1 // SPDX-License-Identifier: GPL-2.0 2 #include <dirent.h> 3 #include <errno.h> 4 #include <inttypes.h> 5 #include <regex.h> 6 #include <stdlib.h> 7 #include "callchain.h" 8 #include "debug.h" 9 #include "dso.h" 10 #include "env.h" 11 #include "event.h" 12 #include "evsel.h" 13 #include "hist.h" 14 #include "machine.h" 15 #include "map.h" 16 #include "map_symbol.h" 17 #include "branch.h" 18 #include "mem-events.h" 19 #include "path.h" 20 #include "srcline.h" 21 #include "symbol.h" 22 #include "sort.h" 23 #include "strlist.h" 24 #include "target.h" 25 #include "thread.h" 26 #include "util.h" 27 #include "vdso.h" 28 #include <stdbool.h> 29 #include <sys/types.h> 30 #include <sys/stat.h> 31 #include <unistd.h> 32 #include "unwind.h" 33 #include "linux/hash.h" 34 #include "asm/bug.h" 35 #include "bpf-event.h" 36 #include <internal/lib.h> // page_size 37 #include "cgroup.h" 38 #include "arm64-frame-pointer-unwind-support.h" 39 40 #include <linux/ctype.h> 41 #include <symbol/kallsyms.h> 42 #include <linux/mman.h> 43 #include <linux/string.h> 44 #include <linux/zalloc.h> 45 46 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock); 47 48 static struct dso *machine__kernel_dso(struct machine *machine) 49 { 50 return machine->vmlinux_map->dso; 51 } 52 53 static void dsos__init(struct dsos *dsos) 54 { 55 INIT_LIST_HEAD(&dsos->head); 56 dsos->root = RB_ROOT; 57 init_rwsem(&dsos->lock); 58 } 59 60 static void machine__threads_init(struct machine *machine) 61 { 62 int i; 63 64 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 65 struct threads *threads = &machine->threads[i]; 66 threads->entries = RB_ROOT_CACHED; 67 init_rwsem(&threads->lock); 68 threads->nr = 0; 69 INIT_LIST_HEAD(&threads->dead); 70 threads->last_match = NULL; 71 } 72 } 73 74 static int machine__set_mmap_name(struct machine *machine) 75 { 76 if (machine__is_host(machine)) 77 machine->mmap_name = strdup("[kernel.kallsyms]"); 78 else if (machine__is_default_guest(machine)) 79 machine->mmap_name = strdup("[guest.kernel.kallsyms]"); 80 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]", 81 machine->pid) < 0) 82 machine->mmap_name = NULL; 83 84 return machine->mmap_name ? 0 : -ENOMEM; 85 } 86 87 int machine__init(struct machine *machine, const char *root_dir, pid_t pid) 88 { 89 int err = -ENOMEM; 90 91 memset(machine, 0, sizeof(*machine)); 92 machine->kmaps = maps__new(machine); 93 if (machine->kmaps == NULL) 94 return -ENOMEM; 95 96 RB_CLEAR_NODE(&machine->rb_node); 97 dsos__init(&machine->dsos); 98 99 machine__threads_init(machine); 100 101 machine->vdso_info = NULL; 102 machine->env = NULL; 103 104 machine->pid = pid; 105 106 machine->id_hdr_size = 0; 107 machine->kptr_restrict_warned = false; 108 machine->comm_exec = false; 109 machine->kernel_start = 0; 110 machine->vmlinux_map = NULL; 111 112 machine->root_dir = strdup(root_dir); 113 if (machine->root_dir == NULL) 114 goto out; 115 116 if (machine__set_mmap_name(machine)) 117 goto out; 118 119 if (pid != HOST_KERNEL_ID) { 120 struct thread *thread = machine__findnew_thread(machine, -1, 121 pid); 122 char comm[64]; 123 124 if (thread == NULL) 125 goto out; 126 127 snprintf(comm, sizeof(comm), "[guest/%d]", pid); 128 thread__set_comm(thread, comm, 0); 129 thread__put(thread); 130 } 131 132 machine->current_tid = NULL; 133 err = 0; 134 135 out: 136 if (err) { 137 zfree(&machine->kmaps); 138 zfree(&machine->root_dir); 139 zfree(&machine->mmap_name); 140 } 141 return 0; 142 } 143 144 struct machine *machine__new_host(void) 145 { 146 struct machine *machine = malloc(sizeof(*machine)); 147 148 if (machine != NULL) { 149 machine__init(machine, "", HOST_KERNEL_ID); 150 151 if (machine__create_kernel_maps(machine) < 0) 152 goto out_delete; 153 } 154 155 return machine; 156 out_delete: 157 free(machine); 158 return NULL; 159 } 160 161 struct machine *machine__new_kallsyms(void) 162 { 163 struct machine *machine = machine__new_host(); 164 /* 165 * FIXME: 166 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly 167 * ask for not using the kcore parsing code, once this one is fixed 168 * to create a map per module. 169 */ 170 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) { 171 machine__delete(machine); 172 machine = NULL; 173 } 174 175 return machine; 176 } 177 178 static void dsos__purge(struct dsos *dsos) 179 { 180 struct dso *pos, *n; 181 182 down_write(&dsos->lock); 183 184 list_for_each_entry_safe(pos, n, &dsos->head, node) { 185 RB_CLEAR_NODE(&pos->rb_node); 186 pos->root = NULL; 187 list_del_init(&pos->node); 188 dso__put(pos); 189 } 190 191 up_write(&dsos->lock); 192 } 193 194 static void dsos__exit(struct dsos *dsos) 195 { 196 dsos__purge(dsos); 197 exit_rwsem(&dsos->lock); 198 } 199 200 void machine__delete_threads(struct machine *machine) 201 { 202 struct rb_node *nd; 203 int i; 204 205 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 206 struct threads *threads = &machine->threads[i]; 207 down_write(&threads->lock); 208 nd = rb_first_cached(&threads->entries); 209 while (nd) { 210 struct thread *t = rb_entry(nd, struct thread, rb_node); 211 212 nd = rb_next(nd); 213 __machine__remove_thread(machine, t, false); 214 } 215 up_write(&threads->lock); 216 } 217 } 218 219 void machine__exit(struct machine *machine) 220 { 221 int i; 222 223 if (machine == NULL) 224 return; 225 226 machine__destroy_kernel_maps(machine); 227 maps__delete(machine->kmaps); 228 dsos__exit(&machine->dsos); 229 machine__exit_vdso(machine); 230 zfree(&machine->root_dir); 231 zfree(&machine->mmap_name); 232 zfree(&machine->current_tid); 233 234 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 235 struct threads *threads = &machine->threads[i]; 236 struct thread *thread, *n; 237 /* 238 * Forget about the dead, at this point whatever threads were 239 * left in the dead lists better have a reference count taken 240 * by who is using them, and then, when they drop those references 241 * and it finally hits zero, thread__put() will check and see that 242 * its not in the dead threads list and will not try to remove it 243 * from there, just calling thread__delete() straight away. 244 */ 245 list_for_each_entry_safe(thread, n, &threads->dead, node) 246 list_del_init(&thread->node); 247 248 exit_rwsem(&threads->lock); 249 } 250 } 251 252 void machine__delete(struct machine *machine) 253 { 254 if (machine) { 255 machine__exit(machine); 256 free(machine); 257 } 258 } 259 260 void machines__init(struct machines *machines) 261 { 262 machine__init(&machines->host, "", HOST_KERNEL_ID); 263 machines->guests = RB_ROOT_CACHED; 264 } 265 266 void machines__exit(struct machines *machines) 267 { 268 machine__exit(&machines->host); 269 /* XXX exit guest */ 270 } 271 272 struct machine *machines__add(struct machines *machines, pid_t pid, 273 const char *root_dir) 274 { 275 struct rb_node **p = &machines->guests.rb_root.rb_node; 276 struct rb_node *parent = NULL; 277 struct machine *pos, *machine = malloc(sizeof(*machine)); 278 bool leftmost = true; 279 280 if (machine == NULL) 281 return NULL; 282 283 if (machine__init(machine, root_dir, pid) != 0) { 284 free(machine); 285 return NULL; 286 } 287 288 while (*p != NULL) { 289 parent = *p; 290 pos = rb_entry(parent, struct machine, rb_node); 291 if (pid < pos->pid) 292 p = &(*p)->rb_left; 293 else { 294 p = &(*p)->rb_right; 295 leftmost = false; 296 } 297 } 298 299 rb_link_node(&machine->rb_node, parent, p); 300 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost); 301 302 return machine; 303 } 304 305 void machines__set_comm_exec(struct machines *machines, bool comm_exec) 306 { 307 struct rb_node *nd; 308 309 machines->host.comm_exec = comm_exec; 310 311 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 312 struct machine *machine = rb_entry(nd, struct machine, rb_node); 313 314 machine->comm_exec = comm_exec; 315 } 316 } 317 318 struct machine *machines__find(struct machines *machines, pid_t pid) 319 { 320 struct rb_node **p = &machines->guests.rb_root.rb_node; 321 struct rb_node *parent = NULL; 322 struct machine *machine; 323 struct machine *default_machine = NULL; 324 325 if (pid == HOST_KERNEL_ID) 326 return &machines->host; 327 328 while (*p != NULL) { 329 parent = *p; 330 machine = rb_entry(parent, struct machine, rb_node); 331 if (pid < machine->pid) 332 p = &(*p)->rb_left; 333 else if (pid > machine->pid) 334 p = &(*p)->rb_right; 335 else 336 return machine; 337 if (!machine->pid) 338 default_machine = machine; 339 } 340 341 return default_machine; 342 } 343 344 struct machine *machines__findnew(struct machines *machines, pid_t pid) 345 { 346 char path[PATH_MAX]; 347 const char *root_dir = ""; 348 struct machine *machine = machines__find(machines, pid); 349 350 if (machine && (machine->pid == pid)) 351 goto out; 352 353 if ((pid != HOST_KERNEL_ID) && 354 (pid != DEFAULT_GUEST_KERNEL_ID) && 355 (symbol_conf.guestmount)) { 356 sprintf(path, "%s/%d", symbol_conf.guestmount, pid); 357 if (access(path, R_OK)) { 358 static struct strlist *seen; 359 360 if (!seen) 361 seen = strlist__new(NULL, NULL); 362 363 if (!strlist__has_entry(seen, path)) { 364 pr_err("Can't access file %s\n", path); 365 strlist__add(seen, path); 366 } 367 machine = NULL; 368 goto out; 369 } 370 root_dir = path; 371 } 372 373 machine = machines__add(machines, pid, root_dir); 374 out: 375 return machine; 376 } 377 378 struct machine *machines__find_guest(struct machines *machines, pid_t pid) 379 { 380 struct machine *machine = machines__find(machines, pid); 381 382 if (!machine) 383 machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID); 384 return machine; 385 } 386 387 void machines__process_guests(struct machines *machines, 388 machine__process_t process, void *data) 389 { 390 struct rb_node *nd; 391 392 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 