1 #include "callchain.h" 2 #include "debug.h" 3 #include "event.h" 4 #include "evsel.h" 5 #include "hist.h" 6 #include "machine.h" 7 #include "map.h" 8 #include "sort.h" 9 #include "strlist.h" 10 #include "thread.h" 11 #include "vdso.h" 12 #include <stdbool.h> 13 #include <symbol/kallsyms.h> 14 #include "unwind.h" 15 #include "linux/hash.h" 16 17 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock); 18 19 static void dsos__init(struct dsos *dsos) 20 { 21 INIT_LIST_HEAD(&dsos->head); 22 dsos->root = RB_ROOT; 23 pthread_rwlock_init(&dsos->lock, NULL); 24 } 25 26 int machine__init(struct machine *machine, const char *root_dir, pid_t pid) 27 { 28 map_groups__init(&machine->kmaps, machine); 29 RB_CLEAR_NODE(&machine->rb_node); 30 dsos__init(&machine->dsos); 31 32 machine->threads = RB_ROOT; 33 pthread_rwlock_init(&machine->threads_lock, NULL); 34 INIT_LIST_HEAD(&machine->dead_threads); 35 machine->last_match = NULL; 36 37 machine->vdso_info = NULL; 38 39 machine->pid = pid; 40 41 machine->symbol_filter = NULL; 42 machine->id_hdr_size = 0; 43 machine->comm_exec = false; 44 machine->kernel_start = 0; 45 46 machine->root_dir = strdup(root_dir); 47 if (machine->root_dir == NULL) 48 return -ENOMEM; 49 50 if (pid != HOST_KERNEL_ID) { 51 struct thread *thread = machine__findnew_thread(machine, -1, 52 pid); 53 char comm[64]; 54 55 if (thread == NULL) 56 return -ENOMEM; 57 58 snprintf(comm, sizeof(comm), "[guest/%d]", pid); 59 thread__set_comm(thread, comm, 0); 60 thread__put(thread); 61 } 62 63 machine->current_tid = NULL; 64 65 return 0; 66 } 67 68 struct machine *machine__new_host(void) 69 { 70 struct machine *machine = malloc(sizeof(*machine)); 71 72 if (machine != NULL) { 73 machine__init(machine, "", HOST_KERNEL_ID); 74 75 if (machine__create_kernel_maps(machine) < 0) 76 goto out_delete; 77 } 78 79 return machine; 80 out_delete: 81 free(machine); 82 return NULL; 83 } 84 85 static void dsos__purge(struct dsos *dsos) 86 { 87 struct dso *pos, *n; 88 89 pthread_rwlock_wrlock(&dsos->lock); 90 91 list_for_each_entry_safe(pos, n, &dsos->head, node) { 92 RB_CLEAR_NODE(&pos->rb_node); 93 list_del_init(&pos->node); 94 dso__put(pos); 95 } 96 97 pthread_rwlock_unlock(&dsos->lock); 98 } 99 100 static void dsos__exit(struct dsos *dsos) 101 { 102 dsos__purge(dsos); 103 pthread_rwlock_destroy(&dsos->lock); 104 } 105 106 void machine__delete_threads(struct machine *machine) 107 { 108 struct rb_node *nd; 109 110 pthread_rwlock_wrlock(&machine->threads_lock); 111 nd = rb_first(&machine->threads); 112 while (nd) { 113 struct thread *t = rb_entry(nd, struct thread, rb_node); 114 115 nd = rb_next(nd); 116 __machine__remove_thread(machine, t, false); 117 } 118 pthread_rwlock_unlock(&machine->threads_lock); 119 } 120 121 void machine__exit(struct machine *machine) 122 { 123 map_groups__exit(&machine->kmaps); 124 dsos__exit(&machine->dsos); 125 machine__exit_vdso(machine); 126 zfree(&machine->root_dir); 127 zfree(&machine->current_tid); 128 pthread_rwlock_destroy(&machine->threads_lock); 129 } 130 131 void machine__delete(struct machine *machine) 132 { 133 machine__exit(machine); 134 free(machine); 135 } 136 137 void machines__init(struct machines *machines) 138 { 139 machine__init(&machines->host, "", HOST_KERNEL_ID); 140 machines->guests = RB_ROOT; 141 machines->symbol_filter = NULL; 142 } 143 144 void machines__exit(struct machines *machines) 145 { 146 machine__exit(&machines->host); 147 /* XXX exit guest */ 148 } 149 150 struct machine *machines__add(struct machines *machines, pid_t pid, 151 const char *root_dir) 152 { 153 struct rb_node **p = &machines->guests.rb_node; 154 struct rb_node *parent = NULL; 155 struct machine *pos, *machine = malloc(sizeof(*machine)); 156 157 if (machine == NULL) 158 return NULL; 159 160 if (machine__init(machine, root_dir, pid) != 0) { 161 free(machine); 162 return NULL; 163 } 164 165 machine->symbol_filter = machines->symbol_filter; 166 167 while (*p != NULL) { 168 parent = *p; 169 pos = rb_entry(parent, struct machine, rb_node); 170 if (pid < pos->pid) 171 p = &(*p)->rb_left; 172 else 173 p = &(*p)->rb_right; 174 } 175 176 rb_link_node(&machine->rb_node, parent, p); 177 rb_insert_color(&machine->rb_node, &machines->guests); 178 179 return machine; 180 } 181 182 void machines__set_symbol_filter(struct machines *machines, 183 symbol_filter_t symbol_filter) 184 { 185 struct rb_node *nd; 186 187 machines->symbol_filter = symbol_filter; 188 machines->host.symbol_filter = symbol_filter; 189 190 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 191 struct machine *machine = rb_entry(nd, struct machine, rb_node); 192 193 machine->symbol_filter = symbol_filter; 194 } 195 } 196 197 void machines__set_comm_exec(struct machines *machines, bool comm_exec) 198 { 199 struct rb_node *nd; 200 201 machines->host.comm_exec = comm_exec; 202 203 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 204 struct machine *machine = rb_entry(nd, struct machine, rb_node); 205 206 machine->comm_exec = comm_exec; 207 } 208 } 209 210 struct machine *machines__find(struct machines *machines, pid_t pid) 211 { 212 struct rb_node **p = &machines->guests.rb_node; 213 struct rb_node *parent = NULL; 214 struct machine *machine; 215 struct machine *default_machine = NULL; 216 217 if (pid == HOST_KERNEL_ID) 218 return &machines->host; 219 220 while (*p != NULL) { 221 parent = *p; 222 machine = rb_entry(parent, struct machine, rb_node); 223 if (pid < machine->pid) 224 p = &(*p)->rb_left; 225 else if (pid > machine->pid) 226 p = &(*p)->rb_right; 227 else 228 return machine; 229 if (!machine->pid) 230 default_machine = machine; 231 } 232 233 return default_machine; 234 } 235 236 struct machine *machines__findnew(struct machines *machines, pid_t pid) 237 { 238 char path[PATH_MAX]; 239 const char *root_dir = ""; 240 struct machine *machine = machines__find(machines, pid); 241 242 if (machine && (machine->pid == pid)) 243 goto out; 244 245 if ((pid != HOST_KERNEL_ID) && 246 (pid != DEFAULT_GUEST_KERNEL_ID) && 247 (symbol_conf.guestmount)) { 248 sprintf(path, "%s/%d", symbol_conf.guestmount, pid); 249 if (access(path, R_OK)) { 250 static struct strlist *seen; 251 252 if (!seen) 253 seen = strlist__new(NULL, NULL); 254 255 if (!strlist__has_entry(seen, path)) { 256 pr_err("Can't access file %s\n", path); 257 strlist__add(seen, path); 258 } 259 machine = NULL; 260 goto out; 261 } 262 root_dir = path; 263 } 264 265 machine = machines__add(machines, pid, root_dir); 266 out: 267 return machine; 268 } 269 270 void machines__process_guests(struct machines *machines, 271 machine__process_t process, void *data) 272 { 273 struct rb_node *nd; 274 275 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 276 struct machine *pos = rb_entry(nd, struct machine, rb_node); 277 process(pos, data); 278 } 279 } 280 281 char *machine__mmap_name(struct