return ret; 1103 } 1104 1105 static struct dso *machine__get_kernel(struct machine *machine) 1106 { 1107 const char *vmlinux_name = machine->mmap_name; 1108 struct dso *kernel; 1109 1110 if (machine__is_host(machine)) { 1111 if (symbol_conf.vmlinux_name) 1112 vmlinux_name = symbol_conf.vmlinux_name; 1113 1114 kernel = machine__findnew_kernel(machine, vmlinux_name, 1115 "[kernel]", DSO_SPACE__KERNEL); 1116 } else { 1117 if (symbol_conf.default_guest_vmlinux_name) 1118 vmlinux_name = symbol_conf.default_guest_vmlinux_name; 1119 1120 kernel = machine__findnew_kernel(machine, vmlinux_name, 1121 "[guest.kernel]", 1122 DSO_SPACE__KERNEL_GUEST); 1123 } 1124 1125 if (kernel != NULL && (!kernel->has_build_id)) 1126 dso__read_running_kernel_build_id(kernel, machine); 1127 1128 return kernel; 1129 } 1130 1131 void machine__get_kallsyms_filename(struct machine *machine, char *buf, 1132 size_t bufsz) 1133 { 1134 if (machine__is_default_guest(machine)) 1135 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms); 1136 else 1137 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir); 1138 } 1139 1140 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL}; 1141 1142 /* Figure out the start address of kernel map from /proc/kallsyms. 1143 * Returns the name of the start symbol in *symbol_name. Pass in NULL as 1144 * symbol_name if it's not that important. 1145 */ 1146 static int machine__get_running_kernel_start(struct machine *machine, 1147 const char **symbol_name, 1148 u64 *start, u64 *end) 1149 { 1150 char filename[PATH_MAX]; 1151 int i, err = -1; 1152 const char *name; 1153 u64 addr = 0; 1154 1155 machine__get_kallsyms_filename(machine, filename, PATH_MAX); 1156 1157 if (symbol__restricted_filename(filename, "/proc/kallsyms")) 1158 return 0; 1159 1160 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) { 1161 err = kallsyms__get_function_start(filename, name, &addr); 1162 if (!err) 1163 break; 1164 } 1165 1166 if (err) 1167 return -1; 1168 1169 if (symbol_name) 1170 *symbol_name = name; 1171 1172 *start = addr; 1173 1174 err = kallsyms__get_function_start(filename, "_etext", &addr); 1175 if (!err) 1176 *end = addr; 1177 1178 return 0; 1179 } 1180 1181 int machine__create_extra_kernel_map(struct machine *machine, 1182 struct dso *kernel, 1183 struct extra_kernel_map *xm) 1184 { 1185 struct kmap *kmap; 1186 struct map *map; 1187 1188 map = map__new2(xm->start, kernel); 1189 if (!map) 1190 return -1; 1191 1192 map->end = xm->end; 1193 map->pgoff = xm->pgoff; 1194 1195 kmap = map__kmap(map); 1196 1197 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN); 1198 1199 maps__insert(machine__kernel_maps(machine), map); 1200 1201 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n", 1202 kmap->name, map->start, map->end); 1203 1204 map__put(map); 1205 1206 return 0; 1207 } 1208 1209 static u64 find_entry_trampoline(struct dso *dso) 1210 { 1211 /* Duplicates are removed so lookup all aliases */ 1212 const char *syms[] = { 1213 "_entry_trampoline", 1214 "__entry_trampoline_start", 1215 "entry_SYSCALL_64_trampoline", 1216 }; 1217 struct symbol *sym = dso__first_symbol(dso); 1218 unsigned int i; 1219 1220 for (; sym; sym = dso__next_symbol(sym)) { 1221 if (sym->binding != STB_GLOBAL) 1222 continue; 1223 for (i = 0; i < ARRAY_SIZE(syms); i++) { 1224 if (!strcmp(sym->name, syms[i])) 1225 return sym->start; 1226 } 1227 } 1228 1229 return 0; 1230 } 1231 1232 /* 1233 * These values can be used for kernels that do not have symbols for the entry 1234 * trampolines in kallsyms. 1235 */ 1236 #define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL 1237 #define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000 1238 #define X86_64_ENTRY_TRAMPOLINE 0x6000 1239 1240 /* Map x86_64 PTI entry trampolines */ 1241 int machine__map_x86_64_entry_trampolines(struct machine *machine, 1242 struct dso *kernel) 1243 { 1244 struct maps *kmaps = machine__kernel_maps(machine); 1245 int nr_cpus_avail, cpu; 1246 bool found = false; 1247 struct map *map; 1248 u64 pgoff; 1249 1250 /* 1251 * In the vmlinux case, pgoff is a virtual address which must now be 1252 * mapped to a vmlinux offset. 1253 */ 1254 maps__for_each_entry(kmaps, map) { 1255 struct kmap *kmap = __map__kmap(map); 1256 struct map *dest_map; 1257 1258 if (!kmap || !is_entry_trampoline(kmap->name)) 1259 continue; 1260 1261 dest_map = maps__find(kmaps, map->pgoff); 1262 if (dest_map != map) 1263 map->pgoff = dest_map->map_ip(dest_map, map->pgoff); 1264 found = true; 1265 } 1266 if (found || machine->trampolines_mapped) 1267 return 0; 1268 1269 pgoff = find_entry_trampoline(kernel); 1270 if (!pgoff) 1271 return 0; 1272 1273 nr_cpus_avail = machine__nr_cpus_avail(machine); 1274 1275 /* Add a 1 page map for each CPU's entry trampoline */ 1276 for (cpu = 0; cpu < nr_cpus_avail; cpu++) { 1277 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU + 1278 cpu * X86_64_CPU_ENTRY_AREA_SIZE + 1279 X86_64_ENTRY_TRAMPOLINE; 1280 struct extra_kernel_map xm = { 1281 .start = va, 1282 .end = va + page_size, 1283 .pgoff = pgoff, 1284 }; 1285 1286 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN); 1287 1288 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0) 1289 return -1; 1290 } 1291 1292 machine->trampolines_mapped = nr_cpus_avail; 1293 1294 return 0; 1295 } 1296 1297 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused, 1298 struct dso *kernel __maybe_unused) 1299 { 1300 return 0; 1301 } 1302 1303 static int 1304 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel) 1305 { 1306 /* In case of renewal the kernel map, destroy previous one */ 1307 machine__destroy_kernel_maps(machine); 1308 1309 machine->vmlinux_map = map__new2(0, kernel); 1310 if (machine->vmlinux_map == NULL) 1311 return -1; 1312 1313 machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip; 1314 maps__insert(machine__kernel_maps(machine), machine->vmlinux_map); 1315 return 0; 1316 } 1317 1318 void machine__destroy_kernel_maps(struct machine *machine) 1319 { 1320 struct kmap *kmap; 1321 struct map *map = machine__kernel_map(machine); 1322 1323 if (map == NULL) 1324 return; 1325 1326 kmap = map__kmap(map); 1327 maps__remove(machine__kernel_maps(machine), map); 1328 if (kmap && kmap->ref_reloc_sym) { 1329 zfree((char **)&kmap->ref_reloc_sym->name); 1330 zfree(&kmap->ref_reloc_sym); 1331 } 1332 1333 map__zput(machine->vmlinux_map); 1334 } 1335 1336 int machines__create_guest_kernel_maps(struct machines *machines) 1337 { 1338 int ret = 0; 1339 struct dirent **namelist = NULL; 1340 int i, items = 0; 1341 char path[PATH_MAX]; 1342 pid_t pid; 1343 char *endp; 1344 1345 if (symbol_conf.default_guest_vmlinux_name || 1346 symbol_conf.default_guest_modules || 1347 symbol_conf.default_guest_kallsyms) { 1348 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID); 1349 } 1350 1351 if (symbol_conf.guestmount) { 1352 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL); 1353 if (items <= 0) 1354 return -ENOENT; 1355 for (i = 0; i < items; i++) { 1356 if (!isdigit(namelist[i]->d_name[0])) { 1357 /* Filter out . and .. */ 1358 continue; 1359 } 1360 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10); 1361 if ((*endp != '\0') || 1362 (endp == namelist[i]->d_name) || 1363 (errno == ERANGE)) { 1364 pr_debug("invalid directory (%s). Skipping.