393 struct machine *pos = rb_entry(nd, struct machine, rb_node); 394 process(pos, data); 395 } 396 } 397 398 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size) 399 { 400 struct rb_node *node; 401 struct machine *machine; 402 403 machines->host.id_hdr_size = id_hdr_size; 404 405 for (node = rb_first_cached(&machines->guests); node; 406 node = rb_next(node)) { 407 machine = rb_entry(node, struct machine, rb_node); 408 machine->id_hdr_size = id_hdr_size; 409 } 410 411 return; 412 } 413 414 static void machine__update_thread_pid(struct machine *machine, 415 struct thread *th, pid_t pid) 416 { 417 struct thread *leader; 418 419 if (pid == th->pid_ || pid == -1 || th->pid_ != -1) 420 return; 421 422 th->pid_ = pid; 423 424 if (th->pid_ == th->tid) 425 return; 426 427 leader = __machine__findnew_thread(machine, th->pid_, th->pid_); 428 if (!leader) 429 goto out_err; 430 431 if (!leader->maps) 432 leader->maps = maps__new(machine); 433 434 if (!leader->maps) 435 goto out_err; 436 437 if (th->maps == leader->maps) 438 return; 439 440 if (th->maps) { 441 /* 442 * Maps are created from MMAP events which provide the pid and 443 * tid. Consequently there never should be any maps on a thread 444 * with an unknown pid. Just print an error if there are. 445 */ 446 if (!maps__empty(th->maps)) 447 pr_err("Discarding thread maps for %d:%d\n", 448 th->pid_, th->tid); 449 maps__put(th->maps); 450 } 451 452 th->maps = maps__get(leader->maps); 453 out_put: 454 thread__put(leader); 455 return; 456 out_err: 457 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid); 458 goto out_put; 459 } 460 461 /* 462 * Front-end cache - TID lookups come in blocks, 463 * so most of the time we dont have to look up 464 * the full rbtree: 465 */ 466 static struct thread* 467 __threads__get_last_match(struct threads *threads, struct machine *machine, 468 int pid, int tid) 469 { 470 struct thread *th; 471 472 th = threads->last_match; 473 if (th != NULL) { 474 if (th->tid == tid) { 475 machine__update_thread_pid(machine, th, pid); 476 return thread__get(th); 477 } 478 479 threads->last_match = NULL; 480 } 481 482 return NULL; 483 } 484 485 static struct thread* 486 threads__get_last_match(struct threads *threads, struct machine *machine, 487 int pid, int tid) 488 { 489 struct thread *th = NULL; 490 491 if (perf_singlethreaded) 492 th = __threads__get_last_match(threads, machine, pid, tid); 493 494 return th; 495 } 496 497 static void 498 __threads__set_last_match(struct threads *threads, struct thread *th) 499 { 500 threads->last_match = th; 501 } 502 503 static void 504 threads__set_last_match(struct threads *threads, struct thread *th) 505 { 506 if (perf_singlethreaded) 507 __threads__set_last_match(threads, th); 508 } 509 510 /* 511 * Caller must eventually drop thread->refcnt returned with a successful 512 * lookup/new thread inserted. 513 */ 514 static struct thread *____machine__findnew_thread(struct machine *machine, 515 struct threads *threads, 516 pid_t pid, pid_t tid, 517 bool create) 518 { 519 struct rb_node **p = &threads->entries.rb_root.rb_node; 520 struct rb_node *parent = NULL; 521 struct thread *th; 522 bool leftmost = true; 523 524 th = threads__get_last_match(threads, machine, pid, tid); 525 if (th) 526 return th; 527 528 while (*p != NULL) { 529 parent = *p; 530 th = rb_entry(parent, struct thread, rb_node); 531 532 if (th->tid == tid) { 533 threads__set_last_match(threads, th); 534 machine__update_thread_pid(machine, th, pid); 535 return thread__get(th); 536 } 537 538 if (tid < th->tid) 539 p = &(*p)->rb_left; 540 else { 541 p = &(*p)->rb_right; 542 leftmost = false; 543 } 544 } 545 546 if (!create) 547 return NULL; 548 549 th = thread__new(pid, tid); 550 if (th != NULL) { 551 rb_link_node(&th->rb_node, parent, p); 552 rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost); 553 554 /* 555 * We have to initialize maps separately after rb tree is updated. 556 * 557 * The reason is that we call machine__findnew_thread 558 * within thread__init_maps to find the thread 559 * leader and that would screwed the rb tree. 560 */ 561 if (thread__init_maps(th, machine)) { 562 rb_erase_cached(&th->rb_node, &threads->entries); 563 RB_CLEAR_NODE(&th->rb_node); 564 thread__put(th); 565 return NULL; 566 } 567 /* 568 * It is now in the rbtree, get a ref 569 */ 570 thread__get(th); 571 threads__set_last_match(threads, th); 572 ++threads->nr; 573 } 574 575 return th; 576 } 577 578 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid) 579 { 580 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true); 581 } 582 583 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, 584 pid_t tid) 585 { 586 struct threads *threads = machine__threads(machine, tid); 587 struct thread *th; 588 589 down_write(&threads->lock); 590 th = __machine__findnew_thread(machine, pid, tid); 591 up_write(&threads->lock); 592 return th; 593 } 594 595 struct thread *machine__find_thread(struct machine *machine, pid_t pid, 596 pid_t tid) 597 { 598 struct threads *threads = machine__threads(machine, tid); 599 struct thread *th; 600 601 down_read(&threads->lock); 602 th = ____machine__findnew_thread(machine, threads, pid, tid, false); 603 up_read(&threads->lock); 604 return th; 605 } 606 607 /* 608 * Threads are identified by pid and tid, and the idle task has pid == tid == 0. 609 * So here a single thread is created for that, but actually there is a separate 610 * idle task per cpu, so there should be one 'struct thread' per cpu, but there 611 * is only 1. That causes problems for some tools, requiring workarounds. For 612 * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu(). 613 */ 614 struct thread *machine__idle_thread(struct machine *machine) 615 { 616 struct thread *thread = machine__findnew_thread(machine, 0, 0); 617 618 if (!thread || thread__set_comm(thread, "swapper", 0) || 619 thread__set_namespaces(thread, 0, NULL)) 620 pr_err("problem inserting idle task for machine pid %d\n", machine->pid); 621 622 return thread; 623 } 624 625 struct comm *machine__thread_exec_comm(struct machine *machine, 626 struct thread *thread) 627 { 628 if (machine->comm_exec) 629 return thread__exec_comm(thread); 630 else 631 return thread__comm(thread); 632 } 633 634 int machine__process_comm_event(struct machine *machine, union perf_event *event, 635 struct perf_sample *sample) 636 { 637 struct thread *thread = machine__findnew_thread(machine, 638 event->comm.pid, 639 event->comm.tid); 640 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC; 641 int err = 0; 642 643 if (exec) 644 machine->comm_exec = true; 645 646 if (dump_trace) 647 perf_event__fprintf_comm(event, stdout); 648 649 if (thread == NULL || 650 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) { 651 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n"); 652 err = -1; 653 } 654 655 thread__put(thread); 656 657 return err; 658 } 659 660 int machine__process_namespaces_event(struct machine *machine __maybe_unused, 661 union perf_event *event, 662 struct perf_sample *sample __maybe_unused) 663 { 664 struct thread *thread = machine__findnew_thread(machine, 665 event->namespaces.pid, 666 event->namespaces.tid); 667 int err = 0; 668 669 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES, 670 "\nWARNING: kernel seems to support more namespaces than perf" 671 " tool.\nTry updating the perf tool..\n\n"); 672 673 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES, 674 "\nWARNING: perf tool seems to support more namespaces than" 675 " the kernel.\nTry updating the kernel..\n\n"); 676 677 if (dump_trace) 678 perf_event__fprintf_namespaces(event, stdout); 679 680 if (thread == NULL || 681 thread__set_namespaces(thread, sample->time, &event->namespaces)) { 682 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n"); 683 err = -1; 684 } 685 686 thread__put(thread); 687 688 return err; 689 } 690 691 int machine__process_cgroup_event(struct machine *machine, 692 union perf_event *event, 693 struct perf_sample *sample __maybe_unused) 694 { 695 struct cgroup *cgrp; 696 697 if (dump_trace) 698 perf_event__fprintf_cgroup(event, stdout); 699 700 cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path); 701 if (cgrp == NULL) 702 return -ENOMEM; 703 704 return 0; 705 } 706 707 int machine__process_lost_event(struct machine *machine __maybe_unused, 708 union perf_event *event, struct perf_sample *sample __maybe_unused) 709 { 710 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n", 711 event->lost.id, event->lost.lost); 712 return 0; 713 } 714 715 int machine__process_lost_samples_event(struct machine *machine __maybe_unused, 716 union perf_event *event, struct perf_sample *sample) 717 { 718 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n", 719 sample->id, event->lost_samples.lost); 720 return 0; 721 } 722 723 static struct dso *machine__findnew_module_dso(struct machine *machine, 724 struct kmod_path *m, 725 const char *filename) 726 { 727 struct dso *dso; 728 729 down_write(&machine->dsos.lock); 730 731 dso = __dsos__find(&machine->dsos, m->name, true); 732 if (!dso) { 733 dso = __dsos__addnew(&machine->dsos, m->name); 734 if (dso == NULL) 735 goto out_unlock; 736 737 dso__set_module_info(dso, m, machine); 738 dso__set_long_name(dso, strdup(filename), true); 739 dso->kernel = DSO_SPACE__KERNEL; 740 } 741 742 dso__get(dso); 743 out_unlock: 744 up_write(&machine->dsos.lock); 745 return dso; 746 } 747 748 int machine__process_aux_event(struct machine *machine __maybe_unused, 749 union perf_event *event) 750 { 751 if (dump_trace) 752 perf_event__fprintf_aux(event, stdout); 753 return 0; 754 } 755 756 int machine__process_itrace_start_event(struct machine *machine __maybe_unused, 757 union perf_event *event) 758 { 759 if (dump_trace) 760 