machine *machine, char *bf, size_t size) 282 { 283 if (machine__is_host(machine)) 284 snprintf(bf, size, "[%s]", "kernel.kallsyms"); 285 else if (machine__is_default_guest(machine)) 286 snprintf(bf, size, "[%s]", "guest.kernel.kallsyms"); 287 else { 288 snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms", 289 machine->pid); 290 } 291 292 return bf; 293 } 294 295 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size) 296 { 297 struct rb_node *node; 298 struct machine *machine; 299 300 machines->host.id_hdr_size = id_hdr_size; 301 302 for (node = rb_first(&machines->guests); node; node = rb_next(node)) { 303 machine = rb_entry(node, struct machine, rb_node); 304 machine->id_hdr_size = id_hdr_size; 305 } 306 307 return; 308 } 309 310 static void machine__update_thread_pid(struct machine *machine, 311 struct thread *th, pid_t pid) 312 { 313 struct thread *leader; 314 315 if (pid == th->pid_ || pid == -1 || th->pid_ != -1) 316 return; 317 318 th->pid_ = pid; 319 320 if (th->pid_ == th->tid) 321 return; 322 323 leader = __machine__findnew_thread(machine, th->pid_, th->pid_); 324 if (!leader) 325 goto out_err; 326 327 if (!leader->mg) 328 leader->mg = map_groups__new(machine); 329 330 if (!leader->mg) 331 goto out_err; 332 333 if (th->mg == leader->mg) 334 return; 335 336 if (th->mg) { 337 /* 338 * Maps are created from MMAP events which provide the pid and 339 * tid. Consequently there never should be any maps on a thread 340 * with an unknown pid. Just print an error if there are. 341 */ 342 if (!map_groups__empty(th->mg)) 343 pr_err("Discarding thread maps for %d:%d\n", 344 th->pid_, th->tid); 345 map_groups__put(th->mg); 346 } 347 348 th->mg = map_groups__get(leader->mg); 349 350 return; 351 352 out_err: 353 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid); 354 } 355 356 static struct thread *____machine__findnew_thread(struct machine *machine, 357 pid_t pid, pid_t tid, 358 bool create) 359 { 360 struct rb_node **p = &machine->threads.rb_node; 361 struct rb_node *parent = NULL; 362 struct thread *th; 363 364 /* 365 * Front-end cache - TID lookups come in blocks, 366 * so most of the time we dont have to look up 367 * the full rbtree: 368 */ 369 th = machine->last_match; 370 if (th != NULL) { 371 if (th->tid == tid) { 372 machine__update_thread_pid(machine, th, pid); 373 return th; 374 } 375 376 machine->last_match = NULL; 377 } 378 379 while (*p != NULL) { 380 parent = *p; 381 th = rb_entry(parent, struct thread, rb_node); 382 383 if (th->tid == tid) { 384 machine->last_match = th; 385 machine__update_thread_pid(machine, th, pid); 386 return th; 387 } 388 389 if (tid < th->tid) 390 p = &(*p)->rb_left; 391 else 392 p = &(*p)->rb_right; 393 } 394 395 if (!create) 396 return NULL; 397 398 th = thread__new(pid, tid); 399 if (th != NULL) { 400 rb_link_node(&th->rb_node, parent, p); 401 rb_insert_color(&th->rb_node, &machine->threads); 402 403 /* 404 * We have to initialize map_groups separately 405 * after rb tree is updated. 406 * 407 * The reason is that we call machine__findnew_thread 408 * within thread__init_map_groups to find the thread 409 * leader and that would screwed the rb tree. 410 */ 411 if (thread__init_map_groups(th, machine)) { 412 rb_erase_init(&th->rb_node, &machine->threads); 413 RB_CLEAR_NODE(&th->rb_node); 414 thread__delete(th); 415 return NULL; 416 } 417 /* 418 * It is now in the rbtree, get a ref 419 */ 420 thread__get(th); 421 machine->last_match = th; 422 } 423 424 return th; 425 } 426 427 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid) 428 { 429 return ____machine__findnew_thread(machine, pid, tid, true); 430 } 431 432 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, 433 pid_t tid) 434 { 435 struct thread *th; 436 437 pthread_rwlock_wrlock(&machine->threads_lock); 438 th = thread__get(__machine__findnew_thread(machine, pid, tid)); 439 pthread_rwlock_unlock(&machine->threads_lock); 440 return th; 441 } 442 443 struct thread *machine__find_thread(struct machine *machine, pid_t pid, 444 pid_t tid) 445 { 446 struct thread *th; 447 pthread_rwlock_rdlock(&machine->threads_lock); 448 th = thread__get(____machine__findnew_thread(machine, pid, tid, false)); 449 pthread_rwlock_unlock(&machine->threads_lock); 450 return th; 451 } 452 453 struct comm *machine__thread_exec_comm(struct machine *machine, 454 struct thread *thread) 455 { 456 if (machine->comm_exec) 457 return thread__exec_comm(thread); 458 else 459 return thread__comm(thread); 460 } 461 462 int machine__process_comm_event(struct machine *machine, union perf_event *event, 463 struct perf_sample *sample) 464 { 465 struct thread *thread = machine__findnew_thread(machine, 466 event->comm.pid, 467 event->comm.tid); 468 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC; 469 int err = 0; 470 471 if (exec) 472 machine->comm_exec = true; 473 474 if (dump_trace) 475 perf_event__fprintf_comm(event, stdout); 476 477 if (thread == NULL || 478 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) { 479 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n"); 480 err = -1; 481 } 482 483 thread__put(thread); 484 485 return err; 486 } 487 488 int machine__process_lost_event(struct machine *machine __maybe_unused, 489 union perf_event *event, struct perf_sample *sample __maybe_unused) 490 { 491 dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n", 492 event->lost.id, event->lost.lost); 493 return 0; 494 } 495 496 int machine__process_lost_samples_event(struct machine *machine __maybe_unused, 497 union perf_event *event, struct perf_sample *sample) 498 { 499 dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n", 500 sample->id, event->lost_samples.lost); 501 return 0; 502 } 503 504 static struct dso *machine__findnew_module_dso(struct machine *machine, 505 struct kmod_path *m, 506 const char *filename) 507 { 508 struct dso *dso; 509 510 pthread_rwlock_wrlock(&machine->dsos.lock); 511 512 dso = __dsos__find(&machine->dsos, m->name, true); 513 if (!dso) { 514 dso = __dsos__addnew(&machine->dsos, m->name); 515 if (dso == NULL) 516 goto out_unlock; 517 518 if (machine__is_host(machine)) 519 dso->symtab_type = DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE; 520 else 521 dso->symtab_type = DSO_BINARY_TYPE__GUEST_KMODULE; 522 523 /* _KMODULE_COMP should be next to _KMODULE */ 524 if (m->kmod && m->comp) 525 dso->symtab_type++; 526 527 dso__set_short_name(dso, strdup(m->name), true); 528 dso__set_long_name(dso, strdup(filename), true); 529 } 530 531 dso__get(dso); 532 out_unlock: 533 pthread_rwlock_unlock(&machine->dsos.lock); 534 return dso; 535 } 536 537 int machine__process_aux_event(struct machine *machine __maybe_unused, 538 union perf_event *event) 539 { 540 if (dump_trace) 541 perf_event__fprintf_aux(event, stdout); 542 return 0; 543 } 544 545 int machine__process_itrace_start_event(struct