xref: /openbmc/linux/tools/perf/util/machine.c (revision f519cd13)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include <stdlib.h>
7 #include "callchain.h"
8 #include "debug.h"
9 #include "dso.h"
10 #include "env.h"
11 #include "event.h"
12 #include "evsel.h"
13 #include "hist.h"
14 #include "machine.h"
15 #include "map.h"
16 #include "map_symbol.h"
17 #include "branch.h"
18 #include "mem-events.h"
19 #include "srcline.h"
20 #include "symbol.h"
21 #include "sort.h"
22 #include "strlist.h"
23 #include "target.h"
24 #include "thread.h"
25 #include "util.h"
26 #include "vdso.h"
27 #include <stdbool.h>
28 #include <sys/types.h>
29 #include <sys/stat.h>
30 #include <unistd.h>
31 #include "unwind.h"
32 #include "linux/hash.h"
33 #include "asm/bug.h"
34 #include "bpf-event.h"
35 #include <internal/lib.h> // page_size
36 
37 #include <linux/ctype.h>
38 #include <symbol/kallsyms.h>
39 #include <linux/mman.h>
40 #include <linux/string.h>
41 #include <linux/zalloc.h>
42 
43 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
44 
45 static struct dso *machine__kernel_dso(struct machine *machine)
46 {
47 	return machine->vmlinux_map->dso;
48 }
49 
50 static void dsos__init(struct dsos *dsos)
51 {
52 	INIT_LIST_HEAD(&dsos->head);
53 	dsos->root = RB_ROOT;
54 	init_rwsem(&dsos->lock);
55 }
56 
57 static void machine__threads_init(struct machine *machine)
58 {
59 	int i;
60 
61 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
62 		struct threads *threads = &machine->threads[i];
63 		threads->entries = RB_ROOT_CACHED;
64 		init_rwsem(&threads->lock);
65 		threads->nr = 0;
66 		INIT_LIST_HEAD(&threads->dead);
67 		threads->last_match = NULL;
68 	}
69 }
70 
71 static int machine__set_mmap_name(struct machine *machine)
72 {
73 	if (machine__is_host(machine))
74 		machine->mmap_name = strdup("[kernel.kallsyms]");
75 	else if (machine__is_default_guest(machine))
76 		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
77 	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
78 			  machine->pid) < 0)
79 		machine->mmap_name = NULL;
80 
81 	return machine->mmap_name ? 0 : -ENOMEM;
82 }
83 
84 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
85 {
86 	int err = -ENOMEM;
87 
88 	memset(machine, 0, sizeof(*machine));
89 	maps__init(&machine->kmaps, machine);
90 	RB_CLEAR_NODE(&machine->rb_node);
91 	dsos__init(&machine->dsos);
92 
93 	machine__threads_init(machine);
94 
95 	machine->vdso_info = NULL;
96 	machine->env = NULL;
97 
98 	machine->pid = pid;
99 
100 	machine->id_hdr_size = 0;
101 	machine->kptr_restrict_warned = false;
102 	machine->comm_exec = false;
103 	machine->kernel_start = 0;
104 	machine->vmlinux_map = NULL;
105 
106 	machine->root_dir = strdup(root_dir);
107 	if (machine->root_dir == NULL)
108 		return -ENOMEM;
109 
110 	if (machine__set_mmap_name(machine))
111 		goto out;
112 
113 	if (pid != HOST_KERNEL_ID) {
114 		struct thread *thread = machine__findnew_thread(machine, -1,
115 								pid);
116 		char comm[64];
117 
118 		if (thread == NULL)
119 			goto out;
120 
121 		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
122 		thread__set_comm(thread, comm, 0);
123 		thread__put(thread);
124 	}
125 
126 	machine->current_tid = NULL;
127 	err = 0;
128 
129 out:
130 	if (err) {
131 		zfree(&machine->root_dir);
132 		zfree(&machine->mmap_name);
133 	}
134 	return 0;
135 }
136 
137 struct machine *machine__new_host(void)
138 {
139 	struct machine *machine = malloc(sizeof(*machine));
140 
141 	if (machine != NULL) {
142 		machine__init(machine, "", HOST_KERNEL_ID);
143 
144 		if (machine__create_kernel_maps(machine) < 0)
145 			goto out_delete;
146 	}
147 
148 	return machine;
149 out_delete:
150 	free(machine);
151 	return NULL;
152 }
153 
154 struct machine *machine__new_kallsyms(void)
155 {
156 	struct machine *machine = machine__new_host();
157 	/*
158 	 * FIXME:
159 	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
160 	 *    ask for not using the kcore parsing code, once this one is fixed
161 	 *    to create a map per module.
162 	 */
163 	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
164 		machine__delete(machine);
165 		machine = NULL;
166 	}
167 
168 	return machine;
169 }
170 
171 static void dsos__purge(struct dsos *dsos)
172 {
173 	struct dso *pos, *n;
174 
175 	down_write(&dsos->lock);
176 
177 	list_for_each_entry_safe(pos, n, &dsos->head, node) {
178 		RB_CLEAR_NODE(&pos->rb_node);
179 		pos->root = NULL;
180 		list_del_init(&pos->node);
181 		dso__put(pos);
182 	}
183 
184 	up_write(&dsos->lock);
185 }
186 
187 static void dsos__exit(struct dsos *dsos)
188 {
189 	dsos__purge(dsos);
190 	exit_rwsem(&dsos->lock);
191 }
192 
193 void machine__delete_threads(struct machine *machine)
194 {
195 	struct rb_node *nd;
196 	int i;
197 
198 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
199 		struct threads *threads = &machine->threads[i];
200 		down_write(&threads->lock);
201 		nd = rb_first_cached(&threads->entries);
202 		while (nd) {
203 			struct thread *t = rb_entry(nd, struct thread, rb_node);
204 
205 			nd = rb_next(nd);
206 			__machine__remove_thread(machine, t, false);
207 		}
208 		up_write(&threads->lock);
209 	}
210 }
211 
212 void machine__exit(struct machine *machine)
213 {
214 	int i;
215 
216 	if (machine == NULL)
217 		return;
218 
219 	machine__destroy_kernel_maps(machine);
220 	maps__exit(&machine->kmaps);
221 	dsos__exit(&machine->dsos);
222 	machine__exit_vdso(machine);
223 	zfree(&machine->root_dir);
224 	zfree(&machine->mmap_name);
225 	zfree(&machine->current_tid);
226 
227 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
228 		struct threads *threads = &machine->threads[i];
229 		struct thread *thread, *n;
230 		/*
231 		 * Forget about the dead, at this point whatever threads were
232 		 * left in the dead lists better have a reference count taken
233 		 * by who is using them, and then, when they drop those references
234 		 * and it finally hits zero, thread__put() will check and see that
235 		 * its not in the dead threads list and will not try to remove it
236 		 * from there, just calling thread__delete() straight away.
237 		 */
238 		list_for_each_entry_safe(thread, n, &threads->dead, node)
239 			list_del_init(&thread->node);
240 
241 		exit_rwsem(&threads->lock);
242 	}
243 }
244 
245 void machine__delete(struct machine *machine)
246 {
247 	if (machine) {
248 		machine__exit(machine);
249 		free(machine);
250 	}
251 }
252 
253 void machines__init(struct machines *machines)
254 {
255 	machine__init(&machines->host, "", HOST_KERNEL_ID);
256 	machines->guests = RB_ROOT_CACHED;
257 }
258 
259 void machines__exit(struct machines *machines)
260 {
261 	machine__exit(&machines->host);
262 	/* XXX exit guest */
263 }
264 
265 struct machine *machines__add(struct machines *machines, pid_t pid,
266 			      const char *root_dir)
267 {
268 	struct rb_node **p = &machines->guests.rb_root.rb_node;
269 	struct rb_node *parent = NULL;
270 	struct machine *pos, *machine = malloc(sizeof(*machine));
271 	bool leftmost = true;
272 
273 	if (machine == NULL)
274 		return NULL;
275 
276 	if (machine__init(machine, root_dir, pid) != 0) {
277 		free(machine);
278 		return NULL;
279 	}
280 
281 	while (*p != NULL) {
282 		parent = *p;
283 		pos = rb_entry(parent, struct machine, rb_node);
284 		if (pid < pos->pid)
285 			p = &(*p)->rb_left;
286 		else {
287 			p = &(*p)->rb_right;
288 			leftmost = false;
289 		}
290 	}
291 
292 	rb_link_node(&machine->rb_node, parent, p);
293 	rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
294 
295 	return machine;
296 }
297 
298 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
299 {
300 	struct rb_node *nd;
301 
302 	machines->host.comm_exec = comm_exec;
303 
304 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
305 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
306 
307 		machine->comm_exec = comm_exec;
308 	}
309 }
310 
311 struct machine *machines__find(struct machines *machines, pid_t pid)
312 {
313 	struct rb_node **p = &machines->guests.rb_root.rb_node;
314 	struct rb_node *parent = NULL;
315 	struct machine *machine;
316 	struct machine *default_machine = NULL;
317 
318 	if (pid == HOST_KERNEL_ID)
319 		return &machines->host;
320 
321 	while (*p != NULL) {
322 		parent = *p;
323 		machine = rb_entry(parent, struct machine, rb_node);
324 		if (pid < machine->pid)
325 			p = &(*p)->rb_left;
326 		else if (pid > machine->pid)
327 			p = &(*p)->rb_right;
328 		else
329 			return machine;
330 		if (!machine->pid)
331 			default_machine = machine;
332 	}
333 
334 	return default_machine;
335 }
336 
337 struct machine *machines__findnew(struct machines *machines, pid_t pid)
338 {
339 	char path[PATH_MAX];
340 	const char *root_dir = "";
341 	struct machine *machine = machines__find(machines, pid);
342 
343 	if (machine && (machine->pid == pid))
344 		goto out;
345 
346 	if ((pid != HOST_KERNEL_ID) &&
347 	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
348 	    (symbol_conf.guestmount)) {
349 		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
350 		if (access(path, R_OK)) {
351 			static struct strlist *seen;
352 
353 			if (!seen)
354 				seen = strlist__new(NULL, NULL);
355 
356 			if (!strlist__has_entry(seen, path)) {
357 				pr_err("Can't access file %s\n", path);
358 				strlist__add(seen, path);
359 			}
360 			machine = NULL;
361 			goto out;
362 		}
363 		root_dir = path;
364 	}
365 
366 	machine = machines__add(machines, pid, root_dir);
367 out:
368 	return machine;
369 }
370 
371 void machines__process_guests(struct machines *machines,
372 			      machine__process_t process, void *data)
373 {
374 	struct rb_node *nd;
375 
376 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
377 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
378 		process(pos, data);
379 	}
380 }
381 
382 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
383 {
384 	struct rb_node *node;
385 	struct machine *machine;
386 
387 	machines->host.id_hdr_size = id_hdr_size;
388 
389 	for (node = rb_first_cached(&machines->guests); node;
390 	     node = rb_next(node)) {
391 		machine = rb_entry(node, struct machine, rb_node);
392 		machine->id_hdr_size = id_hdr_size;
393 	}
394 
395 	return;
396 }
397 
398 static void machine__update_thread_pid(struct machine *machine,
399 				       struct thread *th, pid_t pid)
400 {
401 	struct thread *leader;
402 
403 	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
404 		return;
405 
406 	th->pid_ = pid;
407 
408 	if (th->pid_ == th->tid)
409 		return;
410 
411 	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
412 	if (!leader)
413 		goto out_err;
414 
415 	if (!leader->maps)
416 		leader->maps = maps__new(machine);
417 
418 	if (!leader->maps)
419 		goto out_err;
420 
421 	if (th->maps == leader->maps)
422 		return;
423 
424 	if (th->maps) {
425 		/*
426 		 * Maps are created from MMAP events which provide the pid and
427 		 * tid.  Consequently there never should be any maps on a thread
428 		 * with an unknown pid.  Just print an error if there are.
