xref: /openbmc/linux/tools/perf/util/machine.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include <stdlib.h>
7 #include "callchain.h"
8 #include "debug.h"
9 #include "dso.h"
10 #include "env.h"
11 #include "event.h"
12 #include "evsel.h"
13 #include "hist.h"
14 #include "machine.h"
15 #include "map.h"
16 #include "map_symbol.h"
17 #include "branch.h"
18 #include "mem-events.h"
19 #include "srcline.h"
20 #include "symbol.h"
21 #include "sort.h"
22 #include "strlist.h"
23 #include "target.h"
24 #include "thread.h"
25 #include "util.h"
26 #include "vdso.h"
27 #include <stdbool.h>
28 #include <sys/types.h>
29 #include <sys/stat.h>
30 #include <unistd.h>
31 #include "unwind.h"
32 #include "linux/hash.h"
33 #include "asm/bug.h"
34 #include "bpf-event.h"
35 #include <internal/lib.h> // page_size
36 #include "cgroup.h"
37 
38 #include <linux/ctype.h>
39 #include <symbol/kallsyms.h>
40 #include <linux/mman.h>
41 #include <linux/string.h>
42 #include <linux/zalloc.h>
43 
44 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
45 
46 static struct dso *machine__kernel_dso(struct machine *machine)
47 {
48 	return machine->vmlinux_map->dso;
49 }
50 
51 static void dsos__init(struct dsos *dsos)
52 {
53 	INIT_LIST_HEAD(&dsos->head);
54 	dsos->root = RB_ROOT;
55 	init_rwsem(&dsos->lock);
56 }
57 
58 static void machine__threads_init(struct machine *machine)
59 {
60 	int i;
61 
62 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
63 		struct threads *threads = &machine->threads[i];
64 		threads->entries = RB_ROOT_CACHED;
65 		init_rwsem(&threads->lock);
66 		threads->nr = 0;
67 		INIT_LIST_HEAD(&threads->dead);
68 		threads->last_match = NULL;
69 	}
70 }
71 
72 static int machine__set_mmap_name(struct machine *machine)
73 {
74 	if (machine__is_host(machine))
75 		machine->mmap_name = strdup("[kernel.kallsyms]");
76 	else if (machine__is_default_guest(machine))
77 		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
78 	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
79 			  machine->pid) < 0)
80 		machine->mmap_name = NULL;
81 
82 	return machine->mmap_name ? 0 : -ENOMEM;
83 }
84 
85 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
86 {
87 	int err = -ENOMEM;
88 
89 	memset(machine, 0, sizeof(*machine));
90 	maps__init(&machine->kmaps, machine);
91 	RB_CLEAR_NODE(&machine->rb_node);
92 	dsos__init(&machine->dsos);
93 
94 	machine__threads_init(machine);
95 
96 	machine->vdso_info = NULL;
97 	machine->env = NULL;
98 
99 	machine->pid = pid;
100 
101 	machine->id_hdr_size = 0;
102 	machine->kptr_restrict_warned = false;
103 	machine->comm_exec = false;
104 	machine->kernel_start = 0;
105 	machine->vmlinux_map = NULL;
106 
107 	machine->root_dir = strdup(root_dir);
108 	if (machine->root_dir == NULL)
109 		return -ENOMEM;
110 
111 	if (machine__set_mmap_name(machine))
112 		goto out;
113 
114 	if (pid != HOST_KERNEL_ID) {
115 		struct thread *thread = machine__findnew_thread(machine, -1,
116 								pid);
117 		char comm[64];
118 
119 		if (thread == NULL)
120 			goto out;
121 
122 		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
123 		thread__set_comm(thread, comm, 0);
124 		thread__put(thread);
125 	}
126 
127 	machine->current_tid = NULL;
128 	err = 0;
129 
130 out:
131 	if (err) {
132 		zfree(&machine->root_dir);
133 		zfree(&machine->mmap_name);
134 	}
135 	return 0;
136 }
137 
138 struct machine *machine__new_host(void)
139 {
140 	struct machine *machine = malloc(sizeof(*machine));
141 
142 	if (machine != NULL) {
143 		machine__init(machine, "", HOST_KERNEL_ID);
144 
145 		if (machine__create_kernel_maps(machine) < 0)
146 			goto out_delete;
147 	}
148 
149 	return machine;
150 out_delete:
151 	free(machine);
152 	return NULL;
153 }
154 
155 struct machine *machine__new_kallsyms(void)
156 {
157 	struct machine *machine = machine__new_host();
158 	/*
159 	 * FIXME:
160 	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
161 	 *    ask for not using the kcore parsing code, once this one is fixed
162 	 *    to create a map per module.
163 	 */
164 	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
165 		machine__delete(machine);
166 		machine = NULL;
167 	}
168 
169 	return machine;
170 }
171 
172 static void dsos__purge(struct dsos *dsos)
173 {
174 	struct dso *pos, *n;
175 
176 	down_write(&dsos->lock);
177 
178 	list_for_each_entry_safe(pos, n, &dsos->head, node) {
179 		RB_CLEAR_NODE(&pos->rb_node);
180 		pos->root = NULL;
181 		list_del_init(&pos->node);
182 		dso__put(pos);
183 	}
184 
185 	up_write(&dsos->lock);
186 }
187 
188 static void dsos__exit(struct dsos *dsos)
189 {
190 	dsos__purge(dsos);
191 	exit_rwsem(&dsos->lock);
192 }
193 
194 void machine__delete_threads(struct machine *machine)
195 {
196 	struct rb_node *nd;
197 	int i;
198 
199 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
200 		struct threads *threads = &machine->threads[i];
201 		down_write(&threads->lock);
202 		nd = rb_first_cached(&threads->entries);
203 		while (nd) {
204 			struct thread *t = rb_entry(nd, struct thread, rb_node);
205 
206 			nd = rb_next(nd);
207 			__machine__remove_thread(machine, t, false);
208 		}
209 		up_write(&threads->lock);
210 	}
211 }
212 
213 void machine__exit(struct machine *machine)
214 {
215 	int i;
216 
217 	if (machine == NULL)
218 		return;
219 
220 	machine__destroy_kernel_maps(machine);
221 	maps__exit(&machine->kmaps);
222 	dsos__exit(&machine->dsos);
223 	machine__exit_vdso(machine);
224 	zfree(&machine->root_dir);
225 	zfree(&machine->mmap_name);
226 	zfree(&machine->current_tid);
227 
228 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
229 		struct threads *threads = &machine->threads[i];
230 		struct thread *thread, *n;
231 		/*
232 		 * Forget about the dead, at this point whatever threads were
233 		 * left in the dead lists better have a reference count taken
234 		 * by who is using them, and then, when they drop those references
235 		 * and it finally hits zero, thread__put() will check and see that
236 		 * its not in the dead threads list and will not try to remove it
237 		 * from there, just calling thread__delete() straight away.
238 		 */
239 		list_for_each_entry_safe(thread, n, &threads->dead, node)
240 			list_del_init(&thread->node);
241 
242 		exit_rwsem(&threads->lock);
243 	}
244 }
245 
246 void machine__delete(struct machine *machine)
247 {
248 	if (machine) {
249 		machine__exit(machine);
250 		free(machine);
251 	}
252 }
253 
254 void machines__init(struct machines *machines)
255 {
256 	machine__init(&machines->host, "", HOST_KERNEL_ID);
257 	machines->guests = RB_ROOT_CACHED;
258 }
259 
260 void machines__exit(struct machines *machines)
261 {
262 	machine__exit(&machines->host);
263 	/* XXX exit guest */
264 }
265 
266 struct machine *machines__add(struct machines *machines, pid_t pid,
267 			      const char *root_dir)
268 {
269 	struct rb_node **p = &machines->guests.rb_root.rb_node;
270 	struct rb_node *parent = NULL;
271 	struct machine *pos, *machine = malloc(sizeof(*machine));
272 	bool leftmost = true;
273 
274 	if (machine == NULL)
275 		return NULL;
276 
277 	if (machine__init(machine, root_dir, pid) != 0) {
278 		free(machine);
279 		return NULL;
280 	}
281 
282 	while (*p != NULL) {
283 		parent = *p;
284 		pos = rb_entry(parent, struct machine, rb_node);
285 		if (pid < pos->pid)
286 			p = &(*p)->rb_left;
287 		else {
288 			p = &(*p)->rb_right;
289 			leftmost = false;
290 		}
291 	}
292 
293 	rb_link_node(&machine->rb_node, parent, p);
294 	rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
295 
296 	return machine;
297 }
298 
299 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
300 {
301 	struct rb_node *nd;
302 
303 	machines->host.comm_exec = comm_exec;
304 
305 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
306 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
307 
308 		machine->comm_exec = comm_exec;
309 	}
310 }
311 
312 struct machine *machines__find(struct machines *machines, pid_t pid)
313 {
314 	struct rb_node **p = &machines->guests.rb_root.rb_node;
315 	struct rb_node *parent = NULL;
316 	struct machine *machine;
317 	struct machine *default_machine = NULL;
318 
319 	if (pid == HOST_KERNEL_ID)
320 		return &machines->host;
321 
322 	while (*p != NULL) {
323 		parent = *p;
324 		machine = rb_entry(parent, struct machine, rb_node);
325 		if (pid < machine->pid)
326 			p = &(*p)->rb_left;
327 		else if (pid > machine->pid)
328 			p = &(*p)->rb_right;
329 		else
330 			return machine;
331 		if (!machine->pid)
332 			default_machine = machine;
333 	}
334 
335 	return default_machine;
336 }
337 
338 struct machine *machines__findnew(struct machines *machines, pid_t pid)
339 {
340 	char path[PATH_MAX];
341 	const char *root_dir = "";
342 	struct machine *machine = machines__find(machines, pid);
343 
344 	if (machine && (machine->pid == pid))
345 		goto out;
346 
347 	if ((pid != HOST_KERNEL_ID) &&
348 	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
349 	    (symbol_conf.guestmount)) {
350 		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
351 		if (access(path, R_OK)) {
352 			static struct strlist *seen;
353 
354 			if (!seen)
355 				seen = strlist__new(NULL, NULL);
356 
357 			if (!strlist__has_entry(seen, path)) {
358 				pr_err("Can't access file %s\n", path);
359 				strlist__add(seen, path);
360 			}
361 			machine = NULL;
362 			goto out;
363 		}
364 		root_dir = path;
365 	}
366 
367 	machine = machines__add(machines, pid, root_dir);
368 out:
369 	return machine;
370 }
371 
372 void machines__process_guests(struct machines *machines,
373 			      machine__process_t process, void *data)
374 {
375 	struct rb_node *nd;
376 
377 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
378 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
379 		process(pos, data);
380 	}
381 }
382 
383 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
384 {
385 	struct rb_node *node;
386 	struct machine *machine;
387 
388 	machines->host.id_hdr_size = id_hdr_size;
389 
390 	for (node = rb_first_cached(&machines->guests); node;
391 	     node = rb_next(node)) {
392 		machine = rb_entry(node, struct machine, rb_node);
393 		machine->id_hdr_size = id_hdr_size;
394 	}
395 
396 	return;
397 }
398 
399 static void machine__update_thread_pid(struct machine *machine,
400 				       struct thread *th, pid_t pid)
401 {
402 	struct thread *leader;
403 
404 	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
405 		return;
406 
407 	th->pid_ = pid;
408 
409 	if (th->pid_ == th->tid)
410 		return;
411 
412 	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
413 	if (!leader)
414 		goto out_err;
415 
416 	if (!leader->maps)
417 		leader->maps = maps__new(machine);
418 
419 	if (!leader->maps)
420 		goto out_err;
421 
422 	if (th->maps == leader->maps)
423 		return;
424 
425 	if (th->maps) {
426 		/*
427 		 * Maps are created from MMAP events which provide the pid and
428 		 * tid.  Consequently there never should be any maps on a thread
429 		 * with an unknown pid.  Just print an error if there are.