perf_event__fprintf_itrace_start(event, stdout); 761 return 0; 762 } 763 764 int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused, 765 union perf_event *event) 766 { 767 if (dump_trace) 768 perf_event__fprintf_aux_output_hw_id(event, stdout); 769 return 0; 770 } 771 772 int machine__process_switch_event(struct machine *machine __maybe_unused, 773 union perf_event *event) 774 { 775 if (dump_trace) 776 perf_event__fprintf_switch(event, stdout); 777 return 0; 778 } 779 780 static int machine__process_ksymbol_register(struct machine *machine, 781 union perf_event *event, 782 struct perf_sample *sample __maybe_unused) 783 { 784 struct symbol *sym; 785 struct map *map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr); 786 787 if (!map) { 788 struct dso *dso = dso__new(event->ksymbol.name); 789 790 if (dso) { 791 dso->kernel = DSO_SPACE__KERNEL; 792 map = map__new2(0, dso); 793 dso__put(dso); 794 } 795 796 if (!dso || !map) { 797 return -ENOMEM; 798 } 799 800 if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) { 801 map->dso->binary_type = DSO_BINARY_TYPE__OOL; 802 map->dso->data.file_size = event->ksymbol.len; 803 dso__set_loaded(map->dso); 804 } 805 806 map->start = event->ksymbol.addr; 807 map->end = map->start + event->ksymbol.len; 808 maps__insert(machine__kernel_maps(machine), map); 809 map__put(map); 810 dso__set_loaded(dso); 811 812 if (is_bpf_image(event->ksymbol.name)) { 813 dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE; 814 dso__set_long_name(dso, "", false); 815 } 816 } 817 818 sym = symbol__new(map->map_ip(map, map->start), 819 event->ksymbol.len, 820 0, 0, event->ksymbol.name); 821 if (!sym) 822 return -ENOMEM; 823 dso__insert_symbol(map->dso, sym); 824 return 0; 825 } 826 827 static int machine__process_ksymbol_unregister(struct machine *machine, 828 union perf_event *event, 829 struct perf_sample *sample __maybe_unused) 830 { 831 struct symbol *sym; 832 struct map *map; 833 834 map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr); 835 if (!map) 836 return 0; 837 838 if (map != machine->vmlinux_map) 839 maps__remove(machine__kernel_maps(machine), map); 840 else { 841 sym = dso__find_symbol(map->dso, map->map_ip(map, map->start)); 842 if (sym) 843 dso__delete_symbol(map->dso, sym); 844 } 845 846 return 0; 847 } 848 849 int machine__process_ksymbol(struct machine *machine __maybe_unused, 850 union perf_event *event, 851 struct perf_sample *sample) 852 { 853 if (dump_trace) 854 perf_event__fprintf_ksymbol(event, stdout); 855 856 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER) 857 return machine__process_ksymbol_unregister(machine, event, 858 sample); 859 return machine__process_ksymbol_register(machine, event, sample); 860 } 861 862 int machine__process_text_poke(struct machine *machine, union perf_event *event, 863 struct perf_sample *sample __maybe_unused) 864 { 865 struct map *map = maps__find(machine__kernel_maps(machine), event->text_poke.addr); 866 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 867 868 if (dump_trace) 869 perf_event__fprintf_text_poke(event, machine, stdout); 870 871 if (!event->text_poke.new_len) 872 return 0; 873 874 if (cpumode != PERF_RECORD_MISC_KERNEL) { 875 pr_debug("%s: unsupported cpumode - ignoring\n", __func__); 876 return 0; 877 } 878 879 if (map && map->dso) { 880 u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len; 881 int ret; 882 883 /* 884 * Kernel maps might be changed when loading symbols so loading 885 * must be done prior to using kernel maps. 886 */ 887 map__load(map); 888 ret = dso__data_write_cache_addr(map->dso, map, machine, 889 event->text_poke.addr, 890 new_bytes, 891 event->text_poke.new_len); 892 if (ret != event->text_poke.new_len) 893 pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n", 894 event->text_poke.addr); 895 } else { 896 pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n", 897 event->text_poke.addr); 898 } 899 900 return 0; 901 } 902 903 static struct map *machine__addnew_module_map(struct machine *machine, u64 start, 904 const char *filename) 905 { 906 struct map *map = NULL; 907 struct kmod_path m; 908 struct dso *dso; 909 910 if (kmod_path__parse_name(&m, filename)) 911 return NULL; 912 913 dso = machine__findnew_module_dso(machine, &m, filename); 914 if (dso == NULL) 915 goto out; 916 917 map = map__new2(start, dso); 918 if (map == NULL) 919 goto out; 920 921 maps__insert(machine__kernel_maps(machine), map); 922 923 /* Put the map here because maps__insert already got it */ 924 map__put(map); 925 out: 926 /* put the dso here, corresponding to machine__findnew_module_dso */ 927 dso__put(dso); 928 zfree(&m.name); 929 return map; 930 } 931 932 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp) 933 { 934 struct rb_node *nd; 935 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp); 936 937 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 938 struct machine *pos = rb_entry(nd, struct machine, rb_node); 939 ret += __dsos__fprintf(&pos->dsos.head, fp); 940 } 941 942 return ret; 943 } 944 945 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp, 946 bool (skip)(struct dso *dso, int parm), int parm) 947 { 948 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm); 949 } 950 951 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp, 952 bool (skip)(struct dso *dso, int parm), int parm) 953 { 954 struct rb_node *nd; 955 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm); 956 957 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 958 struct machine *pos = rb_entry(nd, struct machine, rb_node); 959 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm); 960 } 961 return ret; 962 } 963 964 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp) 965 { 966 int i; 967 size_t printed = 0; 968 struct dso *kdso = machine__kernel_dso(machine); 969 970 if (kdso->has_build_id) { 971 char filename[PATH_MAX]; 972 if (dso__build_id_filename(kdso, filename, sizeof(filename), 973 false)) 974 printed += fprintf(fp, "[0] %s\n", filename); 975 } 976 977 for (i = 0; i < vmlinux_path__nr_entries; ++i) 978 printed += fprintf(fp, "[%d] %s\n", 979 i + kdso->has_build_id, vmlinux_path[i]); 980 981 return printed; 982 } 983 984 size_t machine__fprintf(struct machine *machine, FILE *fp) 985 { 986 struct rb_node *nd; 987 size_t ret; 988 int i; 989 990 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 991 struct threads *threads = &machine->threads[i]; 992 993 down_read(&threads->lock); 994 995 ret = fprintf(fp, "Threads: %u\n", threads->nr); 996 997 for (nd = rb_first_cached(&threads->entries); nd; 998 nd = rb_next(nd)) { 999 struct thread *pos = rb_entry(nd, struct thread, rb_node); 1000 1001 ret += thread__fprintf(pos, fp); 1002 } 1003 1004 up_read(&threads->lock); 1005 } 1006 return ret; 1007 } 1008 1009 static struct dso *machine__get_kernel(struct machine *machine) 1010 { 1011 const char *vmlinux_name = machine->mmap_name; 1012 struct dso *kernel; 1013 1014 if (machine__is_host(machine)) { 1015 if (symbol_conf.vmlinux_name) 1016 vmlinux_name = symbol_conf.vmlinux_name; 1017 1018 kernel = machine__findnew_kernel(machine, vmlinux_name, 1019 "[kernel]", DSO_SPACE__KERNEL); 1020 } else { 1021 if (symbol_conf.default_guest_vmlinux_name) 1022 vmlinux_name = symbol_conf.default_guest_vmlinux_name; 1023 1024 kernel = machine__findnew_kernel(machine, vmlinux_name, 1025 "[guest.kernel]", 1026 DSO_SPACE__KERNEL_GUEST); 1027 } 1028 1029 if (kernel != NULL && (!kernel->has_build_id)) 1030 dso__read_running_kernel_build_id(kernel, machine); 1031 1032 return kernel; 1033 } 1034 1035 struct process_args { 1036 u64 start; 1037 }; 1038 1039 void machine__get_kallsyms_filename(struct machine *machine, char *buf, 1040 size_t bufsz) 1041 { 1042 if (machine__is_default_guest(machine)) 1043 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms); 1044 else 1045 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir); 1046 } 1047 1048 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL}; 1049 1050 /* Figure out the start address of kernel map from /proc/kallsyms. 1051 * Returns the name of the start symbol in *symbol_name. Pass in NULL as 1052 * symbol_name if it's not that important. 1053 */ 1054 static int machine__get_running_kernel_start(struct machine *machine, 1055 const char **symbol_name, 1056 u64 *start, u64 *end) 1057 { 1058 char filename[PATH_MAX]; 1059 int i, err = -1; 1060 const char *name; 1061 u64 addr = 0; 1062 1063 machine__get_kallsyms_filename(machine, filename, PATH_MAX); 1064 1065 if (symbol__restricted_filename(filename, "/proc/kallsyms")) 1066 return 0; 1067 1068 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) { 1069 err = kallsyms__get_function_start(filename, name, &addr); 1070 if (!err) 1071 break; 1072 } 1073 1074 if (err) 1075 return -1; 1076 1077 if (symbol_name) 1078 *symbol_name = name; 1079 1080 *start = addr; 1081 1082 err = kallsyms__get_function_start(filename, "_etext", &addr); 1083 if (!err) 1084 *end = addr; 1085 1086 return 0; 1087 } 1088 1089 int machine__create_extra_kernel_map(struct machine *machine, 1090 struct dso *kernel, 1091 struct extra_kernel_map *xm) 1092 { 1093 struct kmap *kmap; 1094 struct map *map; 1095 1096 map = map__new2(xm->start, kernel); 1097 if (!map) 1098 return -1; 1099 1100 map->end = xm->end; 1101 map->pgoff = xm->pgoff; 1102 1103 kmap = map__kmap(map); 1104 1105 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN); 1106 1107 maps__insert(machine__kernel_maps(machine), map); 1108 1109 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n", 1110 kmap->name, map->start, map->end); 1111 1112 map__put(map); 1113 1114 return 0; 1115 } 1116 1117 static u64 find_entry_trampoline(struct dso *dso) 1118 { 1119 /* Duplicates are removed so lookup all aliases */ 1120 const char *syms[] = { 1121 "_entry_trampoline", 1122 "__entry_trampoline_start", 1123 "entry_SYSCALL_64_trampoline", 1124 }; 1125 struct symbol *sym = dso__first_symbol(dso); 1126 unsigned int i; 1127 1128 for (; sym; sym = dso__next_symbol(sym)) { 1129 if (sym->binding != STB_GLOBAL) 1130 continue; 1131 for (i = 0; i < ARRAY_SIZE(syms); i++) { 1132 if (!strcmp(sym->name, syms[i])) 1133 return sym->start; 1134 } 1135 } 1136 1137 return 0; 1138 } 1139 1140 /* 1141 * These values can be used for kernels that do not have symbols for the entry 1142 * trampolines in kallsyms. 