429 		 */
430 		if (!maps__empty(th->maps))
431 			pr_err("Discarding thread maps for %d:%d\n",
432 			       th->pid_, th->tid);
433 		maps__put(th->maps);
434 	}
435 
436 	th->maps = maps__get(leader->maps);
437 out_put:
438 	thread__put(leader);
439 	return;
440 out_err:
441 	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
442 	goto out_put;
443 }
444 
445 /*
446  * Front-end cache - TID lookups come in blocks,
447  * so most of the time we dont have to look up
448  * the full rbtree:
449  */
450 static struct thread*
451 __threads__get_last_match(struct threads *threads, struct machine *machine,
452 			  int pid, int tid)
453 {
454 	struct thread *th;
455 
456 	th = threads->last_match;
457 	if (th != NULL) {
458 		if (th->tid == tid) {
459 			machine__update_thread_pid(machine, th, pid);
460 			return thread__get(th);
461 		}
462 
463 		threads->last_match = NULL;
464 	}
465 
466 	return NULL;
467 }
468 
469 static struct thread*
470 threads__get_last_match(struct threads *threads, struct machine *machine,
471 			int pid, int tid)
472 {
473 	struct thread *th = NULL;
474 
475 	if (perf_singlethreaded)
476 		th = __threads__get_last_match(threads, machine, pid, tid);
477 
478 	return th;
479 }
480 
481 static void
482 __threads__set_last_match(struct threads *threads, struct thread *th)
483 {
484 	threads->last_match = th;
485 }
486 
487 static void
488 threads__set_last_match(struct threads *threads, struct thread *th)
489 {
490 	if (perf_singlethreaded)
491 		__threads__set_last_match(threads, th);
492 }
493 
494 /*
495  * Caller must eventually drop thread->refcnt returned with a successful
496  * lookup/new thread inserted.
497  */
498 static struct thread *____machine__findnew_thread(struct machine *machine,
499 						  struct threads *threads,
500 						  pid_t pid, pid_t tid,
501 						  bool create)
502 {
503 	struct rb_node **p = &threads->entries.rb_root.rb_node;
504 	struct rb_node *parent = NULL;
505 	struct thread *th;
506 	bool leftmost = true;
507 
508 	th = threads__get_last_match(threads, machine, pid, tid);
509 	if (th)
510 		return th;
511 
512 	while (*p != NULL) {
513 		parent = *p;
514 		th = rb_entry(parent, struct thread, rb_node);
515 
516 		if (th->tid == tid) {
517 			threads__set_last_match(threads, th);
518 			machine__update_thread_pid(machine, th, pid);
519 			return thread__get(th);
520 		}
521 
522 		if (tid < th->tid)
523 			p = &(*p)->rb_left;
524 		else {
525 			p = &(*p)->rb_right;
526 			leftmost = false;
527 		}
528 	}
529 
530 	if (!create)
531 		return NULL;
532 
533 	th = thread__new(pid, tid);
534 	if (th != NULL) {
535 		rb_link_node(&th->rb_node, parent, p);
536 		rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
537 
538 		/*
539 		 * We have to initialize maps separately after rb tree is updated.
540 		 *
541 		 * The reason is that we call machine__findnew_thread
542 		 * within thread__init_maps to find the thread
543 		 * leader and that would screwed the rb tree.
544 		 */
545 		if (thread__init_maps(th, machine)) {
546 			rb_erase_cached(&th->rb_node, &threads->entries);
547 			RB_CLEAR_NODE(&th->rb_node);
548 			thread__put(th);
549 			return NULL;
550 		}
551 		/*
552 		 * It is now in the rbtree, get a ref
553 		 */
554 		thread__get(th);
555 		threads__set_last_match(threads, th);
556 		++threads->nr;
557 	}
558 
559 	return th;
560 }
561 
562 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
563 {
564 	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
565 }
566 
567 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
568 				       pid_t tid)
569 {
570 	struct threads *threads = machine__threads(machine, tid);
571 	struct thread *th;
572 
573 	down_write(&threads->lock);
574 	th = __machine__findnew_thread(machine, pid, tid);
575 	up_write(&threads->lock);
576 	return th;
577 }
578 
579 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
580 				    pid_t tid)
581 {
582 	struct threads *threads = machine__threads(machine, tid);
583 	struct thread *th;
584 
585 	down_read(&threads->lock);
586 	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
587 	up_read(&threads->lock);
588 	return th;
589 }
590 
591 struct comm *machine__thread_exec_comm(struct machine *machine,
592 				       struct thread *thread)
593 {
594 	if (machine->comm_exec)
595 		return thread__exec_comm(thread);
596 	else
597 		return thread__comm(thread);
598 }
599 
600 int machine__process_comm_event(struct machine *machine, union perf_event *event,
601 				struct perf_sample *sample)
602 {
603 	struct thread *thread = machine__findnew_thread(machine,
604 							event->comm.pid,
605 							event->comm.tid);
606 	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
607 	int err = 0;
608 
609 	if (exec)
610 		machine->comm_exec = true;
611 
612 	if (dump_trace)
613 		perf_event__fprintf_comm(event, stdout);
614 
615 	if (thread == NULL ||
616 	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
617 		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
618 		err = -1;
619 	}
620 
621 	thread__put(thread);
622 
623 	return err;
624 }
625 
626 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
627 				      union perf_event *event,
628 				      struct perf_sample *sample __maybe_unused)
629 {
630 	struct thread *thread = machine__findnew_thread(machine,
631 							event->namespaces.pid,
632 							event->namespaces.tid);
633 	int err = 0;
634 
635 	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
636 		  "\nWARNING: kernel seems to support more namespaces than perf"
637 		  " tool.\nTry updating the perf tool..\n\n");
638 
639 	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
640 		  "\nWARNING: perf tool seems to support more namespaces than"
641 		  " the kernel.\nTry updating the kernel..\n\n");
642 
643 	if (dump_trace)
644 		perf_event__fprintf_namespaces(event, stdout);
645 
646 	if (thread == NULL ||
647 	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
648 		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
649 		err = -1;
650 	}
651 
652 	thread__put(thread);
653 
654 	return err;
655 }
656 
657 int machine__process_lost_event(struct machine *machine __maybe_unused,
658 				union perf_event *event, struct perf_sample *sample __maybe_unused)
659 {
660 	dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
661 		    event->lost.id, event->lost.lost);
662 	return 0;
663 }
664 
665 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
666 					union perf_event *event, struct perf_sample *sample)
667 {
668 	dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
669 		    sample->id, event->lost_samples.lost);
670 	return 0;
671 }
672 
673 static struct dso *machine__findnew_module_dso(struct machine *machine,
674 					       struct kmod_path *m,
675 					       const char *filename)
676 {
677 	struct dso *dso;
678 
679 	down_write(&machine->dsos.lock);
680 
681 	dso = __dsos__find(&machine->dsos, m->name, true);
682 	if (!dso) {
683 		dso = __dsos__addnew(&machine->dsos, m->name);
684 		if (dso == NULL)
685 			goto out_unlock;
686 
687 		dso__set_module_info(dso, m, machine);
688 		dso__set_long_name(dso, strdup(filename), true);
689 	}
690 
691 	dso__get(dso);
692 out_unlock:
693 	up_write(&machine->dsos.lock);
694 	return dso;
695 }
696 
697 int machine__process_aux_event(struct machine *machine __maybe_unused,
698 			       union perf_event *event)
699 {
700 	if (dump_trace)
701 		perf_event__fprintf_aux(event, stdout);
702 	return 0;
703 }
704 
705 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
706 					union perf_event *event)
707 {
708 	if (dump_trace)
709 		perf_event__fprintf_itrace_start(event, stdout);
710 	return 0;
711 }
712 
713 int machine__process_switch_event(struct machine *machine __maybe_unused,
714 				  union perf_event *event)
715 {
716 	if (dump_trace)
717 		perf_event__fprintf_switch(event, stdout);
718 	return 0;
719 }
720 
721 static int machine__process_ksymbol_register(struct machine *machine,
722 					     union perf_event *event,
723 					     struct perf_sample *sample __maybe_unused)
724 {
725 	struct symbol *sym;
726 	struct map *map = maps__find(&machine->kmaps, event->ksymbol.addr);
727 
728 	if (!map) {
729 		map = dso__new_map(event->ksymbol.name);
730 		if (!map)
731 			return -ENOMEM;
732 