\n", 1365 namelist[i]->d_name); 1366 continue; 1367 } 1368 sprintf(path, "%s/%s/proc/kallsyms", 1369 symbol_conf.guestmount, 1370 namelist[i]->d_name); 1371 ret = access(path, R_OK); 1372 if (ret) { 1373 pr_debug("Can't access file %s\n", path); 1374 goto failure; 1375 } 1376 machines__create_kernel_maps(machines, pid); 1377 } 1378 failure: 1379 free(namelist); 1380 } 1381 1382 return ret; 1383 } 1384 1385 void machines__destroy_kernel_maps(struct machines *machines) 1386 { 1387 struct rb_node *next = rb_first_cached(&machines->guests); 1388 1389 machine__destroy_kernel_maps(&machines->host); 1390 1391 while (next) { 1392 struct machine *pos = rb_entry(next, struct machine, rb_node); 1393 1394 next = rb_next(&pos->rb_node); 1395 rb_erase_cached(&pos->rb_node, &machines->guests); 1396 machine__delete(pos); 1397 } 1398 } 1399 1400 int machines__create_kernel_maps(struct machines *machines, pid_t pid) 1401 { 1402 struct machine *machine = machines__findnew(machines, pid); 1403 1404 if (machine == NULL) 1405 return -1; 1406 1407 return machine__create_kernel_maps(machine); 1408 } 1409 1410 int machine__load_kallsyms(struct machine *machine, const char *filename) 1411 { 1412 struct map *map = machine__kernel_map(machine); 1413 int ret = __dso__load_kallsyms(map->dso, filename, map, true); 1414 1415 if (ret > 0) { 1416 dso__set_loaded(map->dso); 1417 /* 1418 * Since /proc/kallsyms will have multiple sessions for the 1419 * kernel, with modules between them, fixup the end of all 1420 * sections. 1421 */ 1422 maps__fixup_end(machine__kernel_maps(machine)); 1423 } 1424 1425 return ret; 1426 } 1427 1428 int machine__load_vmlinux_path(struct machine *machine) 1429 { 1430 struct map *map = machine__kernel_map(machine); 1431 int ret = dso__load_vmlinux_path(map->dso, map); 1432 1433 if (ret > 0) 1434 dso__set_loaded(map->dso); 1435 1436 return ret; 1437 } 1438 1439 static char *get_kernel_version(const char *root_dir) 1440 { 1441 char version[PATH_MAX]; 1442 FILE *file; 1443 char *name, *tmp; 1444 const char *prefix = "Linux version "; 1445 1446 sprintf(version, "%s/proc/version", root_dir); 1447 file = fopen(version, "r"); 1448 if (!file) 1449 return NULL; 1450 1451 tmp = fgets(version, sizeof(version), file); 1452 fclose(file); 1453 if (!tmp) 1454 return NULL; 1455 1456 name = strstr(version, prefix); 1457 if (!name) 1458 return NULL; 1459 name += strlen(prefix); 1460 tmp = strchr(name, ' '); 1461 if (tmp) 1462 *tmp = '\0'; 1463 1464 return strdup(name); 1465 } 1466 1467 static bool is_kmod_dso(struct dso *dso) 1468 { 1469 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE || 1470 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE; 1471 } 1472 1473 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m) 1474 { 1475 char *long_name; 1476 struct map *map = maps__find_by_name(maps, m->name); 1477 1478 if (map == NULL) 1479 return 0; 1480 1481 long_name = strdup(path); 1482 if (long_name == NULL) 1483 return -ENOMEM; 1484 1485 dso__set_long_name(map->dso, long_name, true); 1486 dso__kernel_module_get_build_id(map->dso, ""); 1487 1488 /* 1489 * Full name could reveal us kmod compression, so 1490 * we need to update the symtab_type if needed. 1491 */ 1492 if (m->comp && is_kmod_dso(map->dso)) { 1493 map->dso->symtab_type++; 1494 map->dso->comp = m->comp; 1495 } 1496 1497 return 0; 1498 } 1499 1500 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth) 1501 { 1502 struct dirent *dent; 1503 DIR *dir = opendir(dir_name); 1504 int ret = 0; 1505 1506 if (!dir) { 1507 pr_debug("%s: cannot open %s dir\n", __func__, dir_name); 1508 return -1; 1509 } 1510 1511 while ((dent = readdir(dir)) != NULL) { 1512 char path[PATH_MAX]; 1513 struct stat st; 1514 1515 /*sshfs might return bad dent->d_type, so we have to stat*/ 1516 path__join(path, sizeof(path), dir_name, dent->d_name); 1517 if (stat(path, &st)) 1518 continue; 1519 1520 if (S_ISDIR(st.st_mode)) { 1521 if (!strcmp(dent->d_name, ".") || 1522 !strcmp(dent->d_name, "..")) 1523 continue; 1524 1525 /* Do not follow top-level source and build symlinks */ 1526 if (depth == 0) { 1527 if (!strcmp(dent->d_name, "source") || 1528 !strcmp(dent->d_name, "build")) 1529 continue; 1530 } 1531 1532 ret = maps__set_modules_path_dir(maps, path, depth + 1); 1533 if (ret < 0) 1534 goto out; 1535 } else { 1536 struct kmod_path m; 1537 1538 ret = kmod_path__parse_name(&m, dent->d_name); 1539 if (ret) 1540 goto out; 1541 1542 if (m.kmod) 1543 ret = maps__set_module_path(maps, path, &m); 1544 1545 zfree(&m.name); 1546 1547 if (ret) 1548 goto out; 1549 } 1550 } 1551 1552 out: 1553 closedir(dir); 1554 return ret; 1555 } 1556 1557 static int machine__set_modules_path(struct machine *machine) 1558 { 1559 char *version; 1560 char modules_path[PATH_MAX]; 1561 1562 version = get_kernel_version(machine->root_dir); 1563 if (!version) 1564 return -1; 1565 1566 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s", 1567 machine->root_dir, version); 1568 free(version); 1569 1570 return maps__set_modules_path_dir(machine__kernel_maps(machine), modules_path, 0); 1571 } 1572 int __weak arch__fix_module_text_start(u64 *start __maybe_unused, 1573 u64 *size __maybe_unused, 1574 const char *name __maybe_unused) 1575 { 1576 return 0; 1577 } 1578 1579 static int machine__create_module(void *arg, const char *name, u64 start, 1580 u64 size) 1581 { 1582 struct machine *machine = arg; 1583 struct map *map; 1584 1585 if (arch__fix_module_text_start(&start, &size, name) < 0) 1586 return -1; 1587 1588 map = machine__addnew_module_map(machine, start, name); 1589 if (map == NULL) 1590 return -1; 1591 map->end = start + size; 1592 1593 dso__kernel_module_get_build_id(map->dso, machine->root_dir); 1594 1595 return 0; 1596 } 1597 1598 static int machine__create_modules(struct machine *machine) 1599 { 1600 const char *modules; 1601 char path[PATH_MAX]; 1602 1603 if (machine__is_default_guest(machine)) { 1604 modules = symbol_conf.default_guest_modules; 1605 } else { 1606 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir); 1607 modules = path; 1608 } 1609 1610 if (symbol__restricted_filename(modules, "/proc/modules")) 1611 return -1; 1612 1613 if (modules__parse(modules, machine, machine__create_module)) 1614 return -1; 1615 1616 if (!machine__set_modules_path(machine)) 1617 return 0; 1618 1619 pr_debug("Problems setting modules path maps, continuing anyway...\n"); 1620 1621 return 0; 1622 } 1623 1624 static void machine__set_kernel_mmap(struct machine *machine, 1625 u64 start, u64 end) 1626 { 1627 machine->vmlinux_map->start = start; 1628 machine->vmlinux_map->end = end; 1629 /* 1630 * Be a bit paranoid here, some perf.data file came with 1631 * a zero sized synthesized MMAP event for the kernel. 1632 */ 1633 if (start == 0 && end == 0) 1634 machine->vmlinux_map->end = ~0ULL; 1635 } 1636 1637 static void machine__update_kernel_mmap(struct machine *machine, 1638 u64 start, u64 end) 1639 { 1640 struct map *map = machine__kernel_map(machine); 1641 1642 map__get(map); 1643 maps__remove(machine__kernel_maps(machine), map); 1644 1645 machine__set_kernel_mmap(machine, start, end); 1646 1647 maps__insert(machine__kernel_maps(machine), map); 1648 map__put(map); 1649 } 1650 1651 int machine__create_kernel_maps(struct machine *machine) 1652 { 1653 struct dso *kernel = machine__get_kernel(machine); 1654 const char *name = NULL; 1655 struct map *map; 1656 u64 start = 0, end = ~0ULL; 1657 int ret; 1658 1659 if (kernel == NULL) 1660 return -1; 1661 1662 ret = __machine__create_kernel_maps(machine, kernel); 1663 if (ret < 0) 1664 goto out_put; 1665 1666 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) { 1667 if (machine__is_host(machine)) 1668 pr_debug("Problems creating module maps, " 1669 "continuing anyway...\n"); 1670 else 1671 pr_debug("Problems creating module maps for guest %d, " 1672 "continuing anyway...\n", machine->pid); 1673 } 1674 1675 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) { 1676 if (name && 1677 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) { 1678 machine__destroy_kernel_maps(machine); 1679 ret = -1; 1680 goto out_put; 1681 } 1682 1683 /* 1684 * we have a real start address now, so re-order the kmaps 1685 * assume it's the last in the kmaps 1686 */ 1687 machine__update_kernel_mmap(machine, start, end); 1688 } 1689 1690 if (machine__create_extra_kernel_maps(machine, kernel)) 1691 pr_debug("Problems creating extra kernel maps, continuing anyway...