430 		 */
431 		if (!maps__empty(th->maps))
432 			pr_err("Discarding thread maps for %d:%d\n",
433 			       th->pid_, th->tid);
434 		maps__put(th->maps);
435 	}
436 
437 	th->maps = maps__get(leader->maps);
438 out_put:
439 	thread__put(leader);
440 	return;
441 out_err:
442 	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
443 	goto out_put;
444 }
445 
446 /*
447  * Front-end cache - TID lookups come in blocks,
448  * so most of the time we dont have to look up
449  * the full rbtree:
450  */
451 static struct thread*
452 __threads__get_last_match(struct threads *threads, struct machine *machine,
453 			  int pid, int tid)
454 {
455 	struct thread *th;
456 
457 	th = threads->last_match;
458 	if (th != NULL) {
459 		if (th->tid == tid) {
460 			machine__update_thread_pid(machine, th, pid);
461 			return thread__get(th);
462 		}
463 
464 		threads->last_match = NULL;
465 	}
466 
467 	return NULL;
468 }
469 
470 static struct thread*
471 threads__get_last_match(struct threads *threads, struct machine *machine,
472 			int pid, int tid)
473 {
474 	struct thread *th = NULL;
475 
476 	if (perf_singlethreaded)
477 		th = __threads__get_last_match(threads, machine, pid, tid);
478 
479 	return th;
480 }
481 
482 static void
483 __threads__set_last_match(struct threads *threads, struct thread *th)
484 {
485 	threads->last_match = th;
486 }
487 
488 static void
489 threads__set_last_match(struct threads *threads, struct thread *th)
490 {
491 	if (perf_singlethreaded)
492 		__threads__set_last_match(threads, th);
493 }
494 
495 /*
496  * Caller must eventually drop thread->refcnt returned with a successful
497  * lookup/new thread inserted.
498  */
499 static struct thread *____machine__findnew_thread(struct machine *machine,
500 						  struct threads *threads,
501 						  pid_t pid, pid_t tid,
502 						  bool create)
503 {
504 	struct rb_node **p = &threads->entries.rb_root.rb_node;
505 	struct rb_node *parent = NULL;
506 	struct thread *th;
507 	bool leftmost = true;
508 
509 	th = threads__get_last_match(threads, machine, pid, tid);
510 	if (th)
511 		return th;
512 
513 	while (*p != NULL) {
514 		parent = *p;
515 		th = rb_entry(parent, struct thread, rb_node);
516 
517 		if (th->tid == tid) {
518 			threads__set_last_match(threads, th);
519 			machine__update_thread_pid(machine, th, pid);
520 			return thread__get(th);
521 		}
522 
523 		if (tid < th->tid)
524 			p = &(*p)->rb_left;
525 		else {
526 			p = &(*p)->rb_right;
527 			leftmost = false;
528 		}
529 	}
530 
531 	if (!create)
532 		return NULL;
533 
534 	th = thread__new(pid, tid);
535 	if (th != NULL) {
536 		rb_link_node(&th->rb_node, parent, p);
537 		rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
538 
539 		/*
540 		 * We have to initialize maps separately after rb tree is updated.
541 		 *
542 		 * The reason is that we call machine__findnew_thread
543 		 * within thread__init_maps to find the thread
544 		 * leader and that would screwed the rb tree.
545 		 */
546 		if (thread__init_maps(th, machine)) {
547 			rb_erase_cached(&th->rb_node, &threads->entries);
548 			RB_CLEAR_NODE(&th->rb_node);
549 			thread__put(th);
550 			return NULL;
551 		}
552 		/*
553 		 * It is now in the rbtree, get a ref
554 		 */
555 		thread__get(th);
556 		threads__set_last_match(threads, th);
557 		++threads->nr;
558 	}
559 
560 	return th;
561 }
562 
563 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
564 {
565 	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
566 }
567 
568 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
569 				       pid_t tid)
570 {
571 	struct threads *threads = machine__threads(machine, tid);
572 	struct thread *th;
573 
574 	down_write(&threads->lock);
575 	th = __machine__findnew_thread(machine, pid, tid);
576 	up_write(&threads->lock);
577 	return th;
578 }
579 
580 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
581 				    pid_t tid)
582 {
583 	struct threads *threads = machine__threads(machine, tid);
584 	struct thread *th;
585 
586 	down_read(&threads->lock);
587 	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
588 	up_read(&threads->lock);
589 	return th;
590 }
591 
592 struct comm *machine__thread_exec_comm(struct machine *machine,
593 				       struct thread *thread)
594 {
595 	if (machine->comm_exec)
596 		return thread__exec_comm(thread);
597 	else
598 		return thread__comm(thread);
599 }
600 
601 int machine__process_comm_event(struct machine *machine, union perf_event *event,
602 				struct perf_sample *sample)
603 {
604 	struct thread *thread = machine__findnew_thread(machine,
605 							event->comm.pid,
606 							event->comm.tid);
607 	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
608 	int err = 0;
609 
610 	if (exec)
611 		machine->comm_exec = true;
612 
613 	if (dump_trace)
614 		perf_event__fprintf_comm(event, stdout);
615 
616 	if (thread == NULL ||
617 	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
618 		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
619 		err = -1;
620 	}
621 
622 	thread__put(thread);
623 
624 	return err;
625 }
626 
627 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
628 				      union perf_event *event,
629 				      struct perf_sample *sample __maybe_unused)
630 {
631 	struct thread *thread = machine__findnew_thread(machine,
632 							event->namespaces.pid,
633 							event->namespaces.tid);
634 	int err = 0;
635 
636 	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
637 		  "\nWARNING: kernel seems to support more namespaces than perf"
638 		  " tool.\nTry updating the perf tool..\n\n");
639 
640 	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
641 		  "\nWARNING: perf tool seems to support more namespaces than"
642 		  " the kernel.\nTry updating the kernel..\n\n");
643 
644 	if (dump_trace)
645 		perf_event__fprintf_namespaces(event, stdout);
646 
647 	if (thread == NULL ||
648 	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
649 		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
650 		err = -1;
651 	}
652 
653 	thread__put(thread);
654 
655 	return err;
656 }
657 
658 int machine__process_cgroup_event(struct machine *machine,
659 				  union perf_event *event,
660 				  struct perf_sample *sample __maybe_unused)
661 {
662 	struct cgroup *cgrp;
663 
664 	if (dump_trace)
665 		perf_event__fprintf_cgroup(event, stdout);
666 
667 	cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
668 	if (cgrp == NULL)
669 		return -ENOMEM;
670 
671 	return 0;
672 }
673 
674 int machine__process_lost_event(struct machine *machine __maybe_unused,
675 				union perf_event *event, struct perf_sample *sample __maybe_unused)
676 {
677 	dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
678 		    event->lost.id, event->lost.lost);
679 	return 0;
680 }
681 
682 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
683 					union perf_event *event, struct perf_sample *sample)
684 {
685 	dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
686 		    sample->id, event->lost_samples.lost);
687 	return 0;
688 }
689 
690 static struct dso *machine__findnew_module_dso(struct machine *machine,
691 					       struct kmod_path *m,
692 					       const char *filename)
693 {
694 	struct dso *dso;
695 
696 	down_write(&machine->dsos.lock);
697 
698 	dso = __dsos__find(&machine->dsos, m->name, true);
699 	if (!dso) {
700 		dso = __dsos__addnew(&machine->dsos, m->name);
701 		if (dso == NULL)
702 			goto out_unlock;
703 
704 		dso__set_module_info(dso, m, machine);
705 		dso__set_long_name(dso, strdup(filename), true);
706 		dso->kernel = DSO_SPACE__KERNEL;
707 	}
708 
709 	dso__get(dso);
710 out_unlock:
711 	up_write(&machine->dsos.lock);
712 	return dso;
713 }
714 
715 int machine__process_aux_event(struct machine *machine __maybe_unused,
716 			       union perf_event *event)
717 {
718 	if (dump_trace)
719 		perf_event__fprintf_aux(event, stdout);
720 	return 0;
721 }
722 
723 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
724 					union perf_event *event)
725 {
726 	if (dump_trace)
727 		perf_event__fprintf_itrace_start(event, stdout);
728 	return 0;
729 }
730 
731 int machine__process_switch_event(struct machine *machine __maybe_unused,
732 				  union perf_event *event)
733 {
734 	if (dump_trace)
735 		perf_event__fprintf_switch(event, stdout);
736 	return 0;
737 }
738 
739 static int machine__process_ksymbol_register(struct machine *machine,
740 					     union perf_event *event,
741 					     struct perf_sample *sample __maybe_unused)
742 {
743 	struct symbol *sym;
744 	struct map *map = maps__find(&machine->kmaps, event->ksymbol.addr);
745 
746 	if (!map) {
747 		struct dso *dso = dso__new(event->ksymbol.name);
748 
749 		if (dso) {
750 			dso->kernel = DSO_SPACE__KERNEL;
751 			map = map__new2(0, dso);
752 		}
753 
754 		if (!dso || !map) {
755 			dso__put(dso);
756 			return -ENOMEM;
757 		}
758 
759 		if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
760 			map->dso->binary_type = DSO_BINARY_TYPE__OOL;
761 			map->dso->data.file_size = event->ksymbol.len;
762 			dso__set_loaded(map->dso);
763 		}
764 
765 		map->start = event->ksymbol.addr;
766 		map->end = map->start + event->ksymbol.len;
767 		maps__insert(&machine->kmaps, map);
768 		dso__set_loaded(dso);
769 
770 		if (is_bpf_image(event->ksymbol.name)) {
771 			dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE;
772 			dso__set_long_name(dso, "", false);
773 		}
774 	}
775 
776 	sym = symbol__new(map->map_ip(map, map->start),
777 			  event->ksymbol.len,
778 			  0, 0, event->ksymbol.name);
779 	if (!sym)
780 		return -ENOMEM;
781 	dso__insert_symbol(map->dso, sym);
782 	return 0;
783 }
784 
785 static int machine__process_ksymbol_unregister(struct machine *machine,
786 					       union perf_event *event,
787 					       struct perf_sample *sample __maybe_unused)
788 {
789 	struct map *map;
790 
791 	map = maps__find(&machine->kmaps, event->ksymbol.addr);
792 	if (map)
793 		maps__remove(&machine->kmaps, map);
794 
795 	return 0;
796 }
797 
798 int machine__process_ksymbol(struct machine *machine __maybe_unused,
799 			     union perf_event *event,
800 			     struct perf_sample *sample)
801 {
802 	if (dump_trace)
803 		perf_event__fprintf_ksymbol(event, stdout);
804 
805 	if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
806 		return machine__process_ksymbol_unregister(machine, event,
807 							   sample);
808 	return machine__process_ksymbol_register(machine, event, sample);
809 }
810 
811 int machine__process_text_poke(struct machine *machine, union perf_event *event,
812 			       struct perf_sample *sample __maybe_unused)
813 {
814 	struct map *map = maps__find(&machine->kmaps, event->text_poke.addr);
815 	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
816 
817 	if (dump_trace)
818 		perf_event__fprintf_text_poke(event, machine, stdout);
819 
820 	if (!event->text_poke.new_len)
821 		return 0;
822 
823 	if (cpumode != PERF_RECORD_MISC_KERNEL) {
824 		pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
825 		return 0;
826 	}
827 
828 	if (map && map->dso) {
829 		u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
830 		int ret;
831 
832 		/*
833 		 * Kernel maps might be changed when loading symbols so loading
834 		 * must be done prior to using kernel maps.