733 		map->start = event->ksymbol.addr;
734 		map->end = map->start + event->ksymbol.len;
735 		maps__insert(&machine->kmaps, map);
736 	}
737 
738 	sym = symbol__new(map->map_ip(map, map->start),
739 			  event->ksymbol.len,
740 			  0, 0, event->ksymbol.name);
741 	if (!sym)
742 		return -ENOMEM;
743 	dso__insert_symbol(map->dso, sym);
744 	return 0;
745 }
746 
747 static int machine__process_ksymbol_unregister(struct machine *machine,
748 					       union perf_event *event,
749 					       struct perf_sample *sample __maybe_unused)
750 {
751 	struct map *map;
752 
753 	map = maps__find(&machine->kmaps, event->ksymbol.addr);
754 	if (map)
755 		maps__remove(&machine->kmaps, map);
756 
757 	return 0;
758 }
759 
760 int machine__process_ksymbol(struct machine *machine __maybe_unused,
761 			     union perf_event *event,
762 			     struct perf_sample *sample)
763 {
764 	if (dump_trace)
765 		perf_event__fprintf_ksymbol(event, stdout);
766 
767 	if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
768 		return machine__process_ksymbol_unregister(machine, event,
769 							   sample);
770 	return machine__process_ksymbol_register(machine, event, sample);
771 }
772 
773 static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
774 					      const char *filename)
775 {
776 	struct map *map = NULL;
777 	struct kmod_path m;
778 	struct dso *dso;
779 
780 	if (kmod_path__parse_name(&m, filename))
781 		return NULL;
782 
783 	dso = machine__findnew_module_dso(machine, &m, filename);
784 	if (dso == NULL)
785 		goto out;
786 
787 	map = map__new2(start, dso);
788 	if (map == NULL)
789 		goto out;
790 
791 	maps__insert(&machine->kmaps, map);
792 
793 	/* Put the map here because maps__insert alread got it */
794 	map__put(map);
795 out:
796 	/* put the dso here, corresponding to  machine__findnew_module_dso */
797 	dso__put(dso);
798 	zfree(&m.name);
799 	return map;
800 }
801 
802 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
803 {
804 	struct rb_node *nd;
805 	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
806 
807 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
808 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
809 		ret += __dsos__fprintf(&pos->dsos.head, fp);
810 	}
811 
812 	return ret;
813 }
814 
815 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
816 				     bool (skip)(struct dso *dso, int parm), int parm)
817 {
818 	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
819 }
820 
821 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
822 				     bool (skip)(struct dso *dso, int parm), int parm)
823 {
824 	struct rb_node *nd;
825 	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
826 
827 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
828 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
829 		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
830 	}
831 	return ret;
832 }
833 
834 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
835 {
836 	int i;
837 	size_t printed = 0;
838 	struct dso *kdso = machine__kernel_dso(machine);
839 
840 	if (kdso->has_build_id) {
841 		char filename[PATH_MAX];
842 		if (dso__build_id_filename(kdso, filename, sizeof(filename),
843 					   false))
844 			printed += fprintf(fp, "[0] %s\n", filename);
845 	}
846 
847 	for (i = 0; i < vmlinux_path__nr_entries; ++i)
848 		printed += fprintf(fp, "[%d] %s\n",
849 				   i + kdso->has_build_id, vmlinux_path[i]);
850 
851 	return printed;
852 }
853 
854 size_t machine__fprintf(struct machine *machine, FILE *fp)
855 {
856 	struct rb_node *nd;
857 	size_t ret;
858 	int i;
859 
860 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
861 		struct threads *threads = &machine->threads[i];
862 
863 		down_read(&threads->lock);
864 
865 		ret = fprintf(fp, "Threads: %u\n", threads->nr);
866 
867 		for (nd = rb_first_cached(&threads->entries); nd;
868 		     nd = rb_next(nd)) {
869 			struct thread *pos = rb_entry(nd, struct thread, rb_node);
870 
871 			ret += thread__fprintf(pos, fp);
872 		}
873 
874 		up_read(&threads->lock);
875 	}
876 	return ret;
877 }
878 
879 static struct dso *machine__get_kernel(struct machine *machine)
880 {
881 	const char *vmlinux_name = machine->mmap_name;
882 	struct dso *kernel;
883 
884 	if (machine__is_host(machine)) {
885 		if (symbol_conf.vmlinux_name)
886 			vmlinux_name = symbol_conf.vmlinux_name;
887 
888 		kernel = machine__findnew_kernel(machine, vmlinux_name,
889 						 "[kernel]", DSO_TYPE_KERNEL);
890 	} else {
891 		if (symbol_conf.default_guest_vmlinux_name)
892 			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
893 
894 		kernel = machine__findnew_kernel(machine, vmlinux_name,
895 						 "[guest.kernel]",
896 						 DSO_TYPE_GUEST_KERNEL);
897 	}
898 
899 	if (kernel != NULL && (!kernel->has_build_id))
900 		dso__read_running_kernel_build_id(kernel, machine);
901 
902 	return kernel;
903 }
904 
905 struct process_args {
906 	u64 start;
907 };
908 
909 void machine__get_kallsyms_filename(struct machine *machine, char *buf,
910 				    size_t bufsz)
911 {
912 	if (machine__is_default_guest(machine))
913 		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
914 	else
915 		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
916 }
917 
918 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
919 
920 /* Figure out the start address of kernel map from /proc/kallsyms.
921  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
922  * symbol_name if it's not that important.
923  */
924 static int machine__get_running_kernel_start(struct machine *machine,
925 					     const char **symbol_name,
926 					     u64 *start, u64 *end)
927 {
928 	char filename[PATH_MAX];
929 	int i, err = -1;
930 	const char *name;
931 	u64 addr = 0;
932 
933 	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
934 
935 	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
936 		return 0;
937 
938 	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
939 		err = kallsyms__get_function_start(filename, name, &addr);
940 		if (!err)
941 			break;
942 	}
943 
944 	if (err)
945 		return -1;
946 
947 	if (symbol_name)
948 		*symbol_name = name;
949 
950 	*start = addr;
951 
952 	err = kallsyms__get_function_start(filename, "_etext", &addr);
953 	if (!err)
954 		*end = addr;
955 
956 	return 0;
957 }
958 
959 int machine__create_extra_kernel_map(struct machine *machine,
960 				     struct dso *kernel,
961 				     struct extra_kernel_map *xm)
962 {
963 	struct kmap *kmap;
964 	struct map *map;
965 
966 	map = map__new2(xm->start, kernel);
967 	if (!map)
968 		return -1;
969 
970 	map->end   = xm->end;
971 	map->pgoff = xm->pgoff;
972 
973 	kmap = map__kmap(map);
974 
975 	kmap->kmaps = &machine->kmaps;
976 	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
977 
978 	maps__insert(&machine->kmaps, map);
979 
980 	pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
981 		  kmap->name, map->start, map->end);
982 
983 	map__put(map);
984 
985 	return 0;
986 }
987 
988 static u64 find_entry_trampoline(struct dso *dso)
989 {
990 	/* Duplicates are removed so lookup all aliases */
991 	const char *syms[] = {
992 		"_entry_trampoline",
993 		"__entry_trampoline_start",
994 		"entry_SYSCALL_64_trampoline",
995 	};
996 	struct symbol *sym = dso__first_symbol(dso);
997 	unsigned int i;
998 
999 	for (; sym; sym = dso__next_symbol(sym)) {
1000 		if (sym->binding != STB_GLOBAL)
1001 			continue;
1002 		for (i = 0; i < ARRAY_SIZE(syms); i++) {
1003 			if (!strcmp(sym->name, syms[i]))
1004 				return sym->start;
1005 		}
1006 	}
1007 
1008 	return 0;
1009 }
1010 
1011 /*
1012  * These values can be used for kernels that do not have symbols for the entry
1013  * trampolines in kallsyms.
1014  */
1015 #define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
1016 #define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
1017 #define X86_64_ENTRY_TRAMPOLINE		0x6000
1018 
1019 /* Map x86_64 PTI entry trampolines */
1020 int machine__map_x86_64_entry_trampolines(struct machine *machine,
1021 					  struct dso *kernel)
1022 {
1023 	struct maps *kmaps = &machine->kmaps;
1024 	int nr_cpus_avail, cpu;
1025 	bool found = false;
1026 	struct map *map;
1027 	u64 pgoff;
1028 
1029 	/*
1030 	 * In the vmlinux case, pgoff is a virtual address which must now be
1031 	 * mapped to a vmlinux offset.