1143 */ 1144 #define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL 1145 #define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000 1146 #define X86_64_ENTRY_TRAMPOLINE 0x6000 1147 1148 /* Map x86_64 PTI entry trampolines */ 1149 int machine__map_x86_64_entry_trampolines(struct machine *machine, 1150 struct dso *kernel) 1151 { 1152 struct maps *kmaps = machine__kernel_maps(machine); 1153 int nr_cpus_avail, cpu; 1154 bool found = false; 1155 struct map *map; 1156 u64 pgoff; 1157 1158 /* 1159 * In the vmlinux case, pgoff is a virtual address which must now be 1160 * mapped to a vmlinux offset. 1161 */ 1162 maps__for_each_entry(kmaps, map) { 1163 struct kmap *kmap = __map__kmap(map); 1164 struct map *dest_map; 1165 1166 if (!kmap || !is_entry_trampoline(kmap->name)) 1167 continue; 1168 1169 dest_map = maps__find(kmaps, map->pgoff); 1170 if (dest_map != map) 1171 map->pgoff = dest_map->map_ip(dest_map, map->pgoff); 1172 found = true; 1173 } 1174 if (found || machine->trampolines_mapped) 1175 return 0; 1176 1177 pgoff = find_entry_trampoline(kernel); 1178 if (!pgoff) 1179 return 0; 1180 1181 nr_cpus_avail = machine__nr_cpus_avail(machine); 1182 1183 /* Add a 1 page map for each CPU's entry trampoline */ 1184 for (cpu = 0; cpu < nr_cpus_avail; cpu++) { 1185 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU + 1186 cpu * X86_64_CPU_ENTRY_AREA_SIZE + 1187 X86_64_ENTRY_TRAMPOLINE; 1188 struct extra_kernel_map xm = { 1189 .start = va, 1190 .end = va + page_size, 1191 .pgoff = pgoff, 1192 }; 1193 1194 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN); 1195 1196 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0) 1197 return -1; 1198 } 1199 1200 machine->trampolines_mapped = nr_cpus_avail; 1201 1202 return 0; 1203 } 1204 1205 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused, 1206 struct dso *kernel __maybe_unused) 1207 { 1208 return 0; 1209 } 1210 1211 static int 1212 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel) 1213 { 1214 /* In case of renewal the kernel map, destroy previous one */ 1215 machine__destroy_kernel_maps(machine); 1216 1217 machine->vmlinux_map = map__new2(0, kernel); 1218 if (machine->vmlinux_map == NULL) 1219 return -1; 1220 1221 machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip; 1222 maps__insert(machine__kernel_maps(machine), machine->vmlinux_map); 1223 return 0; 1224 } 1225 1226 void machine__destroy_kernel_maps(struct machine *machine) 1227 { 1228 struct kmap *kmap; 1229 struct map *map = machine__kernel_map(machine); 1230 1231 if (map == NULL) 1232 return; 1233 1234 kmap = map__kmap(map); 1235 maps__remove(machine__kernel_maps(machine), map); 1236 if (kmap && kmap->ref_reloc_sym) { 1237 zfree((char **)&kmap->ref_reloc_sym->name); 1238 zfree(&kmap->ref_reloc_sym); 1239 } 1240 1241 map__zput(machine->vmlinux_map); 1242 } 1243 1244 int machines__create_guest_kernel_maps(struct machines *machines) 1245 { 1246 int ret = 0; 1247 struct dirent **namelist = NULL; 1248 int i, items = 0; 1249 char path[PATH_MAX]; 1250 pid_t pid; 1251 char *endp; 1252 1253 if (symbol_conf.default_guest_vmlinux_name || 1254 symbol_conf.default_guest_modules || 1255 symbol_conf.default_guest_kallsyms) { 1256 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID); 1257 } 1258 1259 if (symbol_conf.guestmount) { 1260 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL); 1261 if (items <= 0) 1262 return -ENOENT; 1263 for (i = 0; i < items; i++) { 1264 if (!isdigit(namelist[i]->d_name[0])) { 1265 /* Filter out . and .. */ 1266 continue; 1267 } 1268 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10); 1269 if ((*endp != '\0') || 1270 (endp == namelist[i]->d_name) || 1271 (errno == ERANGE)) { 1272 pr_debug("invalid directory (%s). Skipping.\n", 1273 namelist[i]->d_name); 1274 continue; 1275 } 1276 sprintf(path, "%s/%s/proc/kallsyms", 1277 symbol_conf.guestmount, 1278 namelist[i]->d_name); 1279 ret = access(path, R_OK); 1280 if (ret) { 1281 pr_debug("Can't access file %s\n", path); 1282 goto failure; 1283 } 1284 machines__create_kernel_maps(machines, pid); 1285 } 1286 failure: 1287 free(namelist); 1288 } 1289 1290 return ret; 1291 } 1292 1293 void machines__destroy_kernel_maps(struct machines *machines) 1294 { 1295 struct rb_node *next = rb_first_cached(&machines->guests); 1296 1297 machine__destroy_kernel_maps(&machines->host); 1298 1299 while (next) { 1300 struct machine *pos = rb_entry(next, struct machine, rb_node); 1301 1302 next = rb_next(&pos->rb_node); 1303 rb_erase_cached(&pos->rb_node, &machines->guests); 1304 machine__delete(pos); 1305 } 1306 } 1307 1308 int machines__create_kernel_maps(struct machines *machines, pid_t pid) 1309 { 1310 struct machine *machine = machines__findnew(machines, pid); 1311 1312 if (machine == NULL) 1313 return -1; 1314 1315 return machine__create_kernel_maps(machine); 1316 } 1317 1318 int machine__load_kallsyms(struct machine *machine, const char *filename) 1319 { 1320 struct map *map = machine__kernel_map(machine); 1321 int ret = __dso__load_kallsyms(map->dso, filename, map, true); 1322 1323 if (ret > 0) { 1324 dso__set_loaded(map->dso); 1325 /* 1326 * Since /proc/kallsyms will have multiple sessions for the 1327 * kernel, with modules between them, fixup the end of all 1328 * sections. 1329 */ 1330 maps__fixup_end(machine__kernel_maps(machine)); 1331 } 1332 1333 return ret; 1334 } 1335 1336 int machine__load_vmlinux_path(struct machine *machine) 1337 { 1338 struct map *map = machine__kernel_map(machine); 1339 int ret = dso__load_vmlinux_path(map->dso, map); 1340 1341 if (ret > 0) 1342 dso__set_loaded(map->dso); 1343 1344 return ret; 1345 } 1346 1347 static char *get_kernel_version(const char *root_dir) 1348 { 1349 char version[PATH_MAX]; 1350 FILE *file; 1351 char *name, *tmp; 1352 const char *prefix = "Linux version "; 1353 1354 sprintf(version, "%s/proc/version", root_dir); 1355 file = fopen(version, "r"); 1356 if (!file) 1357 return NULL; 1358 1359 tmp = fgets(version, sizeof(version), file); 1360 fclose(file); 1361 if (!tmp) 1362 return NULL; 1363 1364 name = strstr(version, prefix); 1365 if (!name) 1366 return NULL; 1367 name += strlen(prefix); 1368 tmp = strchr(name, ' '); 1369 if (tmp) 1370 *tmp = '\0'; 1371 1372 return strdup(name); 1373 } 1374 1375 static bool is_kmod_dso(struct dso *dso) 1376 { 1377 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE || 1378 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE; 1379 } 1380 1381 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m) 1382 { 1383 char *long_name; 1384 struct map *map = maps__find_by_name(maps, m->name); 1385 1386 if (map == NULL) 1387 return 0; 1388 1389 long_name = strdup(path); 1390 if (long_name == NULL) 1391 return -ENOMEM; 1392 1393 dso__set_long_name(map->dso, long_name, true); 1394 dso__kernel_module_get_build_id(map->dso, ""); 1395 1396 /* 1397 * Full name could reveal us kmod compression, so 1398 * we need to update the symtab_type if needed. 1399 */ 1400 if (m->comp && is_kmod_dso(map->dso)) { 1401 map->dso->symtab_type++; 1402 map->dso->comp = m->comp; 1403 } 1404 1405 return 0; 1406 } 1407 1408 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth) 1409 { 1410 struct dirent *dent; 1411 DIR *dir = opendir(dir_name); 1412 int ret = 0; 1413 1414 if (!dir) { 1415 pr_debug("%s: cannot open %s dir\n", __func__, dir_name); 1416 return -1; 1417 } 1418 1419 while ((dent = readdir(dir)) != NULL) { 1420 char path[PATH_MAX]; 1421 struct stat st; 1422 1423 /*sshfs might return bad dent->d_type, so we have to stat*/ 1424 path__join(path, sizeof(path), dir_name, dent->d_name); 1425 if (stat(path, &st)) 1426 continue; 1427 1428 if (S_ISDIR(st.st_mode)) { 1429 if (!strcmp(dent->d_name, ".") || 1430 !strcmp(dent->d_name, "..")) 1431 continue; 1432 1433 /* Do not follow top-level source and build symlinks */ 1434 if (depth == 0) { 1435 if (!strcmp(dent->d_name, "source") || 1436 !strcmp(dent->d_name, "build")) 1437 continue; 1438 } 1439 1440 ret = maps__set_modules_path_dir(maps, path, depth + 1); 1441 if (ret < 0) 1442 goto out; 1443 } else { 1444 struct kmod_path m; 1445 1446 ret = kmod_path__parse_name(&m, dent->d_name); 1447 if (ret) 1448 goto out; 1449 1450 if (m.kmod) 1451 ret = maps__set_module_path(maps, path, &m); 1452 1453 zfree(&m.name); 1454 1455 if (ret) 1456 goto out; 1457 } 1458 } 1459 1460 out: 1461 closedir(dir); 1462 return ret; 1463 } 1464 1465 static int machine__set_modules_path(struct machine *machine) 1466 { 1467 char *version; 1468 char modules_path[PATH_MAX]; 1469 1470 version = get_kernel_version(machine->root_dir); 1471 if (!version) 1472 return -1; 1473 1474 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s", 1475 machine->root_dir, version); 1476 free(version); 1477 1478 return maps__set_modules_path_dir(machine__kernel_maps(machine), modules_path, 0); 1479 } 1480 int __weak arch__fix_module_text_start(u64 *start __maybe_unused, 1481 u64 *size __maybe_unused, 1482 const char *name __maybe_unused) 1483 { 1484 return 0; 1485 } 1486 1487 static int machine__create_module(void *arg, const char *name, u64 start, 1488 u64 size) 1489 { 1490 struct machine *machine = arg; 1491 struct map *map; 1492 1493 if (arch__fix_module_text_start(&start, &size, name) < 0) 1494 return -1; 1495 1496 map = machine__addnew_module_map(machine, start, name); 1497 if (map == NULL) 1498 return -1; 1499 map->end = start + size; 1500 1501 dso__kernel_module_get_build_id(map->dso, machine->root_dir); 1502 1503 return 0; 1504 } 1505 1506 static int machine__create_modules(struct machine *machine) 1507 { 1508 const char *modules; 1509 char path[PATH_MAX]; 1510 1511 if (machine__is_default_guest(machine)) { 1512 modules = symbol_conf.default_guest_modules; 1513 } else { 1514 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir); 1515 modules = path; 1516 } 1517 1518 if (symbol__restricted_filename(modules, "/proc/modules")) 1519 return -1; 1520 1521 if (modules__parse(modules, machine, machine__create_module)) 1522 return -1; 1523 1524 if (!machine__set_modules_path(machine)) 1525 return 0; 1526 1527 pr_debug("Problems setting modules path maps, continuing anyway...