machine *machine __maybe_unused, 546 union perf_event *event) 547 { 548 if (dump_trace) 549 perf_event__fprintf_itrace_start(event, stdout); 550 return 0; 551 } 552 553 int machine__process_switch_event(struct machine *machine __maybe_unused, 554 union perf_event *event) 555 { 556 if (dump_trace) 557 perf_event__fprintf_switch(event, stdout); 558 return 0; 559 } 560 561 struct map *machine__findnew_module_map(struct machine *machine, u64 start, 562 const char *filename) 563 { 564 struct map *map = NULL; 565 struct dso *dso; 566 struct kmod_path m; 567 568 if (kmod_path__parse_name(&m, filename)) 569 return NULL; 570 571 map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION, 572 m.name); 573 if (map) 574 goto out; 575 576 dso = machine__findnew_module_dso(machine, &m, filename); 577 if (dso == NULL) 578 goto out; 579 580 map = map__new2(start, dso, MAP__FUNCTION); 581 if (map == NULL) 582 goto out; 583 584 map_groups__insert(&machine->kmaps, map); 585 586 out: 587 free(m.name); 588 return map; 589 } 590 591 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp) 592 { 593 struct rb_node *nd; 594 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp); 595 596 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 597 struct machine *pos = rb_entry(nd, struct machine, rb_node); 598 ret += __dsos__fprintf(&pos->dsos.head, fp); 599 } 600 601 return ret; 602 } 603 604 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp, 605 bool (skip)(struct dso *dso, int parm), int parm) 606 { 607 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm); 608 } 609 610 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp, 611 bool (skip)(struct dso *dso, int parm), int parm) 612 { 613 struct rb_node *nd; 614 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm); 615 616 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 617 struct machine *pos = rb_entry(nd, struct machine, rb_node); 618 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm); 619 } 620 return ret; 621 } 622 623 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp) 624 { 625 int i; 626 size_t printed = 0; 627 struct dso *kdso = machine->vmlinux_maps[MAP__FUNCTION]->dso; 628 629 if (kdso->has_build_id) { 630 char filename[PATH_MAX]; 631 if (dso__build_id_filename(kdso, filename, sizeof(filename))) 632 printed += fprintf(fp, "[0] %s\n", filename); 633 } 634 635 for (i = 0; i < vmlinux_path__nr_entries; ++i) 636 printed += fprintf(fp, "[%d] %s\n", 637 i + kdso->has_build_id, vmlinux_path[i]); 638 639 return printed; 640 } 641 642 size_t machine__fprintf(struct machine *machine, FILE *fp) 643 { 644 size_t ret = 0; 645 struct rb_node *nd; 646 647 pthread_rwlock_rdlock(&machine->threads_lock); 648 649 for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) { 650 struct thread *pos = rb_entry(nd, struct thread, rb_node); 651 652 ret += thread__fprintf(pos, fp); 653 } 654 655 pthread_rwlock_unlock(&machine->threads_lock); 656 657 return ret; 658 } 659 660 static struct dso *machine__get_kernel(struct machine *machine) 661 { 662 const char *vmlinux_name = NULL; 663 struct dso *kernel; 664 665 if (machine__is_host(machine)) { 666 vmlinux_name = symbol_conf.vmlinux_name; 667 if (!vmlinux_name) 668 vmlinux_name = "[kernel.kallsyms]"; 669 670 kernel = machine__findnew_kernel(machine, vmlinux_name, 671 "[kernel]", DSO_TYPE_KERNEL); 672 } else { 673 char bf[PATH_MAX]; 674 675 if (machine__is_default_guest(machine)) 676 vmlinux_name = symbol_conf.default_guest_vmlinux_name; 677 if (!vmlinux_name) 678 vmlinux_name = machine__mmap_name(machine, bf, 679 sizeof(bf)); 680 681 kernel = machine__findnew_kernel(machine, vmlinux_name, 682 "[guest.kernel]", 683 DSO_TYPE_GUEST_KERNEL); 684 } 685 686 if (kernel != NULL && (!kernel->has_build_id)) 687 dso__read_running_kernel_build_id(kernel, machine); 688 689 return kernel; 690 } 691 692 struct process_args { 693 u64 start; 694 }; 695 696 static void machine__get_kallsyms_filename(struct machine *machine, char *buf, 697 size_t bufsz) 698 { 699 if (machine__is_default_guest(machine)) 700 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms); 701 else 702 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir); 703 } 704 705 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL}; 706 707 /* Figure out the start address of kernel map from /proc/kallsyms. 708 * Returns the name of the start symbol in *symbol_name. Pass in NULL as 709 * symbol_name if it's not that important. 710 */ 711 static u64 machine__get_running_kernel_start(struct machine *machine, 712 const char **symbol_name) 713 { 714 char filename[PATH_MAX]; 715 int i; 716 const char *name; 717 u64 addr = 0; 718 719 machine__get_kallsyms_filename(machine, filename, PATH_MAX); 720 721 if (symbol__restricted_filename(filename, "/proc/kallsyms")) 722 return 0; 723 724 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) { 725 addr = kallsyms__get_function_start(filename, name); 726 if (addr) 727 break; 728 } 729 730 if (symbol_name) 731 *symbol_name = name; 732 733 return addr; 734 } 735 736 int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel) 737 { 738 enum map_type type; 739 u64 start = machine__get_running_kernel_start(machine, NULL); 740 741 for (type = 0; type < MAP__NR_TYPES; ++type) { 742 struct kmap *kmap; 743 744 machine->vmlinux_maps[type] = map__new2(start, kernel, type); 745 if (machine->vmlinux_maps[type] == NULL) 746 return -1; 747 748 machine->vmlinux_maps[type]->map_ip = 749 machine->vmlinux_maps[type]->unmap_ip = 750 identity__map_ip; 751 kmap = map__kmap(machine->vmlinux_maps[type]); 752 if (!kmap) 753 return -1; 754 755 kmap->kmaps = &machine->kmaps; 756 map_groups__insert(&machine->kmaps, 757 machine->vmlinux_maps[type]); 758 } 759 760 return 0; 761 } 762 763 void machine__destroy_kernel_maps(struct machine *machine) 764 { 765 enum map_type type; 766 767 for (type = 0; type < MAP__NR_TYPES; ++type) { 768 struct kmap *kmap; 769 770 if (machine->vmlinux_maps[type] == NULL) 771 continue; 772 773 kmap = map__kmap(machine->vmlinux_maps[type]); 774 map_groups__remove(&machine->kmaps, 775 machine->vmlinux_maps[type]); 776 if (kmap && kmap->ref_reloc_sym) { 777 /* 778 * ref_reloc_sym is shared among all maps, so free just 779 * on one of them. 780 */ 781 if (type == MAP__FUNCTION) { 782 zfree((char **)&kmap->ref_reloc_sym->name); 783 zfree(&kmap->ref_reloc_sym); 784 } else 785 kmap->ref_reloc_sym = NULL; 786 } 787 788 machine->vmlinux_maps[type] = NULL; 789 } 790 } 791 792 int machines__create_guest_kernel_maps(struct machines *machines) 793 { 794 int ret = 0; 795 struct dirent **namelist = NULL; 796 int i, items = 0; 797 char path[PATH_MAX]; 798 pid_t pid; 799 char *endp; 800 801 if (symbol_conf.default_guest_vmlinux_name || 802 symbol_conf.default_guest_modules || 803 symbol_conf.default_guest_kallsyms) { 804 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID); 805 } 806 807 if (symbol_conf.guestmount) { 808 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL); 809 if (items <= 0) 810 return -ENOENT; 811 for (i = 0; i < items; i++) { 812 if (!isdigit(namelist[i]->d_name[0])) { 813 /* Filter out . and .. */ 814 continue; 815 } 816 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10); 817 if ((*endp != '\0') || 818 (endp == namelist[i]->d_name) || 819 (errno == ERANGE)) { 820 pr_debug("invalid directory (%s). Skipping.