1032 	 */
1033 	maps__for_each_entry(kmaps, map) {
1034 		struct kmap *kmap = __map__kmap(map);
1035 		struct map *dest_map;
1036 
1037 		if (!kmap || !is_entry_trampoline(kmap->name))
1038 			continue;
1039 
1040 		dest_map = maps__find(kmaps, map->pgoff);
1041 		if (dest_map != map)
1042 			map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1043 		found = true;
1044 	}
1045 	if (found || machine->trampolines_mapped)
1046 		return 0;
1047 
1048 	pgoff = find_entry_trampoline(kernel);
1049 	if (!pgoff)
1050 		return 0;
1051 
1052 	nr_cpus_avail = machine__nr_cpus_avail(machine);
1053 
1054 	/* Add a 1 page map for each CPU's entry trampoline */
1055 	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1056 		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1057 			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1058 			 X86_64_ENTRY_TRAMPOLINE;
1059 		struct extra_kernel_map xm = {
1060 			.start = va,
1061 			.end   = va + page_size,
1062 			.pgoff = pgoff,
1063 		};
1064 
1065 		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1066 
1067 		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1068 			return -1;
1069 	}
1070 
1071 	machine->trampolines_mapped = nr_cpus_avail;
1072 
1073 	return 0;
1074 }
1075 
1076 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1077 					     struct dso *kernel __maybe_unused)
1078 {
1079 	return 0;
1080 }
1081 
1082 static int
1083 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1084 {
1085 	struct kmap *kmap;
1086 	struct map *map;
1087 
1088 	/* In case of renewal the kernel map, destroy previous one */
1089 	machine__destroy_kernel_maps(machine);
1090 
1091 	machine->vmlinux_map = map__new2(0, kernel);
1092 	if (machine->vmlinux_map == NULL)
1093 		return -1;
1094 
1095 	machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1096 	map = machine__kernel_map(machine);
1097 	kmap = map__kmap(map);
1098 	if (!kmap)
1099 		return -1;
1100 
1101 	kmap->kmaps = &machine->kmaps;
1102 	maps__insert(&machine->kmaps, map);
1103 
1104 	return 0;
1105 }
1106 
1107 void machine__destroy_kernel_maps(struct machine *machine)
1108 {
1109 	struct kmap *kmap;
1110 	struct map *map = machine__kernel_map(machine);
1111 
1112 	if (map == NULL)
1113 		return;
1114 
1115 	kmap = map__kmap(map);
1116 	maps__remove(&machine->kmaps, map);
1117 	if (kmap && kmap->ref_reloc_sym) {
1118 		zfree((char **)&kmap->ref_reloc_sym->name);
1119 		zfree(&kmap->ref_reloc_sym);
1120 	}
1121 
1122 	map__zput(machine->vmlinux_map);
1123 }
1124 
1125 int machines__create_guest_kernel_maps(struct machines *machines)
1126 {
1127 	int ret = 0;
1128 	struct dirent **namelist = NULL;
1129 	int i, items = 0;
1130 	char path[PATH_MAX];
1131 	pid_t pid;
1132 	char *endp;
1133 
1134 	if (symbol_conf.default_guest_vmlinux_name ||
1135 	    symbol_conf.default_guest_modules ||
1136 	    symbol_conf.default_guest_kallsyms) {
1137 		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1138 	}
1139 
1140 	if (symbol_conf.guestmount) {
1141 		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1142 		if (items <= 0)
1143 			return -ENOENT;
1144 		for (i = 0; i < items; i++) {
1145 			if (!isdigit(namelist[i]->d_name[0])) {
1146 				/* Filter out . and .. */
1147 				continue;
1148 			}
1149 			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1150 			if ((*endp != '\0') ||
1151 			    (endp == namelist[i]->d_name) ||
1152 			    (errno == ERANGE)) {
1153 				pr_debug("invalid directory (%s). Skipping.\n",
1154 					 namelist[i]->d_name);
1155 				continue;
1156 			}
1157 			sprintf(path, "%s/%s/proc/kallsyms",
1158 				symbol_conf.guestmount,
1159 				namelist[i]->d_name);
1160 			ret = access(path, R_OK);
1161 			if (ret) {
1162 				pr_debug("Can't access file %s\n", path);
1163 				goto failure;
1164 			}
1165 			machines__create_kernel_maps(machines, pid);
1166 		}
1167 failure:
1168 		free(namelist);
1169 	}
1170 
1171 	return ret;
1172 }
1173 
1174 void machines__destroy_kernel_maps(struct machines *machines)
1175 {
1176 	struct rb_node *next = rb_first_cached(&machines->guests);
1177 
1178 	machine__destroy_kernel_maps(&machines->host);
1179 
1180 	while (next) {
1181 		struct machine *pos = rb_entry(next, struct machine, rb_node);
1182 
1183 		next = rb_next(&pos->rb_node);
1184 		rb_erase_cached(&pos->rb_node, &machines->guests);
1185 		machine__delete(pos);
1186 	}
1187 }
1188 
1189 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1190 {
1191 	struct machine *machine = machines__findnew(machines, pid);
1192 
1193 	if (machine == NULL)
1194 		return -1;
1195 
1196 	return machine__create_kernel_maps(machine);
1197 }
1198 
1199 int machine__load_kallsyms(struct machine *machine, const char *filename)
1200 {
1201 	struct map *map = machine__kernel_map(machine);
1202 	int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1203 
1204 	if (ret > 0) {
1205 		dso__set_loaded(map->dso);
1206 		/*
1207 		 * Since /proc/kallsyms will have multiple sessions for the
1208 		 * kernel, with modules between them, fixup the end of all
1209 		 * sections.
1210 		 */
1211 		maps__fixup_end(&machine->kmaps);
1212 	}
1213 
1214 	return ret;
1215 }
1216 
1217 int machine__load_vmlinux_path(struct machine *machine)
1218 {
1219 	struct map *map = machine__kernel_map(machine);
1220 	int ret = dso__load_vmlinux_path(map->dso, map);
1221 
1222 	if (ret > 0)
1223 		dso__set_loaded(map->dso);
1224 
1225 	return ret;
1226 }
1227 
1228 static char *get_kernel_version(const char *root_dir)
1229 {
1230 	char version[PATH_MAX];
1231 	FILE *file;
1232 	char *name, *tmp;
1233 	const char *prefix = "Linux version ";
1234 
1235 	sprintf(version, "%s/proc/version", root_dir);
1236 	file = fopen(version, "r");
1237 	if (!file)
1238 		return NULL;
1239 
1240 	tmp = fgets(version, sizeof(version), file);
1241 	fclose(file);
1242 	if (!tmp)
1243 		return NULL;
1244 
1245 	name = strstr(version, prefix);
1246 	if (!name)
1247 		return NULL;
1248 	name += strlen(prefix);
1249 	tmp = strchr(name, ' ');
1250 	if (tmp)
1251 		*tmp = '\0';
1252 
1253 	return strdup(name);
1254 }
1255 
1256 static bool is_kmod_dso(struct dso *dso)
1257 {
1258 	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1259 	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1260 }
1261 
1262 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1263 {
1264 	char *long_name;
1265 	struct map *map = maps__find_by_name(maps, m->name);
1266 
1267 	if (map == NULL)
1268 		return 0;
1269 
1270 	long_name = strdup(path);
1271 	if (long_name == NULL)
1272 		return -ENOMEM;
1273 
1274 	dso__set_long_name(map->dso, long_name, true);
1275 	dso__kernel_module_get_build_id(map->dso, "");
1276 
1277 	/*
1278 	 * Full name could reveal us kmod compression, so
1279 	 * we need to update the symtab_type if needed.
1280 	 */
1281 	if (m->comp && is_kmod_dso(map->dso)) {
1282 		map->dso->symtab_type++;
1283 		map->dso->comp = m->comp;
1284 	}
1285 
1286 	return 0;
1287 }
1288 
1289 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1290 {
1291 	struct dirent *dent;
1292 	DIR *dir = opendir(dir_name);
1293 	int ret = 0;
1294 
1295 	if (!dir) {
1296 		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1297 		return -1;
1298 	}
1299 
1300 	while ((dent = readdir(dir)) != NULL) {
1301 		char path[PATH_MAX];
1302 		struct stat st;
1303 
1304 		/*sshfs might return bad dent->d_type, so we have to stat*/
1305 		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1306 		if (stat(path, &st))
1307 			continue;
1308 
1309 		if (S_ISDIR(st.st_mode)) {
1310 			if (!strcmp(dent->d_name, ".") ||
1311 			    !strcmp(dent->d_name, ".."))
1312 				continue;
1313 
1314 			/* Do not follow top-level source and build symlinks */
1315 			if (depth == 0) {
1316 				if (!strcmp(dent->d_name, "source") ||
1317 				    !strcmp(dent->d_name, "build"))
1318 					continue;
1319 			}
1320 
1321 			ret = maps__set_modules_path_dir(maps, path, depth + 1);
1322 			if (ret < 0)
1323 				goto out;
1324 		} else {
1325 			struct kmod_path m;
1326 
1327 			ret = kmod_path__parse_name(&m, dent->d_name);
1328 			if (ret)
1329 				goto out;
1330 
1331 			if (m.kmod)
1332 				ret = maps__set_module_path(maps, path, &m);
1333 
1334 			zfree(&m.name);
1335 
1336 			if (ret)
1337 				goto out;
1338 		}
1339 	}
1340 
1341 out:
1342 	closedir(dir);
1343 	return ret;
1344 }
1345 
1346 static int machine__set_modules_path(struct machine *machine)
1347 {
1348 	char *version;
1349 	char modules_path[PATH_MAX];
1350 
1351 	version = get_kernel_version(machine->root_dir);
1352 	if (!version)
1353 		return -1;
1354 
1355 	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1356 		 machine->root_dir, version);
1357 	free(version);
1358 
1359 	return maps__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1360 }
1361 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1362 				u64 *size __maybe_unused,
1363 				const char *name __maybe_unused)
1364 {
1365 	return 0;
1366 }
1367 
1368 static int machine__create_module(void *arg, const char *name, u64 start,
1369 				  u64 size)
1370 {
1371 	struct machine *machine = arg;
1372 	struct map *map;
1373 
1374 	if (arch__fix_module_text_start(&start, &size, name) < 0)
1375 		return -1;
1376 
1377 	map = machine__addnew_module_map(machine, start, name);
1378 	if (map == NULL)
1379 		return -1;
1380 	map->end = start + size;
1381 
1382 	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1383 
1384 	return 0;
1385 }
1386 
1387 static int machine__create_modules(struct machine *machine)
1388 {
1389 	const char *modules;
1390 	char path[PATH_MAX];
1391 
1392 	if (machine__is_default_guest(machine)) {
1393 		modules = symbol_conf.default_guest_modules;
1394 	} else {
1395 		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1396 		modules = path;
1397 	}
1398 
1399 	if (symbol__restricted_filename(modules, "/proc/modules"))
1400 		return -1;
1401 
1402 	if (modules__parse(modules, machine, machine__create_module))
1403 		return -1;
1404 
1405 	if (!machine__set_modules_path(machine))
1406 		return 0;
1407 
1408 	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1409 
1410 	return 0;
1411 }
1412 
1413 static void machine__set_kernel_mmap(struct machine *machine,
1414 				     u64 start, u64 end)
1415 {
1416 	machine->vmlinux_map->start = start;
1417 	machine->vmlinux_map->end   = end;
1418 	/*
1419 	 * Be a bit paranoid here, some perf.data file came with
1420 	 * a zero sized synthesized MMAP event for the kernel.