835 		 */
836 		map__load(map);
837 		ret = dso__data_write_cache_addr(map->dso, map, machine,
838 						 event->text_poke.addr,
839 						 new_bytes,
840 						 event->text_poke.new_len);
841 		if (ret != event->text_poke.new_len)
842 			pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
843 				 event->text_poke.addr);
844 	} else {
845 		pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
846 			 event->text_poke.addr);
847 	}
848 
849 	return 0;
850 }
851 
852 static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
853 					      const char *filename)
854 {
855 	struct map *map = NULL;
856 	struct kmod_path m;
857 	struct dso *dso;
858 
859 	if (kmod_path__parse_name(&m, filename))
860 		return NULL;
861 
862 	dso = machine__findnew_module_dso(machine, &m, filename);
863 	if (dso == NULL)
864 		goto out;
865 
866 	map = map__new2(start, dso);
867 	if (map == NULL)
868 		goto out;
869 
870 	maps__insert(&machine->kmaps, map);
871 
872 	/* Put the map here because maps__insert alread got it */
873 	map__put(map);
874 out:
875 	/* put the dso here, corresponding to  machine__findnew_module_dso */
876 	dso__put(dso);
877 	zfree(&m.name);
878 	return map;
879 }
880 
881 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
882 {
883 	struct rb_node *nd;
884 	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
885 
886 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
887 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
888 		ret += __dsos__fprintf(&pos->dsos.head, fp);
889 	}
890 
891 	return ret;
892 }
893 
894 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
895 				     bool (skip)(struct dso *dso, int parm), int parm)
896 {
897 	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
898 }
899 
900 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
901 				     bool (skip)(struct dso *dso, int parm), int parm)
902 {
903 	struct rb_node *nd;
904 	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
905 
906 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
907 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
908 		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
909 	}
910 	return ret;
911 }
912 
913 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
914 {
915 	int i;
916 	size_t printed = 0;
917 	struct dso *kdso = machine__kernel_dso(machine);
918 
919 	if (kdso->has_build_id) {
920 		char filename[PATH_MAX];
921 		if (dso__build_id_filename(kdso, filename, sizeof(filename),
922 					   false))
923 			printed += fprintf(fp, "[0] %s\n", filename);
924 	}
925 
926 	for (i = 0; i < vmlinux_path__nr_entries; ++i)
927 		printed += fprintf(fp, "[%d] %s\n",
928 				   i + kdso->has_build_id, vmlinux_path[i]);
929 
930 	return printed;
931 }
932 
933 size_t machine__fprintf(struct machine *machine, FILE *fp)
934 {
935 	struct rb_node *nd;
936 	size_t ret;
937 	int i;
938 
939 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
940 		struct threads *threads = &machine->threads[i];
941 
942 		down_read(&threads->lock);
943 
944 		ret = fprintf(fp, "Threads: %u\n", threads->nr);
945 
946 		for (nd = rb_first_cached(&threads->entries); nd;
947 		     nd = rb_next(nd)) {
948 			struct thread *pos = rb_entry(nd, struct thread, rb_node);
949 
950 			ret += thread__fprintf(pos, fp);
951 		}
952 
953 		up_read(&threads->lock);
954 	}
955 	return ret;
956 }
957 
958 static struct dso *machine__get_kernel(struct machine *machine)
959 {
960 	const char *vmlinux_name = machine->mmap_name;
961 	struct dso *kernel;
962 
963 	if (machine__is_host(machine)) {
964 		if (symbol_conf.vmlinux_name)
965 			vmlinux_name = symbol_conf.vmlinux_name;
966 
967 		kernel = machine__findnew_kernel(machine, vmlinux_name,
968 						 "[kernel]", DSO_SPACE__KERNEL);
969 	} else {
970 		if (symbol_conf.default_guest_vmlinux_name)
971 			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
972 
973 		kernel = machine__findnew_kernel(machine, vmlinux_name,
974 						 "[guest.kernel]",
975 						 DSO_SPACE__KERNEL_GUEST);
976 	}
977 
978 	if (kernel != NULL && (!kernel->has_build_id))
979 		dso__read_running_kernel_build_id(kernel, machine);
980 
981 	return kernel;
982 }
983 
984 struct process_args {
985 	u64 start;
986 };
987 
988 void machine__get_kallsyms_filename(struct machine *machine, char *buf,
989 				    size_t bufsz)
990 {
991 	if (machine__is_default_guest(machine))
992 		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
993 	else
994 		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
995 }
996 
997 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
998 
999 /* Figure out the start address of kernel map from /proc/kallsyms.
1000  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
1001  * symbol_name if it's not that important.
1002  */
1003 static int machine__get_running_kernel_start(struct machine *machine,
1004 					     const char **symbol_name,
1005 					     u64 *start, u64 *end)
1006 {
1007 	char filename[PATH_MAX];
1008 	int i, err = -1;
1009 	const char *name;
1010 	u64 addr = 0;
1011 
1012 	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
1013 
1014 	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1015 		return 0;
1016 
1017 	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
1018 		err = kallsyms__get_function_start(filename, name, &addr);
1019 		if (!err)
1020 			break;
1021 	}
1022 
1023 	if (err)
1024 		return -1;
1025 
1026 	if (symbol_name)
1027 		*symbol_name = name;
1028 
1029 	*start = addr;
1030 
1031 	err = kallsyms__get_function_start(filename, "_etext", &addr);
1032 	if (!err)
1033 		*end = addr;
1034 
1035 	return 0;
1036 }
1037 
1038 int machine__create_extra_kernel_map(struct machine *machine,
1039 				     struct dso *kernel,
1040 				     struct extra_kernel_map *xm)
1041 {
1042 	struct kmap *kmap;
1043 	struct map *map;
1044 
1045 	map = map__new2(xm->start, kernel);
1046 	if (!map)
1047 		return -1;
1048 
1049 	map->end   = xm->end;
1050 	map->pgoff = xm->pgoff;
1051 
1052 	kmap = map__kmap(map);
1053 
1054 	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1055 
1056 	maps__insert(&machine->kmaps, map);
1057 
1058 	pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1059 		  kmap->name, map->start, map->end);
1060 
1061 	map__put(map);
1062 
1063 	return 0;
1064 }
1065 
1066 static u64 find_entry_trampoline(struct dso *dso)
1067 {
1068 	/* Duplicates are removed so lookup all aliases */
1069 	const char *syms[] = {
1070 		"_entry_trampoline",
1071 		"__entry_trampoline_start",
1072 		"entry_SYSCALL_64_trampoline",
1073 	};
1074 	struct symbol *sym = dso__first_symbol(dso);
1075 	unsigned int i;
1076 
1077 	for (; sym; sym = dso__next_symbol(sym)) {
1078 		if (sym->binding != STB_GLOBAL)
1079 			continue;
1080 		for (i = 0; i < ARRAY_SIZE(syms); i++) {
1081 			if (!strcmp(sym->name, syms[i]))
1082 				return sym->start;
1083 		}
1084 	}
1085 
1086 	return 0;
1087 }
1088 
1089 /*
1090  * These values can be used for kernels that do not have symbols for the entry
1091  * trampolines in kallsyms.
1092  */
1093 #define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
1094 #define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
1095 #define X86_64_ENTRY_TRAMPOLINE		0x6000
1096 
1097 /* Map x86_64 PTI entry trampolines */
1098 int machine__map_x86_64_entry_trampolines(struct machine *machine,
1099 					  struct dso *kernel)
1100 {
1101 	struct maps *kmaps = &machine->kmaps;
1102 	int nr_cpus_avail, cpu;
1103 	bool found = false;
1104 	struct map *map;
1105 	u64 pgoff;
1106 
1107 	/*
1108 	 * In the vmlinux case, pgoff is a virtual address which must now be
1109 	 * mapped to a vmlinux offset.
1110 	 */
1111 	maps__for_each_entry(kmaps, map) {
1112 		struct kmap *kmap = __map__kmap(map);
1113 		struct map *dest_map;
1114 
1115 		if (!kmap || !is_entry_trampoline(kmap->name))
1116 			continue;
1117 
1118 		dest_map = maps__find(kmaps, map->pgoff);
1119 		if (dest_map != map)
1120 			map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1121 		found = true;
1122 	}
1123 	if (found || machine->trampolines_mapped)
1124 		return 0;
1125 
1126 	pgoff = find_entry_trampoline(kernel);
1127 	if (!pgoff)
1128 		return 0;
1129 
1130 	nr_cpus_avail = machine__nr_cpus_avail(machine);
1131 
1132 	/* Add a 1 page map for each CPU's entry trampoline */
1133 	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1134 		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1135 			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1136 			 X86_64_ENTRY_TRAMPOLINE;
1137 		struct extra_kernel_map xm = {
1138 			.start = va,
1139 			.end   = va + page_size,
1140 			.pgoff = pgoff,
1141 		};
1142 
1143 		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1144 
1145 		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1146 			return -1;
1147 	}
1148 
1149 	machine->trampolines_mapped = nr_cpus_avail;
1150 
1151 	return 0;
1152 }
1153 
1154 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1155 					     struct dso *kernel __maybe_unused)
1156 {
1157 	return 0;
1158 }
1159 
1160 static int
1161 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1162 {
1163 	/* In case of renewal the kernel map, destroy previous one */
1164 	machine__destroy_kernel_maps(machine);
1165 
1166 	machine->vmlinux_map = map__new2(0, kernel);
1167 	if (machine->vmlinux_map == NULL)
1168 		return -1;
1169 
1170 	machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1171 	maps__insert(&machine->kmaps, machine->vmlinux_map);
1172 	return 0;
1173 }
1174 
1175 void machine__destroy_kernel_maps(struct machine *machine)
1176 {
1177 	struct kmap *kmap;
1178 	struct map *map = machine__kernel_map(machine);
1179 
1180 	if (map == NULL)
1181 		return;
1182 
1183 	kmap = map__kmap(map);
1184 	maps__remove(&machine->kmaps, map);
1185 	if (kmap && kmap->ref_reloc_sym) {
1186 		zfree((char **)&kmap->ref_reloc_sym->name);
1187 		zfree(&kmap->ref_reloc_sym);
1188 	}
1189 
1190 	map__zput(machine->vmlinux_map);
1191 }
1192 
1193 int machines__create_guest_kernel_maps(struct machines *machines)
1194 {
1195 	int ret = 0;
1196 	struct dirent **namelist = NULL;
1197 	int i, items = 0;
1198 	char path[PATH_MAX];
1199 	pid_t pid;
1200 	char *endp;
1201 
1202 	if (symbol_conf.default_guest_vmlinux_name ||
1203 	    symbol_conf.default_guest_modules ||
1204 	    symbol_conf.default_guest_kallsyms) {
1205 		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1206 	}
1207 
1208 	if (symbol_conf.guestmount) {
1209 		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1210 		if (items <= 0)
1211 			return -ENOENT;
1212 		for (i = 0; i < items; i++) {
1213 			if (!isdigit(namelist[i]->d_name[0])) {
1214 				/* Filter out . and .. */
1215 				continue;
1216 			}
1217 			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1218 			if ((*endp != '\0') ||
1219 			    (endp == namelist[i]->d_name) ||
1220 			    (errno == ERANGE)) {
1221 				pr_debug("invalid directory (%s). Skipping.\n",
1222 					 namelist[i]->d_name);
1223 				continue;
1224 			}
1225 			sprintf(path, "%s/%s/proc/kallsyms",
1226 				symbol_conf.guestmount,
1227 				namelist[i]->d_name);
1228 			ret = access(path, R_OK);
1229 			if (ret) {
1230 				pr_debug("Can't access file %s\n", path);
1231 				goto failure;
1232 			}
1233 			machines__create_kernel_maps(machines, pid);
1234 		}
1235 failure:
1236 		free(namelist);
1237 	}
1238 
1239 	return ret;
1240 }
1241 
1242 void machines__destroy_kernel_maps(struct machines *machines)
1243 {
1244 	struct rb_node *next = rb_first_cached(&machines->guests);
1245 
1246 	machine__destroy_kernel_maps(&machines->host);
1247 
1248 	while (next) {
1249 		struct machine *pos = rb_entry(next, struct machine, rb_node);
1250 
1251 		next = rb_next(&pos->rb_node);
1252 		rb_erase_cached(&pos->rb_node, &machines->guests);
1253 		machine__delete(pos);
1254 	}
1255 }
1256 
1257 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1258 {
1259 	struct machine *machine = machines__findnew(machines, pid);
1260 
1261 	if (machine == NULL)
1262 		return -1;
1263 
1264 	return machine__create_kernel_maps(machine);
1265 }
1266 
1267 int machine__load_kallsyms(struct machine *machine, const char *filename)
1268 {
1269 	struct map *map = machine__kernel_map(machine);
1270 	int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1271 
1272 	if (ret > 0) {
1273 		dso__set_loaded(map->dso);
1274 		/*
1275 		 * Since /proc/kallsyms will have multiple sessions for the
1276 		 * kernel, with modules between them, fixup the end of all
1277 		 * sections.