\n"); 1692 1693 if (end == ~0ULL) { 1694 /* update end address of the kernel map using adjacent module address */ 1695 map = map__next(machine__kernel_map(machine)); 1696 if (map) 1697 machine__set_kernel_mmap(machine, start, map->start); 1698 } 1699 1700 out_put: 1701 dso__put(kernel); 1702 return ret; 1703 } 1704 1705 static bool machine__uses_kcore(struct machine *machine) 1706 { 1707 struct dso *dso; 1708 1709 list_for_each_entry(dso, &machine->dsos.head, node) { 1710 if (dso__is_kcore(dso)) 1711 return true; 1712 } 1713 1714 return false; 1715 } 1716 1717 static bool perf_event__is_extra_kernel_mmap(struct machine *machine, 1718 struct extra_kernel_map *xm) 1719 { 1720 return machine__is(machine, "x86_64") && 1721 is_entry_trampoline(xm->name); 1722 } 1723 1724 static int machine__process_extra_kernel_map(struct machine *machine, 1725 struct extra_kernel_map *xm) 1726 { 1727 struct dso *kernel = machine__kernel_dso(machine); 1728 1729 if (kernel == NULL) 1730 return -1; 1731 1732 return machine__create_extra_kernel_map(machine, kernel, xm); 1733 } 1734 1735 static int machine__process_kernel_mmap_event(struct machine *machine, 1736 struct extra_kernel_map *xm, 1737 struct build_id *bid) 1738 { 1739 struct map *map; 1740 enum dso_space_type dso_space; 1741 bool is_kernel_mmap; 1742 const char *mmap_name = machine->mmap_name; 1743 1744 /* If we have maps from kcore then we do not need or want any others */ 1745 if (machine__uses_kcore(machine)) 1746 return 0; 1747 1748 if (machine__is_host(machine)) 1749 dso_space = DSO_SPACE__KERNEL; 1750 else 1751 dso_space = DSO_SPACE__KERNEL_GUEST; 1752 1753 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0; 1754 if (!is_kernel_mmap && !machine__is_host(machine)) { 1755 /* 1756 * If the event was recorded inside the guest and injected into 1757 * the host perf.data file, then it will match a host mmap_name, 1758 * so try that - see machine__set_mmap_name(). 1759 */ 1760 mmap_name = "[kernel.kallsyms]"; 1761 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0; 1762 } 1763 if (xm->name[0] == '/' || 1764 (!is_kernel_mmap && xm->name[0] == '[')) { 1765 map = machine__addnew_module_map(machine, xm->start, 1766 xm->name); 1767 if (map == NULL) 1768 goto out_problem; 1769 1770 map->end = map->start + xm->end - xm->start; 1771 1772 if (build_id__is_defined(bid)) 1773 dso__set_build_id(map->dso, bid); 1774 1775 } else if (is_kernel_mmap) { 1776 const char *symbol_name = xm->name + strlen(mmap_name); 1777 /* 1778 * Should be there already, from the build-id table in 1779 * the header. 1780 */ 1781 struct dso *kernel = NULL; 1782 struct dso *dso; 1783 1784 down_read(&machine->dsos.lock); 1785 1786 list_for_each_entry(dso, &machine->dsos.head, node) { 1787 1788 /* 1789 * The cpumode passed to is_kernel_module is not the 1790 * cpumode of *this* event. If we insist on passing 1791 * correct cpumode to is_kernel_module, we should 1792 * record the cpumode when we adding this dso to the 1793 * linked list. 1794 * 1795 * However we don't really need passing correct 1796 * cpumode. We know the correct cpumode must be kernel 1797 * mode (if not, we should not link it onto kernel_dsos 1798 * list). 1799 * 1800 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN. 1801 * is_kernel_module() treats it as a kernel cpumode. 1802 */ 1803 1804 if (!dso->kernel || 1805 is_kernel_module(dso->long_name, 1806 PERF_RECORD_MISC_CPUMODE_UNKNOWN)) 1807 continue; 1808 1809 1810 kernel = dso; 1811 break; 1812 } 1813 1814 up_read(&machine->dsos.lock); 1815 1816 if (kernel == NULL) 1817 kernel = machine__findnew_dso(machine, machine->mmap_name); 1818 if (kernel == NULL) 1819 goto out_problem; 1820 1821 kernel->kernel = dso_space; 1822 if (__machine__create_kernel_maps(machine, kernel) < 0) { 1823 dso__put(kernel); 1824 goto out_problem; 1825 } 1826 1827 if (strstr(kernel->long_name, "vmlinux")) 1828 dso__set_short_name(kernel, "[kernel.vmlinux]", false); 1829 1830 machine__update_kernel_mmap(machine, xm->start, xm->end); 1831 1832 if (build_id__is_defined(bid)) 1833 dso__set_build_id(kernel, bid); 1834 1835 /* 1836 * Avoid using a zero address (kptr_restrict) for the ref reloc 1837 * symbol. Effectively having zero here means that at record 1838 * time /proc/sys/kernel/kptr_restrict was non zero. 1839 */ 1840 if (xm->pgoff != 0) { 1841 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, 1842 symbol_name, 1843 xm->pgoff); 1844 } 1845 1846 if (machine__is_default_guest(machine)) { 1847 /* 1848 * preload dso of guest kernel and modules 1849 */ 1850 dso__load(kernel, machine__kernel_map(machine)); 1851 } 1852 } else if (perf_event__is_extra_kernel_mmap(machine, xm)) { 1853 return machine__process_extra_kernel_map(machine, xm); 1854 } 1855 return 0; 1856 out_problem: 1857 return -1; 1858 } 1859 1860 int machine__process_mmap2_event(struct machine *machine, 1861 union perf_event *event, 1862 struct perf_sample *sample) 1863 { 1864 struct thread *thread; 1865 struct map *map; 1866 struct dso_id dso_id = { 1867 .maj = event->mmap2.maj, 1868 .min = event->mmap2.min, 1869 .ino = event->mmap2.ino, 1870 .ino_generation = event->mmap2.ino_generation, 1871 }; 1872 struct build_id __bid, *bid = NULL; 1873 int ret = 0; 1874 1875 if (dump_trace) 1876 perf_event__fprintf_mmap2(event, stdout); 1877 1878 if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) { 1879 bid = &__bid; 1880 build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size); 1881 } 1882 1883 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1884 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1885 struct extra_kernel_map xm = { 1886 .start = event->mmap2.start, 1887 .end = event->mmap2.start + event->mmap2.len, 1888 .pgoff = event->mmap2.pgoff, 1889 }; 1890 1891 strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN); 1892 ret = machine__process_kernel_mmap_event(machine, &xm, bid); 1893 if (ret < 0) 1894 goto out_problem; 1895 return 0; 1896 } 1897 1898 thread = machine__findnew_thread(machine, event->mmap2.pid, 1899 event->mmap2.tid); 1900 if (thread == NULL) 1901 goto out_problem; 1902 1903 map = map__new(machine, event->mmap2.start, 1904 event->mmap2.len, event->mmap2.pgoff, 1905 &dso_id, event->mmap2.prot, 1906 event->mmap2.flags, bid, 1907 event->mmap2.filename, thread); 1908 1909 if (map == NULL) 1910 goto out_problem_map; 1911 1912 ret = thread__insert_map(thread, map); 1913 if (ret) 1914 goto out_problem_insert; 1915 1916 thread__put(thread); 1917 map__put(map); 1918 return 0; 1919 1920 out_problem_insert: 1921 map__put(map); 1922 out_problem_map: 1923 thread__put(thread); 1924 out_problem: 1925 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n"); 1926 return 0; 1927 } 1928 1929 int machine__process_mmap_event(struct machine *machine, union perf_event *event, 1930 struct perf_sample *sample) 1931 { 1932 struct thread *thread; 1933 struct map *map; 1934 u32 prot = 0; 1935 int ret = 0; 1936 1937 if (dump_trace) 1938 perf_event__fprintf_mmap(event, stdout); 1939 1940 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1941 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1942 struct extra_kernel_map xm = { 1943 .start = event->mmap.start, 1944 .end = event->mmap.start + event->mmap.len, 1945 .pgoff = event->mmap.pgoff, 1946 }; 1947 1948 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN); 1949 ret = machine__process_kernel_mmap_event(machine, &xm, NULL); 1950 if (ret < 0) 1951 goto out_problem; 1952 return 0; 1953 } 1954 1955 thread = machine__findnew_thread(machine, event->mmap.pid, 1956 event->mmap.tid); 1957 if (thread == NULL) 1958 goto out_problem; 1959 1960 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA)) 1961 prot = PROT_EXEC; 1962 1963 map = map__new(machine, event->mmap.start, 1964 event->mmap.len, event->mmap.pgoff, 1965 NULL, prot, 0, NULL, event->mmap.filename, thread); 1966 1967 if (map == NULL) 1968 goto out_problem_map; 1969 1970 ret = thread__insert_map(thread, map); 1971 if (ret) 1972 goto out_problem_insert; 1973 1974 thread__put(thread); 1975 map__put(map); 1976 return 0; 1977 1978 out_problem_insert: 1979 map__put(map); 1980 out_problem_map: 1981 thread__put(thread); 1982 out_problem: 1983 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n"); 1984 return 0; 1985 } 1986 1987 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock) 1988 { 1989 struct threads *threads = machine__threads(machine, th->tid); 1990 1991 if (threads->last_match == th) 1992 threads__set_last_match(threads, NULL); 1993 1994 if (lock) 1995 down_write(&threads->lock); 1996 1997 BUG_ON(refcount_read(&th->refcnt) == 0); 1998 1999 rb_erase_cached(&th->rb_node, &threads->entries); 2000 RB_CLEAR_NODE(&th->rb_node); 2001 --threads->nr; 2002 /* 2003 * Move it first to the dead_threads list, then drop the reference, 2004 * if this is the last reference, then the thread__delete destructor 2005 * will be called and we will remove it from the dead_threads list. 2006 */ 2007 list_add_tail(&th->node, &threads->dead); 2008 2009 /* 2010 * We need to do the put here because if this is the last refcount, 2011 * then we will be touching the threads->dead head when removing the 2012 * thread. 