\n", 821 namelist[i]->d_name); 822 continue; 823 } 824 sprintf(path, "%s/%s/proc/kallsyms", 825 symbol_conf.guestmount, 826 namelist[i]->d_name); 827 ret = access(path, R_OK); 828 if (ret) { 829 pr_debug("Can't access file %s\n", path); 830 goto failure; 831 } 832 machines__create_kernel_maps(machines, pid); 833 } 834 failure: 835 free(namelist); 836 } 837 838 return ret; 839 } 840 841 void machines__destroy_kernel_maps(struct machines *machines) 842 { 843 struct rb_node *next = rb_first(&machines->guests); 844 845 machine__destroy_kernel_maps(&machines->host); 846 847 while (next) { 848 struct machine *pos = rb_entry(next, struct machine, rb_node); 849 850 next = rb_next(&pos->rb_node); 851 rb_erase(&pos->rb_node, &machines->guests); 852 machine__delete(pos); 853 } 854 } 855 856 int machines__create_kernel_maps(struct machines *machines, pid_t pid) 857 { 858 struct machine *machine = machines__findnew(machines, pid); 859 860 if (machine == NULL) 861 return -1; 862 863 return machine__create_kernel_maps(machine); 864 } 865 866 int machine__load_kallsyms(struct machine *machine, const char *filename, 867 enum map_type type, symbol_filter_t filter) 868 { 869 struct map *map = machine->vmlinux_maps[type]; 870 int ret = dso__load_kallsyms(map->dso, filename, map, filter); 871 872 if (ret > 0) { 873 dso__set_loaded(map->dso, type); 874 /* 875 * Since /proc/kallsyms will have multiple sessions for the 876 * kernel, with modules between them, fixup the end of all 877 * sections. 878 */ 879 __map_groups__fixup_end(&machine->kmaps, type); 880 } 881 882 return ret; 883 } 884 885 int machine__load_vmlinux_path(struct machine *machine, enum map_type type, 886 symbol_filter_t filter) 887 { 888 struct map *map = machine->vmlinux_maps[type]; 889 int ret = dso__load_vmlinux_path(map->dso, map, filter); 890 891 if (ret > 0) 892 dso__set_loaded(map->dso, type); 893 894 return ret; 895 } 896 897 static void map_groups__fixup_end(struct map_groups *mg) 898 { 899 int i; 900 for (i = 0; i < MAP__NR_TYPES; ++i) 901 __map_groups__fixup_end(mg, i); 902 } 903 904 static char *get_kernel_version(const char *root_dir) 905 { 906 char version[PATH_MAX]; 907 FILE *file; 908 char *name, *tmp; 909 const char *prefix = "Linux version "; 910 911 sprintf(version, "%s/proc/version", root_dir); 912 file = fopen(version, "r"); 913 if (!file) 914 return NULL; 915 916 version[0] = '\0'; 917 tmp = fgets(version, sizeof(version), file); 918 fclose(file); 919 920 name = strstr(version, prefix); 921 if (!name) 922 return NULL; 923 name += strlen(prefix); 924 tmp = strchr(name, ' '); 925 if (tmp) 926 *tmp = '\0'; 927 928 return strdup(name); 929 } 930 931 static bool is_kmod_dso(struct dso *dso) 932 { 933 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE || 934 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE; 935 } 936 937 static int map_groups__set_module_path(struct map_groups *mg, const char *path, 938 struct kmod_path *m) 939 { 940 struct map *map; 941 char *long_name; 942 943 map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name); 944 if (map == NULL) 945 return 0; 946 947 long_name = strdup(path); 948 if (long_name == NULL) 949 return -ENOMEM; 950 951 dso__set_long_name(map->dso, long_name, true); 952 dso__kernel_module_get_build_id(map->dso, ""); 953 954 /* 955 * Full name could reveal us kmod compression, so 956 * we need to update the symtab_type if needed. 957 */ 958 if (m->comp && is_kmod_dso(map->dso)) 959 map->dso->symtab_type++; 960 961 return 0; 962 } 963 964 static int map_groups__set_modules_path_dir(struct map_groups *mg, 965 const char *dir_name, int depth) 966 { 967 struct dirent *dent; 968 DIR *dir = opendir(dir_name); 969 int ret = 0; 970 971 if (!dir) { 972 pr_debug("%s: cannot open %s dir\n", __func__, dir_name); 973 return -1; 974 } 975 976 while ((dent = readdir(dir)) != NULL) { 977 char path[PATH_MAX]; 978 struct stat st; 979 980 /*sshfs might return bad dent->d_type, so we have to stat*/ 981 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name); 982 if (stat(path, &st)) 983 continue; 984 985 if (S_ISDIR(st.st_mode)) { 986 if (!strcmp(dent->d_name, ".") || 987 !strcmp(dent->d_name, "..")) 988 continue; 989 990 /* Do not follow top-level source and build symlinks */ 991 if (depth == 0) { 992 if (!strcmp(dent->d_name, "source") || 993 !strcmp(dent->d_name, "build")) 994 continue; 995 } 996 997 ret = map_groups__set_modules_path_dir(mg, path, 998 depth + 1); 999 if (ret < 0) 1000 goto out; 1001 } else { 1002 struct kmod_path m; 1003 1004 ret = kmod_path__parse_name(&m, dent->d_name); 1005 if (ret) 1006 goto out; 1007 1008 if (m.kmod) 1009 ret = map_groups__set_module_path(mg, path, &m); 1010 1011 free(m.name); 1012 1013 if (ret) 1014 goto out; 1015 } 1016 } 1017 1018 out: 1019 closedir(dir); 1020 return ret; 1021 } 1022 1023 static int machine__set_modules_path(struct machine *machine) 1024 { 1025 char *version; 1026 char modules_path[PATH_MAX]; 1027 1028 version = get_kernel_version(machine->root_dir); 1029 if (!version) 1030 return -1; 1031 1032 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s", 1033 machine->root_dir, version); 1034 free(version); 1035 1036 return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0); 1037 } 1038 1039 static int machine__create_module(void *arg, const char *name, u64 start) 1040 { 1041 struct machine *machine = arg; 1042 struct map *map; 1043 1044 map = machine__findnew_module_map(machine, start, name); 1045 if (map == NULL) 1046 return -1; 1047 1048 dso__kernel_module_get_build_id(map->dso, machine->root_dir); 1049 1050 return 0; 1051 } 1052 1053 static int machine__create_modules(struct machine *machine) 1054 { 1055 const char *modules; 1056 char path[PATH_MAX]; 1057 1058 if (machine__is_default_guest(machine)) { 1059 modules = symbol_conf.default_guest_modules; 1060 } else { 1061 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir); 1062 modules = path; 1063 } 1064 1065 if (symbol__restricted_filename(modules, "/proc/modules")) 1066 return -1; 1067 1068 if (modules__parse(modules, machine, machine__create_module)) 1069 return -1; 1070 1071 if (!machine__set_modules_path(machine)) 1072 return 0; 1073 1074 pr_debug("Problems setting modules path maps, continuing anyway...