1421 	 */
1422 	if (start == 0 && end == 0)
1423 		machine->vmlinux_map->end = ~0ULL;
1424 }
1425 
1426 static void machine__update_kernel_mmap(struct machine *machine,
1427 				     u64 start, u64 end)
1428 {
1429 	struct map *map = machine__kernel_map(machine);
1430 
1431 	map__get(map);
1432 	maps__remove(&machine->kmaps, map);
1433 
1434 	machine__set_kernel_mmap(machine, start, end);
1435 
1436 	maps__insert(&machine->kmaps, map);
1437 	map__put(map);
1438 }
1439 
1440 int machine__create_kernel_maps(struct machine *machine)
1441 {
1442 	struct dso *kernel = machine__get_kernel(machine);
1443 	const char *name = NULL;
1444 	struct map *map;
1445 	u64 start = 0, end = ~0ULL;
1446 	int ret;
1447 
1448 	if (kernel == NULL)
1449 		return -1;
1450 
1451 	ret = __machine__create_kernel_maps(machine, kernel);
1452 	if (ret < 0)
1453 		goto out_put;
1454 
1455 	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1456 		if (machine__is_host(machine))
1457 			pr_debug("Problems creating module maps, "
1458 				 "continuing anyway...\n");
1459 		else
1460 			pr_debug("Problems creating module maps for guest %d, "
1461 				 "continuing anyway...\n", machine->pid);
1462 	}
1463 
1464 	if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1465 		if (name &&
1466 		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1467 			machine__destroy_kernel_maps(machine);
1468 			ret = -1;
1469 			goto out_put;
1470 		}
1471 
1472 		/*
1473 		 * we have a real start address now, so re-order the kmaps
1474 		 * assume it's the last in the kmaps
1475 		 */
1476 		machine__update_kernel_mmap(machine, start, end);
1477 	}
1478 
1479 	if (machine__create_extra_kernel_maps(machine, kernel))
1480 		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1481 
1482 	if (end == ~0ULL) {
1483 		/* update end address of the kernel map using adjacent module address */
1484 		map = map__next(machine__kernel_map(machine));
1485 		if (map)
1486 			machine__set_kernel_mmap(machine, start, map->start);
1487 	}
1488 
1489 out_put:
1490 	dso__put(kernel);
1491 	return ret;
1492 }
1493 
1494 static bool machine__uses_kcore(struct machine *machine)
1495 {
1496 	struct dso *dso;
1497 
1498 	list_for_each_entry(dso, &machine->dsos.head, node) {
1499 		if (dso__is_kcore(dso))
1500 			return true;
1501 	}
1502 
1503 	return false;
1504 }
1505 
1506 static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1507 					     union perf_event *event)
1508 {
1509 	return machine__is(machine, "x86_64") &&
1510 	       is_entry_trampoline(event->mmap.filename);
1511 }
1512 
1513 static int machine__process_extra_kernel_map(struct machine *machine,
1514 					     union perf_event *event)
1515 {
1516 	struct dso *kernel = machine__kernel_dso(machine);
1517 	struct extra_kernel_map xm = {
1518 		.start = event->mmap.start,
1519 		.end   = event->mmap.start + event->mmap.len,
1520 		.pgoff = event->mmap.pgoff,
1521 	};
1522 
1523 	if (kernel == NULL)
1524 		return -1;
1525 
1526 	strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1527 
1528 	return machine__create_extra_kernel_map(machine, kernel, &xm);
1529 }
1530 
1531 static int machine__process_kernel_mmap_event(struct machine *machine,
1532 					      union perf_event *event)
1533 {
1534 	struct map *map;
1535 	enum dso_kernel_type kernel_type;
1536 	bool is_kernel_mmap;
1537 
1538 	/* If we have maps from kcore then we do not need or want any others */
1539 	if (machine__uses_kcore(machine))
1540 		return 0;
1541 
1542 	if (machine__is_host(machine))
1543 		kernel_type = DSO_TYPE_KERNEL;
1544 	else
1545 		kernel_type = DSO_TYPE_GUEST_KERNEL;
1546 
1547 	is_kernel_mmap = memcmp(event->mmap.filename,
1548 				machine->mmap_name,
1549 				strlen(machine->mmap_name) - 1) == 0;
1550 	if (event->mmap.filename[0] == '/' ||
1551 	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1552 		map = machine__addnew_module_map(machine, event->mmap.start,
1553 						 event->mmap.filename);
1554 		if (map == NULL)
1555 			goto out_problem;
1556 
1557 		map->end = map->start + event->mmap.len;
1558 	} else if (is_kernel_mmap) {
1559 		const char *symbol_name = (event->mmap.filename +
1560 				strlen(machine->mmap_name));
1561 		/*
1562 		 * Should be there already, from the build-id table in
1563 		 * the header.
1564 		 */
1565 		struct dso *kernel = NULL;
1566 		struct dso *dso;
1567 
1568 		down_read(&machine->dsos.lock);
1569 
1570 		list_for_each_entry(dso, &machine->dsos.head, node) {
1571 
1572 			/*
1573 			 * The cpumode passed to is_kernel_module is not the
1574 			 * cpumode of *this* event. If we insist on passing
1575 			 * correct cpumode to is_kernel_module, we should
1576 			 * record the cpumode when we adding this dso to the
1577 			 * linked list.
1578 			 *
1579 			 * However we don't really need passing correct
1580 			 * cpumode.  We know the correct cpumode must be kernel
1581 			 * mode (if not, we should not link it onto kernel_dsos
1582 			 * list).
1583 			 *
1584 			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1585 			 * is_kernel_module() treats it as a kernel cpumode.
1586 			 */
1587 
1588 			if (!dso->kernel ||
1589 			    is_kernel_module(dso->long_name,
1590 					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1591 				continue;
1592 
1593 
1594 			kernel = dso;
1595 			break;
1596 		}
1597 
1598 		up_read(&machine->dsos.lock);
1599 
1600 		if (kernel == NULL)
1601 			kernel = machine__findnew_dso(machine, machine->mmap_name);
1602 		if (kernel == NULL)
1603 			goto out_problem;
1604 
1605 		kernel->kernel = kernel_type;
1606 		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1607 			dso__put(kernel);
1608 			goto out_problem;
1609 		}
1610 
1611 		if (strstr(kernel->long_name, "vmlinux"))
1612 			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1613 
1614 		machine__update_kernel_mmap(machine, event->mmap.start,
1615 					 event->mmap.start + event->mmap.len);
1616 
1617 		/*
1618 		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1619 		 * symbol. Effectively having zero here means that at record
1620 		 * time /proc/sys/kernel/kptr_restrict was non zero.
1621 		 */
1622 		if (event->mmap.pgoff != 0) {
1623 			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1624 							symbol_name,
1625 							event->mmap.pgoff);
1626 		}
1627 
1628 		if (machine__is_default_guest(machine)) {
1629 			/*
1630 			 * preload dso of guest kernel and modules
1631 			 */
1632 			dso__load(kernel, machine__kernel_map(machine));
1633 		}
1634 	} else if (perf_event__is_extra_kernel_mmap(machine, event)) {
1635 		return machine__process_extra_kernel_map(machine, event);
1636 	}
1637 	return 0;
1638 out_problem:
1639 	return -1;
1640 }
1641 
1642 int machine__process_mmap2_event(struct machine *machine,
1643 				 union perf_event *event,
1644 				 struct perf_sample *sample)
1645 {
1646 	struct thread *thread;
1647 	struct map *map;
1648 	struct dso_id dso_id = {
1649 		.maj = event->mmap2.maj,
1650 		.min = event->mmap2.min,
1651 		.ino = event->mmap2.ino,
1652 		.ino_generation = event->mmap2.ino_generation,
1653 	};
1654 	int ret = 0;
1655 
1656 	if (dump_trace)
1657 		perf_event__fprintf_mmap2(event, stdout);
1658 
1659 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1660 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1661 		ret = machine__process_kernel_mmap_event(machine, event);
1662 		if (ret < 0)
1663 			goto out_problem;
1664 		return 0;
1665 	}
1666 
1667 	thread = machine__findnew_thread(machine, event->mmap2.pid,
1668 					event->mmap2.tid);
1669 	if (thread == NULL)
1670 		goto out_problem;
1671 
1672 	map = map__new(machine, event->mmap2.start,
1673 			event->mmap2.len, event->mmap2.pgoff,
1674 			&dso_id, event->mmap2.prot,
1675 			event->mmap2.flags,
1676 			event->mmap2.filename, thread);
1677 
1678 	if (map == NULL)
1679 		goto out_problem_map;
1680 
1681 	ret = thread__insert_map(thread, map);
1682 	if (ret)
1683 		goto out_problem_insert;
1684 
1685 	thread__put(thread);
1686 	map__put(map);
1687 	return 0;
1688 
1689 out_problem_insert:
1690 	map__put(map);
1691 out_problem_map:
1692 	thread__put(thread);
1693 out_problem:
1694 	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1695 	return 0;
1696 }
1697 
1698 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1699 				struct perf_sample *sample)
1700 {
1701 	struct thread *thread;
1702 	struct map *map;
1703 	u32 prot = 0;
1704 	int ret = 0;
1705 
1706 	if (dump_trace)
1707 		perf_event__fprintf_mmap(event, stdout);
1708 
1709 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1710 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1711 		ret = machine__process_kernel_mmap_event(machine, event);
1712 		if (ret < 0)
1713 			goto out_problem;
1714 		return 0;
1715 	}
1716 
1717 	thread = machine__findnew_thread(machine, event->mmap.pid,
1718 					 event->mmap.tid);
1719 	if (thread == NULL)
1720 		goto out_problem;
1721 
1722 	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1723 		prot = PROT_EXEC;
1724 
1725 	map = map__new(machine, event->mmap.start,
1726 			event->mmap.len, event->mmap.pgoff,
1727 			NULL, prot, 0, event->mmap.filename, thread);
1728 
1729 	if (map == NULL)
1730 		goto out_problem_map;
1731 
1732 	ret = thread__insert_map(thread, map);
1733 	if (ret)
1734 		goto out_problem_insert;
1735 
1736 	thread__put(thread);
1737 	map__put(map);
1738 	return 0;
1739 
1740 out_problem_insert:
1741 	map__put(map);
1742 out_problem_map:
1743 	thread__put(thread);
1744 out_problem:
1745 	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1746 	return 0;
1747 }
1748 
1749 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1750 {
1751 	struct threads *threads = machine__threads(machine, th->tid);
1752 
1753 	if (threads->last_match == th)
1754 		threads__set_last_match(threads, NULL);
1755 
1756 	if (lock)
1757 		down_write(&threads->lock);
1758 
1759 	BUG_ON(refcount_read(&th->refcnt) == 0);
1760 
1761 	rb_erase_cached(&th->rb_node, &threads->entries);
1762 	RB_CLEAR_NODE(&th->rb_node);
1763 	--threads->nr;
1764 	/*
1765 	 * Move it first to the dead_threads list, then drop the reference,
1766 	 * if this is the last reference, then the thread__delete destructor
1767 	 * will be called and we will remove it from the dead_threads list.
1768 	 */
1769 	list_add_tail(&th->node, &threads->dead);
1770 
1771 	/*
1772 	 * We need to do the put here because if this is the last refcount,
1773 	 * then we will be touching the threads->dead head when removing the
1774 	 * thread.
1775 	 */
1776 	thread__put(th);
1777 
1778 	if (lock)
1779 		up_write(&threads->lock);
1780 }
1781 
1782 void machine__remove_thread(struct machine *machine, struct thread *th)
1783 {
1784 	return __machine__remove_thread(machine, th, true);
1785 }
1786 
1787 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1788 				struct perf_sample *sample)
1789 {
1790 	struct thread *thread = machine__find_thread(machine,
1791 						     event->fork.pid,
1792 						     event->fork.tid);
1793 	struct thread *parent = machine__findnew_thread(machine,
1794 							event->fork.ppid,
1795 							event->fork.ptid);
1796 	bool do_maps_clone = true;
1797 	int err = 0;
1798 
1799 	if (dump_trace)
1800 		perf_event__fprintf_task(event, stdout);
1801 
1802 	/*
1803 	 * There may be an existing thread that is not actually the parent,
1804 	 * either because we are processing events out of order, or because the
1805 	 * (fork) event that would have removed the thread was lost. Assume the
1806 	 * latter case and continue on as best we can.