2013 */ 2014 thread__put(th); 2015 2016 if (lock) 2017 up_write(&threads->lock); 2018 } 2019 2020 void machine__remove_thread(struct machine *machine, struct thread *th) 2021 { 2022 return __machine__remove_thread(machine, th, true); 2023 } 2024 2025 int machine__process_fork_event(struct machine *machine, union perf_event *event, 2026 struct perf_sample *sample) 2027 { 2028 struct thread *thread = machine__find_thread(machine, 2029 event->fork.pid, 2030 event->fork.tid); 2031 struct thread *parent = machine__findnew_thread(machine, 2032 event->fork.ppid, 2033 event->fork.ptid); 2034 bool do_maps_clone = true; 2035 int err = 0; 2036 2037 if (dump_trace) 2038 perf_event__fprintf_task(event, stdout); 2039 2040 /* 2041 * There may be an existing thread that is not actually the parent, 2042 * either because we are processing events out of order, or because the 2043 * (fork) event that would have removed the thread was lost. Assume the 2044 * latter case and continue on as best we can. 2045 */ 2046 if (parent->pid_ != (pid_t)event->fork.ppid) { 2047 dump_printf("removing erroneous parent thread %d/%d\n", 2048 parent->pid_, parent->tid); 2049 machine__remove_thread(machine, parent); 2050 thread__put(parent); 2051 parent = machine__findnew_thread(machine, event->fork.ppid, 2052 event->fork.ptid); 2053 } 2054 2055 /* if a thread currently exists for the thread id remove it */ 2056 if (thread != NULL) { 2057 machine__remove_thread(machine, thread); 2058 thread__put(thread); 2059 } 2060 2061 thread = machine__findnew_thread(machine, event->fork.pid, 2062 event->fork.tid); 2063 /* 2064 * When synthesizing FORK events, we are trying to create thread 2065 * objects for the already running tasks on the machine. 2066 * 2067 * Normally, for a kernel FORK event, we want to clone the parent's 2068 * maps because that is what the kernel just did. 2069 * 2070 * But when synthesizing, this should not be done. If we do, we end up 2071 * with overlapping maps as we process the synthesized MMAP2 events that 2072 * get delivered shortly thereafter. 2073 * 2074 * Use the FORK event misc flags in an internal way to signal this 2075 * situation, so we can elide the map clone when appropriate. 2076 */ 2077 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC) 2078 do_maps_clone = false; 2079 2080 if (thread == NULL || parent == NULL || 2081 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) { 2082 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n"); 2083 err = -1; 2084 } 2085 thread__put(thread); 2086 thread__put(parent); 2087 2088 return err; 2089 } 2090 2091 int machine__process_exit_event(struct machine *machine, union perf_event *event, 2092 struct perf_sample *sample __maybe_unused) 2093 { 2094 struct thread *thread = machine__find_thread(machine, 2095 event->fork.pid, 2096 event->fork.tid); 2097 2098 if (dump_trace) 2099 perf_event__fprintf_task(event, stdout); 2100 2101 if (thread != NULL) { 2102 thread__exited(thread); 2103 thread__put(thread); 2104 } 2105 2106 return 0; 2107 } 2108 2109 int machine__process_event(struct machine *machine, union perf_event *event, 2110 struct perf_sample *sample) 2111 { 2112 int ret; 2113 2114 switch (event->header.type) { 2115 case PERF_RECORD_COMM: 2116 ret = machine__process_comm_event(machine, event, sample); break; 2117 case PERF_RECORD_MMAP: 2118 ret = machine__process_mmap_event(machine, event, sample); break; 2119 case PERF_RECORD_NAMESPACES: 2120 ret = machine__process_namespaces_event(machine, event, sample); break; 2121 case PERF_RECORD_CGROUP: 2122 ret = machine__process_cgroup_event(machine, event, sample); break; 2123 case PERF_RECORD_MMAP2: 2124 ret = machine__process_mmap2_event(machine, event, sample); break; 2125 case PERF_RECORD_FORK: 2126 ret = machine__process_fork_event(machine, event, sample); break; 2127 case PERF_RECORD_EXIT: 2128 ret = machine__process_exit_event(machine, event, sample); break; 2129 case PERF_RECORD_LOST: 2130 ret = machine__process_lost_event(machine, event, sample); break; 2131 case PERF_RECORD_AUX: 2132 ret = machine__process_aux_event(machine, event); break; 2133 case PERF_RECORD_ITRACE_START: 2134 ret = machine__process_itrace_start_event(machine, event); break; 2135 case PERF_RECORD_LOST_SAMPLES: 2136 ret = machine__process_lost_samples_event(machine, event, sample); break; 2137 case PERF_RECORD_SWITCH: 2138 case PERF_RECORD_SWITCH_CPU_WIDE: 2139 ret = machine__process_switch_event(machine, event); break; 2140 case PERF_RECORD_KSYMBOL: 2141 ret = machine__process_ksymbol(machine, event, sample); break; 2142 case PERF_RECORD_BPF_EVENT: 2143 ret = machine__process_bpf(machine, event, sample); break; 2144 case PERF_RECORD_TEXT_POKE: 2145 ret = machine__process_text_poke(machine, event, sample); break; 2146 case PERF_RECORD_AUX_OUTPUT_HW_ID: 2147 ret = machine__process_aux_output_hw_id_event(machine, event); break; 2148 default: 2149 ret = -1; 2150 break; 2151 } 2152 2153 return ret; 2154 } 2155 2156 static bool symbol__match_regex(struct symbol *sym, regex_t *regex) 2157 { 2158 if (!regexec(regex, sym->name, 0, NULL, 0)) 2159 return true; 2160 return false; 2161 } 2162 2163 static void ip__resolve_ams(struct thread *thread, 2164 struct addr_map_symbol *ams, 2165 u64 ip) 2166 { 2167 struct addr_location al; 2168 2169 memset(&al, 0, sizeof(al)); 2170 /* 2171 * We cannot use the header.misc hint to determine whether a 2172 * branch stack address is user, kernel, guest, hypervisor. 2173 * Branches may straddle the kernel/user/hypervisor boundaries. 2174 * Thus, we have to try consecutively until we find a match 2175 * or else, the symbol is unknown 2176 */ 2177 thread__find_cpumode_addr_location(thread, ip, &al); 2178 2179 ams->addr = ip; 2180 ams->al_addr = al.addr; 2181 ams->al_level = al.level; 2182 ams->ms.maps = al.maps; 2183 ams->ms.sym = al.sym; 2184 ams->ms.map = al.map; 2185 ams->phys_addr = 0; 2186 ams->data_page_size = 0; 2187 } 2188 2189 static void ip__resolve_data(struct thread *thread, 2190 u8 m, struct addr_map_symbol *ams, 2191 u64 addr, u64 phys_addr, u64 daddr_page_size) 2192 { 2193 struct addr_location al; 2194 2195 memset(&al, 0, sizeof(al)); 2196 2197 thread__find_symbol(thread, m, addr, &al); 2198 2199 ams->addr = addr; 2200 ams->al_addr = al.addr; 2201 ams->al_level = al.level; 2202 ams->ms.maps = al.maps; 2203 ams->ms.sym = al.sym; 2204 ams->ms.map = al.map; 2205 ams->phys_addr = phys_addr; 2206 ams->data_page_size = daddr_page_size; 2207 } 2208 2209 struct mem_info *sample__resolve_mem(struct perf_sample *sample, 2210 struct addr_location *al) 2211 { 2212 struct mem_info *mi = mem_info__new(); 2213 2214 if (!mi) 2215 return NULL; 2216 2217 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip); 2218 ip__resolve_data(al->thread, al->cpumode, &mi->daddr, 2219 sample->addr, sample->phys_addr, 2220 sample->data_page_size); 2221 mi->data_src.val = sample->data_src; 2222 2223 return mi; 2224 } 2225 2226 static