\n"); 1075 1076 return 0; 1077 } 1078 1079 int machine__create_kernel_maps(struct machine *machine) 1080 { 1081 struct dso *kernel = machine__get_kernel(machine); 1082 const char *name; 1083 u64 addr = machine__get_running_kernel_start(machine, &name); 1084 if (!addr) 1085 return -1; 1086 1087 if (kernel == NULL || 1088 __machine__create_kernel_maps(machine, kernel) < 0) 1089 return -1; 1090 1091 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) { 1092 if (machine__is_host(machine)) 1093 pr_debug("Problems creating module maps, " 1094 "continuing anyway...\n"); 1095 else 1096 pr_debug("Problems creating module maps for guest %d, " 1097 "continuing anyway...\n", machine->pid); 1098 } 1099 1100 /* 1101 * Now that we have all the maps created, just set the ->end of them: 1102 */ 1103 map_groups__fixup_end(&machine->kmaps); 1104 1105 if (maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name, 1106 addr)) { 1107 machine__destroy_kernel_maps(machine); 1108 return -1; 1109 } 1110 1111 return 0; 1112 } 1113 1114 static void machine__set_kernel_mmap_len(struct machine *machine, 1115 union perf_event *event) 1116 { 1117 int i; 1118 1119 for (i = 0; i < MAP__NR_TYPES; i++) { 1120 machine->vmlinux_maps[i]->start = event->mmap.start; 1121 machine->vmlinux_maps[i]->end = (event->mmap.start + 1122 event->mmap.len); 1123 /* 1124 * Be a bit paranoid here, some perf.data file came with 1125 * a zero sized synthesized MMAP event for the kernel. 1126 */ 1127 if (machine->vmlinux_maps[i]->end == 0) 1128 machine->vmlinux_maps[i]->end = ~0ULL; 1129 } 1130 } 1131 1132 static bool machine__uses_kcore(struct machine *machine) 1133 { 1134 struct dso *dso; 1135 1136 list_for_each_entry(dso, &machine->dsos.head, node) { 1137 if (dso__is_kcore(dso)) 1138 return true; 1139 } 1140 1141 return false; 1142 } 1143 1144 static int machine__process_kernel_mmap_event(struct machine *machine, 1145 union perf_event *event) 1146 { 1147 struct map *map; 1148 char kmmap_prefix[PATH_MAX]; 1149 enum dso_kernel_type kernel_type; 1150 bool is_kernel_mmap; 1151 1152 /* If we have maps from kcore then we do not need or want any others */ 1153 if (machine__uses_kcore(machine)) 1154 return 0; 1155 1156 machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix)); 1157 if (machine__is_host(machine)) 1158 kernel_type = DSO_TYPE_KERNEL; 1159 else 1160 kernel_type = DSO_TYPE_GUEST_KERNEL; 1161 1162 is_kernel_mmap = memcmp(event->mmap.filename, 1163 kmmap_prefix, 1164 strlen(kmmap_prefix) - 1) == 0; 1165 if (event->mmap.filename[0] == '/' || 1166 (!is_kernel_mmap && event->mmap.filename[0] == '[')) { 1167 map = machine__findnew_module_map(machine, event->mmap.start, 1168 event->mmap.filename); 1169 if (map == NULL) 1170 goto out_problem; 1171 1172 map->end = map->start + event->mmap.len; 1173 } else if (is_kernel_mmap) { 1174 const char *symbol_name = (event->mmap.filename + 1175 strlen(kmmap_prefix)); 1176 /* 1177 * Should be there already, from the build-id table in 1178 * the header. 1179 */ 1180 struct dso *kernel = NULL; 1181 struct dso *dso; 1182 1183 pthread_rwlock_rdlock(&machine->dsos.lock); 1184 1185 list_for_each_entry(dso, &machine->dsos.head, node) { 1186 1187 /* 1188 * The cpumode passed to is_kernel_module is not the 1189 * cpumode of *this* event. If we insist on passing 1190 * correct cpumode to is_kernel_module, we should 1191 * record the cpumode when we adding this dso to the 1192 * linked list. 1193 * 1194 * However we don't really need passing correct 1195 * cpumode. We know the correct cpumode must be kernel 1196 * mode (if not, we should not link it onto kernel_dsos 1197 * list). 1198 * 1199 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN. 1200 * is_kernel_module() treats it as a kernel cpumode. 1201 */ 1202 1203 if (!dso->kernel || 1204 is_kernel_module(dso->long_name, 1205 PERF_RECORD_MISC_CPUMODE_UNKNOWN)) 1206 continue; 1207 1208 1209 kernel = dso; 1210 break; 1211 } 1212 1213 pthread_rwlock_unlock(&machine->dsos.lock); 1214 1215 if (kernel == NULL) 1216 kernel = machine__findnew_dso(machine, kmmap_prefix); 1217 if (kernel == NULL) 1218 goto out_problem; 1219 1220 kernel->kernel = kernel_type; 1221 if (__machine__create_kernel_maps(machine, kernel) < 0) { 1222 dso__put(kernel); 1223 goto out_problem; 1224 } 1225 1226 if (strstr(kernel->long_name, "vmlinux")) 1227 dso__set_short_name(kernel, "[kernel.vmlinux]", false); 1228 1229 machine__set_kernel_mmap_len(machine, event); 1230 1231 /* 1232 * Avoid using a zero address (kptr_restrict) for the ref reloc 1233 * symbol. Effectively having zero here means that at record 1234 * time /proc/sys/kernel/kptr_restrict was non zero. 1235 */ 1236 if (event->mmap.pgoff != 0) { 1237 maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, 1238 symbol_name, 1239 event->mmap.pgoff); 1240 } 1241 1242 if (machine__is_default_guest(machine)) { 1243 /* 1244 * preload dso of guest kernel and modules 1245 */ 1246 dso__load(kernel, machine->vmlinux_maps[MAP__FUNCTION], 1247 NULL); 1248 } 1249 } 1250 return 0; 1251 out_problem: 1252 return -1; 1253 } 1254 1255 int machine__process_mmap2_event(struct machine *machine, 1256 union perf_event *event, 1257 struct perf_sample *sample __maybe_unused) 1258 { 1259 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 1260 struct thread *thread; 1261 struct map *map; 1262 enum map_type type; 1263 int ret = 0; 1264 1265 if (dump_trace) 1266 perf_event__fprintf_mmap2(event, stdout); 1267 1268 if (cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1269 cpumode == PERF_RECORD_MISC_KERNEL) { 1270 ret = machine__process_kernel_mmap_event(machine, event); 1271 if (ret < 0) 1272 goto out_problem; 1273 return 0; 1274 } 1275 1276 thread = machine__findnew_thread(machine, event->mmap2.pid, 1277 event->mmap2.tid); 1278 if (thread == NULL) 1279 goto out_problem; 1280 1281 if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA) 1282 type = MAP__VARIABLE; 1283 else 1284 type = MAP__FUNCTION; 1285 1286 map = map__new(machine, event->mmap2.start, 1287 event->mmap2.len, event->mmap2.pgoff, 1288 event->mmap2.pid, event->mmap2.maj, 1289 event->mmap2.min, event->mmap2.ino, 1290 event->mmap2.ino_generation, 1291 event->mmap2.prot, 1292 event->mmap2.flags, 1293 event->mmap2.filename, type, thread); 1294 1295 if (map == NULL) 1296 goto out_problem_map; 1297 1298 thread__insert_map(thread, map); 1299 thread__put(thread); 1300 map__put(map); 1301 return 0; 1302 1303 out_problem_map: 1304 thread__put(thread); 1305 out_problem: 1306 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n"); 1307 return 0; 1308 } 1309 1310 int machine__process_mmap_event(struct machine *machine, union perf_event *event, 1311 struct perf_sample *sample __maybe_unused) 1312 { 1313 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 1314 struct thread *thread; 1315 struct map *map; 1316 enum map_type type; 1317 int ret = 0; 1318 1319 if (dump_trace) 