1807 	 */
1808 	if (parent->pid_ != (pid_t)event->fork.ppid) {
1809 		dump_printf("removing erroneous parent thread %d/%d\n",
1810 			    parent->pid_, parent->tid);
1811 		machine__remove_thread(machine, parent);
1812 		thread__put(parent);
1813 		parent = machine__findnew_thread(machine, event->fork.ppid,
1814 						 event->fork.ptid);
1815 	}
1816 
1817 	/* if a thread currently exists for the thread id remove it */
1818 	if (thread != NULL) {
1819 		machine__remove_thread(machine, thread);
1820 		thread__put(thread);
1821 	}
1822 
1823 	thread = machine__findnew_thread(machine, event->fork.pid,
1824 					 event->fork.tid);
1825 	/*
1826 	 * When synthesizing FORK events, we are trying to create thread
1827 	 * objects for the already running tasks on the machine.
1828 	 *
1829 	 * Normally, for a kernel FORK event, we want to clone the parent's
1830 	 * maps because that is what the kernel just did.
1831 	 *
1832 	 * But when synthesizing, this should not be done.  If we do, we end up
1833 	 * with overlapping maps as we process the sythesized MMAP2 events that
1834 	 * get delivered shortly thereafter.
1835 	 *
1836 	 * Use the FORK event misc flags in an internal way to signal this
1837 	 * situation, so we can elide the map clone when appropriate.
1838 	 */
1839 	if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1840 		do_maps_clone = false;
1841 
1842 	if (thread == NULL || parent == NULL ||
1843 	    thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1844 		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1845 		err = -1;
1846 	}
1847 	thread__put(thread);
1848 	thread__put(parent);
1849 
1850 	return err;
1851 }
1852 
1853 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1854 				struct perf_sample *sample __maybe_unused)
1855 {
1856 	struct thread *thread = machine__find_thread(machine,
1857 						     event->fork.pid,
1858 						     event->fork.tid);
1859 
1860 	if (dump_trace)
1861 		perf_event__fprintf_task(event, stdout);
1862 
1863 	if (thread != NULL) {
1864 		thread__exited(thread);
1865 		thread__put(thread);
1866 	}
1867 
1868 	return 0;
1869 }
1870 
1871 int machine__process_event(struct machine *machine, union perf_event *event,
1872 			   struct perf_sample *sample)
1873 {
1874 	int ret;
1875 
1876 	switch (event->header.type) {
1877 	case PERF_RECORD_COMM:
1878 		ret = machine__process_comm_event(machine, event, sample); break;
1879 	case PERF_RECORD_MMAP:
1880 		ret = machine__process_mmap_event(machine, event, sample); break;
1881 	case PERF_RECORD_NAMESPACES:
1882 		ret = machine__process_namespaces_event(machine, event, sample); break;
1883 	case PERF_RECORD_MMAP2:
1884 		ret = machine__process_mmap2_event(machine, event, sample); break;
1885 	case PERF_RECORD_FORK:
1886 		ret = machine__process_fork_event(machine, event, sample); break;
1887 	case PERF_RECORD_EXIT:
1888 		ret = machine__process_exit_event(machine, event, sample); break;
1889 	case PERF_RECORD_LOST:
1890 		ret = machine__process_lost_event(machine, event, sample); break;
1891 	case PERF_RECORD_AUX:
1892 		ret = machine__process_aux_event(machine, event); break;
1893 	case PERF_RECORD_ITRACE_START:
1894 		ret = machine__process_itrace_start_event(machine, event); break;
1895 	case PERF_RECORD_LOST_SAMPLES:
1896 		ret = machine__process_lost_samples_event(machine, event, sample); break;
1897 	case PERF_RECORD_SWITCH:
1898 	case PERF_RECORD_SWITCH_CPU_WIDE:
1899 		ret = machine__process_switch_event(machine, event); break;
1900 	case PERF_RECORD_KSYMBOL:
1901 		ret = machine__process_ksymbol(machine, event, sample); break;
1902 	case PERF_RECORD_BPF_EVENT:
1903 		ret = machine__process_bpf(machine, event, sample); break;
1904 	default:
1905 		ret = -1;
1906 		break;
1907 	}
1908 
1909 	return ret;
1910 }
1911 
1912 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1913 {
1914 	if (!regexec(regex, sym->name, 0, NULL, 0))
1915 		return 1;
1916 	return 0;
1917 }
1918 
1919 static void ip__resolve_ams(struct thread *thread,
1920 			    struct addr_map_symbol *ams,
1921 			    u64 ip)
1922 {
1923 	struct addr_location al;
1924 
1925 	memset(&al, 0, sizeof(al));
1926 	/*
1927 	 * We cannot use the header.misc hint to determine whether a
1928 	 * branch stack address is user, kernel, guest, hypervisor.
1929 	 * Branches may straddle the kernel/user/hypervisor boundaries.
1930 	 * Thus, we have to try consecutively until we find a match
1931 	 * or else, the symbol is unknown
1932 	 */
1933 	thread__find_cpumode_addr_location(thread, ip, &al);
1934 
1935 	ams->addr = ip;
1936 	ams->al_addr = al.addr;
1937 	ams->ms.maps = al.maps;
1938 	ams->ms.sym = al.sym;
1939 	ams->ms.map = al.map;
1940 	ams->phys_addr = 0;
1941 }
1942 
1943 static void ip__resolve_data(struct thread *thread,
1944 			     u8 m, struct addr_map_symbol *ams,
1945 			     u64 addr, u64 phys_addr)
1946 {
1947 	struct addr_location al;
1948 
1949 	memset(&al, 0, sizeof(al));
1950 
1951 	thread__find_symbol(thread, m, addr, &al);
1952 
1953 	ams->addr = addr;
1954 	ams->al_addr = al.addr;
1955 	ams->ms.maps = al.maps;
1956 	ams->ms.sym = al.sym;
1957 	ams->ms.map = al.map;
1958 	ams->phys_addr = phys_addr;
1959 }
1960 
1961 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1962 				     struct addr_location *al)
1963 {
1964 	struct mem_info *mi = mem_info__new();
1965 
1966 	if (!mi)
1967 		return NULL;
1968 
1969 	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1970 	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
1971 			 sample->addr, sample->phys_addr);
1972 	mi->data_src.val = sample->data_src;
1973 
1974 	return mi;
1975 }
1976 
1977 static char *callchain_srcline(struct map_symbol *ms, u64 ip)
1978 {
1979 	struct map *map = ms->map;
1980 	char *srcline = NULL;
1981 
1982 	if (!map || callchain_param.key == CCKEY_FUNCTION)
1983 		return srcline;
1984 
1985 	srcline = srcline__tree_find(&map->dso->srclines, ip);
1986 	if (!srcline) {
1987 		bool show_sym = false;
1988 		bool show_addr = callchain_param.key == CCKEY_ADDRESS;
1989 
1990 		srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
1991 				      ms->sym, show_sym, show_addr, ip);
1992 		srcline__tree_insert(&map->dso->srclines, ip, srcline);
1993 	}
1994 
1995 	return srcline;
1996 }
1997 
1998 struct iterations {
1999 	int nr_loop_iter;
2000 	u64 cycles;
2001 };
2002 
2003 static int add_callchain_ip(struct thread *thread,
2004 			    struct callchain_cursor *cursor,
2005 			    struct symbol **parent,
2006 			    struct addr_location *root_al,
2007 			    u8 *cpumode,
2008 			    u64 ip,
2009 			    bool branch,
2010 			    struct branch_flags *flags,
2011 			    struct iterations *iter,
2012 			    u64 branch_from)
2013 {
2014 	struct map_symbol ms;
2015 	struct addr_location al;
2016 	int nr_loop_iter = 0;
2017 	u64 iter_cycles = 0;
2018 	const char *srcline = NULL;
2019 
2020 	al.filtered = 0;
2021 	al.sym = NULL;
2022 	if (!cpumode) {
2023 		thread__find_cpumode_addr_location(thread, ip, &al);
2024 	} else {
2025 		if (ip >= PERF_CONTEXT_MAX) {
2026 			switch (ip) {
2027 			case PERF_CONTEXT_HV:
2028 				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
2029 				break;
2030 			case PERF_CONTEXT_KERNEL:
2031 				*cpumode = PERF_RECORD_MISC_KERNEL;
2032 				break;
2033 			case PERF_CONTEXT_USER:
2034 				*cpumode = PERF_RECORD_MISC_USER;
2035 				break;
2036 			default:
2037 				pr_debug("invalid callchain context: "
2038 					 "%"PRId64"\n", (s64) ip);
2039 				/*
2040 				 * It seems the callchain is corrupted.
2041 				 * Discard all.