char *callchain_srcline(struct map_symbol *ms, u64 ip) 2227 { 2228 struct map *map = ms->map; 2229 char *srcline = NULL; 2230 2231 if (!map || callchain_param.key == CCKEY_FUNCTION) 2232 return srcline; 2233 2234 srcline = srcline__tree_find(&map->dso->srclines, ip); 2235 if (!srcline) { 2236 bool show_sym = false; 2237 bool show_addr = callchain_param.key == CCKEY_ADDRESS; 2238 2239 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip), 2240 ms->sym, show_sym, show_addr, ip); 2241 srcline__tree_insert(&map->dso->srclines, ip, srcline); 2242 } 2243 2244 return srcline; 2245 } 2246 2247 struct iterations { 2248 int nr_loop_iter; 2249 u64 cycles; 2250 }; 2251 2252 static int add_callchain_ip(struct thread *thread, 2253 struct callchain_cursor *cursor, 2254 struct symbol **parent, 2255 struct addr_location *root_al, 2256 u8 *cpumode, 2257 u64 ip, 2258 bool branch, 2259 struct branch_flags *flags, 2260 struct iterations *iter, 2261 u64 branch_from) 2262 { 2263 struct map_symbol ms; 2264 struct addr_location al; 2265 int nr_loop_iter = 0; 2266 u64 iter_cycles = 0; 2267 const char *srcline = NULL; 2268 2269 al.filtered = 0; 2270 al.sym = NULL; 2271 al.srcline = NULL; 2272 if (!cpumode) { 2273 thread__find_cpumode_addr_location(thread, ip, &al); 2274 } else { 2275 if (ip >= PERF_CONTEXT_MAX) { 2276 switch (ip) { 2277 case PERF_CONTEXT_HV: 2278 *cpumode = PERF_RECORD_MISC_HYPERVISOR; 2279 break; 2280 case PERF_CONTEXT_KERNEL: 2281 *cpumode = PERF_RECORD_MISC_KERNEL; 2282 break; 2283 case PERF_CONTEXT_USER: 2284 *cpumode = PERF_RECORD_MISC_USER; 2285 break; 2286 default: 2287 pr_debug("invalid callchain context: " 2288 "%"PRId64"\n", (s64) ip); 2289 /* 2290 * It seems the callchain is corrupted. 2291 * Discard all. 2292 */ 2293 callchain_cursor_reset(cursor); 2294 return 1; 2295 } 2296 return 0; 2297 } 2298 thread__find_symbol(thread, *cpumode, ip, &al); 2299 } 2300 2301 if (al.sym != NULL) { 2302 if (perf_hpp_list.parent && !*parent && 2303 symbol__match_regex(al.sym, &parent_regex)) 2304 *parent = al.sym; 2305 else if (have_ignore_callees && root_al && 2306 symbol__match_regex(al.sym, &ignore_callees_regex)) { 2307 /* Treat this symbol as the root, 2308 forgetting its callees. */ 2309 *root_al = al; 2310 callchain_cursor_reset(cursor); 2311 } 2312 } 2313 2314 if (symbol_conf.hide_unresolved && al.sym == NULL) 2315 return 0; 2316 2317 if (iter) { 2318 nr_loop_iter = iter->nr_loop_iter; 2319 iter_cycles = iter->cycles; 2320 } 2321 2322 ms.maps = al.maps; 2323 ms.map = al.map; 2324 ms.sym = al.sym; 2325 srcline = callchain_srcline(&ms, al.addr); 2326 return callchain_cursor_append(cursor, ip, &ms, 2327 branch, flags, nr_loop_iter, 2328 iter_cycles, branch_from, srcline); 2329 } 2330 2331 struct branch_info *sample__resolve_bstack(struct perf_sample *sample, 2332 struct addr_location *al) 2333 { 2334 unsigned int i; 2335 const struct branch_stack *bs = sample->branch_stack; 2336 struct branch_entry *entries = perf_sample__branch_entries(sample); 2337 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info)); 2338 2339 if (!bi) 2340 return NULL; 2341 2342 for (i = 0; i < bs->nr; i++) { 2343 ip__resolve_ams(al->thread, &bi[i].to, entries[i].to); 2344 ip__resolve_ams(al->thread, &bi[i].from, entries[i].from); 2345 bi[i].flags = entries[i].flags; 2346 } 2347 return bi; 2348 } 2349 2350 static void save_iterations(struct iterations *iter, 2351 struct branch_entry *be, int nr) 2352 { 2353 int i; 2354 2355 iter->nr_loop_iter++; 2356 iter->cycles = 0; 2357 2358 for (i = 0; i < nr; i++) 2359 iter->cycles += be[i].flags.cycles; 2360 } 2361 2362 #define CHASHSZ 127 2363 #define CHASHBITS 7 2364 #define NO_ENTRY 0xff 2365 2366 #define PERF_MAX_BRANCH_DEPTH 127 2367 2368 /* Remove loops. */ 2369 static int remove_loops(struct branch_entry *l, int nr, 2370 struct iterations *iter) 2371 { 2372 int i, j, off; 2373 unsigned char chash[CHASHSZ]; 2374 2375 memset(chash, NO_ENTRY, sizeof(chash)); 2376 2377 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255); 2378 2379 for (i = 0; i < nr; i++) { 2380 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ; 2381 2382 /* no collision handling for now */ 2383 if (chash[h] == NO_ENTRY) { 2384 chash[h] = i; 2385 } else if (l[chash[h]].from == l[i].from) { 2386 bool is_loop = true; 2387 /* check if it is a real loop */ 2388 off = 0; 2389 for (j = chash[h]; j < i && i + off < nr; j++, off++) 2390 if (l[j].from != l[i + off].from) { 2391 is_loop = false; 2392 break; 2393 } 2394 if (is_loop) { 2395 j = nr - (i + off); 2396 if (j > 0) { 2397 save_iterations(iter + i + off, 2398 l + i, off); 2399 2400 memmove(iter + i, iter + i + off, 2401 j * sizeof(*iter)); 2402 2403 memmove(l + i, l + i + off, 2404 j * sizeof(*l)); 2405 } 2406 2407 nr -= off; 2408 } 2409 } 2410 } 2411 return nr; 2412 } 2413 2414 static int lbr_callchain_add_kernel_ip(struct thread *thread, 2415 struct callchain_cursor *cursor, 2416 struct perf_sample *sample, 2417 struct symbol **parent, 2418 struct addr_location *root_al, 2419 u64 branch_from, 2420 bool callee, int end) 2421 { 2422 struct ip_callchain *chain = sample->callchain; 2423 u8 cpumode = PERF_RECORD_MISC_USER; 2424 int err, i; 2425 2426 if (callee) { 2427 for (i = 0; i < end + 1; i++) { 2428 err = add_callchain_ip(thread, cursor, parent, 2429 root_al, &cpumode, chain->ips[i], 2430 false, NULL, NULL, branch_from); 2431 if (err) 2432 return err; 2433 } 2434 return 0; 2435 } 2436 2437 for (i = end; i >= 0; i--) { 2438 err = add_callchain_ip(thread, cursor, parent, 2439 root_al, &cpumode, chain->ips[i], 2440 false, NULL, NULL, branch_from); 2441 if (err) 2442 return err; 2443 } 2444 2445 return 0; 2446 } 2447 2448 static void save_lbr_cursor_node(struct thread *thread, 2449 struct callchain_cursor *cursor, 2450 int idx) 2451 { 2452 struct lbr_stitch *lbr_stitch = thread->lbr_stitch; 2453 2454 if (!lbr_stitch) 2455 return; 2456 2457 if (cursor->pos == cursor->nr) { 2458 lbr_stitch->prev_lbr_cursor[idx].valid = false; 2459 return; 2460 } 2461 2462 if (!cursor->curr) 2463 cursor->curr = cursor->first; 2464 else 2465 cursor->curr = cursor->curr->next; 2466 memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr, 2467 sizeof(struct callchain_cursor_node)); 2468 2469 lbr_stitch->prev_lbr_cursor[idx].valid = true; 2470 cursor->pos++; 2471 } 2472 2473 static int lbr_callchain_add_lbr_ip(struct thread *thread, 2474 struct callchain_cursor *cursor, 2475 struct perf_sample *sample, 2476 struct symbol **parent, 2477 struct addr_location *root_al, 2478 u64 *branch_from, 2479 bool callee) 2480 { 2481 struct branch_stack *lbr_stack = sample->branch_stack; 2482 struct branch_entry *entries = perf_sample__branch_entries(sample); 2483 u8 cpumode = PERF_RECORD_MISC_USER; 2484 int lbr_nr = lbr_stack->nr; 2485 struct branch_flags *flags; 2486 int err, i; 2487 u64 ip; 2488 2489 /* 2490 * The curr and pos are not used in writing session. They are cleared 2491 * in callchain_cursor_commit() when the writing session is closed. 2492 * Using curr and pos to track the current cursor node. 2493 */ 2494 if (thread->lbr_stitch) { 2495 cursor->curr = NULL; 2496 cursor->pos = cursor->nr; 2497 if (cursor->nr) { 2498 cursor->curr = cursor->first; 2499 for (i = 0; i < (int)(cursor->nr - 1); i++) 2500 cursor->curr = cursor->curr->next; 2501 } 2502 } 2503 2504 if (callee) { 2505 /* Add LBR ip from first entries.to */ 2506 ip = entries[0].to; 2507 flags = &entries[0].flags; 2508 *branch_from = entries[0].from; 2509 err = add_callchain_ip(thread, cursor, parent, 2510 root_al, &cpumode, ip, 2511 true, flags, NULL, 2512 *branch_from); 2513 if (err) 2514 return err; 2515 2516 /* 2517 * The number of cursor node increases. 2518 * Move the current cursor node. 2519 * But does not need to save current cursor node for entry 0. 2520 * It's impossible to stitch the whole LBRs of previous sample. 