1320 perf_event__fprintf_mmap(event, stdout); 1321 1322 if (cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1323 cpumode == PERF_RECORD_MISC_KERNEL) { 1324 ret = machine__process_kernel_mmap_event(machine, event); 1325 if (ret < 0) 1326 goto out_problem; 1327 return 0; 1328 } 1329 1330 thread = machine__findnew_thread(machine, event->mmap.pid, 1331 event->mmap.tid); 1332 if (thread == NULL) 1333 goto out_problem; 1334 1335 if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA) 1336 type = MAP__VARIABLE; 1337 else 1338 type = MAP__FUNCTION; 1339 1340 map = map__new(machine, event->mmap.start, 1341 event->mmap.len, event->mmap.pgoff, 1342 event->mmap.pid, 0, 0, 0, 0, 0, 0, 1343 event->mmap.filename, 1344 type, thread); 1345 1346 if (map == NULL) 1347 goto out_problem_map; 1348 1349 thread__insert_map(thread, map); 1350 thread__put(thread); 1351 map__put(map); 1352 return 0; 1353 1354 out_problem_map: 1355 thread__put(thread); 1356 out_problem: 1357 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n"); 1358 return 0; 1359 } 1360 1361 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock) 1362 { 1363 if (machine->last_match == th) 1364 machine->last_match = NULL; 1365 1366 BUG_ON(atomic_read(&th->refcnt) == 0); 1367 if (lock) 1368 pthread_rwlock_wrlock(&machine->threads_lock); 1369 rb_erase_init(&th->rb_node, &machine->threads); 1370 RB_CLEAR_NODE(&th->rb_node); 1371 /* 1372 * Move it first to the dead_threads list, then drop the reference, 1373 * if this is the last reference, then the thread__delete destructor 1374 * will be called and we will remove it from the dead_threads list. 1375 */ 1376 list_add_tail(&th->node, &machine->dead_threads); 1377 if (lock) 1378 pthread_rwlock_unlock(&machine->threads_lock); 1379 thread__put(th); 1380 } 1381 1382 void machine__remove_thread(struct machine *machine, struct thread *th) 1383 { 1384 return __machine__remove_thread(machine, th, true); 1385 } 1386 1387 int machine__process_fork_event(struct machine *machine, union perf_event *event, 1388 struct perf_sample *sample) 1389 { 1390 struct thread *thread = machine__find_thread(machine, 1391 event->fork.pid, 1392 event->fork.tid); 1393 struct thread *parent = machine__findnew_thread(machine, 1394 event->fork.ppid, 1395 event->fork.ptid); 1396 int err = 0; 1397 1398 if (dump_trace) 1399 perf_event__fprintf_task(event, stdout); 1400 1401 /* 1402 * There may be an existing thread that is not actually the parent, 1403 * either because we are processing events out of order, or because the 1404 * (fork) event that would have removed the thread was lost. Assume the 1405 * latter case and continue on as best we can. 1406 */ 1407 if (parent->pid_ != (pid_t)event->fork.ppid) { 1408 dump_printf("removing erroneous parent thread %d/%d\n", 1409 parent->pid_, parent->tid); 1410 machine__remove_thread(machine, parent); 1411 thread__put(parent); 1412 parent = machine__findnew_thread(machine, event->fork.ppid, 1413 event->fork.ptid); 1414 } 1415 1416 /* if a thread currently exists for the thread id remove it */ 1417 if (thread != NULL) { 1418 machine__remove_thread(machine, thread); 1419 thread__put(thread); 1420 } 1421 1422 thread = machine__findnew_thread(machine, event->fork.pid, 1423 event->fork.tid); 1424 1425 if (thread == NULL || parent == NULL || 1426 thread__fork(thread, parent, sample->time) < 0) { 1427 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n"); 1428 err = -1; 1429 } 1430 thread__put(thread); 1431 thread__put(parent); 1432 1433 return err; 1434 } 1435 1436 int machine__process_exit_event(struct machine *machine, union perf_event *event, 1437 struct perf_sample *sample __maybe_unused) 1438 { 1439 struct thread *thread = machine__find_thread(machine, 1440 event->fork.pid, 1441 event->fork.tid); 1442 1443 if (dump_trace) 1444 perf_event__fprintf_task(event, stdout); 1445 1446 if (thread != NULL) { 1447 thread__exited(thread); 1448 thread__put(thread); 1449 } 1450 1451 return 0; 1452 } 1453 1454 int machine__process_event(struct machine *machine, union perf_event *event, 1455 struct perf_sample *sample) 1456 { 1457 int ret; 1458 1459 switch (event->header.type) { 1460 case PERF_RECORD_COMM: 1461 ret = machine__process_comm_event(machine, event, sample); break; 1462 case PERF_RECORD_MMAP: 1463 ret = machine__process_mmap_event(machine, event, sample); break; 1464 case PERF_RECORD_MMAP2: 1465 ret = machine__process_mmap2_event(machine, event, sample); break; 1466 case PERF_RECORD_FORK: 1467 ret = machine__process_fork_event(machine, event, sample); break; 1468 case PERF_RECORD_EXIT: 1469 ret = machine__process_exit_event(machine, event, sample); break; 1470 case PERF_RECORD_LOST: 1471 ret = machine__process_lost_event(machine, event, sample); break; 1472 case PERF_RECORD_AUX: 1473 ret = machine__process_aux_event(machine, event); break; 1474 case PERF_RECORD_ITRACE_START: 1475 ret = machine__process_itrace_start_event(machine, event); break; 1476 case PERF_RECORD_LOST_SAMPLES: 1477 ret = machine__process_lost_samples_event(machine, event, sample); break; 1478 case PERF_RECORD_SWITCH: 1479 case PERF_RECORD_SWITCH_CPU_WIDE: 1480 ret = machine__process_switch_event(machine, event); break; 1481 default: 1482 ret = -1; 1483 break; 1484 } 1485 1486 return ret; 1487 } 1488 1489 static bool symbol__match_regex(struct symbol *sym, regex_t *regex) 1490 { 1491 if (sym->name && !regexec(regex, sym->name, 0, NULL, 0)) 1492 return 1; 1493 return 0; 1494 } 1495 1496 static void ip__resolve_ams(struct thread *thread, 1497 struct addr_map_symbol *ams, 1498 u64 ip) 1499 { 1500 struct addr_location al; 1501 1502 memset(&al, 0, sizeof(al)); 1503 /* 1504 * We cannot use the header.misc hint to determine whether a 1505 * branch stack address is user, kernel, guest, hypervisor. 1506 * Branches may straddle the kernel/user/hypervisor boundaries. 1507 * Thus, we have to try consecutively until we find a match 1508 * or else, the symbol is unknown 1509 */ 1510 thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al); 1511 1512 ams->addr = ip; 1513 ams->al_addr = al.addr; 1514 ams->sym = al.sym; 1515 ams->map = al.map; 1516 } 1517 1518 static void ip__resolve_data(struct thread *thread, 1519 u8 m, struct addr_map_symbol *ams, u64 addr) 1520 { 1521 struct addr_location al; 1522 1523 memset(&al, 0, sizeof(al)); 1524 1525 thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al); 1526 if (al.map == NULL) { 1527 /* 1528 * some shared data regions have execute bit set which puts 1529 * their mapping in the MAP__FUNCTION type array. 1530 * Check there as a fallback option before dropping the sample. 