1278 		 */
1279 		maps__fixup_end(&machine->kmaps);
1280 	}
1281 
1282 	return ret;
1283 }
1284 
1285 int machine__load_vmlinux_path(struct machine *machine)
1286 {
1287 	struct map *map = machine__kernel_map(machine);
1288 	int ret = dso__load_vmlinux_path(map->dso, map);
1289 
1290 	if (ret > 0)
1291 		dso__set_loaded(map->dso);
1292 
1293 	return ret;
1294 }
1295 
1296 static char *get_kernel_version(const char *root_dir)
1297 {
1298 	char version[PATH_MAX];
1299 	FILE *file;
1300 	char *name, *tmp;
1301 	const char *prefix = "Linux version ";
1302 
1303 	sprintf(version, "%s/proc/version", root_dir);
1304 	file = fopen(version, "r");
1305 	if (!file)
1306 		return NULL;
1307 
1308 	tmp = fgets(version, sizeof(version), file);
1309 	fclose(file);
1310 	if (!tmp)
1311 		return NULL;
1312 
1313 	name = strstr(version, prefix);
1314 	if (!name)
1315 		return NULL;
1316 	name += strlen(prefix);
1317 	tmp = strchr(name, ' ');
1318 	if (tmp)
1319 		*tmp = '\0';
1320 
1321 	return strdup(name);
1322 }
1323 
1324 static bool is_kmod_dso(struct dso *dso)
1325 {
1326 	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1327 	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1328 }
1329 
1330 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1331 {
1332 	char *long_name;
1333 	struct map *map = maps__find_by_name(maps, m->name);
1334 
1335 	if (map == NULL)
1336 		return 0;
1337 
1338 	long_name = strdup(path);
1339 	if (long_name == NULL)
1340 		return -ENOMEM;
1341 
1342 	dso__set_long_name(map->dso, long_name, true);
1343 	dso__kernel_module_get_build_id(map->dso, "");
1344 
1345 	/*
1346 	 * Full name could reveal us kmod compression, so
1347 	 * we need to update the symtab_type if needed.
1348 	 */
1349 	if (m->comp && is_kmod_dso(map->dso)) {
1350 		map->dso->symtab_type++;
1351 		map->dso->comp = m->comp;
1352 	}
1353 
1354 	return 0;
1355 }
1356 
1357 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1358 {
1359 	struct dirent *dent;
1360 	DIR *dir = opendir(dir_name);
1361 	int ret = 0;
1362 
1363 	if (!dir) {
1364 		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1365 		return -1;
1366 	}
1367 
1368 	while ((dent = readdir(dir)) != NULL) {
1369 		char path[PATH_MAX];
1370 		struct stat st;
1371 
1372 		/*sshfs might return bad dent->d_type, so we have to stat*/
1373 		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1374 		if (stat(path, &st))
1375 			continue;
1376 
1377 		if (S_ISDIR(st.st_mode)) {
1378 			if (!strcmp(dent->d_name, ".") ||
1379 			    !strcmp(dent->d_name, ".."))
1380 				continue;
1381 
1382 			/* Do not follow top-level source and build symlinks */
1383 			if (depth == 0) {
1384 				if (!strcmp(dent->d_name, "source") ||
1385 				    !strcmp(dent->d_name, "build"))
1386 					continue;
1387 			}
1388 
1389 			ret = maps__set_modules_path_dir(maps, path, depth + 1);
1390 			if (ret < 0)
1391 				goto out;
1392 		} else {
1393 			struct kmod_path m;
1394 
1395 			ret = kmod_path__parse_name(&m, dent->d_name);
1396 			if (ret)
1397 				goto out;
1398 
1399 			if (m.kmod)
1400 				ret = maps__set_module_path(maps, path, &m);
1401 
1402 			zfree(&m.name);
1403 
1404 			if (ret)
1405 				goto out;
1406 		}
1407 	}
1408 
1409 out:
1410 	closedir(dir);
1411 	return ret;
1412 }
1413 
1414 static int machine__set_modules_path(struct machine *machine)
1415 {
1416 	char *version;
1417 	char modules_path[PATH_MAX];
1418 
1419 	version = get_kernel_version(machine->root_dir);
1420 	if (!version)
1421 		return -1;
1422 
1423 	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1424 		 machine->root_dir, version);
1425 	free(version);
1426 
1427 	return maps__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1428 }
1429 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1430 				u64 *size __maybe_unused,
1431 				const char *name __maybe_unused)
1432 {
1433 	return 0;
1434 }
1435 
1436 static int machine__create_module(void *arg, const char *name, u64 start,
1437 				  u64 size)
1438 {
1439 	struct machine *machine = arg;
1440 	struct map *map;
1441 
1442 	if (arch__fix_module_text_start(&start, &size, name) < 0)
1443 		return -1;
1444 
1445 	map = machine__addnew_module_map(machine, start, name);
1446 	if (map == NULL)
1447 		return -1;
1448 	map->end = start + size;
1449 
1450 	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1451 
1452 	return 0;
1453 }
1454 
1455 static int machine__create_modules(struct machine *machine)
1456 {
1457 	const char *modules;
1458 	char path[PATH_MAX];
1459 
1460 	if (machine__is_default_guest(machine)) {
1461 		modules = symbol_conf.default_guest_modules;
1462 	} else {
1463 		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1464 		modules = path;
1465 	}
1466 
1467 	if (symbol__restricted_filename(modules, "/proc/modules"))
1468 		return -1;
1469 
1470 	if (modules__parse(modules, machine, machine__create_module))
1471 		return -1;
1472 
1473 	if (!machine__set_modules_path(machine))
1474 		return 0;
1475 
1476 	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1477 
1478 	return 0;
1479 }
1480 
1481 static void machine__set_kernel_mmap(struct machine *machine,
1482 				     u64 start, u64 end)
1483 {
1484 	machine->vmlinux_map->start = start;
1485 	machine->vmlinux_map->end   = end;
1486 	/*
1487 	 * Be a bit paranoid here, some perf.data file came with
1488 	 * a zero sized synthesized MMAP event for the kernel.
1489 	 */
1490 	if (start == 0 && end == 0)
1491 		machine->vmlinux_map->end = ~0ULL;
1492 }
1493 
1494 static void machine__update_kernel_mmap(struct machine *machine,
1495 				     u64 start, u64 end)
1496 {
1497 	struct map *map = machine__kernel_map(machine);
1498 
1499 	map__get(map);
1500 	maps__remove(&machine->kmaps, map);
1501 
1502 	machine__set_kernel_mmap(machine, start, end);
1503 
1504 	maps__insert(&machine->kmaps, map);
1505 	map__put(map);
1506 }
1507 
1508 int machine__create_kernel_maps(struct machine *machine)
1509 {
1510 	struct dso *kernel = machine__get_kernel(machine);
1511 	const char *name = NULL;
1512 	struct map *map;
1513 	u64 start = 0, end = ~0ULL;
1514 	int ret;
1515 
1516 	if (kernel == NULL)
1517 		return -1;
1518 
1519 	ret = __machine__create_kernel_maps(machine, kernel);
1520 	if (ret < 0)
1521 		goto out_put;
1522 
1523 	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1524 		if (machine__is_host(machine))
1525 			pr_debug("Problems creating module maps, "
1526 				 "continuing anyway...\n");
1527 		else
1528 			pr_debug("Problems creating module maps for guest %d, "
1529 				 "continuing anyway...\n", machine->pid);
1530 	}
1531 
1532 	if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1533 		if (name &&
1534 		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1535 			machine__destroy_kernel_maps(machine);
1536 			ret = -1;
1537 			goto out_put;
1538 		}
1539 
1540 		/*
1541 		 * we have a real start address now, so re-order the kmaps
1542 		 * assume it's the last in the kmaps
1543 		 */
1544 		machine__update_kernel_mmap(machine, start, end);
1545 	}
1546 
1547 	if (machine__create_extra_kernel_maps(machine, kernel))
1548 		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1549 
1550 	if (end == ~0ULL) {
1551 		/* update end address of the kernel map using adjacent module address */
1552 		map = map__next(machine__kernel_map(machine));
1553 		if (map)
1554 			machine__set_kernel_mmap(machine, start, map->start);
1555 	}
1556 
1557 out_put:
1558 	dso__put(kernel);
1559 	return ret;
1560 }
1561 
1562 static bool machine__uses_kcore(struct machine *machine)
1563 {
1564 	struct dso *dso;
1565 
1566 	list_for_each_entry(dso, &machine->dsos.head, node) {
1567 		if (dso__is_kcore(dso))
1568 			return true;
1569 	}
1570 
1571 	return false;
1572 }
1573 
1574 static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1575 					     union perf_event *event)
1576 {
1577 	return machine__is(machine, "x86_64") &&
1578 	       is_entry_trampoline(event->mmap.filename);
1579 }
1580 
1581 static int machine__process_extra_kernel_map(struct machine *machine,
1582 					     union perf_event *event)
1583 {
1584 	struct dso *kernel = machine__kernel_dso(machine);
1585 	struct extra_kernel_map xm = {
1586 		.start = event->mmap.start,
1587 		.end   = event->mmap.start + event->mmap.len,
1588 		.pgoff = event->mmap.pgoff,
1589 	};
1590 
1591 	if (kernel == NULL)
1592 		return -1;
1593 
1594 	strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1595 
1596 	return machine__create_extra_kernel_map(machine, kernel, &xm);
1597 }
1598 
1599 static int machine__process_kernel_mmap_event(struct machine *machine,
1600 					      union perf_event *event)
1601 {
1602 	struct map *map;
1603 	enum dso_space_type dso_space;
1604 	bool is_kernel_mmap;
1605 
1606 	/* If we have maps from kcore then we do not need or want any others */
1607 	if (machine__uses_kcore(machine))
1608 		return 0;
1609 
1610 	if (machine__is_host(machine))
1611 		dso_space = DSO_SPACE__KERNEL;
1612 	else
1613 		dso_space = DSO_SPACE__KERNEL_GUEST;
1614 
1615 	is_kernel_mmap = memcmp(event->mmap.filename,
1616 				machine->mmap_name,
1617 				strlen(machine->mmap_name) - 1) == 0;
1618 	if (event->mmap.filename[0] == '/' ||
1619 	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1620 		map = machine__addnew_module_map(machine, event->mmap.start,
1621 						 event->mmap.filename);
1622 		if (map == NULL)
1623 			goto out_problem;
1624 
1625 		map->end = map->start + event->mmap.len;
1626 	} else if (is_kernel_mmap) {
1627 		const char *symbol_name = (event->mmap.filename +
1628 				strlen(machine->mmap_name));
1629 		/*
1630 		 * Should be there already, from the build-id table in
1631 		 * the header.
1632 		 */
1633 		struct dso *kernel = NULL;
1634 		struct dso *dso;
1635 
1636 		down_read(&machine->dsos.lock);
1637 
1638 		list_for_each_entry(dso, &machine->dsos.head, node) {
1639 
1640 			/*
1641 			 * The cpumode passed to is_kernel_module is not the
1642 			 * cpumode of *this* event. If we insist on passing
1643 			 * correct cpumode to is_kernel_module, we should
1644 			 * record the cpumode when we adding this dso to the
1645 			 * linked list.