\n"); 1528 1529 return 0; 1530 } 1531 1532 static void machine__set_kernel_mmap(struct machine *machine, 1533 u64 start, u64 end) 1534 { 1535 machine->vmlinux_map->start = start; 1536 machine->vmlinux_map->end = end; 1537 /* 1538 * Be a bit paranoid here, some perf.data file came with 1539 * a zero sized synthesized MMAP event for the kernel. 1540 */ 1541 if (start == 0 && end == 0) 1542 machine->vmlinux_map->end = ~0ULL; 1543 } 1544 1545 static void machine__update_kernel_mmap(struct machine *machine, 1546 u64 start, u64 end) 1547 { 1548 struct map *map = machine__kernel_map(machine); 1549 1550 map__get(map); 1551 maps__remove(machine__kernel_maps(machine), map); 1552 1553 machine__set_kernel_mmap(machine, start, end); 1554 1555 maps__insert(machine__kernel_maps(machine), map); 1556 map__put(map); 1557 } 1558 1559 int machine__create_kernel_maps(struct machine *machine) 1560 { 1561 struct dso *kernel = machine__get_kernel(machine); 1562 const char *name = NULL; 1563 struct map *map; 1564 u64 start = 0, end = ~0ULL; 1565 int ret; 1566 1567 if (kernel == NULL) 1568 return -1; 1569 1570 ret = __machine__create_kernel_maps(machine, kernel); 1571 if (ret < 0) 1572 goto out_put; 1573 1574 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) { 1575 if (machine__is_host(machine)) 1576 pr_debug("Problems creating module maps, " 1577 "continuing anyway...\n"); 1578 else 1579 pr_debug("Problems creating module maps for guest %d, " 1580 "continuing anyway...\n", machine->pid); 1581 } 1582 1583 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) { 1584 if (name && 1585 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) { 1586 machine__destroy_kernel_maps(machine); 1587 ret = -1; 1588 goto out_put; 1589 } 1590 1591 /* 1592 * we have a real start address now, so re-order the kmaps 1593 * assume it's the last in the kmaps 1594 */ 1595 machine__update_kernel_mmap(machine, start, end); 1596 } 1597 1598 if (machine__create_extra_kernel_maps(machine, kernel)) 1599 pr_debug("Problems creating extra kernel maps, continuing anyway...\n"); 1600 1601 if (end == ~0ULL) { 1602 /* update end address of the kernel map using adjacent module address */ 1603 map = map__next(machine__kernel_map(machine)); 1604 if (map) 1605 machine__set_kernel_mmap(machine, start, map->start); 1606 } 1607 1608 out_put: 1609 dso__put(kernel); 1610 return ret; 1611 } 1612 1613 static bool machine__uses_kcore(struct machine *machine) 1614 { 1615 struct dso *dso; 1616 1617 list_for_each_entry(dso, &machine->dsos.head, node) { 1618 if (dso__is_kcore(dso)) 1619 return true; 1620 } 1621 1622 return false; 1623 } 1624 1625 static bool perf_event__is_extra_kernel_mmap(struct machine *machine, 1626 struct extra_kernel_map *xm) 1627 { 1628 return machine__is(machine, "x86_64") && 1629 is_entry_trampoline(xm->name); 1630 } 1631 1632 static int machine__process_extra_kernel_map(struct machine *machine, 1633 struct extra_kernel_map *xm) 1634 { 1635 struct dso *kernel = machine__kernel_dso(machine); 1636 1637 if (kernel == NULL) 1638 return -1; 1639 1640 return machine__create_extra_kernel_map(machine, kernel, xm); 1641 } 1642 1643 static int machine__process_kernel_mmap_event(struct machine *machine, 1644 struct extra_kernel_map *xm, 1645 struct build_id *bid) 1646 { 1647 struct map *map; 1648 enum dso_space_type dso_space; 1649 bool is_kernel_mmap; 1650 1651 /* If we have maps from kcore then we do not need or want any others */ 1652 if (machine__uses_kcore(machine)) 1653 return 0; 1654 1655 if (machine__is_host(machine)) 1656 dso_space = DSO_SPACE__KERNEL; 1657 else 1658 dso_space = DSO_SPACE__KERNEL_GUEST; 1659 1660 is_kernel_mmap = memcmp(xm->name, machine->mmap_name, 1661 strlen(machine->mmap_name) - 1) == 0; 1662 if (xm->name[0] == '/' || 1663 (!is_kernel_mmap && xm->name[0] == '[')) { 1664 map = machine__addnew_module_map(machine, xm->start, 1665 xm->name); 1666 if (map == NULL) 1667 goto out_problem; 1668 1669 map->end = map->start + xm->end - xm->start; 1670 1671 if (build_id__is_defined(bid)) 1672 dso__set_build_id(map->dso, bid); 1673 1674 } else if (is_kernel_mmap) { 1675 const char *symbol_name = (xm->name + strlen(machine->mmap_name)); 1676 /* 1677 * Should be there already, from the build-id table in 1678 * the header. 1679 */ 1680 struct dso *kernel = NULL; 1681 struct dso *dso; 1682 1683 down_read(&machine->dsos.lock); 1684 1685 list_for_each_entry(dso, &machine->dsos.head, node) { 1686 1687 /* 1688 * The cpumode passed to is_kernel_module is not the 1689 * cpumode of *this* event. If we insist on passing 1690 * correct cpumode to is_kernel_module, we should 1691 * record the cpumode when we adding this dso to the 1692 * linked list. 1693 * 1694 * However we don't really need passing correct 1695 * cpumode. We know the correct cpumode must be kernel 1696 * mode (if not, we should not link it onto kernel_dsos 1697 * list). 1698 * 1699 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN. 1700 * is_kernel_module() treats it as a kernel cpumode. 1701 */ 1702 1703 if (!dso->kernel || 1704 is_kernel_module(dso->long_name, 1705 PERF_RECORD_MISC_CPUMODE_UNKNOWN)) 1706 continue; 1707 1708 1709 kernel = dso; 1710 break; 1711 } 1712 1713 up_read(&machine->dsos.lock); 1714 1715 if (kernel == NULL) 1716 kernel = machine__findnew_dso(machine, machine->mmap_name); 1717 if (kernel == NULL) 1718 goto out_problem; 1719 1720 kernel->kernel = dso_space; 1721 if (__machine__create_kernel_maps(machine, kernel) < 0) { 1722 dso__put(kernel); 1723 goto out_problem; 1724 } 1725 1726 if (strstr(kernel->long_name, "vmlinux")) 1727 dso__set_short_name(kernel, "[kernel.vmlinux]", false); 1728 1729 machine__update_kernel_mmap(machine, xm->start, xm->end); 1730 1731 if (build_id__is_defined(bid)) 1732 dso__set_build_id(kernel, bid); 1733 1734 /* 1735 * Avoid using a zero address (kptr_restrict) for the ref reloc 1736 * symbol. Effectively having zero here means that at record 1737 * time /proc/sys/kernel/kptr_restrict was non zero. 1738 */ 1739 if (xm->pgoff != 0) { 1740 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, 1741 symbol_name, 1742 xm->pgoff); 1743 } 1744 1745 if (machine__is_default_guest(machine)) { 1746 /* 1747 * preload dso of guest kernel and modules 1748 */ 1749 dso__load(kernel, machine__kernel_map(machine)); 1750 } 1751 } else if (perf_event__is_extra_kernel_mmap(machine, xm)) { 1752 return machine__process_extra_kernel_map(machine, xm); 1753 } 1754 return 0; 1755 out_problem: 1756 return -1; 1757 } 1758 1759 int machine__process_mmap2_event(struct machine *machine, 1760 union perf_event *event, 1761 struct perf_sample *sample) 1762 { 1763 struct thread *thread; 1764 struct map *map; 1765 struct dso_id dso_id = { 1766 .maj = event->mmap2.maj, 1767 .min = event->mmap2.min, 1768 .ino = event->mmap2.ino, 1769 .ino_generation = event->mmap2.ino_generation, 1770 }; 1771 struct build_id __bid, *bid = NULL; 1772 int ret = 0; 1773 1774 if (dump_trace) 1775 perf_event__fprintf_mmap2(event, stdout); 1776 1777 if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) { 1778 bid = &__bid; 1779 build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size); 1780 } 1781 1782 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1783 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1784 struct extra_kernel_map xm = { 1785 .start = event->mmap2.start, 1786 .end = event->mmap2.start + event->mmap2.len, 1787 .pgoff = event->mmap2.pgoff, 1788 }; 1789 1790 strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN); 1791 ret = machine__process_kernel_mmap_event(machine, &xm, bid); 1792 if (ret < 0) 1793 goto out_problem; 1794 return 0; 1795 } 1796 1797 thread = machine__findnew_thread(machine, event->mmap2.pid, 1798 event->mmap2.tid); 1799 if (thread == NULL) 1800 goto out_problem; 1801 1802 map = map__new(machine, event->mmap2.start, 1803 event->mmap2.len, event->mmap2.pgoff, 1804 &dso_id, event->mmap2.prot, 1805 event->mmap2.flags, bid, 1806 event->mmap2.filename, thread); 1807 1808 if (map == NULL) 1809 goto out_problem_map; 1810 1811 ret = thread__insert_map(thread, map); 1812 if (ret) 1813 goto out_problem_insert; 1814 1815 thread__put(thread); 1816 map__put(map); 1817 return 0; 1818 1819 out_problem_insert: 1820 map__put(map); 1821 out_problem_map: 1822 thread__put(thread); 1823 out_problem: 1824 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n"); 1825 return 0; 1826 } 1827 1828 int machine__process_mmap_event(struct machine *machine, union perf_event *event, 1829 struct perf_sample *sample) 1830 { 1831 struct thread *thread; 1832 struct map *map; 1833 u32 prot = 0; 1834 int ret = 0; 1835 1836 if (dump_trace) 1837 perf_event__fprintf_mmap(event, stdout); 1838 1839 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1840 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1841 struct extra_kernel_map xm = { 1842 .start = event->mmap.start, 