2521 */ 2522 if (thread->lbr_stitch && (cursor->pos != cursor->nr)) { 2523 if (!cursor->curr) 2524 cursor->curr = cursor->first; 2525 else 2526 cursor->curr = cursor->curr->next; 2527 cursor->pos++; 2528 } 2529 2530 /* Add LBR ip from entries.from one by one. */ 2531 for (i = 0; i < lbr_nr; i++) { 2532 ip = entries[i].from; 2533 flags = &entries[i].flags; 2534 err = add_callchain_ip(thread, cursor, parent, 2535 root_al, &cpumode, ip, 2536 true, flags, NULL, 2537 *branch_from); 2538 if (err) 2539 return err; 2540 save_lbr_cursor_node(thread, cursor, i); 2541 } 2542 return 0; 2543 } 2544 2545 /* Add LBR ip from entries.from one by one. */ 2546 for (i = lbr_nr - 1; i >= 0; i--) { 2547 ip = entries[i].from; 2548 flags = &entries[i].flags; 2549 err = add_callchain_ip(thread, cursor, parent, 2550 root_al, &cpumode, ip, 2551 true, flags, NULL, 2552 *branch_from); 2553 if (err) 2554 return err; 2555 save_lbr_cursor_node(thread, cursor, i); 2556 } 2557 2558 /* Add LBR ip from first entries.to */ 2559 ip = entries[0].to; 2560 flags = &entries[0].flags; 2561 *branch_from = entries[0].from; 2562 err = add_callchain_ip(thread, cursor, parent, 2563 root_al, &cpumode, ip, 2564 true, flags, NULL, 2565 *branch_from); 2566 if (err) 2567 return err; 2568 2569 return 0; 2570 } 2571 2572 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread, 2573 struct callchain_cursor *cursor) 2574 { 2575 struct lbr_stitch *lbr_stitch = thread->lbr_stitch; 2576 struct callchain_cursor_node *cnode; 2577 struct stitch_list *stitch_node; 2578 int err; 2579 2580 list_for_each_entry(stitch_node, &lbr_stitch->lists, node) { 2581 cnode = &stitch_node->cursor; 2582 2583 err = callchain_cursor_append(cursor, cnode->ip, 2584 &cnode->ms, 2585 cnode->branch, 2586 &cnode->branch_flags, 2587 cnode->nr_loop_iter, 2588 cnode->iter_cycles, 2589 cnode->branch_from, 2590 cnode->srcline); 2591 if (err) 2592 return err; 2593 } 2594 return 0; 2595 } 2596 2597 static struct stitch_list *get_stitch_node(struct thread *thread) 2598 { 2599 struct lbr_stitch *lbr_stitch = thread->lbr_stitch; 2600 struct stitch_list *stitch_node; 2601 2602 if (!list_empty(&lbr_stitch->free_lists)) { 2603 stitch_node = list_first_entry(&lbr_stitch->free_lists, 2604 struct stitch_list, node); 2605 list_del(&stitch_node->node); 2606 2607 return stitch_node; 2608 } 2609 2610 return malloc(sizeof(struct stitch_list)); 2611 } 2612 2613 static bool has_stitched_lbr(struct thread *thread, 2614 struct perf_sample *cur, 2615 struct perf_sample *prev, 2616 unsigned int max_lbr, 2617 bool callee) 2618 { 2619 struct branch_stack *cur_stack = cur->branch_stack; 2620 struct branch_entry *cur_entries = perf_sample__branch_entries(cur); 2621 struct branch_stack *prev_stack = prev->branch_stack; 2622 struct branch_entry *prev_entries = perf_sample__branch_entries(prev); 2623 struct lbr_stitch *lbr_stitch = thread->lbr_stitch; 2624 int i, j, nr_identical_branches = 0; 2625 struct stitch_list *stitch_node; 2626 u64 cur_base, distance; 2627 2628 if (!cur_stack || !prev_stack) 2629 return false; 2630 2631 /* Find the physical index of the base-of-stack for current sample. */ 2632 cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1; 2633 2634 distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) : 2635 (max_lbr + prev_stack->hw_idx - cur_base); 2636 /* Previous sample has shorter stack. Nothing can be stitched. */ 2637 if (distance + 1 > prev_stack->nr) 2638 return false; 2639 2640 /* 2641 * Check if there are identical LBRs between two samples. 2642 * Identical LBRs must have same from, to and flags values. Also, 2643 * they have to be saved in the same LBR registers (same physical 2644 * index). 2645 * 2646 * Starts from the base-of-stack of current sample. 2647 */ 2648 for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) { 2649 if ((prev_entries[i].from != cur_entries[j].from) || 2650 (prev_entries[i].to != cur_entries[j].to) || 2651 (prev_entries[i].flags.value != cur_entries[j].flags.value)) 2652 break; 2653 nr_identical_branches++; 2654 } 2655 2656 if (!nr_identical_branches) 2657 return false; 2658 2659 /* 2660 * Save the LBRs between the base-of-stack of previous sample 2661 * and the base-of-stack of current sample into lbr_stitch->lists. 2662 * These LBRs will be stitched later. 2663 */ 2664 for (i = prev_stack->nr - 1; i > (int)distance; i--) { 2665 2666 if (!lbr_stitch->prev_lbr_cursor[i].valid) 2667 continue; 2668 2669 stitch_node = get_stitch_node(thread); 2670 if (!stitch_node) 2671 return false; 2672 2673 memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i], 2674 sizeof(struct callchain_cursor_node)); 2675 2676 if (callee) 2677 list_add(&stitch_node->node, &lbr_stitch->lists); 2678 else 2679 list_add_tail(&stitch_node->node, &lbr_stitch->lists); 2680 } 2681 2682 return true; 2683 } 2684 2685 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr) 2686 { 2687 if (thread->lbr_stitch) 2688 return true; 2689 2690 thread->lbr_stitch = zalloc(sizeof(*thread->lbr_stitch)); 2691 if (!thread->lbr_stitch) 2692 goto err; 2693 2694 thread->lbr_stitch->prev_lbr_cursor = calloc(max_lbr + 1, sizeof(struct callchain_cursor_node)); 2695 if (!thread->lbr_stitch->prev_lbr_cursor) 2696 goto free_lbr_stitch; 2697 2698 INIT_LIST_HEAD(&thread->lbr_stitch->lists); 2699 INIT_LIST_HEAD(&thread->lbr_stitch->free_lists); 2700 2701 return true; 2702 2703 free_lbr_stitch: 2704 zfree(&thread->lbr_stitch); 2705 err: 2706 pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n"); 2707 thread->lbr_stitch_enable = false; 2708 return false; 2709 } 2710 2711 /* 2712 * Resolve LBR callstack chain sample 2713 * Return: 2714 * 1 on success get LBR callchain information 2715 * 0 no available LBR callchain information, should try fp 2716 * negative error code on other errors. 2717 */ 2718 static int resolve_lbr_callchain_sample(struct thread *thread, 2719 struct callchain_cursor *cursor, 2720 struct perf_sample *sample, 2721 struct symbol **parent, 2722 struct addr_location *root_al, 2723 int max_stack, 2724 unsigned int max_lbr) 2725 { 2726 bool callee = (callchain_param.order == ORDER_CALLEE); 2727 struct ip_callchain *chain = sample->callchain; 2728 int chain_nr = min(max_stack, (int)chain->nr), i; 2729 struct lbr_stitch *lbr_stitch; 2730 bool stitched_lbr = false; 2731 u64 branch_from = 0; 2732 int err; 2733 2734 for (i = 0; i < chain_nr; i++) { 2735 if (chain->ips[i] == PERF_CONTEXT_USER) 2736 break; 2737 } 2738 2739 /* LBR only affects the user callchain */ 2740 if (i == chain_nr) 2741 return 0; 2742 2743 if (thread->lbr_stitch_enable && !sample->no_hw_idx && 2744 (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) { 2745 lbr_stitch = thread->lbr_stitch; 2746 2747 stitched_lbr = has_stitched_lbr(thread, sample, 2748 &lbr_stitch->prev_sample, 2749 max_lbr, callee); 2750 2751 if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) { 2752 list_replace_init(&lbr_stitch->lists, 2753 &lbr_stitch->free_lists); 2754 } 2755 memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample)); 2756 } 2757 2758 if (callee) { 2759 /* Add kernel ip */ 2760 err = lbr_callchain_add_kernel_ip(thread, cursor, sample, 2761 parent, root_al, branch_from, 2762 true, i); 2763 if (err) 2764 goto error; 2765 2766 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent, 2767 root_al, &branch_from, true); 2768 if (err) 2769 goto error; 2770 2771 if (stitched_lbr) { 2772 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor); 2773 if (err) 2774 goto error; 2775 } 2776 2777 } else { 2778 if (stitched_lbr) { 2779 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor); 2780 if (err) 2781 goto error; 2782 } 2783 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent, 2784 root_al, &branch_from, false); 2785 if (err) 2786 goto error; 2787 2788 /* Add kernel ip */ 2789 err = lbr_callchain_add_kernel_ip(thread, cursor, sample, 2790 parent, root_al, branch_from, 2791 false, i); 2792 if (err) 2793 goto error; 2794 } 2795 return 1; 2796 2797 error: 2798 return (err < 0) ? err : 0; 2799 } 2800 2801 