2042 				 */
2043 				callchain_cursor_reset(cursor);
2044 				return 1;
2045 			}
2046 			return 0;
2047 		}
2048 		thread__find_symbol(thread, *cpumode, ip, &al);
2049 	}
2050 
2051 	if (al.sym != NULL) {
2052 		if (perf_hpp_list.parent && !*parent &&
2053 		    symbol__match_regex(al.sym, &parent_regex))
2054 			*parent = al.sym;
2055 		else if (have_ignore_callees && root_al &&
2056 		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
2057 			/* Treat this symbol as the root,
2058 			   forgetting its callees. */
2059 			*root_al = al;
2060 			callchain_cursor_reset(cursor);
2061 		}
2062 	}
2063 
2064 	if (symbol_conf.hide_unresolved && al.sym == NULL)
2065 		return 0;
2066 
2067 	if (iter) {
2068 		nr_loop_iter = iter->nr_loop_iter;
2069 		iter_cycles = iter->cycles;
2070 	}
2071 
2072 	ms.maps = al.maps;
2073 	ms.map = al.map;
2074 	ms.sym = al.sym;
2075 	srcline = callchain_srcline(&ms, al.addr);
2076 	return callchain_cursor_append(cursor, ip, &ms,
2077 				       branch, flags, nr_loop_iter,
2078 				       iter_cycles, branch_from, srcline);
2079 }
2080 
2081 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2082 					   struct addr_location *al)
2083 {
2084 	unsigned int i;
2085 	const struct branch_stack *bs = sample->branch_stack;
2086 	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2087 
2088 	if (!bi)
2089 		return NULL;
2090 
2091 	for (i = 0; i < bs->nr; i++) {
2092 		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
2093 		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
2094 		bi[i].flags = bs->entries[i].flags;
2095 	}
2096 	return bi;
2097 }
2098 
2099 static void save_iterations(struct iterations *iter,
2100 			    struct branch_entry *be, int nr)
2101 {
2102 	int i;
2103 
2104 	iter->nr_loop_iter++;
2105 	iter->cycles = 0;
2106 
2107 	for (i = 0; i < nr; i++)
2108 		iter->cycles += be[i].flags.cycles;
2109 }
2110 
2111 #define CHASHSZ 127
2112 #define CHASHBITS 7
2113 #define NO_ENTRY 0xff
2114 
2115 #define PERF_MAX_BRANCH_DEPTH 127
2116 
2117 /* Remove loops. */
2118 static int remove_loops(struct branch_entry *l, int nr,
2119 			struct iterations *iter)
2120 {
2121 	int i, j, off;
2122 	unsigned char chash[CHASHSZ];
2123 
2124 	memset(chash, NO_ENTRY, sizeof(chash));
2125 
2126 	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2127 
2128 	for (i = 0; i < nr; i++) {
2129 		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2130 
2131 		/* no collision handling for now */
2132 		if (chash[h] == NO_ENTRY) {
2133 			chash[h] = i;
2134 		} else if (l[chash[h]].from == l[i].from) {
2135 			bool is_loop = true;
2136 			/* check if it is a real loop */
2137 			off = 0;
2138 			for (j = chash[h]; j < i && i + off < nr; j++, off++)
2139 				if (l[j].from != l[i + off].from) {
2140 					is_loop = false;
2141 					break;
2142 				}
2143 			if (is_loop) {
2144 				j = nr - (i + off);
2145 				if (j > 0) {
2146 					save_iterations(iter + i + off,
2147 						l + i, off);
2148 
2149 					memmove(iter + i, iter + i + off,
2150 						j * sizeof(*iter));
2151 
2152 					memmove(l + i, l + i + off,
2153 						j * sizeof(*l));
2154 				}
2155 
2156 				nr -= off;
2157 			}
2158 		}
2159 	}
2160 	return nr;
2161 }
2162 
2163 /*
2164  * Recolve LBR callstack chain sample
2165  * Return:
2166  * 1 on success get LBR callchain information
2167  * 0 no available LBR callchain information, should try fp
2168  * negative error code on other errors.
2169  */
2170 static int resolve_lbr_callchain_sample(struct thread *thread,
2171 					struct callchain_cursor *cursor,
2172 					struct perf_sample *sample,
2173 					struct symbol **parent,
2174 					struct addr_location *root_al,
2175 					int max_stack)
2176 {
2177 	struct ip_callchain *chain = sample->callchain;
2178 	int chain_nr = min(max_stack, (int)chain->nr), i;
2179 	u8 cpumode = PERF_RECORD_MISC_USER;
2180 	u64 ip, branch_from = 0;
2181 
2182 	for (i = 0; i < chain_nr; i++) {
2183 		if (chain->ips[i] == PERF_CONTEXT_USER)
2184 			break;
2185 	}
2186 
2187 	/* LBR only affects the user callchain */
2188 	if (i != chain_nr) {
2189 		struct branch_stack *lbr_stack = sample->branch_stack;
2190 		int lbr_nr = lbr_stack->nr, j, k;
2191 		bool branch;
2192 		struct branch_flags *flags;
2193 		/*
2194 		 * LBR callstack can only get user call chain.
2195 		 * The mix_chain_nr is kernel call chain
2196 		 * number plus LBR user call chain number.
2197 		 * i is kernel call chain number,
2198 		 * 1 is PERF_CONTEXT_USER,
2199 		 * lbr_nr + 1 is the user call chain number.
2200 		 * For details, please refer to the comments
2201 		 * in callchain__printf
2202 		 */
2203 		int mix_chain_nr = i + 1 + lbr_nr + 1;
2204 
2205 		for (j = 0; j < mix_chain_nr; j++) {
2206 			int err;
2207 			branch = false;
2208 			flags = NULL;
2209 
2210 			if (callchain_param.order == ORDER_CALLEE) {
2211 				if (j < i + 1)
2212 					ip = chain->ips[j];
2213 				else if (j > i + 1) {
2214 					k = j - i - 2;
2215 					ip = lbr_stack->entries[k].from;
2216 					branch = true;
2217 					flags = &lbr_stack->entries[k].flags;
2218 				} else {
2219 					ip = lbr_stack->entries[0].to;
2220 					branch = true;
2221 					flags = &lbr_stack->entries[0].flags;
2222 					branch_from =
2223 						lbr_stack->entries[0].from;
2224 				}
2225 			} else {
2226 				if (j < lbr_nr) {
2227 					k = lbr_nr - j - 1;
2228 					ip = lbr_stack->entries[k].from;
2229 					branch = true;
2230 					flags = &lbr_stack->entries[k].flags;
2231 				}
2232 				else if (j > lbr_nr)
2233 					ip = chain->ips[i + 1 - (j - lbr_nr)];
2234 				else {
2235 					ip = lbr_stack->entries[0].to;
2236 					branch = true;
2237 					flags = &lbr_stack->entries[0].flags;
2238 					branch_from =
2239 						lbr_stack->entries[0].from;
2240 				}
2241 			}
2242 
2243 			err = add_callchain_ip(thread, cursor, parent,
2244 					       root_al, &cpumode, ip,
2245 					       branch, flags, NULL,
2246 					       branch_from);
2247 			if (err)
2248 				return (err < 0) ? err : 0;
2249 		}
2250 		return 1;
2251 	}
2252 
2253 	return 0;
2254 }
2255 
2256 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2257 			     struct callchain_cursor *cursor,
2258 			     struct symbol **parent,
2259 			     struct addr_location *root_al,
2260 			     u8 *cpumode, int ent)
2261 {
2262 	int err = 0;
2263 
2264 	while (--ent >= 0) {
2265 		u64 ip = chain->ips[ent];
2266 
2267 		if (ip >= PERF_CONTEXT_MAX) {
2268 			err = add_callchain_ip(thread, cursor, parent,
2269 					       root_al, cpumode, ip,
2270 					       false, NULL, NULL, 0);
2271 			break;
2272 		}
2273 	}
2274 	return err;
2275 }
2276 
2277 static int thread__resolve_callchain_sample(struct thread *thread,
2278 					    struct callchain_cursor *cursor,
2279 					    struct evsel *evsel,
2280 					    struct perf_sample *sample,
2281 					    struct symbol **parent,
2282 					    struct addr_location *root_al,
2283 					    int max_stack)
2284 {
2285 	struct branch_stack *branch = sample->branch_stack;
2286 	struct ip_callchain *chain = sample->callchain;
2287 	int chain_nr = 0;
2288 	u8 cpumode = PERF_RECORD_MISC_USER;
2289 	int i, j, err, nr_entries;
2290 	int skip_idx = -1;
2291 	int first_call = 0;
2292 
2293 	if (chain)
2294 		chain_nr = chain->nr;
2295 
2296 	if (perf_evsel__has_branch_callstack(evsel)) {
2297 		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2298 						   root_al, max_stack);
2299 		if (err)
2300 			return (err < 0) ? err : 0;
2301 	}
2302 
2303 	/*
2304 	 * Based on DWARF debug information, some architectures skip
2305 	 * a callchain entry saved by the kernel.
2306 	 */
2307 	skip_idx = arch_skip_callchain_idx(thread, chain);
2308 
2309 	/*
2310 	 * Add branches to call stack for easier browsing. This gives
2311 	 * more context for a sample than just the callers.
2312 	 *
2313 	 * This uses individual histograms of paths compared to the
2314 	 * aggregated histograms the normal LBR mode uses.
2315 	 *
2316 	 * Limitations for now:
2317 	 * - No extra filters
2318 	 * - No annotations (should annotate somehow)
2319 	 */
2320 
2321 	if (branch && callchain_param.branch_callstack) {
2322 		int nr = min(max_stack, (int)branch->nr);
2323 		struct branch_entry be[nr];
2324 		struct iterations iter[nr];
2325 
2326 		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2327 			pr_warning("corrupted branch chain. skipping...\n");
2328 			goto check_calls;
2329 		}
2330 
2331 		for (i = 0; i < nr; i++) {
2332 			if (callchain_param.order == ORDER_CALLEE) {
2333 				be[i] = branch->entries[i];
2334 
2335 				if (chain == NULL)
2336 					continue;
2337 
2338 				/*
2339 				 * Check for overlap into the callchain.
2340 				 * The return address is one off compared to
2341 				 * the branch entry. To adjust for this
2342 				 * assume the calling instruction is not longer
2343 				 * than 8 bytes.