1531 */ 1532 thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al); 1533 } 1534 1535 ams->addr = addr; 1536 ams->al_addr = al.addr; 1537 ams->sym = al.sym; 1538 ams->map = al.map; 1539 } 1540 1541 struct mem_info *sample__resolve_mem(struct perf_sample *sample, 1542 struct addr_location *al) 1543 { 1544 struct mem_info *mi = zalloc(sizeof(*mi)); 1545 1546 if (!mi) 1547 return NULL; 1548 1549 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip); 1550 ip__resolve_data(al->thread, al->cpumode, &mi->daddr, sample->addr); 1551 mi->data_src.val = sample->data_src; 1552 1553 return mi; 1554 } 1555 1556 static int add_callchain_ip(struct thread *thread, 1557 struct symbol **parent, 1558 struct addr_location *root_al, 1559 u8 *cpumode, 1560 u64 ip) 1561 { 1562 struct addr_location al; 1563 1564 al.filtered = 0; 1565 al.sym = NULL; 1566 if (!cpumode) { 1567 thread__find_cpumode_addr_location(thread, MAP__FUNCTION, 1568 ip, &al); 1569 } else { 1570 if (ip >= PERF_CONTEXT_MAX) { 1571 switch (ip) { 1572 case PERF_CONTEXT_HV: 1573 *cpumode = PERF_RECORD_MISC_HYPERVISOR; 1574 break; 1575 case PERF_CONTEXT_KERNEL: 1576 *cpumode = PERF_RECORD_MISC_KERNEL; 1577 break; 1578 case PERF_CONTEXT_USER: 1579 *cpumode = PERF_RECORD_MISC_USER; 1580 break; 1581 default: 1582 pr_debug("invalid callchain context: " 1583 "%"PRId64"\n", (s64) ip); 1584 /* 1585 * It seems the callchain is corrupted. 1586 * Discard all. 1587 */ 1588 callchain_cursor_reset(&callchain_cursor); 1589 return 1; 1590 } 1591 return 0; 1592 } 1593 thread__find_addr_location(thread, *cpumode, MAP__FUNCTION, 1594 ip, &al); 1595 } 1596 1597 if (al.sym != NULL) { 1598 if (sort__has_parent && !*parent && 1599 symbol__match_regex(al.sym, &parent_regex)) 1600 *parent = al.sym; 1601 else if (have_ignore_callees && root_al && 1602 symbol__match_regex(al.sym, &ignore_callees_regex)) { 1603 /* Treat this symbol as the root, 1604 forgetting its callees. */ 1605 *root_al = al; 1606 callchain_cursor_reset(&callchain_cursor); 1607 } 1608 } 1609 1610 return callchain_cursor_append(&callchain_cursor, al.addr, al.map, al.sym); 1611 } 1612 1613 struct branch_info *sample__resolve_bstack(struct perf_sample *sample, 1614 struct addr_location *al) 1615 { 1616 unsigned int i; 1617 const struct branch_stack *bs = sample->branch_stack; 1618 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info)); 1619 1620 if (!bi) 1621 return NULL; 1622 1623 for (i = 0; i < bs->nr; i++) { 1624 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to); 1625 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from); 1626 bi[i].flags = bs->entries[i].flags; 1627 } 1628 return bi; 1629 } 1630 1631 #define CHASHSZ 127 1632 #define CHASHBITS 7 1633 #define NO_ENTRY 0xff 1634 1635 #define PERF_MAX_BRANCH_DEPTH 127 1636 1637 /* Remove loops. */ 1638 static int remove_loops(struct branch_entry *l, int nr) 1639 { 1640 int i, j, off; 1641 unsigned char chash[CHASHSZ]; 1642 1643 memset(chash, NO_ENTRY, sizeof(chash)); 1644 1645 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255); 1646 1647 for (i = 0; i < nr; i++) { 1648 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ; 1649 1650 /* no collision handling for now */ 1651 if (chash[h] == NO_ENTRY) { 1652 chash[h] = i; 1653 } else if (l[chash[h]].from == l[i].from) { 1654 bool is_loop = true; 1655 /* check if it is a real loop */ 1656 off = 0; 1657 for (j = chash[h]; j < i && i + off < nr; j++, off++) 1658 if (l[j].from != l[i + off].from) { 1659 is_loop = false; 1660 break; 1661 } 1662 if (is_loop) { 1663 memmove(l + i, l + i + off, 1664 (nr - (i + off)) * sizeof(*l)); 1665 nr -= off; 1666 } 1667 } 1668 } 1669 return nr; 1670 } 1671 1672 /* 1673 * Recolve LBR callstack chain sample 1674 * Return: 1675 * 1 on success get LBR callchain information 1676 * 0 no available LBR callchain information, should try fp 1677 * negative error code on other errors. 1678 */ 1679 static int resolve_lbr_callchain_sample(struct thread *thread, 1680 struct perf_sample *sample, 1681 struct symbol **parent, 1682 struct addr_location *root_al, 1683 int max_stack) 1684 { 1685 struct ip_callchain *chain = sample->callchain; 1686 int chain_nr = min(max_stack, (int)chain->nr); 1687 u8 cpumode = PERF_RECORD_MISC_USER; 1688 int i, j, err; 1689 u64 ip; 1690 1691 for (i = 0; i < chain_nr; i++) { 1692 if (chain->ips[i] == PERF_CONTEXT_USER) 1693 break; 1694 } 1695 1696 /* LBR only affects the user callchain */ 1697 if (i != chain_nr) { 1698 struct branch_stack *lbr_stack = sample->branch_stack; 1699 int lbr_nr = lbr_stack->nr; 1700 /* 1701 * LBR callstack can only get user call chain. 1702 * The mix_chain_nr is kernel call chain 1703 * number plus LBR user call chain number. 1704 * i is kernel call chain number, 1705 * 1 is PERF_CONTEXT_USER, 1706 * lbr_nr + 1 is the user call chain number. 1707 * For details, please refer to the comments 1708 * in callchain__printf 1709 */ 1710 int mix_chain_nr = i + 1 + lbr_nr + 1; 1711 1712 if (mix_chain_nr > PERF_MAX_STACK_DEPTH + PERF_MAX_BRANCH_DEPTH) { 1713 pr_warning("corrupted callchain. skipping...\n"); 1714 return 0; 1715 } 1716 1717 for (j = 0; j < mix_chain_nr; j++) { 1718 if (callchain_param.order == ORDER_CALLEE) { 1719 if (j < i + 1) 1720 ip = chain->ips[j]; 1721 else if (j > i + 1) 1722 ip = lbr_stack->entries[j - i - 2].from; 1723 else 1724 ip = lbr_stack->entries[0].to; 1725 } else { 1726 if (j < lbr_nr) 1727 ip = lbr_stack->entries[lbr_nr - j - 1].from; 1728 else if (j > lbr_nr) 1729 ip = chain->ips[i + 1 - (j - lbr_nr)]; 1730 else 1731 ip = lbr_stack->entries[0].to; 1732 } 1733 1734 err = add_callchain_ip(thread, parent, root_al, &cpumode, ip); 1735 if (err) 1736 return (err < 0) ? err : 0; 1737 } 1738 return 1; 1739 } 1740 1741 return 0; 1742 } 1743 1744 static int thread__resolve_callchain_sample(struct thread *thread, 1745 struct perf_evsel *evsel, 1746 struct perf_sample *sample, 1747 struct symbol **parent, 1748 struct addr_location *root_al, 1749 int max_stack) 1750 { 1751 struct branch_stack *branch = sample->branch_stack; 1752 struct ip_callchain *chain = sample->callchain; 1753 int chain_nr = min(max_stack, (int)chain->nr); 1754 u8 cpumode = PERF_RECORD_MISC_USER; 1755 int i, j, err; 1756 int skip_idx = -1; 1757 int first_call = 0; 1758 1759 callchain_cursor_reset(&callchain_cursor); 1760 1761 if (has_branch_callstack(evsel)) { 1762 err = resolve_lbr_callchain_sample(thread, sample, parent, 1763 root_al, max_stack); 1764 if (err) 1765 return (err < 0) ? err : 0; 1766 } 1767 1768 /* 1769 * Based on DWARF debug information, some architectures skip 1770 * a callchain entry saved by the kernel. 1771 */ 1772 if (chain->nr < PERF_MAX_STACK_DEPTH) 1773 skip_idx = arch_skip_callchain_idx(thread, chain); 1774 1775 /* 1776 * Add branches to call stack for easier browsing. This gives 1777 * more context for a sample than just the callers. 