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread, 2802 struct callchain_cursor *cursor, 2803 struct symbol **parent, 2804 struct addr_location *root_al, 2805 u8 *cpumode, int ent) 2806 { 2807 int err = 0; 2808 2809 while (--ent >= 0) { 2810 u64 ip = chain->ips[ent]; 2811 2812 if (ip >= PERF_CONTEXT_MAX) { 2813 err = add_callchain_ip(thread, cursor, parent, 2814 root_al, cpumode, ip, 2815 false, NULL, NULL, 0); 2816 break; 2817 } 2818 } 2819 return err; 2820 } 2821 2822 static u64 get_leaf_frame_caller(struct perf_sample *sample, 2823 struct thread *thread, int usr_idx) 2824 { 2825 if (machine__normalized_is(thread->maps->machine, "arm64")) 2826 return get_leaf_frame_caller_aarch64(sample, thread, usr_idx); 2827 else 2828 return 0; 2829 } 2830 2831 static int thread__resolve_callchain_sample(struct thread *thread, 2832 struct callchain_cursor *cursor, 2833 struct evsel *evsel, 2834 struct perf_sample *sample, 2835 struct symbol **parent, 2836 struct addr_location *root_al, 2837 int max_stack) 2838 { 2839 struct branch_stack *branch = sample->branch_stack; 2840 struct branch_entry *entries = perf_sample__branch_entries(sample); 2841 struct ip_callchain *chain = sample->callchain; 2842 int chain_nr = 0; 2843 u8 cpumode = PERF_RECORD_MISC_USER; 2844 int i, j, err, nr_entries, usr_idx; 2845 int skip_idx = -1; 2846 int first_call = 0; 2847 u64 leaf_frame_caller; 2848 2849 if (chain) 2850 chain_nr = chain->nr; 2851 2852 if (evsel__has_branch_callstack(evsel)) { 2853 struct perf_env *env = evsel__env(evsel); 2854 2855 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent, 2856 root_al, max_stack, 2857 !env ? 0 : env->max_branches); 2858 if (err) 2859 return (err < 0) ? err : 0; 2860 } 2861 2862 /* 2863 * Based on DWARF debug information, some architectures skip 2864 * a callchain entry saved by the kernel. 2865 */ 2866 skip_idx = arch_skip_callchain_idx(thread, chain); 2867 2868 /* 2869 * Add branches to call stack for easier browsing. This gives 2870 * more context for a sample than just the callers. 2871 * 2872 * This uses individual histograms of paths compared to the 2873 * aggregated histograms the normal LBR mode uses. 2874 * 2875 * Limitations for now: 2876 * - No extra filters 2877 * - No annotations (should annotate somehow) 2878 */ 2879 2880 if (branch && callchain_param.branch_callstack) { 2881 int nr = min(max_stack, (int)branch->nr); 2882 struct branch_entry be[nr]; 2883 struct iterations iter[nr]; 2884 2885 if (branch->nr > PERF_MAX_BRANCH_DEPTH) { 2886 pr_warning("corrupted branch chain. skipping...\n"); 2887 goto check_calls; 2888 } 2889 2890 for (i = 0; i < nr; i++) { 2891 if (callchain_param.order == ORDER_CALLEE) { 2892 be[i] = entries[i]; 2893 2894 if (chain == NULL) 2895 continue; 2896 2897 /* 2898 * Check for overlap into the callchain. 2899 * The return address is one off compared to 2900 * the branch entry. To adjust for this 2901 * assume the calling instruction is not longer 2902 * than 8 bytes. 2903 */ 2904 if (i == skip_idx || 2905 chain->ips[first_call] >= PERF_CONTEXT_MAX) 2906 first_call++; 2907 else if (be[i].from < chain->ips[first_call] && 2908 be[i].from >= chain->ips[first_call] - 8) 2909 first_call++; 2910 } else 2911 be[i] = entries[branch->nr - i - 1]; 2912 } 2913 2914 memset(iter, 0, sizeof(struct iterations) * nr); 2915 nr = remove_loops(be, nr, iter); 2916 2917 for (i = 0; i < nr; i++) { 2918 err = add_callchain_ip(thread, cursor, parent, 2919 root_al, 2920 NULL, be[i].to, 2921 true, &be[i].flags, 2922 NULL, be[i].from); 2923 2924 if (!err) 2925 err = add_callchain_ip(thread, cursor, parent, root_al, 2926 NULL, be[i].from, 2927 true, &be[i].flags, 2928 &iter[i], 0); 2929 if (err == -EINVAL) 2930 break; 2931 if (err) 2932 return err; 2933 } 2934 2935 if (chain_nr == 0) 2936 return 0; 2937 2938 chain_nr -= nr; 2939 } 2940 2941 check_calls: 2942 if (chain && callchain_param.order != ORDER_CALLEE) { 2943 err = find_prev_cpumode(chain, thread, cursor, parent, root_al, 2944 &cpumode, chain->nr - first_call); 2945 if (err) 2946 return (err < 0) ? err : 0; 2947 } 2948 for (i = first_call, nr_entries = 0; 2949 i < chain_nr && nr_entries < max_stack; i++) { 2950 u64 ip; 2951 2952 if (callchain_param.order == ORDER_CALLEE) 2953 j = i; 2954 else 2955 j = chain->nr - i - 1; 2956 2957 #ifdef HAVE_SKIP_CALLCHAIN_IDX 2958 if (j == skip_idx) 2959 continue; 2960 #endif 2961 ip = chain->ips[j]; 2962 if (ip < PERF_CONTEXT_MAX) 2963 ++nr_entries; 2964 else if (callchain_param.order != ORDER_CALLEE) { 2965 err = find_prev_cpumode(chain, thread, cursor, parent, 2966 root_al, &cpumode, j); 2967 if (err) 2968 return (err < 0) ? err : 0; 2969 continue; 2970 } 2971 2972 /* 2973 * PERF_CONTEXT_USER allows us to locate where the user stack ends. 2974 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER, 2975 * the index will be different in order to add the missing frame 2976 * at the right place. 2977 */ 2978 2979 usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1; 2980 2981 if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) { 2982 2983 leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx); 2984 2985 /* 2986 * check if leaf_frame_Caller != ip to not add the same 2987 * value twice. 2988 */ 2989 2990 if (leaf_frame_caller && leaf_frame_caller != ip) { 2991 2992 err = add_callchain_ip(thread, cursor, parent, 2993 root_al, &cpumode, leaf_frame_caller, 2994 false, NULL, NULL, 0); 2995 if (err) 2996 return (err < 0) ? err : 0; 2997 } 2998 } 2999 3000 err = add_callchain_ip(thread, cursor, parent, 3001 root_al, &cpumode, ip, 3002 false, NULL, NULL, 0); 3003 3004 if (err) 3005 return (err < 0) ? err : 0; 3006 } 3007 3008 return 0; 3009 } 3010 3011 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip) 3012 { 3013 struct symbol *sym = ms->sym; 3014 struct map *map = ms->map; 3015 struct inline_node *inline_node; 3016 struct inline_list *ilist; 3017 u64 addr; 3018 int ret = 1; 3019 3020 if (!symbol_conf.inline_name || !map || !sym) 3021 return ret; 3022 3023 addr = map__map_ip(map, ip); 3024 addr = map__rip_2objdump(map, addr); 3025 3026 inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr); 3027 if (!inline_node) { 3028 inline_node = dso__parse_addr_inlines(map->dso, addr, sym); 3029 if (!inline_node) 3030 return ret; 3031 inlines__tree_insert(&map->dso->inlined_nodes, inline_node); 3032 } 3033 3034 list_for_each_entry(ilist, &inline_node->val, list) { 3035 struct map_symbol ilist_ms = { 3036 .maps = ms->maps, 3037 .map = map, 3038 .sym = ilist->symbol, 3039 }; 3040 ret = callchain_cursor_append(cursor, ip, &ilist_ms, false, 3041 NULL, 0, 0, 0, ilist->srcline); 3042 3043 if (ret != 0) 3044 return ret; 3045 } 3046 3047 return ret; 3048 } 3049 3050 static int unwind_entry(struct unwind_entry *entry, void *arg) 3051 { 3052 struct callchain_cursor *cursor = arg; 3053 const char *srcline = NULL; 3054 u64 addr = entry->ip; 3055 3056 if (symbol_conf.hide_unresolved && entry->ms.sym == NULL) 3057 return 0; 3058 3059 if (append_inlines(cursor, &entry->ms, entry->ip) == 0) 3060 return 0; 3061 3062 /* 3063 * Convert entry->ip from a virtual address to an offset in 3064 * its corresponding binary. 