1843 .end = event->mmap.start + event->mmap.len, 1844 .pgoff = event->mmap.pgoff, 1845 }; 1846 1847 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN); 1848 ret = machine__process_kernel_mmap_event(machine, &xm, NULL); 1849 if (ret < 0) 1850 goto out_problem; 1851 return 0; 1852 } 1853 1854 thread = machine__findnew_thread(machine, event->mmap.pid, 1855 event->mmap.tid); 1856 if (thread == NULL) 1857 goto out_problem; 1858 1859 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA)) 1860 prot = PROT_EXEC; 1861 1862 map = map__new(machine, event->mmap.start, 1863 event->mmap.len, event->mmap.pgoff, 1864 NULL, prot, 0, NULL, event->mmap.filename, thread); 1865 1866 if (map == NULL) 1867 goto out_problem_map; 1868 1869 ret = thread__insert_map(thread, map); 1870 if (ret) 1871 goto out_problem_insert; 1872 1873 thread__put(thread); 1874 map__put(map); 1875 return 0; 1876 1877 out_problem_insert: 1878 map__put(map); 1879 out_problem_map: 1880 thread__put(thread); 1881 out_problem: 1882 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n"); 1883 return 0; 1884 } 1885 1886 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock) 1887 { 1888 struct threads *threads = machine__threads(machine, th->tid); 1889 1890 if (threads->last_match == th) 1891 threads__set_last_match(threads, NULL); 1892 1893 if (lock) 1894 down_write(&threads->lock); 1895 1896 BUG_ON(refcount_read(&th->refcnt) == 0); 1897 1898 rb_erase_cached(&th->rb_node, &threads->entries); 1899 RB_CLEAR_NODE(&th->rb_node); 1900 --threads->nr; 1901 /* 1902 * Move it first to the dead_threads list, then drop the reference, 1903 * if this is the last reference, then the thread__delete destructor 1904 * will be called and we will remove it from the dead_threads list. 1905 */ 1906 list_add_tail(&th->node, &threads->dead); 1907 1908 /* 1909 * We need to do the put here because if this is the last refcount, 1910 * then we will be touching the threads->dead head when removing the 1911 * thread. 1912 */ 1913 thread__put(th); 1914 1915 if (lock) 1916 up_write(&threads->lock); 1917 } 1918 1919 void machine__remove_thread(struct machine *machine, struct thread *th) 1920 { 1921 return __machine__remove_thread(machine, th, true); 1922 } 1923 1924 int machine__process_fork_event(struct machine *machine, union perf_event *event, 1925 struct perf_sample *sample) 1926 { 1927 struct thread *thread = machine__find_thread(machine, 1928 event->fork.pid, 1929 event->fork.tid); 1930 struct thread *parent = machine__findnew_thread(machine, 1931 event->fork.ppid, 1932 event->fork.ptid); 1933 bool do_maps_clone = true; 1934 int err = 0; 1935 1936 if (dump_trace) 1937 perf_event__fprintf_task(event, stdout); 1938 1939 /* 1940 * There may be an existing thread that is not actually the parent, 1941 * either because we are processing events out of order, or because the 1942 * (fork) event that would have removed the thread was lost. Assume the 1943 * latter case and continue on as best we can. 1944 */ 1945 if (parent->pid_ != (pid_t)event->fork.ppid) { 1946 dump_printf("removing erroneous parent thread %d/%d\n", 1947 parent->pid_, parent->tid); 1948 machine__remove_thread(machine, parent); 1949 thread__put(parent); 1950 parent = machine__findnew_thread(machine, event->fork.ppid, 1951 event->fork.ptid); 1952 } 1953 1954 /* if a thread currently exists for the thread id remove it */ 1955 if (thread != NULL) { 1956 machine__remove_thread(machine, thread); 1957 thread__put(thread); 1958 } 1959 1960 thread = machine__findnew_thread(machine, event->fork.pid, 1961 event->fork.tid); 1962 /* 1963 * When synthesizing FORK events, we are trying to create thread 1964 * objects for the already running tasks on the machine. 1965 * 1966 * Normally, for a kernel FORK event, we want to clone the parent's 1967 * maps because that is what the kernel just did. 1968 * 1969 * But when synthesizing, this should not be done. If we do, we end up 1970 * with overlapping maps as we process the synthesized MMAP2 events that 1971 * get delivered shortly thereafter. 1972 * 1973 * Use the FORK event misc flags in an internal way to signal this 1974 * situation, so we can elide the map clone when appropriate. 1975 */ 1976 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC) 1977 do_maps_clone = false; 1978 1979 if (thread == NULL || parent == NULL || 1980 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) { 1981 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n"); 1982 err = -1; 1983 } 1984 thread__put(thread); 1985 thread__put(parent); 1986 1987 return err; 1988 } 1989 1990 int machine__process_exit_event(struct machine *machine, union perf_event *event, 1991 struct perf_sample *sample __maybe_unused) 1992 { 1993 struct thread *thread = machine__find_thread(machine, 1994 event->fork.pid, 1995 event->fork.tid); 1996 1997 if (dump_trace) 1998 perf_event__fprintf_task(event, stdout); 1999 2000 if (thread != NULL) { 2001 thread__exited(thread); 2002 thread__put(thread); 2003 } 2004 2005 return 0; 2006 } 2007 2008 int machine__process_event(struct machine *machine, union perf_event *event, 2009 struct perf_sample *sample) 2010 { 2011 int ret; 2012 2013 switch (event->header.type) { 2014 case PERF_RECORD_COMM: 2015 ret = machine__process_comm_event(machine, event, sample); break; 2016 case PERF_RECORD_MMAP: 2017 ret = machine__process_mmap_event(machine, event, sample); break; 2018 case PERF_RECORD_NAMESPACES: 2019 ret = machine__process_namespaces_event(machine, event, sample); break; 2020 case PERF_RECORD_CGROUP: 2021 ret = machine__process_cgroup_event(machine, event, sample); break; 2022 case PERF_RECORD_MMAP2: 2023 ret = machine__process_mmap2_event(machine, event, sample); break; 2024 case PERF_RECORD_FORK: 2025 ret = machine__process_fork_event(machine, event, sample); break; 2026 case PERF_RECORD_EXIT: 2027 ret = machine__process_exit_event(machine, event, sample); break; 2028 case PERF_RECORD_LOST: 2029 ret = machine__process_lost_event(machine, event, sample); break; 2030 case PERF_RECORD_AUX: 2031 ret = machine__process_aux_event(machine, event); break; 2032 case PERF_RECORD_ITRACE_START: 2033 ret = machine__process_itrace_start_event(machine, event); break; 2034 case PERF_RECORD_LOST_SAMPLES: 2035 ret = machine__process_lost_samples_event(machine, event, sample); break; 2036 case PERF_RECORD_SWITCH: 2037 case PERF_RECORD_SWITCH_CPU_WIDE: 2038 ret = machine__process_switch_event(machine, event); break; 2039 case PERF_RECORD_KSYMBOL: 2040 ret = machine__process_ksymbol(machine, event, sample); break; 2041 case PERF_RECORD_BPF_EVENT: 2042 ret = machine__process_bpf(machine, event, sample); break; 2043 case PERF_RECORD_TEXT_POKE: 2044 ret = machine__process_text_poke(machine, event, sample); break; 2045 case PERF_RECORD_AUX_OUTPUT_HW_ID: 2046 ret = machine__process_aux_output_hw_id_event(machine, event); break; 2047 default: 2048 ret = -1; 2049 break; 2050 } 2051 2052 return ret; 2053 } 2054 2055 static bool symbol__match_regex(struct symbol *sym, regex_t *regex) 2056 { 2057 if (!regexec(regex, sym->name, 0, NULL, 0)) 2058 return true; 2059 return false; 2060 } 2061 2062 static void ip__resolve_ams(struct thread *thread, 2063 struct addr_map_symbol *ams, 2064 u64 ip) 2065 { 2066 struct addr_location al; 2067 2068 memset(&al, 0, sizeof(al)); 2069 /* 2070 * We cannot use the header.misc hint to determine whether a 2071 * branch stack address is user, kernel, guest, hypervisor. 2072 * Branches may straddle the kernel/user/hypervisor boundaries. 2073 * Thus, we have to try consecutively until we find a match 2074 * or else, the symbol is unknown 2075 */ 2076 thread__find_cpumode_addr_location(thread, ip, &al); 2077 2078 ams->addr = ip; 2079 ams->al_addr = al.addr; 2080 ams->al_level = al.level; 2081 ams->ms.maps = al.maps; 2082 ams->ms.sym = al.sym; 2083 ams->ms.map = al.map; 2084 ams->phys_addr = 0; 2085 ams->data_page_size = 0; 2086 } 2087 2088 static void ip__resolve_data(struct thread *thread, 2089 u8 m, struct addr_map_symbol *ams, 2090 u64 addr, u64 phys_addr, u64 daddr_page_size) 2091 { 2092 struct addr_location al; 2093 2094 memset(&al, 0, sizeof(al)); 2095 2096 thread__find_symbol(thread, m, addr, &al); 2097 2098 ams->addr = addr; 2099 ams->al_addr = al.addr; 2100 ams->al_level = al.level; 2101 ams->ms.maps = al.maps; 2102 ams->ms.sym = al.sym; 2103 ams->ms.map = al.map; 2104 ams->phys_addr = phys_addr; 2105 ams->data_page_size = daddr_page_size; 2106 } 2107 2108 struct mem_info *sample__resolve_mem(struct perf_sample *sample, 2109 struct addr_location *al) 2110 { 2111 struct mem_info *mi = mem_info__new(); 2112 2113 if (!mi) 2114 return NULL; 2115 2116 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip); 2117 ip__resolve_data(al->thread, al->cpumode, &mi->daddr, 2118 sample->addr, sample->phys_addr, 2119 sample->data_page_size); 2120 mi->data_src.val = sample->data_src; 2121 2122 return mi; 2123 } 2124 2125 static char *callchain_srcline(struct map_symbol *ms, u64 ip) 2126 { 2127 struct map *map = ms->map; 2128 char *srcline = NULL; 2129 2130 if (!map || callchain_param.key == CCKEY_FUNCTION) 2131 return srcline; 2132 2133 srcline = srcline__tree_find(&map->dso->srclines, ip); 2134 if (!srcline) { 2135 bool show_sym = false; 2136 bool show_addr = callchain_param.key == CCKEY_ADDRESS; 2137 2138 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip), 2139 ms->sym, show_sym, show_addr, ip); 2140 srcline__tree_insert(&map->dso->srclines, ip, srcline); 2141 } 2142 2143 return srcline; 2144 } 2145 2146 struct iterations { 2147 int nr_loop_iter; 2148 u64 cycles; 2149 }; 2150 2151 static int add_callchain_ip(struct thread *thread, 2152 struct callchain_cursor *cursor, 2153 struct symbol **parent, 2154 struct addr_location *root_al, 2155 u8 *cpumode, 2156 u64 ip, 2157 bool branch, 2158 struct branch_flags *flags, 2159 struct iterations *iter, 2160 u64 branch_from) 2161 { 2162 struct map_symbol ms; 2163 struct addr_location al; 2164 int nr_loop_iter = 0; 2165 u64 iter_cycles = 0; 2166 const char *srcline = NULL; 2167 2168 al.filtered = 0; 2169 al.sym = NULL; 2170 al.srcline = NULL; 2171 if (!cpumode) { 2172 thread__find_cpumode_addr_location(thread, ip, &al); 2173 } else { 2174 if (ip >= PERF_CONTEXT_MAX) { 2175 switch (ip) { 2176 case PERF_CONTEXT_HV: 2177 *cpumode = PERF_RECORD_MISC_HYPERVISOR; 2178 break; 2179 case PERF_CONTEXT_KERNEL: 2180 *cpumode = PERF_RECORD_MISC_KERNEL; 2181 break; 2182 case PERF_CONTEXT_USER: 2183 *cpumode = PERF_RECORD_MISC_USER; 2184 break; 2185 default: 2186 pr_debug("invalid callchain context: " 2187 "%"PRId64"\n", (s64) ip); 2188 /* 2189 * It seems the callchain is corrupted. 