2344 				 */
2345 				if (i == skip_idx ||
2346 				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2347 					first_call++;
2348 				else if (be[i].from < chain->ips[first_call] &&
2349 				    be[i].from >= chain->ips[first_call] - 8)
2350 					first_call++;
2351 			} else
2352 				be[i] = branch->entries[branch->nr - i - 1];
2353 		}
2354 
2355 		memset(iter, 0, sizeof(struct iterations) * nr);
2356 		nr = remove_loops(be, nr, iter);
2357 
2358 		for (i = 0; i < nr; i++) {
2359 			err = add_callchain_ip(thread, cursor, parent,
2360 					       root_al,
2361 					       NULL, be[i].to,
2362 					       true, &be[i].flags,
2363 					       NULL, be[i].from);
2364 
2365 			if (!err)
2366 				err = add_callchain_ip(thread, cursor, parent, root_al,
2367 						       NULL, be[i].from,
2368 						       true, &be[i].flags,
2369 						       &iter[i], 0);
2370 			if (err == -EINVAL)
2371 				break;
2372 			if (err)
2373 				return err;
2374 		}
2375 
2376 		if (chain_nr == 0)
2377 			return 0;
2378 
2379 		chain_nr -= nr;
2380 	}
2381 
2382 check_calls:
2383 	if (chain && callchain_param.order != ORDER_CALLEE) {
2384 		err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2385 					&cpumode, chain->nr - first_call);
2386 		if (err)
2387 			return (err < 0) ? err : 0;
2388 	}
2389 	for (i = first_call, nr_entries = 0;
2390 	     i < chain_nr && nr_entries < max_stack; i++) {
2391 		u64 ip;
2392 
2393 		if (callchain_param.order == ORDER_CALLEE)
2394 			j = i;
2395 		else
2396 			j = chain->nr - i - 1;
2397 
2398 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2399 		if (j == skip_idx)
2400 			continue;
2401 #endif
2402 		ip = chain->ips[j];
2403 		if (ip < PERF_CONTEXT_MAX)
2404                        ++nr_entries;
2405 		else if (callchain_param.order != ORDER_CALLEE) {
2406 			err = find_prev_cpumode(chain, thread, cursor, parent,
2407 						root_al, &cpumode, j);
2408 			if (err)
2409 				return (err < 0) ? err : 0;
2410 			continue;
2411 		}
2412 
2413 		err = add_callchain_ip(thread, cursor, parent,
2414 				       root_al, &cpumode, ip,
2415 				       false, NULL, NULL, 0);
2416 
2417 		if (err)
2418 			return (err < 0) ? err : 0;
2419 	}
2420 
2421 	return 0;
2422 }
2423 
2424 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
2425 {
2426 	struct symbol *sym = ms->sym;
2427 	struct map *map = ms->map;
2428 	struct inline_node *inline_node;
2429 	struct inline_list *ilist;
2430 	u64 addr;
2431 	int ret = 1;
2432 
2433 	if (!symbol_conf.inline_name || !map || !sym)
2434 		return ret;
2435 
2436 	addr = map__map_ip(map, ip);
2437 	addr = map__rip_2objdump(map, addr);
2438 
2439 	inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2440 	if (!inline_node) {
2441 		inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2442 		if (!inline_node)
2443 			return ret;
2444 		inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2445 	}
2446 
2447 	list_for_each_entry(ilist, &inline_node->val, list) {
2448 		struct map_symbol ilist_ms = {
2449 			.maps = ms->maps,
2450 			.map = map,
2451 			.sym = ilist->symbol,
2452 		};
2453 		ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
2454 					      NULL, 0, 0, 0, ilist->srcline);
2455 
2456 		if (ret != 0)
2457 			return ret;
2458 	}
2459 
2460 	return ret;
2461 }
2462 
2463 static int unwind_entry(struct unwind_entry *entry, void *arg)
2464 {
2465 	struct callchain_cursor *cursor = arg;
2466 	const char *srcline = NULL;
2467 	u64 addr = entry->ip;
2468 
2469 	if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
2470 		return 0;
2471 
2472 	if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
2473 		return 0;
2474 
2475 	/*
2476 	 * Convert entry->ip from a virtual address to an offset in
2477 	 * its corresponding binary.
2478 	 */
2479 	if (entry->ms.map)
2480 		addr = map__map_ip(entry->ms.map, entry->ip);
2481 
2482 	srcline = callchain_srcline(&entry->ms, addr);
2483 	return callchain_cursor_append(cursor, entry->ip, &entry->ms,
2484 				       false, NULL, 0, 0, 0, srcline);
2485 }
2486 
2487 static int thread__resolve_callchain_unwind(struct thread *thread,
2488 					    struct callchain_cursor *cursor,
2489 					    struct evsel *evsel,
2490 					    struct perf_sample *sample,
2491 					    int max_stack)
2492 {
2493 	/* Can we do dwarf post unwind? */
2494 	if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2495 	      (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2496 		return 0;
2497 
2498 	/* Bail out if nothing was captured. */
2499 	if ((!sample->user_regs.regs) ||
2500 	    (!sample->user_stack.size))
2501 		return 0;
2502 
2503 	return unwind__get_entries(unwind_entry, cursor,
2504 				   thread, sample, max_stack);
2505 }
2506 
2507 int thread__resolve_callchain(struct thread *thread,
2508 			      struct callchain_cursor *cursor,
2509 			      struct evsel *evsel,
2510 			      struct perf_sample *sample,
2511 			      struct symbol **parent,
2512 			      struct addr_location *root_al,
2513 			      int max_stack)
2514 {
2515 	int ret = 0;
2516 
2517 	callchain_cursor_reset(cursor);
2518 
2519 	if (callchain_param.order == ORDER_CALLEE) {
2520 		ret = thread__resolve_callchain_sample(thread, cursor,
2521 						       evsel, sample,
2522 						       parent, root_al,
2523 						       max_stack);
2524 		if (ret)
2525 			return ret;
2526 		ret = thread__resolve_callchain_unwind(thread, cursor,
2527 						       evsel, sample,
2528 						       max_stack);
2529 	} else {
2530 		ret = thread__resolve_callchain_unwind(thread, cursor,
2531 						       evsel, sample,
2532 						       max_stack);
2533 		if (ret)
2534 			return ret;
2535 		ret = thread__resolve_callchain_sample(thread, cursor,
2536 						       evsel, sample,
2537 						       parent, root_al,
2538 						       max_stack);
2539 	}
2540 
2541 	return ret;
2542 }
2543 
2544 int machine__for_each_thread(struct machine *machine,
2545 			     int (*fn)(struct thread *thread, void *p),
2546 			     void *priv)
2547 {
2548 	struct threads *threads;
2549 	struct rb_node *nd;
2550 	struct thread *thread;
2551 	int rc = 0;
2552 	int i;
2553 
2554 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2555 		threads = &machine->threads[i];
2556 		for (nd = rb_first_cached(&threads->entries); nd;
2557 		     nd = rb_next(nd)) {
2558 			thread = rb_entry(nd, struct thread, rb_node);
2559 			rc = fn(thread, priv);
2560 			if (rc != 0)
2561 				return rc;
2562 		}
2563 
2564 		list_for_each_entry(thread, &threads->dead, node) {
2565 			rc = fn(thread, priv);
2566 			if (rc != 0)
2567 				return rc;
2568 		}
2569 	}
2570 	return rc;
2571 }
2572 
2573 int machines__for_each_thread(struct machines *machines,
2574 			      int (*fn)(struct thread *thread, void *p),
2575 			      void *priv)
2576 {
2577 	struct rb_node *nd;
2578 	int rc = 0;
2579 
2580 	rc = machine__for_each_thread(&machines->host, fn, priv);
2581 	if (rc != 0)
2582 		return rc;
2583 
2584 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
2585 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
2586 
2587 		rc = machine__for_each_thread(machine, fn, priv);
2588 		if (rc != 0)
2589 			return rc;
2590 	}
2591 	return rc;
2592 }
2593 
2594 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2595 {
2596 	int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2597 
2598 	if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid)
2599 		return -1;
2600 
2601 	return machine->current_tid[cpu];
2602 }
2603 
2604 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2605 			     pid_t tid)
2606 {
2607 	struct thread *thread;
2608 	int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2609 
2610 	if (cpu < 0)
2611 		return -EINVAL;
2612 
2613 	if (!machine->current_tid) {
2614 		int i;
2615 
2616 		machine->current_tid = calloc(nr_cpus, sizeof(pid_t));
2617 		if (!machine->current_tid)
2618 			return -ENOMEM;
2619 		for (i = 0; i < nr_cpus; i++)
2620 			machine->current_tid[i] = -1;
2621 	}
2622 
2623 	if (cpu >= nr_cpus) {
2624 		pr_err("Requested CPU %d too large. ", cpu);
2625 		pr_err("Consider raising MAX_NR_CPUS\n");
2626 		return -EINVAL;
2627 	}
2628 
2629 	machine->current_tid[cpu] = tid;
2630 
2631 	thread = machine__findnew_thread(machine, pid, tid);
2632 	if (!thread)
2633 		return -ENOMEM;
2634 
2635 	thread->cpu = cpu;
2636 	thread__put(thread);
2637 
2638 	return 0;
2639 }
2640 
2641 /*
2642  * Compares the raw arch string. N.B. see instead perf_env__arch() if a
2643  * normalized arch is needed.
2644  */
2645 bool machine__is(struct machine *machine, const char *arch)
2646 {
2647 	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
2648 }
2649 
2650 int machine__nr_cpus_avail(struct machine *machine)
2651 {
2652 	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
2653 }
2654 
2655 int machine__get_kernel_start(struct machine *machine)
2656 {
2657 	struct map *map = machine__kernel_map(machine);
2658 	int err = 0;
2659 
2660 	/*
2661 	 * The only addresses above 2^63 are kernel addresses of a 64-bit
2662 	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
2663 	 * all addresses including kernel addresses are less than 2^32.  In
2664 	 * that case (32-bit system), if the kernel mapping is unknown, all
2665 	 * addresses will be assumed to be in user space - see
2666 	 * machine__kernel_ip().
2667 	 */
2668 	machine->kernel_start = 1ULL << 63;
2669 	if (map) {
2670 		err = map__load(map);
2671 		/*
2672 		 * On x86_64, PTI entry trampolines are less than the
2673 		 * start of kernel text, but still above 2^63. So leave
2674 		 * kernel_start = 1ULL << 63 for x86_64.
2675 		 */
2676 		if (!err && !machine__is(machine, "x86_64"))
2677 			machine->kernel_start = map->start;
2678 	}
2679 	return err;
2680 }
2681 
2682 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
2683 {
2684 	u8 addr_cpumode = cpumode;
2685 	bool kernel_ip;
2686 
2687 	if (!machine->single_address_space)
2688 		goto out;
2689 
2690 	kernel_ip = machine__kernel_ip(machine, addr);
2691 	switch (cpumode) {
2692 	case PERF_RECORD_MISC_KERNEL:
2693 	case PERF_RECORD_MISC_USER:
2694 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
2695 					   PERF_RECORD_MISC_USER;
2696 		break;
2697 	case PERF_RECORD_MISC_GUEST_KERNEL:
2698 	case PERF_RECORD_MISC_GUEST_USER:
2699 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
2700 					   PERF_RECORD_MISC_GUEST_USER;
2701 		break;
2702 	default:
2703 		break;
2704 	}
2705 out:
2706 	return addr_cpumode;
2707 }
2708 
2709 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
2710 {
2711 	return dsos__findnew_id(&machine->dsos, filename, id);
2712 }
2713 
2714 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2715 {
2716 	return machine__findnew_dso_id(machine, filename, NULL);
2717 }
2718 
2719 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2720 {
2721 	struct machine *machine = vmachine;
2722 	struct map *map;
2723 	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
2724 
2725 	if (sym == NULL)
2726 		return NULL;
2727 
2728 	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2729 	*addrp = map->unmap_ip(map, sym->start);
2730 	return sym->name;
2731 }
2732