1646 			 *
1647 			 * However we don't really need passing correct
1648 			 * cpumode.  We know the correct cpumode must be kernel
1649 			 * mode (if not, we should not link it onto kernel_dsos
1650 			 * list).
1651 			 *
1652 			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1653 			 * is_kernel_module() treats it as a kernel cpumode.
1654 			 */
1655 
1656 			if (!dso->kernel ||
1657 			    is_kernel_module(dso->long_name,
1658 					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1659 				continue;
1660 
1661 
1662 			kernel = dso;
1663 			break;
1664 		}
1665 
1666 		up_read(&machine->dsos.lock);
1667 
1668 		if (kernel == NULL)
1669 			kernel = machine__findnew_dso(machine, machine->mmap_name);
1670 		if (kernel == NULL)
1671 			goto out_problem;
1672 
1673 		kernel->kernel = dso_space;
1674 		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1675 			dso__put(kernel);
1676 			goto out_problem;
1677 		}
1678 
1679 		if (strstr(kernel->long_name, "vmlinux"))
1680 			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1681 
1682 		machine__update_kernel_mmap(machine, event->mmap.start,
1683 					 event->mmap.start + event->mmap.len);
1684 
1685 		/*
1686 		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1687 		 * symbol. Effectively having zero here means that at record
1688 		 * time /proc/sys/kernel/kptr_restrict was non zero.
1689 		 */
1690 		if (event->mmap.pgoff != 0) {
1691 			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1692 							symbol_name,
1693 							event->mmap.pgoff);
1694 		}
1695 
1696 		if (machine__is_default_guest(machine)) {
1697 			/*
1698 			 * preload dso of guest kernel and modules
1699 			 */
1700 			dso__load(kernel, machine__kernel_map(machine));
1701 		}
1702 	} else if (perf_event__is_extra_kernel_mmap(machine, event)) {
1703 		return machine__process_extra_kernel_map(machine, event);
1704 	}
1705 	return 0;
1706 out_problem:
1707 	return -1;
1708 }
1709 
1710 int machine__process_mmap2_event(struct machine *machine,
1711 				 union perf_event *event,
1712 				 struct perf_sample *sample)
1713 {
1714 	struct thread *thread;
1715 	struct map *map;
1716 	struct dso_id dso_id = {
1717 		.maj = event->mmap2.maj,
1718 		.min = event->mmap2.min,
1719 		.ino = event->mmap2.ino,
1720 		.ino_generation = event->mmap2.ino_generation,
1721 	};
1722 	int ret = 0;
1723 
1724 	if (dump_trace)
1725 		perf_event__fprintf_mmap2(event, stdout);
1726 
1727 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1728 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1729 		ret = machine__process_kernel_mmap_event(machine, event);
1730 		if (ret < 0)
1731 			goto out_problem;
1732 		return 0;
1733 	}
1734 
1735 	thread = machine__findnew_thread(machine, event->mmap2.pid,
1736 					event->mmap2.tid);
1737 	if (thread == NULL)
1738 		goto out_problem;
1739 
1740 	map = map__new(machine, event->mmap2.start,
1741 			event->mmap2.len, event->mmap2.pgoff,
1742 			&dso_id, event->mmap2.prot,
1743 			event->mmap2.flags,
1744 			event->mmap2.filename, thread);
1745 
1746 	if (map == NULL)
1747 		goto out_problem_map;
1748 
1749 	ret = thread__insert_map(thread, map);
1750 	if (ret)
1751 		goto out_problem_insert;
1752 
1753 	thread__put(thread);
1754 	map__put(map);
1755 	return 0;
1756 
1757 out_problem_insert:
1758 	map__put(map);
1759 out_problem_map:
1760 	thread__put(thread);
1761 out_problem:
1762 	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1763 	return 0;
1764 }
1765 
1766 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1767 				struct perf_sample *sample)
1768 {
1769 	struct thread *thread;
1770 	struct map *map;
1771 	u32 prot = 0;
1772 	int ret = 0;
1773 
1774 	if (dump_trace)
1775 		perf_event__fprintf_mmap(event, stdout);
1776 
1777 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1778 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1779 		ret = machine__process_kernel_mmap_event(machine, event);
1780 		if (ret < 0)
1781 			goto out_problem;
1782 		return 0;
1783 	}
1784 
1785 	thread = machine__findnew_thread(machine, event->mmap.pid,
1786 					 event->mmap.tid);
1787 	if (thread == NULL)
1788 		goto out_problem;
1789 
1790 	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1791 		prot = PROT_EXEC;
1792 
1793 	map = map__new(machine, event->mmap.start,
1794 			event->mmap.len, event->mmap.pgoff,
1795 			NULL, prot, 0, event->mmap.filename, thread);
1796 
1797 	if (map == NULL)
1798 		goto out_problem_map;
1799 
1800 	ret = thread__insert_map(thread, map);
1801 	if (ret)
1802 		goto out_problem_insert;
1803 
1804 	thread__put(thread);
1805 	map__put(map);
1806 	return 0;
1807 
1808 out_problem_insert:
1809 	map__put(map);
1810 out_problem_map:
1811 	thread__put(thread);
1812 out_problem:
1813 	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1814 	return 0;
1815 }
1816 
1817 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1818 {
1819 	struct threads *threads = machine__threads(machine, th->tid);
1820 
1821 	if (threads->last_match == th)
1822 		threads__set_last_match(threads, NULL);
1823 
1824 	if (lock)
1825 		down_write(&threads->lock);
1826 
1827 	BUG_ON(refcount_read(&th->refcnt) == 0);
1828 
1829 	rb_erase_cached(&th->rb_node, &threads->entries);
1830 	RB_CLEAR_NODE(&th->rb_node);
1831 	--threads->nr;
1832 	/*
1833 	 * Move it first to the dead_threads list, then drop the reference,
1834 	 * if this is the last reference, then the thread__delete destructor
1835 	 * will be called and we will remove it from the dead_threads list.
1836 	 */
1837 	list_add_tail(&th->node, &threads->dead);
1838 
1839 	/*
1840 	 * We need to do the put here because if this is the last refcount,
1841 	 * then we will be touching the threads->dead head when removing the
1842 	 * thread.
1843 	 */
1844 	thread__put(th);
1845 
1846 	if (lock)
1847 		up_write(&threads->lock);
1848 }
1849 
1850 void machine__remove_thread(struct machine *machine, struct thread *th)
1851 {
1852 	return __machine__remove_thread(machine, th, true);
1853 }
1854 
1855 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1856 				struct perf_sample *sample)
1857 {
1858 	struct thread *thread = machine__find_thread(machine,
1859 						     event->fork.pid,
1860 						     event->fork.tid);
1861 	struct thread *parent = machine__findnew_thread(machine,
1862 							event->fork.ppid,
1863 							event->fork.ptid);
1864 	bool do_maps_clone = true;
1865 	int err = 0;
1866 
1867 	if (dump_trace)
1868 		perf_event__fprintf_task(event, stdout);
1869 
1870 	/*
1871 	 * There may be an existing thread that is not actually the parent,
1872 	 * either because we are processing events out of order, or because the
1873 	 * (fork) event that would have removed the thread was lost. Assume the
1874 	 * latter case and continue on as best we can.
1875 	 */
1876 	if (parent->pid_ != (pid_t)event->fork.ppid) {
1877 		dump_printf("removing erroneous parent thread %d/%d\n",
1878 			    parent->pid_, parent->tid);
1879 		machine__remove_thread(machine, parent);
1880 		thread__put(parent);
1881 		parent = machine__findnew_thread(machine, event->fork.ppid,
1882 						 event->fork.ptid);
1883 	}
1884 
1885 	/* if a thread currently exists for the thread id remove it */
1886 	if (thread != NULL) {
1887 		machine__remove_thread(machine, thread);
1888 		thread__put(thread);
1889 	}
1890 
1891 	thread = machine__findnew_thread(machine, event->fork.pid,
1892 					 event->fork.tid);
1893 	/*
1894 	 * When synthesizing FORK events, we are trying to create thread
1895 	 * objects for the already running tasks on the machine.
1896 	 *
1897 	 * Normally, for a kernel FORK event, we want to clone the parent's
1898 	 * maps because that is what the kernel just did.
1899 	 *
1900 	 * But when synthesizing, this should not be done.  If we do, we end up
1901 	 * with overlapping maps as we process the sythesized MMAP2 events that
1902 	 * get delivered shortly thereafter.
1903 	 *
1904 	 * Use the FORK event misc flags in an internal way to signal this
1905 	 * situation, so we can elide the map clone when appropriate.
1906 	 */
1907 	if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1908 		do_maps_clone = false;
1909 
1910 	if (thread == NULL || parent == NULL ||
1911 	    thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1912 		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1913 		err = -1;
1914 	}
1915 	thread__put(thread);
1916 	thread__put(parent);
1917 
1918 	return err;
1919 }
1920 
1921 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1922 				struct perf_sample *sample __maybe_unused)
1923 {
1924 	struct thread *thread = machine__find_thread(machine,
1925 						     event->fork.pid,
1926 						     event->fork.tid);
1927 
1928 	if (dump_trace)
1929 		perf_event__fprintf_task(event, stdout);
1930 
1931 	if (thread != NULL) {
1932 		thread__exited(thread);
1933 		thread__put(thread);
1934 	}
1935 
1936 	return 0;
1937 }
1938 
1939 int machine__process_event(struct machine *machine, union perf_event *event,
1940 			   struct perf_sample *sample)
1941 {
1942 	int ret;
1943 
1944 	switch (event->header.type) {
1945 	case PERF_RECORD_COMM:
1946 		ret = machine__process_comm_event(machine, event, sample); break;
1947 	case PERF_RECORD_MMAP:
1948 		ret = machine__process_mmap_event(machine, event, sample); break;
1949 	case PERF_RECORD_NAMESPACES:
1950 		ret = machine__process_namespaces_event(machine, event, sample); break;
1951 	case PERF_RECORD_CGROUP:
1952 		ret = machine__process_cgroup_event(machine, event, sample); break;
1953 	case PERF_RECORD_MMAP2:
1954 		ret = machine__process_mmap2_event(machine, event, sample); break;
1955 	case PERF_RECORD_FORK:
1956 		ret = machine__process_fork_event(machine, event, sample); break;
1957 	case PERF_RECORD_EXIT:
1958 		ret = machine__process_exit_event(machine, event, sample); break;
1959 	case PERF_RECORD_LOST:
1960 		ret = machine__process_lost_event(machine, event, sample); break;
1961 	case PERF_RECORD_AUX:
1962 		ret = machine__process_aux_event(machine, event); break;
1963 	case PERF_RECORD_ITRACE_START:
1964 		ret = machine__process_itrace_start_event(machine, event); break;
1965 	case PERF_RECORD_LOST_SAMPLES:
1966 		ret = machine__process_lost_samples_event(machine, event, sample); break;
1967 	case PERF_RECORD_SWITCH:
1968 	case PERF_RECORD_SWITCH_CPU_WIDE:
1969 		ret = machine__process_switch_event(machine, event); break;
1970 	case PERF_RECORD_KSYMBOL:
1971 		ret = machine__process_ksymbol(machine, event, sample); break;
1972 	case PERF_RECORD_BPF_EVENT:
1973 		ret = machine__process_bpf(machine, event, sample); break;
1974 	case PERF_RECORD_TEXT_POKE:
1975 		ret = machine__process_text_poke(machine, event, sample); break;
1976 	default:
1977 		ret = -1;
1978 		break;
1979 	}
1980 
1981 	return ret;
1982 }
1983 
1984 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1985 {
1986 	if (!regexec(regex, sym->name, 0, NULL, 0))
1987 		return 1;
1988 	return 0;
1989 }
1990 
1991 static void ip__resolve_ams(struct thread *thread,
1992 			    struct addr_map_symbol *ams,
1993 			    u64 ip)
1994 {
1995 	struct addr_location al;
1996 
1997 	memset(&al, 0, sizeof(al));
1998 	/*
1999 	 * We cannot use the header.misc hint to determine whether a
2000 	 * branch stack address is user, kernel, guest, hypervisor.