2190 * Discard all. 2191 */ 2192 callchain_cursor_reset(cursor); 2193 return 1; 2194 } 2195 return 0; 2196 } 2197 thread__find_symbol(thread, *cpumode, ip, &al); 2198 } 2199 2200 if (al.sym != NULL) { 2201 if (perf_hpp_list.parent && !*parent && 2202 symbol__match_regex(al.sym, &parent_regex)) 2203 *parent = al.sym; 2204 else if (have_ignore_callees && root_al && 2205 symbol__match_regex(al.sym, &ignore_callees_regex)) { 2206 /* Treat this symbol as the root, 2207 forgetting its callees. */ 2208 *root_al = al; 2209 callchain_cursor_reset(cursor); 2210 } 2211 } 2212 2213 if (symbol_conf.hide_unresolved && al.sym == NULL) 2214 return 0; 2215 2216 if (iter) { 2217 nr_loop_iter = iter->nr_loop_iter; 2218 iter_cycles = iter->cycles; 2219 } 2220 2221 ms.maps = al.maps; 2222 ms.map = al.map; 2223 ms.sym = al.sym; 2224 srcline = callchain_srcline(&ms, al.addr); 2225 return callchain_cursor_append(cursor, ip, &ms, 2226 branch, flags, nr_loop_iter, 2227 iter_cycles, branch_from, srcline); 2228 } 2229 2230 struct branch_info *sample__resolve_bstack(struct perf_sample *sample, 2231 struct addr_location *al) 2232 { 2233 unsigned int i; 2234 const struct branch_stack *bs = sample->branch_stack; 2235 struct branch_entry *entries = perf_sample__branch_entries(sample); 2236 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info)); 2237 2238 if (!bi) 2239 return NULL; 2240 2241 for (i = 0; i < bs->nr; i++) { 2242 ip__resolve_ams(al->thread, &bi[i].to, entries[i].to); 2243 ip__resolve_ams(al->thread, &bi[i].from, entries[i].from); 2244 bi[i].flags = entries[i].flags; 2245 } 2246 return bi; 2247 } 2248 2249 static void save_iterations(struct iterations *iter, 2250 struct branch_entry *be, int nr) 2251 { 2252 int i; 2253 2254 iter->nr_loop_iter++; 2255 iter->cycles = 0; 2256 2257 for (i = 0; i < nr; i++) 2258 iter->cycles += be[i].flags.cycles; 2259 } 2260 2261 #define CHASHSZ 127 2262 #define CHASHBITS 7 2263 #define NO_ENTRY 0xff 2264 2265 #define PERF_MAX_BRANCH_DEPTH 127 2266 2267 /* Remove loops. */ 2268 static int remove_loops(struct branch_entry *l, int nr, 2269 struct iterations *iter) 2270 { 2271 int i, j, off; 2272 unsigned char chash[CHASHSZ]; 2273 2274 memset(chash, NO_ENTRY, sizeof(chash)); 2275 2276 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255); 2277 2278 for (i = 0; i < nr; i++) { 2279 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ; 2280 2281 /* no collision handling for now */ 2282 if (chash[h] == NO_ENTRY) { 2283 chash[h] = i; 2284 } else if (l[chash[h]].from == l[i].from) { 2285 bool is_loop = true; 2286 /* check if it is a real loop */ 2287 off = 0; 2288 for (j = chash[h]; j < i && i + off < nr; j++, off++) 2289 if (l[j].from != l[i + off].from) { 2290 is_loop = false; 2291 break; 2292 } 2293 if (is_loop) { 2294 j = nr - (i + off); 2295 if (j > 0) { 2296 save_iterations(iter + i + off, 2297 l + i, off); 2298 2299 memmove(iter + i, iter + i + off, 2300 j * sizeof(*iter)); 2301 2302 memmove(l + i, l + i + off, 2303 j * sizeof(*l)); 2304 } 2305 2306 nr -= off; 2307 } 2308 } 2309 } 2310 return nr; 2311 } 2312 2313 static int lbr_callchain_add_kernel_ip(struct thread *thread, 2314 struct callchain_cursor *cursor, 2315 struct perf_sample *sample, 2316 struct symbol **parent, 2317 struct addr_location *root_al, 2318 u64 branch_from, 2319 bool callee, int end) 2320 { 2321 struct ip_callchain *chain = sample->callchain; 2322 u8 cpumode = PERF_RECORD_MISC_USER; 2323 int err, i; 2324 2325 if (callee) { 2326 for (i = 0; i < end + 1; i++) { 2327 err = add_callchain_ip(thread, cursor, parent, 2328 root_al, &cpumode, chain->ips[i], 2329 false, NULL, NULL, branch_from); 2330 if (err) 2331 return err; 2332 } 2333 return 0; 2334 } 2335 2336 for (i = end; i >= 0; i--) { 2337 err = add_callchain_ip(thread, cursor, parent, 2338 root_al, &cpumode, chain->ips[i], 2339 false, NULL, NULL, branch_from); 2340 if (err) 2341 return err; 2342 } 2343 2344 return 0; 2345 } 2346 2347 static void save_lbr_cursor_node(struct thread *thread, 2348 struct callchain_cursor *cursor, 2349 int idx) 2350 { 2351 struct lbr_stitch *lbr_stitch = thread->lbr_stitch; 2352 2353 if (!lbr_stitch) 2354 return; 2355 2356 if (cursor->pos == cursor->nr) { 2357 lbr_stitch->prev_lbr_cursor[idx].valid = false; 2358 return; 2359 } 2360 2361 if (!cursor->curr) 2362 cursor->curr = cursor->first; 2363 else 2364 cursor->curr = cursor->curr->next; 2365 memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr, 2366 sizeof(struct callchain_cursor_node)); 2367 2368 lbr_stitch->prev_lbr_cursor[idx].valid = true; 2369 cursor->pos++; 2370 } 2371 2372 static int lbr_callchain_add_lbr_ip(struct thread *thread, 2373 struct callchain_cursor *cursor, 2374 struct perf_sample *sample, 2375 struct symbol **parent, 2376 struct addr_location *root_al, 2377 u64 *branch_from, 2378 bool callee) 2379 { 2380 struct branch_stack *lbr_stack = sample->branch_stack; 2381 struct branch_entry *entries = perf_sample__branch_entries(sample); 2382 u8 cpumode = PERF_RECORD_MISC_USER; 2383 int lbr_nr = lbr_stack->nr; 2384 struct branch_flags *flags; 2385 int err, i; 2386 u64 ip; 2387 2388 /* 2389 * The curr and pos are not used in writing session. They are cleared 2390 * in callchain_cursor_commit() when the writing session is closed. 2391 * Using curr and pos to track the current cursor node. 2392 */ 2393 if (thread->lbr_stitch) { 2394 cursor->curr = NULL; 2395 cursor->pos = cursor->nr; 2396 if (cursor->nr) { 2397 cursor->curr = cursor->first; 2398 for (i = 0; i < (int)(cursor->nr - 1); i++) 2399 cursor->curr = cursor->curr->next; 2400 } 2401 } 2402 2403 if (callee) { 2404 /* Add LBR ip from first entries.to */ 2405 ip = entries[0].to; 2406 flags = &entries[0].flags; 2407 *branch_from = entries[0].from; 2408 err = add_callchain_ip(thread, cursor, parent, 2409 root_al, &cpumode, ip, 2410 true, flags, NULL, 2411 *branch_from); 2412 if (err) 2413 return err; 2414 2415 /* 2416 * The number of cursor node increases. 2417 * Move the current cursor node. 2418 * But does not need to save current cursor node for entry 0. 2419 * It's impossible to stitch the whole LBRs of previous sample. 2420 */ 2421 if (thread->lbr_stitch && (cursor->pos != cursor->nr)) { 2422 if (!cursor->curr) 2423 cursor->curr = cursor->first; 2424 else 2425 cursor->curr = cursor->curr->next; 2426 cursor->pos++; 2427 } 2428 2429 /* Add LBR ip from entries.from one by one. */ 2430 for (i = 0; i < lbr_nr; i++) { 2431 ip = entries[i].from; 2432 flags = &entries[i].flags; 2433 err = add_callchain_ip(thread, cursor, parent, 2434 root_al, &cpumode, ip, 2435 true, flags, NULL, 2436 *branch_from); 2437 if (err) 2438 return err; 2439 save_lbr_cursor_node(thread, cursor, i); 2440 } 2441 return 0; 2442 } 2443 2444 /* Add LBR ip from entries.from one by one. */ 2445 for (i = lbr_nr - 1; i >= 0; i--) { 2446 ip = entries[i].from; 2447 flags = &entries[i].flags; 2448 err = add_callchain_ip(thread, cursor, parent, 2449 root_al, &cpumode, ip, 2450 true, flags, NULL, 2451 *branch_from); 2452 if (err) 2453 return err; 2454 save_lbr_cursor_node(thread, cursor, i); 2455 } 2456 2457 /* Add LBR ip from first entries.to */ 2458 ip = entries[0].to; 2459 flags = &entries[0].flags; 2460 *branch_from = entries[0].from; 2461 err = add_callchain_ip(thread, cursor, parent, 2462 root_al, &cpumode, ip, 2463 true, flags, NULL, 2464 *branch_from); 2465 if (err) 2466 return err; 2467 2468 return 0; 2469 } 2470 2471 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread, 2472 struct callchain_cursor *cursor) 2473 { 2474 struct lbr_stitch *lbr_stitch = thread->lbr_stitch; 2475 struct callchain_cursor_node *cnode; 2476 struct stitch_list *stitch_node; 2477 int err; 2478 2479 list_for_each_entry(stitch_node, &lbr_stitch->lists, node) { 2480 cnode = &stitch_node->cursor; 2481 2482 err = callchain_cursor_append(cursor, cnode->ip, 2483 &cnode->ms, 2484 cnode->branch, 2485 &cnode->branch_flags, 2486 cnode->nr_loop_iter, 2487 cnode->iter_cycles, 2488 cnode->branch_from, 2489 cnode->srcline); 2490 if (err) 2491 return err; 2492 } 2493 return 0; 2494 } 2495 2496 static struct stitch_list *get_stitch_node(struct thread *thread) 2497 { 2498 struct lbr_stitch *lbr_stitch = thread->lbr_stitch; 2499 struct stitch_list *stitch_node; 2500 2501 if (!list_empty(&lbr_stitch->free_lists)) { 2502 stitch_node = list_first_entry(&lbr_stitch->free_lists, 2503 struct stitch_list, node); 2504 list_del(&stitch_node->node); 2505 2506 return stitch_node; 2507 } 2508 2509 return malloc(sizeof(struct stitch_list)); 2510 } 2511 2512 static bool has_stitched_lbr(struct thread *thread, 2513 struct perf_sample *cur, 2514 struct perf_sample *prev, 2515 unsigned int max_lbr, 2516 bool callee) 2517 { 2518 struct branch_stack *cur_stack = cur->branch_stack; 2519 struct branch_entry *cur_entries = perf_sample__branch_entries(cur); 2520 struct branch_stack *prev_stack = prev->branch_stack; 2521 struct branch_entry *prev_entries = perf_sample__branch_entries(prev); 2522 struct lbr_stitch *lbr_stitch = thread->lbr_stitch; 2523 int i, j, nr_identical_branches = 0; 2524 struct stitch_list *stitch_node; 2525 u64 cur_base, distance; 2526 2527 if (!cur_stack || !prev_stack) 2528 return false; 2529 2530 /* Find the physical index of the base-of-stack for current sample. */ 2531 cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1; 2532 2533 distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) : 2534 (max_lbr + prev_stack->hw_idx - cur_base); 2535 /* Previous sample has shorter stack. Nothing can be stitched. */ 2536 if (distance + 1 > prev_stack->nr) 2537 return false; 2538 2539 /* 2540 * Check if there are identical LBRs between two samples. 