3065 */ 3066 if (entry->ms.map) 3067 addr = map__map_ip(entry->ms.map, entry->ip); 3068 3069 srcline = callchain_srcline(&entry->ms, addr); 3070 return callchain_cursor_append(cursor, entry->ip, &entry->ms, 3071 false, NULL, 0, 0, 0, srcline); 3072 } 3073 3074 static int thread__resolve_callchain_unwind(struct thread *thread, 3075 struct callchain_cursor *cursor, 3076 struct evsel *evsel, 3077 struct perf_sample *sample, 3078 int max_stack) 3079 { 3080 /* Can we do dwarf post unwind? */ 3081 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) && 3082 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER))) 3083 return 0; 3084 3085 /* Bail out if nothing was captured. */ 3086 if ((!sample->user_regs.regs) || 3087 (!sample->user_stack.size)) 3088 return 0; 3089 3090 return unwind__get_entries(unwind_entry, cursor, 3091 thread, sample, max_stack, false); 3092 } 3093 3094 int thread__resolve_callchain(struct thread *thread, 3095 struct callchain_cursor *cursor, 3096 struct evsel *evsel, 3097 struct perf_sample *sample, 3098 struct symbol **parent, 3099 struct addr_location *root_al, 3100 int max_stack) 3101 { 3102 int ret = 0; 3103 3104 callchain_cursor_reset(cursor); 3105 3106 if (callchain_param.order == ORDER_CALLEE) { 3107 ret = thread__resolve_callchain_sample(thread, cursor, 3108 evsel, sample, 3109 parent, root_al, 3110 max_stack); 3111 if (ret) 3112 return ret; 3113 ret = thread__resolve_callchain_unwind(thread, cursor, 3114 evsel, sample, 3115 max_stack); 3116 } else { 3117 ret = thread__resolve_callchain_unwind(thread, cursor, 3118 evsel, sample, 3119 max_stack); 3120 if (ret) 3121 return ret; 3122 ret = thread__resolve_callchain_sample(thread, cursor, 3123 evsel, sample, 3124 parent, root_al, 3125 max_stack); 3126 } 3127 3128 return ret; 3129 } 3130 3131 int machine__for_each_thread(struct machine *machine, 3132 int (*fn)(struct thread *thread, void *p), 3133 void *priv) 3134 { 3135 struct threads *threads; 3136 struct rb_node *nd; 3137 struct thread *thread; 3138 int rc = 0; 3139 int i; 3140 3141 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 3142 threads = &machine->threads[i]; 3143 for (nd = rb_first_cached(&threads->entries); nd; 3144 nd = rb_next(nd)) { 3145 thread = rb_entry(nd, struct thread, rb_node); 3146 rc = fn(thread, priv); 3147 if (rc != 0) 3148 return rc; 3149 } 3150 3151 list_for_each_entry(thread, &threads->dead, node) { 3152 rc = fn(thread, priv); 3153 if (rc != 0) 3154 return rc; 3155 } 3156 } 3157 return rc; 3158 } 3159 3160 int machines__for_each_thread(struct machines *machines, 3161 int (*fn)(struct thread *thread, void *p), 3162 void *priv) 3163 { 3164 struct rb_node *nd; 3165 int rc = 0; 3166 3167 rc = machine__for_each_thread(&machines->host, fn, priv); 3168 if (rc != 0) 3169 return rc; 3170 3171 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 3172 struct machine *machine = rb_entry(nd, struct machine, rb_node); 3173 3174 rc = machine__for_each_thread(machine, fn, priv); 3175 if (rc != 0) 3176 return rc; 3177 } 3178 return rc; 3179 } 3180 3181 pid_t machine__get_current_tid(struct machine *machine, int cpu) 3182 { 3183 if (cpu < 0 || (size_t)cpu >= machine->current_tid_sz) 3184 return -1; 3185 3186 return machine->current_tid[cpu]; 3187 } 3188 3189 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid, 3190 pid_t tid) 3191 { 3192 struct thread *thread; 3193 const pid_t init_val = -1; 3194 3195 if (cpu < 0) 3196 return -EINVAL; 3197 3198 if (realloc_array_as_needed(machine->current_tid, 3199 machine->current_tid_sz, 3200 (unsigned int)cpu, 3201 &init_val)) 3202 return -ENOMEM; 3203 3204 machine->current_tid[cpu] = tid; 3205 3206 thread = machine__findnew_thread(machine, pid, tid); 3207 if (!thread) 3208 return -ENOMEM; 3209 3210 thread->cpu = cpu; 3211 thread__put(thread); 3212 3213 return 0; 3214 } 3215 3216 /* 3217 * Compares the raw arch string. N.B. see instead perf_env__arch() or 3218 * machine__normalized_is() if a normalized arch is needed. 3219 */ 3220 bool machine__is(struct machine *machine, const char *arch) 3221 { 3222 return machine && !strcmp(perf_env__raw_arch(machine->env), arch); 3223 } 3224 3225 bool machine__normalized_is(struct machine *machine, const char *arch) 3226 { 3227 return machine && !strcmp(perf_env__arch(machine->env), arch); 3228 } 3229 3230 int machine__nr_cpus_avail(struct machine *machine) 3231 { 3232 return machine ? perf_env__nr_cpus_avail(machine->env) : 0; 3233 } 3234 3235 int machine__get_kernel_start(struct machine *machine) 3236 { 3237 struct map *map = machine__kernel_map(machine); 3238 int err = 0; 3239 3240 /* 3241 * The only addresses above 2^63 are kernel addresses of a 64-bit 3242 * kernel. Note that addresses are unsigned so that on a 32-bit system 3243 * all addresses including kernel addresses are less than 2^32. In 3244 * that case (32-bit system), if the kernel mapping is unknown, all 3245 * addresses will be assumed to be in user space - see 3246 * machine__kernel_ip(). 3247 */ 3248 machine->kernel_start = 1ULL << 63; 3249 if (map) { 3250 err = map__load(map); 3251 /* 3252 * On x86_64, PTI entry trampolines are less than the 3253 * start of kernel text, but still above 2^63. So leave 3254 * kernel_start = 1ULL << 63 for x86_64. 3255 */ 3256 if (!err && !machine__is(machine, "x86_64")) 3257 machine->kernel_start = map->start; 3258 } 3259 return err; 3260 } 3261 3262 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr) 3263 { 3264 u8 addr_cpumode = cpumode; 3265 bool kernel_ip; 3266 3267 if (!machine->single_address_space) 3268 goto out; 3269 3270 kernel_ip = machine__kernel_ip(machine, addr); 3271 switch (cpumode) { 3272 case PERF_RECORD_MISC_KERNEL: 3273 case PERF_RECORD_MISC_USER: 3274 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL : 3275 PERF_RECORD_MISC_USER; 3276 break; 3277 case PERF_RECORD_MISC_GUEST_KERNEL: 3278 case PERF_RECORD_MISC_GUEST_USER: 3279 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL : 3280 PERF_RECORD_MISC_GUEST_USER; 3281 break; 3282 default: 3283 break; 3284 } 3285 out: 3286 return addr_cpumode; 3287 } 3288 3289 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id) 3290 { 3291 return dsos__findnew_id(&machine->dsos, filename, id); 3292 } 3293 3294 struct dso *machine__findnew_dso(struct machine *machine, const char *filename) 3295 { 3296 return machine__findnew_dso_id(machine, filename, NULL); 3297 } 3298 3299 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp) 3300 { 3301 struct machine *machine = vmachine; 3302 struct map *map; 3303 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map); 3304 3305 if (sym == NULL) 3306 return NULL; 3307 3308 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL; 3309 *addrp = map->unmap_ip(map, sym->start); 3310 return sym->name; 3311 } 3312 3313 int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv) 3314 { 3315 struct dso *pos; 3316 int err = 0; 3317 3318 list_for_each_entry(pos, &machine->dsos.head, node) { 3319 if (fn(pos, machine, priv)) 3320 err = -1; 3321 } 3322 return err; 3323 } 3324 3325 int machine__for_each_kernel_map(struct machine *machine, machine__map_t fn, void *priv) 3326 { 3327 struct maps *maps = machine__kernel_maps(machine); 3328 struct map *map; 3329 int err = 0; 3330 3331 for (map = maps__first(maps); map != NULL; map = map__next(map)) { 3332 err = fn(map, priv); 3333 if (err != 0) { 3334 break; 3335 } 3336 } 3337 return err; 3338 } 3339 3340 bool machine__is_lock_function(struct machine *machine, u64 addr) 3341 { 3342 if (!machine->sched.text_start) { 3343 struct map *kmap; 3344 struct symbol *sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_start", &kmap); 3345 3346 if (!sym) { 3347 /* to avoid retry */ 3348 machine->sched.text_start = 1; 3349 return false; 3350 } 3351 3352 machine->sched.text_start = kmap->unmap_ip(kmap, sym->start); 3353 3354 /* should not fail from here */ 3355 sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_end", &kmap); 3356 machine->sched.text_end = kmap->unmap_ip(kmap, sym->start); 3357 3358 sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_start", &kmap); 3359 machine->lock.text_start = kmap->unmap_ip(kmap, sym->start); 3360 3361 sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_end", &kmap); 3362 machine->lock.text_end = kmap->unmap_ip(kmap, sym->start); 3363 } 3364 3365 /* failed to get kernel symbols */ 3366 if (machine->sched.text_start == 1) 3367 return false; 3368 3369 /* mutex and rwsem functions are in sched text section */ 3370 if (machine->sched.text_start <= addr && addr < machine->sched.text_end) 3371 return true; 3372 3373 /* spinlock functions are in lock text section */ 3374 if (machine->lock.text_start <= addr && addr < machine->lock.text_end) 3375 return true; 3376 3377 return false; 3378 } 3379