2001 	 * Branches may straddle the kernel/user/hypervisor boundaries.
2002 	 * Thus, we have to try consecutively until we find a match
2003 	 * or else, the symbol is unknown
2004 	 */
2005 	thread__find_cpumode_addr_location(thread, ip, &al);
2006 
2007 	ams->addr = ip;
2008 	ams->al_addr = al.addr;
2009 	ams->ms.maps = al.maps;
2010 	ams->ms.sym = al.sym;
2011 	ams->ms.map = al.map;
2012 	ams->phys_addr = 0;
2013 }
2014 
2015 static void ip__resolve_data(struct thread *thread,
2016 			     u8 m, struct addr_map_symbol *ams,
2017 			     u64 addr, u64 phys_addr)
2018 {
2019 	struct addr_location al;
2020 
2021 	memset(&al, 0, sizeof(al));
2022 
2023 	thread__find_symbol(thread, m, addr, &al);
2024 
2025 	ams->addr = addr;
2026 	ams->al_addr = al.addr;
2027 	ams->ms.maps = al.maps;
2028 	ams->ms.sym = al.sym;
2029 	ams->ms.map = al.map;
2030 	ams->phys_addr = phys_addr;
2031 }
2032 
2033 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2034 				     struct addr_location *al)
2035 {
2036 	struct mem_info *mi = mem_info__new();
2037 
2038 	if (!mi)
2039 		return NULL;
2040 
2041 	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
2042 	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
2043 			 sample->addr, sample->phys_addr);
2044 	mi->data_src.val = sample->data_src;
2045 
2046 	return mi;
2047 }
2048 
2049 static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2050 {
2051 	struct map *map = ms->map;
2052 	char *srcline = NULL;
2053 
2054 	if (!map || callchain_param.key == CCKEY_FUNCTION)
2055 		return srcline;
2056 
2057 	srcline = srcline__tree_find(&map->dso->srclines, ip);
2058 	if (!srcline) {
2059 		bool show_sym = false;
2060 		bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2061 
2062 		srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
2063 				      ms->sym, show_sym, show_addr, ip);
2064 		srcline__tree_insert(&map->dso->srclines, ip, srcline);
2065 	}
2066 
2067 	return srcline;
2068 }
2069 
2070 struct iterations {
2071 	int nr_loop_iter;
2072 	u64 cycles;
2073 };
2074 
2075 static int add_callchain_ip(struct thread *thread,
2076 			    struct callchain_cursor *cursor,
2077 			    struct symbol **parent,
2078 			    struct addr_location *root_al,
2079 			    u8 *cpumode,
2080 			    u64 ip,
2081 			    bool branch,
2082 			    struct branch_flags *flags,
2083 			    struct iterations *iter,
2084 			    u64 branch_from)
2085 {
2086 	struct map_symbol ms;
2087 	struct addr_location al;
2088 	int nr_loop_iter = 0;
2089 	u64 iter_cycles = 0;
2090 	const char *srcline = NULL;
2091 
2092 	al.filtered = 0;
2093 	al.sym = NULL;
2094 	if (!cpumode) {
2095 		thread__find_cpumode_addr_location(thread, ip, &al);
2096 	} else {
2097 		if (ip >= PERF_CONTEXT_MAX) {
2098 			switch (ip) {
2099 			case PERF_CONTEXT_HV:
2100 				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
2101 				break;
2102 			case PERF_CONTEXT_KERNEL:
2103 				*cpumode = PERF_RECORD_MISC_KERNEL;
2104 				break;
2105 			case PERF_CONTEXT_USER:
2106 				*cpumode = PERF_RECORD_MISC_USER;
2107 				break;
2108 			default:
2109 				pr_debug("invalid callchain context: "
2110 					 "%"PRId64"\n", (s64) ip);
2111 				/*
2112 				 * It seems the callchain is corrupted.
2113 				 * Discard all.
2114 				 */
2115 				callchain_cursor_reset(cursor);
2116 				return 1;
2117 			}
2118 			return 0;
2119 		}
2120 		thread__find_symbol(thread, *cpumode, ip, &al);
2121 	}
2122 
2123 	if (al.sym != NULL) {
2124 		if (perf_hpp_list.parent && !*parent &&
2125 		    symbol__match_regex(al.sym, &parent_regex))
2126 			*parent = al.sym;
2127 		else if (have_ignore_callees && root_al &&
2128 		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
2129 			/* Treat this symbol as the root,
2130 			   forgetting its callees. */
2131 			*root_al = al;
2132 			callchain_cursor_reset(cursor);
2133 		}
2134 	}
2135 
2136 	if (symbol_conf.hide_unresolved && al.sym == NULL)
2137 		return 0;
2138 
2139 	if (iter) {
2140 		nr_loop_iter = iter->nr_loop_iter;
2141 		iter_cycles = iter->cycles;
2142 	}
2143 
2144 	ms.maps = al.maps;
2145 	ms.map = al.map;
2146 	ms.sym = al.sym;
2147 	srcline = callchain_srcline(&ms, al.addr);
2148 	return callchain_cursor_append(cursor, ip, &ms,
2149 				       branch, flags, nr_loop_iter,
2150 				       iter_cycles, branch_from, srcline);
2151 }
2152 
2153 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2154 					   struct addr_location *al)
2155 {
2156 	unsigned int i;
2157 	const struct branch_stack *bs = sample->branch_stack;
2158 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2159 	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2160 
2161 	if (!bi)
2162 		return NULL;
2163 
2164 	for (i = 0; i < bs->nr; i++) {
2165 		ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2166 		ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2167 		bi[i].flags = entries[i].flags;
2168 	}
2169 	return bi;
2170 }
2171 
2172 static void save_iterations(struct iterations *iter,
2173 			    struct branch_entry *be, int nr)
2174 {
2175 	int i;
2176 
2177 	iter->nr_loop_iter++;
2178 	iter->cycles = 0;
2179 
2180 	for (i = 0; i < nr; i++)
2181 		iter->cycles += be[i].flags.cycles;
2182 }
2183 
2184 #define CHASHSZ 127
2185 #define CHASHBITS 7
2186 #define NO_ENTRY 0xff
2187 
2188 #define PERF_MAX_BRANCH_DEPTH 127
2189 
2190 /* Remove loops. */
2191 static int remove_loops(struct branch_entry *l, int nr,
2192 			struct iterations *iter)
2193 {
2194 	int i, j, off;
2195 	unsigned char chash[CHASHSZ];
2196 
2197 	memset(chash, NO_ENTRY, sizeof(chash));
2198 
2199 	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2200 
2201 	for (i = 0; i < nr; i++) {
2202 		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2203 
2204 		/* no collision handling for now */
2205 		if (chash[h] == NO_ENTRY) {
2206 			chash[h] = i;
2207 		} else if (l[chash[h]].from == l[i].from) {
2208 			bool is_loop = true;
2209 			/* check if it is a real loop */
2210 			off = 0;
2211 			for (j = chash[h]; j < i && i + off < nr; j++, off++)
2212 				if (l[j].from != l[i + off].from) {
2213 					is_loop = false;
2214 					break;
2215 				}
2216 			if (is_loop) {
2217 				j = nr - (i + off);
2218 				if (j > 0) {
2219 					save_iterations(iter + i + off,
2220 						l + i, off);
2221 
2222 					memmove(iter + i, iter + i + off,
2223 						j * sizeof(*iter));
2224 
2225 					memmove(l + i, l + i + off,
2226 						j * sizeof(*l));
2227 				}
2228 
2229 				nr -= off;
2230 			}
2231 		}
2232 	}
2233 	return nr;
2234 }
2235 
2236 static int lbr_callchain_add_kernel_ip(struct thread *thread,
2237 				       struct callchain_cursor *cursor,
2238 				       struct perf_sample *sample,
2239 				       struct symbol **parent,
2240 				       struct addr_location *root_al,
2241 				       u64 branch_from,
2242 				       bool callee, int end)
2243 {
2244 	struct ip_callchain *chain = sample->callchain;
2245 	u8 cpumode = PERF_RECORD_MISC_USER;
2246 	int err, i;
2247 
2248 	if (callee) {
2249 		for (i = 0; i < end + 1; i++) {
2250 			err = add_callchain_ip(thread, cursor, parent,
2251 					       root_al, &cpumode, chain->ips[i],
2252 					       false, NULL, NULL, branch_from);
2253 			if (err)
2254 				return err;
2255 		}
2256 		return 0;
2257 	}
2258 
2259 	for (i = end; i >= 0; i--) {
2260 		err = add_callchain_ip(thread, cursor, parent,
2261 				       root_al, &cpumode, chain->ips[i],
2262 				       false, NULL, NULL, branch_from);
2263 		if (err)
2264 			return err;
2265 	}
2266 
2267 	return 0;
2268 }
2269 
2270 static void save_lbr_cursor_node(struct thread *thread,
2271 				 struct callchain_cursor *cursor,
2272 				 int idx)
2273 {
2274 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2275 
2276 	if (!lbr_stitch)
2277 		return;
2278 
2279 	if (cursor->pos == cursor->nr) {
2280 		lbr_stitch->prev_lbr_cursor[idx].valid = false;
2281 		return;
2282 	}
2283 
2284 	if (!cursor->curr)
2285 		cursor->curr = cursor->first;
2286 	else
2287 		cursor->curr = cursor->curr->next;
2288 	memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2289 	       sizeof(struct callchain_cursor_node));
2290 
2291 	lbr_stitch->prev_lbr_cursor[idx].valid = true;
2292 	cursor->pos++;
2293 }
2294 
2295 static int lbr_callchain_add_lbr_ip(struct thread *thread,
2296 				    struct callchain_cursor *cursor,
2297 				    struct perf_sample *sample,
2298 				    struct symbol **parent,
2299 				    struct addr_location *root_al,
2300 				    u64 *branch_from,
2301 				    bool callee)
2302 {
2303 	struct branch_stack *lbr_stack = sample->branch_stack;
2304 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2305 	u8 cpumode = PERF_RECORD_MISC_USER;
2306 	int lbr_nr = lbr_stack->nr;
2307 	struct branch_flags *flags;
2308 	int err, i;
2309 	u64 ip;
2310 
2311 	/*
2312 	 * The curr and pos are not used in writing session. They are cleared
2313 	 * in callchain_cursor_commit() when the writing session is closed.
2314 	 * Using curr and pos to track the current cursor node.
2315 	 */
2316 	if (thread->lbr_stitch) {
2317 		cursor->curr = NULL;
2318 		cursor->pos = cursor->nr;
2319 		if (cursor->nr) {
2320 			cursor->curr = cursor->first;
2321 			for (i = 0; i < (int)(cursor->nr - 1); i++)
2322 				cursor->curr = cursor->curr->next;
2323 		}
2324 	}
2325 
2326 	if (callee) {
2327 		/* Add LBR ip from first entries.to */
2328 		ip = entries[0].to;
2329 		flags = &entries[0].flags;
2330 		*branch_from = entries[0].from;
2331 		err = add_callchain_ip(thread, cursor, parent,
2332 				       root_al, &cpumode, ip,
2333 				       true, flags, NULL,
2334 				       *branch_from);
2335 		if (err)
2336 			return err;
2337 
2338 		/*
2339 		 * The number of cursor node increases.
2340 		 * Move the current cursor node.
2341 		 * But does not need to save current cursor node for entry 0.
2342 		 * It's impossible to stitch the whole LBRs of previous sample.