1778 * 1779 * This uses individual histograms of paths compared to the 1780 * aggregated histograms the normal LBR mode uses. 1781 * 1782 * Limitations for now: 1783 * - No extra filters 1784 * - No annotations (should annotate somehow) 1785 */ 1786 1787 if (branch && callchain_param.branch_callstack) { 1788 int nr = min(max_stack, (int)branch->nr); 1789 struct branch_entry be[nr]; 1790 1791 if (branch->nr > PERF_MAX_BRANCH_DEPTH) { 1792 pr_warning("corrupted branch chain. skipping...\n"); 1793 goto check_calls; 1794 } 1795 1796 for (i = 0; i < nr; i++) { 1797 if (callchain_param.order == ORDER_CALLEE) { 1798 be[i] = branch->entries[i]; 1799 /* 1800 * Check for overlap into the callchain. 1801 * The return address is one off compared to 1802 * the branch entry. To adjust for this 1803 * assume the calling instruction is not longer 1804 * than 8 bytes. 1805 */ 1806 if (i == skip_idx || 1807 chain->ips[first_call] >= PERF_CONTEXT_MAX) 1808 first_call++; 1809 else if (be[i].from < chain->ips[first_call] && 1810 be[i].from >= chain->ips[first_call] - 8) 1811 first_call++; 1812 } else 1813 be[i] = branch->entries[branch->nr - i - 1]; 1814 } 1815 1816 nr = remove_loops(be, nr); 1817 1818 for (i = 0; i < nr; i++) { 1819 err = add_callchain_ip(thread, parent, root_al, 1820 NULL, be[i].to); 1821 if (!err) 1822 err = add_callchain_ip(thread, parent, root_al, 1823 NULL, be[i].from); 1824 if (err == -EINVAL) 1825 break; 1826 if (err) 1827 return err; 1828 } 1829 chain_nr -= nr; 1830 } 1831 1832 check_calls: 1833 if (chain->nr > PERF_MAX_STACK_DEPTH) { 1834 pr_warning("corrupted callchain. skipping...\n"); 1835 return 0; 1836 } 1837 1838 for (i = first_call; i < chain_nr; i++) { 1839 u64 ip; 1840 1841 if (callchain_param.order == ORDER_CALLEE) 1842 j = i; 1843 else 1844 j = chain->nr - i - 1; 1845 1846 #ifdef HAVE_SKIP_CALLCHAIN_IDX 1847 if (j == skip_idx) 1848 continue; 1849 #endif 1850 ip = chain->ips[j]; 1851 1852 err = add_callchain_ip(thread, parent, root_al, &cpumode, ip); 1853 1854 if (err) 1855 return (err < 0) ? err : 0; 1856 } 1857 1858 return 0; 1859 } 1860 1861 static int unwind_entry(struct unwind_entry *entry, void *arg) 1862 { 1863 struct callchain_cursor *cursor = arg; 1864 return callchain_cursor_append(cursor, entry->ip, 1865 entry->map, entry->sym); 1866 } 1867 1868 int thread__resolve_callchain(struct thread *thread, 1869 struct perf_evsel *evsel, 1870 struct perf_sample *sample, 1871 struct symbol **parent, 1872 struct addr_location *root_al, 1873 int max_stack) 1874 { 1875 int ret = thread__resolve_callchain_sample(thread, evsel, 1876 sample, parent, 1877 root_al, max_stack); 1878 if (ret) 1879 return ret; 1880 1881 /* Can we do dwarf post unwind? */ 1882 if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) && 1883 (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER))) 1884 return 0; 1885 1886 /* Bail out if nothing was captured. */ 1887 if ((!sample->user_regs.regs) || 1888 (!sample->user_stack.size)) 1889 return 0; 1890 1891 return unwind__get_entries(unwind_entry, &callchain_cursor, 1892 thread, sample, max_stack); 1893 1894 } 1895 1896 int machine__for_each_thread(struct machine *machine, 1897 int (*fn)(struct thread *thread, void *p), 1898 void *priv) 1899 { 1900 struct rb_node *nd; 1901 struct thread *thread; 1902 int rc = 0; 1903 1904 for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) { 1905 thread = rb_entry(nd, struct thread, rb_node); 1906 rc = fn(thread, priv); 1907 if (rc != 0) 1908 return rc; 1909 } 1910 1911 list_for_each_entry(thread, &machine->dead_threads, node) { 1912 rc = fn(thread, priv); 1913 if (rc != 0) 1914 return rc; 1915 } 1916 return rc; 1917 } 1918 1919 int machines__for_each_thread(struct machines *machines, 1920 int (*fn)(struct thread *thread, void *p), 1921 void *priv) 1922 { 1923 struct rb_node *nd; 1924 int rc = 0; 1925 1926 rc = machine__for_each_thread(&machines->host, fn, priv); 1927 if (rc != 0) 1928 return rc; 1929 1930 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 1931 struct machine *machine = rb_entry(nd, struct machine, rb_node); 1932 1933 rc = machine__for_each_thread(machine, fn, priv); 1934 if (rc != 0) 1935 return rc; 1936 } 1937 return rc; 1938 } 1939 1940 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool, 1941 struct target *target, struct thread_map *threads, 1942 perf_event__handler_t process, bool data_mmap, 1943 unsigned int proc_map_timeout) 1944 { 1945 if (target__has_task(target)) 1946 return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout); 1947 else if (target__has_cpu(target)) 1948 return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout); 1949 /* command specified */ 1950 return 0; 1951 } 1952 1953 pid_t machine__get_current_tid(struct machine *machine, int cpu) 1954 { 1955 if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid) 1956 return -1; 1957 1958 return machine->current_tid[cpu]; 1959 } 1960 1961 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid, 1962 pid_t tid) 1963 { 1964 struct thread *thread; 1965 1966 if (cpu < 0) 1967 return -EINVAL; 1968 1969 if (!machine->current_tid) { 1970 int i; 1971 1972 machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t)); 1973 if (!machine->current_tid) 1974 return -ENOMEM; 1975 for (i = 0; i < MAX_NR_CPUS; i++) 1976 machine->current_tid[i] = -1; 1977 } 1978 1979 if (cpu >= MAX_NR_CPUS) { 1980 pr_err("Requested CPU %d too large. ", cpu); 1981 pr_err("Consider raising MAX_NR_CPUS\n"); 1982 return -EINVAL; 1983 } 1984 1985 machine->current_tid[cpu] = tid; 1986 1987 thread = machine__findnew_thread(machine, pid, tid); 1988 if (!thread) 1989 return -ENOMEM; 1990 1991 thread->cpu = cpu; 1992 thread__put(thread); 1993 1994 return 0; 1995 } 1996 1997 int machine__get_kernel_start(struct machine *machine) 1998 { 1999 struct map *map = machine__kernel_map(machine, MAP__FUNCTION); 2000 int err = 0; 2001 2002 /* 2003 * The only addresses above 2^63 are kernel addresses of a 64-bit 2004 * kernel. Note that addresses are unsigned so that on a 32-bit system 2005 * all addresses including kernel addresses are less than 2^32. In 2006 * that case (32-bit system), if the kernel mapping is unknown, all 2007 * addresses will be assumed to be in user space - see 2008 * machine__kernel_ip(). 2009 */ 2010 machine->kernel_start = 1ULL << 63; 2011 if (map) { 2012 err = map__load(map, machine->symbol_filter); 2013 if (map->start) 2014 machine->kernel_start = map->start; 2015 } 2016 return err; 2017 } 2018 2019 struct dso *machine__findnew_dso(struct machine *machine, const char *filename) 2020 { 2021 return dsos__findnew(&machine->dsos, filename); 2022 } 2023 2024 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp) 2025 { 2026 struct machine *machine = vmachine; 2027 struct map *map; 2028 struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map, NULL); 2029 2030 if (sym == NULL) 2031 return NULL; 2032 2033 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL; 2034 *addrp = map->unmap_ip(map, sym->start); 2035 return sym->name; 2036 } 2037