2343 		 */
2344 		if (thread->lbr_stitch && (cursor->pos != cursor->nr)) {
2345 			if (!cursor->curr)
2346 				cursor->curr = cursor->first;
2347 			else
2348 				cursor->curr = cursor->curr->next;
2349 			cursor->pos++;
2350 		}
2351 
2352 		/* Add LBR ip from entries.from one by one. */
2353 		for (i = 0; i < lbr_nr; i++) {
2354 			ip = entries[i].from;
2355 			flags = &entries[i].flags;
2356 			err = add_callchain_ip(thread, cursor, parent,
2357 					       root_al, &cpumode, ip,
2358 					       true, flags, NULL,
2359 					       *branch_from);
2360 			if (err)
2361 				return err;
2362 			save_lbr_cursor_node(thread, cursor, i);
2363 		}
2364 		return 0;
2365 	}
2366 
2367 	/* Add LBR ip from entries.from one by one. */
2368 	for (i = lbr_nr - 1; i >= 0; i--) {
2369 		ip = entries[i].from;
2370 		flags = &entries[i].flags;
2371 		err = add_callchain_ip(thread, cursor, parent,
2372 				       root_al, &cpumode, ip,
2373 				       true, flags, NULL,
2374 				       *branch_from);
2375 		if (err)
2376 			return err;
2377 		save_lbr_cursor_node(thread, cursor, i);
2378 	}
2379 
2380 	/* Add LBR ip from first entries.to */
2381 	ip = entries[0].to;
2382 	flags = &entries[0].flags;
2383 	*branch_from = entries[0].from;
2384 	err = add_callchain_ip(thread, cursor, parent,
2385 			       root_al, &cpumode, ip,
2386 			       true, flags, NULL,
2387 			       *branch_from);
2388 	if (err)
2389 		return err;
2390 
2391 	return 0;
2392 }
2393 
2394 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2395 					     struct callchain_cursor *cursor)
2396 {
2397 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2398 	struct callchain_cursor_node *cnode;
2399 	struct stitch_list *stitch_node;
2400 	int err;
2401 
2402 	list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2403 		cnode = &stitch_node->cursor;
2404 
2405 		err = callchain_cursor_append(cursor, cnode->ip,
2406 					      &cnode->ms,
2407 					      cnode->branch,
2408 					      &cnode->branch_flags,
2409 					      cnode->nr_loop_iter,
2410 					      cnode->iter_cycles,
2411 					      cnode->branch_from,
2412 					      cnode->srcline);
2413 		if (err)
2414 			return err;
2415 	}
2416 	return 0;
2417 }
2418 
2419 static struct stitch_list *get_stitch_node(struct thread *thread)
2420 {
2421 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2422 	struct stitch_list *stitch_node;
2423 
2424 	if (!list_empty(&lbr_stitch->free_lists)) {
2425 		stitch_node = list_first_entry(&lbr_stitch->free_lists,
2426 					       struct stitch_list, node);
2427 		list_del(&stitch_node->node);
2428 
2429 		return stitch_node;
2430 	}
2431 
2432 	return malloc(sizeof(struct stitch_list));
2433 }
2434 
2435 static bool has_stitched_lbr(struct thread *thread,
2436 			     struct perf_sample *cur,
2437 			     struct perf_sample *prev,
2438 			     unsigned int max_lbr,
2439 			     bool callee)
2440 {
2441 	struct branch_stack *cur_stack = cur->branch_stack;
2442 	struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2443 	struct branch_stack *prev_stack = prev->branch_stack;
2444 	struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2445 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2446 	int i, j, nr_identical_branches = 0;
2447 	struct stitch_list *stitch_node;
2448 	u64 cur_base, distance;
2449 
2450 	if (!cur_stack || !prev_stack)
2451 		return false;
2452 
2453 	/* Find the physical index of the base-of-stack for current sample. */
2454 	cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2455 
2456 	distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2457 						     (max_lbr + prev_stack->hw_idx - cur_base);
2458 	/* Previous sample has shorter stack. Nothing can be stitched. */
2459 	if (distance + 1 > prev_stack->nr)
2460 		return false;
2461 
2462 	/*
2463 	 * Check if there are identical LBRs between two samples.
2464 	 * Identicall LBRs must have same from, to and flags values. Also,
2465 	 * they have to be saved in the same LBR registers (same physical
2466 	 * index).
2467 	 *
2468 	 * Starts from the base-of-stack of current sample.
2469 	 */
2470 	for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2471 		if ((prev_entries[i].from != cur_entries[j].from) ||
2472 		    (prev_entries[i].to != cur_entries[j].to) ||
2473 		    (prev_entries[i].flags.value != cur_entries[j].flags.value))
2474 			break;
2475 		nr_identical_branches++;
2476 	}
2477 
2478 	if (!nr_identical_branches)
2479 		return false;
2480 
2481 	/*
2482 	 * Save the LBRs between the base-of-stack of previous sample
2483 	 * and the base-of-stack of current sample into lbr_stitch->lists.
2484 	 * These LBRs will be stitched later.
2485 	 */
2486 	for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2487 
2488 		if (!lbr_stitch->prev_lbr_cursor[i].valid)
2489 			continue;
2490 
2491 		stitch_node = get_stitch_node(thread);
2492 		if (!stitch_node)
2493 			return false;
2494 
2495 		memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2496 		       sizeof(struct callchain_cursor_node));
2497 
2498 		if (callee)
2499 			list_add(&stitch_node->node, &lbr_stitch->lists);
2500 		else
2501 			list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2502 	}
2503 
2504 	return true;
2505 }
2506 
2507 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2508 {
2509 	if (thread->lbr_stitch)
2510 		return true;
2511 
2512 	thread->lbr_stitch = zalloc(sizeof(*thread->lbr_stitch));
2513 	if (!thread->lbr_stitch)
2514 		goto err;
2515 
2516 	thread->lbr_stitch->prev_lbr_cursor = calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2517 	if (!thread->lbr_stitch->prev_lbr_cursor)
2518 		goto free_lbr_stitch;
2519 
2520 	INIT_LIST_HEAD(&thread->lbr_stitch->lists);
2521 	INIT_LIST_HEAD(&thread->lbr_stitch->free_lists);
2522 
2523 	return true;
2524 
2525 free_lbr_stitch:
2526 	zfree(&thread->lbr_stitch);
2527 err:
2528 	pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2529 	thread->lbr_stitch_enable = false;
2530 	return false;
2531 }
2532 
2533 /*
2534  * Recolve LBR callstack chain sample
2535  * Return:
2536  * 1 on success get LBR callchain information
2537  * 0 no available LBR callchain information, should try fp
2538  * negative error code on other errors.
2539  */
2540 static int resolve_lbr_callchain_sample(struct thread *thread,
2541 					struct callchain_cursor *cursor,
2542 					struct perf_sample *sample,
2543 					struct symbol **parent,
2544 					struct addr_location *root_al,
2545 					int max_stack,
2546 					unsigned int max_lbr)
2547 {
2548 	bool callee = (callchain_param.order == ORDER_CALLEE);
2549 	struct ip_callchain *chain = sample->callchain;
2550 	int chain_nr = min(max_stack, (int)chain->nr), i;
2551 	struct lbr_stitch *lbr_stitch;
2552 	bool stitched_lbr = false;
2553 	u64 branch_from = 0;
2554 	int err;
2555 
2556 	for (i = 0; i < chain_nr; i++) {
2557 		if (chain->ips[i] == PERF_CONTEXT_USER)
2558 			break;
2559 	}
2560 
2561 	/* LBR only affects the user callchain */
2562 	if (i == chain_nr)
2563 		return 0;
2564 
2565 	if (thread->lbr_stitch_enable && !sample->no_hw_idx &&
2566 	    (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2567 		lbr_stitch = thread->lbr_stitch;
2568 
2569 		stitched_lbr = has_stitched_lbr(thread, sample,
2570 						&lbr_stitch->prev_sample,
2571 						max_lbr, callee);
2572 
2573 		if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2574 			list_replace_init(&lbr_stitch->lists,
2575 					  &lbr_stitch->free_lists);
2576 		}
2577 		memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2578 	}
2579 
2580 	if (callee) {
2581 		/* Add kernel ip */
2582 		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2583 						  parent, root_al, branch_from,
2584 						  true, i);
2585 		if (err)
2586 			goto error;
2587 
2588 		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2589 					       root_al, &branch_from, true);
2590 		if (err)
2591 			goto error;
2592 
2593 		if (stitched_lbr) {
2594 			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2595 			if (err)
2596 				goto error;
2597 		}
2598 
2599 	} else {
2600 		if (stitched_lbr) {
2601 			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2602 			if (err)
2603 				goto error;
2604 		}
2605 		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2606 					       root_al, &branch_from, false);
2607 		if (err)
2608 			goto error;
2609 
2610 		/* Add kernel ip */
2611 		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2612 						  parent, root_al, branch_from,
2613 						  false, i);
2614 		if (err)
2615 			goto error;
2616 	}
2617 	return 1;
2618 
2619 error:
2620 	return (err < 0) ? err : 0;
2621 }
2622 
2623 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2624 			     struct callchain_cursor *cursor,
2625 			     struct symbol **parent,
2626 			     struct addr_location *root_al,
2627 			     u8 *cpumode, int ent)
2628 {
2629 	int err = 0;
2630 
2631 	while (--ent >= 0) {
2632 		u64 ip = chain->ips[ent];
2633 
2634 		if (ip >= PERF_CONTEXT_MAX) {
2635 			err = add_callchain_ip(thread, cursor, parent,
2636 					       root_al, cpumode, ip,
2637 					       false, NULL, NULL, 0);
2638 			break;
2639 		}
2640 	}
2641 	return err;
2642 }
2643 
2644 static int thread__resolve_callchain_sample(struct thread *thread,
2645 					    struct callchain_cursor *cursor,
2646 					    struct evsel *evsel,
2647 					    struct perf_sample *sample,
2648 					    struct symbol **parent,
2649 					    struct addr_location *root_al,
2650 					    int max_stack)
2651 {
2652 	struct branch_stack *branch = sample->branch_stack;
2653 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2654 	struct ip_callchain *chain = sample->callchain;
2655 	int chain_nr = 0;
2656 	u8 cpumode = PERF_RECORD_MISC_USER;
2657 	int i, j, err, nr_entries;
2658 	int skip_idx = -1;
2659 	int first_call = 0;
2660 
2661 	if (chain)
2662 		chain_nr = chain->nr;
2663 
2664 	if (evsel__has_branch_callstack(evsel)) {
2665 		struct perf_env *env = evsel__env(evsel);
2666 
2667 		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2668 						   root_al, max_stack,
2669 						   !env ? 0 : env->max_branches);
2670 		if (err)
2671 			return (err < 0) ? err : 0;
2672 	}
2673 
2674 	/*
2675 	 * Based on DWARF debug information, some architectures skip
2676 	 * a callchain entry saved by the kernel.
2677 	 */
2678 	skip_idx = arch_skip_callchain_idx(thread, chain);
2679 
2680 	/*
2681 	 * Add branches to call stack for easier browsing. This gives
2682 	 * more context for a sample than just the callers.
2683 	 *
2684 	 * This uses individual histograms of paths compared to the
2685 	 * aggregated histograms the normal LBR mode uses.
2686 	 *
2687 	 * Limitations for now:
2688 	 * - No extra filters
2689 	 * - No annotations (should annotate somehow)
2690 	 */
2691 
2692 	if (branch && callchain_param.branch_callstack) {
2693 		int nr = min(max_stack, (int)branch->nr);
2694 		struct branch_entry be[nr];
2695 		struct iterations iter[nr];
2696 
2697 		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2698 			pr_warning("corrupted branch chain. skipping...\n");
2699 			goto check_calls;
2700 		}
2701 
2702 		for (i = 0; i < nr; i++) {
2703 			if (callchain_param.order == ORDER_CALLEE) {
2704 				be[i] = entries[i];
2705 
2706 				if (chain == NULL)
2707 					continue;
2708 
2709 				/*
2710 				 * Check for overlap into the callchain.
2711 				 * The return address is one off compared to
2712 				 * the branch entry. To adjust for this
2713 				 * assume the calling instruction is not longer
2714 				 * than 8 bytes.
2715 				 */
2716 				if (i == skip_idx ||
2717 				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2718 					first_call++;
2719 				else if (be[i].from < chain->ips[first_call] &&
2720 				    be[i].from >= chain->ips[first_call] - 8)
2721 					first_call++;
2722 			} else
2723 				be[i] = entries[branch->nr - i - 1];
2724 		}
2725 
2726 		memset(iter, 0, sizeof(struct iterations) * nr);
2727 		nr = remove_loops(be, nr, iter);
2728 
2729 		for (i = 0; i < nr; i++) {
2730 			err = add_callchain_ip(thread, cursor, parent,
2731 					       root_al,
2732 					       NULL, be[i].to,
2733 					       true, &be[i].flags,
2734 					       NULL, be[i].from);
2735 
2736 			if (!err)
2737 				err = add_callchain_ip(thread, cursor, parent, root_al,
2738 						       NULL, be[i].from,
2739 						       true, &be[i].flags,
2740 						       &iter[i], 0);
2741 			if (err == -EINVAL)
2742 				break;
2743 			if (err)
2744 				return err;
2745 		}
2746 
2747 		if (chain_nr == 0)
2748 			return 0;
2749 
2750 		chain_nr -= nr;
2751 	}
2752 
2753 check_calls:
2754 	if (chain && callchain_param.order != ORDER_CALLEE) {
2755 		err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2756 					&cpumode, chain->nr - first_call);
2757 		if (err)
2758 			return (err < 0) ? err : 0;
2759 	}
2760 	for (i = first_call, nr_entries = 0;
2761 	     i < chain_nr && nr_entries < max_stack; i++) {
2762 		u64 ip;
2763 
2764 		if (callchain_param.order == ORDER_CALLEE)
2765 			j = i;
2766 		else
2767 			j = chain->nr - i - 1;
2768 
2769 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2770 		if (j == skip_idx)
2771 			continue;
2772 #endif
2773 		ip = chain->ips[j];
2774 		if (ip < PERF_CONTEXT_MAX)
2775                        ++nr_entries;
2776 		else if (callchain_param.order != ORDER_CALLEE) {
2777 			err = find_prev_cpumode(chain, thread, cursor, parent,
2778 						root_al, &cpumode, j);
2779 			if (err)
2780 				return (err < 0) ? err : 0;
2781 			continue;
2782 		}
2783 
2784 		err = add_callchain_ip(thread, cursor, parent,
2785 				       root_al, &cpumode, ip,
2786 				       false, NULL, NULL, 0);
2787 
2788 		if (err)
2789 			return (err < 0) ? err : 0;
2790 	}
2791 
2792 	return 0;
2793 }
2794 
2795 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
2796 {
2797 	struct symbol *sym = ms->sym;
2798 	struct map *map = ms->map;
2799 	struct inline_node *inline_node;
2800 	struct inline_list *ilist;
2801 	u64 addr;
2802 	int ret = 1;
2803 
2804 	if (!symbol_conf.inline_name || !map || !sym)
2805 		return ret;
2806 
2807 	addr = map__map_ip(map, ip);
2808 	addr = map__rip_2objdump(map, addr);
2809 
2810 	inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2811 	if (!inline_node) {
2812 		inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2813 		if (!inline_node)
2814 			return ret;
2815 		inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2816 	}
2817 
2818 	list_for_each_entry(ilist, &inline_node->val, list) {
2819 		struct map_symbol ilist_ms = {
2820 			.maps = ms->maps,
2821 			.map = map,
2822 			.sym = ilist->symbol,
2823 		};
2824 		ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
2825 					      NULL, 0, 0, 0, ilist->srcline);
2826 
2827 		if (ret != 0)
2828 			return ret;
2829 	}
2830 
2831 	return ret;
2832 }
2833 
2834 static int unwind_entry(struct unwind_entry *entry, void *arg)
2835 {
2836 	struct callchain_cursor *cursor = arg;
2837 	const char *srcline = NULL;
2838 	u64 addr = entry->ip;
2839 
2840 	if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
2841 		return 0;
2842 
2843 	if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
2844 		return 0;
2845 
2846 	/*
2847 	 * Convert entry->ip from a virtual address to an offset in
2848 	 * its corresponding binary.
2849 	 */
2850 	if (entry->ms.map)
2851 		addr = map__map_ip(entry->ms.map, entry->ip);
2852 
2853 	srcline = callchain_srcline(&entry->ms, addr);
2854 	return callchain_cursor_append(cursor, entry->ip, &entry->ms,
2855 				       false, NULL, 0, 0, 0, srcline);
2856 }
2857 
2858 static int thread__resolve_callchain_unwind(struct thread *thread,
2859 					    struct callchain_cursor *cursor,
2860 					    struct evsel *evsel,
2861 					    struct perf_sample *sample,
2862 					    int max_stack)
2863 {
2864 	/* Can we do dwarf post unwind? */
2865 	if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2866 	      (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2867 		return 0;
2868 
2869 	/* Bail out if nothing was captured. */
2870 	if ((!sample->user_regs.regs) ||
2871 	    (!sample->user_stack.size))
2872 		return 0;
2873 
2874 	return unwind__get_entries(unwind_entry, cursor,
2875 				   thread, sample, max_stack);
2876 }
2877 
2878 int thread__resolve_callchain(struct thread *thread,
2879 			      struct callchain_cursor *cursor,
2880 			      struct evsel *evsel,
2881 			      struct perf_sample *sample,
2882 			      struct symbol **parent,
2883 			      struct addr_location *root_al,
2884 			      int max_stack)
2885 {
2886 	int ret = 0;
2887 
2888 	callchain_cursor_reset(cursor);
2889 
2890 	if (callchain_param.order == ORDER_CALLEE) {
2891 		ret = thread__resolve_callchain_sample(thread, cursor,
2892 						       evsel, sample,
2893 						       parent, root_al,
2894 						       max_stack);
2895 		if (ret)
2896 			return ret;
2897 		ret = thread__resolve_callchain_unwind(thread, cursor,
2898 						       evsel, sample,
2899 						       max_stack);
2900 	} else {
2901 		ret = thread__resolve_callchain_unwind(thread, cursor,
2902 						       evsel, sample,
2903 						       max_stack);
2904 		if (ret)
2905 			return ret;
2906 		ret = thread__resolve_callchain_sample(thread, cursor,
2907 						       evsel, sample,
2908 						       parent, root_al,
2909 						       max_stack);
2910 	}
2911 
2912 	return ret;
2913 }
2914 
2915 int machine__for_each_thread(struct machine *machine,
2916 			     int (*fn)(struct thread *thread, void *p),
2917 			     void *priv)
2918 {
2919 	struct threads *threads;
2920 	struct rb_node *nd;
2921 	struct thread *thread;
2922 	int rc = 0;
2923 	int i;
2924 
2925 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2926 		threads = &machine->threads[i];
2927 		for (nd = rb_first_cached(&threads->entries); nd;
2928 		     nd = rb_next(nd)) {
2929 			thread = rb_entry(nd, struct thread, rb_node);
2930 			rc = fn(thread, priv);
2931 			if (rc != 0)
2932 				return rc;
2933 		}
2934 
2935 		list_for_each_entry(thread, &threads->dead, node) {
2936 			rc = fn(thread, priv);
2937 			if (rc != 0)
2938 				return rc;
2939 		}
2940 	}
2941 	return rc;
2942 }
2943 
2944 int machines__for_each_thread(struct machines *machines,
2945 			      int (*fn)(struct thread *thread, void *p),
2946 			      void *priv)
2947 {
2948 	struct rb_node *nd;
2949 	int rc = 0;
2950 
2951 	rc = machine__for_each_thread(&machines->host, fn, priv);
2952 	if (rc != 0)
2953 		return rc;
2954 
2955 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
2956 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
2957 
2958 		rc = machine__for_each_thread(machine, fn, priv);
2959 		if (rc != 0)
2960 			return rc;
2961 	}
2962 	return rc;
2963 }
2964 
2965 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2966 {
2967 	int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2968 
2969 	if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid)
2970 		return -1;
2971 
2972 	return machine->current_tid[cpu];
2973 }
2974 
2975 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2976 			     pid_t tid)
2977 {
2978 	struct thread *thread;
2979 	int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2980 
2981 	if (cpu < 0)
2982 		return -EINVAL;
2983 
2984 	if (!machine->current_tid) {
2985 		int i;
2986 
2987 		machine->current_tid = calloc(nr_cpus, sizeof(pid_t));
2988 		if (!machine->current_tid)
2989 			return -ENOMEM;
2990 		for (i = 0; i < nr_cpus; i++)
2991 			machine->current_tid[i] = -1;
2992 	}
2993 
2994 	if (cpu >= nr_cpus) {
2995 		pr_err("Requested CPU %d too large. ", cpu);
2996 		pr_err("Consider raising MAX_NR_CPUS\n");
2997 		return -EINVAL;
2998 	}
2999 
3000 	machine->current_tid[cpu] = tid;
3001 
3002 	thread = machine__findnew_thread(machine, pid, tid);
3003 	if (!thread)
3004 		return -ENOMEM;
3005 
3006 	thread->cpu = cpu;
3007 	thread__put(thread);
3008 
3009 	return 0;
3010 }
3011 
3012 /*
3013  * Compares the raw arch string. N.B. see instead perf_env__arch() if a
3014  * normalized arch is needed.
3015  */
3016 bool machine__is(struct machine *machine, const char *arch)
3017 {
3018 	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3019 }
3020 
3021 int machine__nr_cpus_avail(struct machine *machine)
3022 {
3023 	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3024 }
3025 
3026 int machine__get_kernel_start(struct machine *machine)
3027 {
3028 	struct map *map = machine__kernel_map(machine);
3029 	int err = 0;
3030 
3031 	/*
3032 	 * The only addresses above 2^63 are kernel addresses of a 64-bit
3033 	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
3034 	 * all addresses including kernel addresses are less than 2^32.  In
3035 	 * that case (32-bit system), if the kernel mapping is unknown, all
3036 	 * addresses will be assumed to be in user space - see
3037 	 * machine__kernel_ip().
3038 	 */
3039 	machine->kernel_start = 1ULL << 63;
3040 	if (map) {
3041 		err = map__load(map);
3042 		/*
3043 		 * On x86_64, PTI entry trampolines are less than the
3044 		 * start of kernel text, but still above 2^63. So leave
3045 		 * kernel_start = 1ULL << 63 for x86_64.
3046 		 */
3047 		if (!err && !machine__is(machine, "x86_64"))
3048 			machine->kernel_start = map->start;
3049 	}
3050 	return err;
3051 }
3052 
3053 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3054 {
3055 	u8 addr_cpumode = cpumode;
3056 	bool kernel_ip;
3057 
3058 	if (!machine->single_address_space)
3059 		goto out;
3060 
3061 	kernel_ip = machine__kernel_ip(machine, addr);
3062 	switch (cpumode) {
3063 	case PERF_RECORD_MISC_KERNEL:
3064 	case PERF_RECORD_MISC_USER:
3065 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3066 					   PERF_RECORD_MISC_USER;
3067 		break;
3068 	case PERF_RECORD_MISC_GUEST_KERNEL:
3069 	case PERF_RECORD_MISC_GUEST_USER:
3070 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3071 					   PERF_RECORD_MISC_GUEST_USER;
3072 		break;
3073 	default:
3074 		break;
3075 	}
3076 out:
3077 	return addr_cpumode;
3078 }
3079 
3080 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
3081 {
3082 	return dsos__findnew_id(&machine->dsos, filename, id);
3083 }
3084 
3085 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3086 {
3087 	return machine__findnew_dso_id(machine, filename, NULL);
3088 }
3089 
3090 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3091 {
3092 	struct machine *machine = vmachine;
3093 	struct map *map;
3094 	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3095 
3096 	if (sym == NULL)
3097 		return NULL;
3098 
3099 	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
3100 	*addrp = map->unmap_ip(map, sym->start);
3101 	return sym->name;
3102 }
3103