2541 * Identical LBRs must have same from, to and flags values. Also, 2542 * they have to be saved in the same LBR registers (same physical 2543 * index). 2544 * 2545 * Starts from the base-of-stack of current sample. 2546 */ 2547 for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) { 2548 if ((prev_entries[i].from != cur_entries[j].from) || 2549 (prev_entries[i].to != cur_entries[j].to) || 2550 (prev_entries[i].flags.value != cur_entries[j].flags.value)) 2551 break; 2552 nr_identical_branches++; 2553 } 2554 2555 if (!nr_identical_branches) 2556 return false; 2557 2558 /* 2559 * Save the LBRs between the base-of-stack of previous sample 2560 * and the base-of-stack of current sample into lbr_stitch->lists. 2561 * These LBRs will be stitched later. 2562 */ 2563 for (i = prev_stack->nr - 1; i > (int)distance; i--) { 2564 2565 if (!lbr_stitch->prev_lbr_cursor[i].valid) 2566 continue; 2567 2568 stitch_node = get_stitch_node(thread); 2569 if (!stitch_node) 2570 return false; 2571 2572 memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i], 2573 sizeof(struct callchain_cursor_node)); 2574 2575 if (callee) 2576 list_add(&stitch_node->node, &lbr_stitch->lists); 2577 else 2578 list_add_tail(&stitch_node->node, &lbr_stitch->lists); 2579 } 2580 2581 return true; 2582 } 2583 2584 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr) 2585 { 2586 if (thread->lbr_stitch) 2587 return true; 2588 2589 thread->lbr_stitch = zalloc(sizeof(*thread->lbr_stitch)); 2590 if (!thread->lbr_stitch) 2591 goto err; 2592 2593 thread->lbr_stitch->prev_lbr_cursor = calloc(max_lbr + 1, sizeof(struct callchain_cursor_node)); 2594 if (!thread->lbr_stitch->prev_lbr_cursor) 2595 goto free_lbr_stitch; 2596 2597 INIT_LIST_HEAD(&thread->lbr_stitch->lists); 2598 INIT_LIST_HEAD(&thread->lbr_stitch->free_lists); 2599 2600 return true; 2601 2602 free_lbr_stitch: 2603 zfree(&thread->lbr_stitch); 2604 err: 2605 pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n"); 2606 thread->lbr_stitch_enable = false; 2607 return false; 2608 } 2609 2610 /* 2611 * Resolve LBR callstack chain sample 2612 * Return: 2613 * 1 on success get LBR callchain information 2614 * 0 no available LBR callchain information, should try fp 2615 * negative error code on other errors. 2616 */ 2617 static int resolve_lbr_callchain_sample(struct thread *thread, 2618 struct callchain_cursor *cursor, 2619 struct perf_sample *sample, 2620 struct symbol **parent, 2621 struct addr_location *root_al, 2622 int max_stack, 2623 unsigned int max_lbr) 2624 { 2625 bool callee = (callchain_param.order == ORDER_CALLEE); 2626 struct ip_callchain *chain = sample->callchain; 2627 int chain_nr = min(max_stack, (int)chain->nr), i; 2628 struct lbr_stitch *lbr_stitch; 2629 bool stitched_lbr = false; 2630 u64 branch_from = 0; 2631 int err; 2632 2633 for (i = 0; i < chain_nr; i++) { 2634 if (chain->ips[i] == PERF_CONTEXT_USER) 2635 break; 2636 } 2637 2638 /* LBR only affects the user callchain */ 2639 if (i == chain_nr) 2640 return 0; 2641 2642 if (thread->lbr_stitch_enable && !sample->no_hw_idx && 2643 (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) { 2644 lbr_stitch = thread->lbr_stitch; 2645 2646 stitched_lbr = has_stitched_lbr(thread, sample, 2647 &lbr_stitch->prev_sample, 2648 max_lbr, callee); 2649 2650 if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) { 2651 list_replace_init(&lbr_stitch->lists, 2652 &lbr_stitch->free_lists); 2653 } 2654 memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample)); 2655 } 2656 2657 if (callee) { 2658 /* Add kernel ip */ 2659 err = lbr_callchain_add_kernel_ip(thread, cursor, sample, 2660 parent, root_al, branch_from, 2661 true, i); 2662 if (err) 2663 goto error; 2664 2665 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent, 2666 root_al, &branch_from, true); 2667 if (err) 2668 goto error; 2669 2670 if (stitched_lbr) { 2671 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor); 2672 if (err) 2673 goto error; 2674 } 2675 2676 } else { 2677 if (stitched_lbr) { 2678 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor); 2679 if (err) 2680 goto error; 2681 } 2682 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent, 2683 root_al, &branch_from, false); 2684 if (err) 2685 goto error; 2686 2687 /* Add kernel ip */ 2688 err = lbr_callchain_add_kernel_ip(thread, cursor, sample, 2689 parent, root_al, branch_from, 2690 false, i); 2691 if (err) 2692 goto error; 2693 } 2694 return 1; 2695 2696 error: 2697 return (err < 0) ? err : 0; 2698 } 2699 2700 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread, 2701 struct callchain_cursor *cursor, 2702 struct symbol **parent, 2703 struct addr_location *root_al, 2704 u8 *cpumode, int ent) 2705 { 2706 int err = 0; 2707 2708 while (--ent >= 0) { 2709 u64 ip = chain->ips[ent]; 2710 2711 if (ip >= PERF_CONTEXT_MAX) { 2712 err = add_callchain_ip(thread, cursor, parent, 2713 root_al, cpumode, ip, 2714 false, NULL, NULL, 0); 2715 break; 2716 } 2717 } 2718 return err; 2719 } 2720 2721 static u64 get_leaf_frame_caller(struct perf_sample *sample, 2722 struct thread *thread, int usr_idx) 2723 { 2724 if (machine__normalized_is(thread->maps->machine, "arm64")) 2725 return get_leaf_frame_caller_aarch64(sample, thread, usr_idx); 2726 else 2727 return 0; 2728 } 2729 2730 static int thread__resolve_callchain_sample(struct thread *thread, 2731 struct callchain_cursor *cursor, 2732 struct evsel *evsel, 2733 struct perf_sample *sample, 2734 struct symbol **parent, 2735 struct addr_location *root_al, 2736 int max_stack) 2737 { 2738 struct branch_stack *branch = sample->branch_stack; 2739 struct branch_entry *entries = perf_sample__branch_entries(sample); 2740 struct ip_callchain *chain = sample->callchain; 2741 int chain_nr = 0; 2742 u8 cpumode = PERF_RECORD_MISC_USER; 2743 int i, j, err, nr_entries, usr_idx; 2744 int skip_idx = -1; 2745 int first_call = 0; 2746 u64 leaf_frame_caller; 2747 2748 if (chain) 2749 chain_nr = chain->nr; 2750 2751 if (evsel__has_branch_callstack(evsel)) { 2752 struct perf_env *env = evsel__env(evsel); 2753 2754 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent, 2755 root_al, max_stack, 2756 !env ? 0 : env->max_branches); 2757 if (err) 2758 return (err < 0) ? err : 0; 2759 } 2760 2761 /* 2762 * Based on DWARF debug information, some architectures skip 2763 * a callchain entry saved by the kernel. 2764 */ 2765 skip_idx = arch_skip_callchain_idx(thread, chain); 2766 2767 /* 2768 * Add branches to call stack for easier browsing. This gives 2769 * more context for a sample than just the callers. 2770 * 2771 * This uses individual histograms of paths compared to the 2772 * aggregated histograms the normal LBR mode uses. 2773 * 2774 * Limitations for now: 2775 * - No extra filters 2776 * - No annotations (should annotate somehow) 2777 */ 2778 2779 if (branch && callchain_param.branch_callstack) { 2780 int nr = min(max_stack, (int)branch->nr); 2781 struct branch_entry be[nr]; 2782 struct iterations iter[nr]; 2783 2784 if (branch->nr > PERF_MAX_BRANCH_DEPTH) { 2785 pr_warning("corrupted branch chain. skipping...\n"); 2786 goto check_calls; 2787 } 2788 2789 for (i = 0; i < nr; i++) { 2790 if (callchain_param.order == ORDER_CALLEE) { 2791 be[i] = entries[i]; 2792 2793 if (chain == NULL) 2794 continue; 2795 2796 /* 2797 * Check for overlap into the callchain. 2798 * The return address is one off compared to 2799 * the branch entry. To adjust for this 2800 * assume the calling instruction is not longer 2801 * than 8 bytes. 2802 */ 2803 if (i == skip_idx || 2804 chain->ips[first_call] >= PERF_CONTEXT_MAX) 2805 first_call++; 2806 else if (be[i].from < chain->ips[first_call] && 2807 be[i].from >= chain->ips[first_call] - 8) 2808 first_call++; 2809 } else 2810 be[i] = entries[branch->nr - i - 1]; 2811 } 2812 2813 memset(iter, 0, sizeof(struct iterations) * nr); 2814 nr = remove_loops(be, nr, iter); 2815 2816 for (i = 0; i < nr; i++) { 2817 err = add_callchain_ip(thread, cursor, parent, 2818 root_al, 2819 NULL, be[i].to, 2820 true, &be[i].flags, 2821 NULL, be[i].from); 2822 2823 if (!err) 2824 err = add_callchain_ip(thread, cursor, parent, root_al, 2825 NULL, be[i].from, 2826 true, &be[i].flags, 2827 &iter[i], 0); 2828 if (err == -EINVAL) 2829 break; 2830 if (err) 2831 return err; 2832 } 2833 2834 if (chain_nr == 0) 2835 return 0; 2836 2837 chain_nr -= nr; 2838 } 2839 2840 check_calls: 2841 if (chain && callchain_param.order != ORDER_CALLEE) { 2842 err = find_prev_cpumode(chain, thread, cursor, parent, root_al, 2843 &cpumode, chain->nr - first_call); 2844 if (err) 2845 return (err < 0) ? err : 0; 2846 } 2847 for (i = first_call, nr_entries = 0; 2848 i < chain_nr && nr_entries < max_stack; i++) { 2849 u64 ip; 2850 2851 if (callchain_param.order == ORDER_CALLEE) 2852 j = i; 2853 else 2854 j = chain->nr - i - 1; 2855 2856 #ifdef HAVE_SKIP_CALLCHAIN_IDX 2857 if (j == skip_idx) 2858 continue; 2859 #endif 2860 ip = chain->ips[j]; 2861 if (ip < PERF_CONTEXT_MAX) 2862 ++nr_entries; 2863 else if (callchain_param.order != ORDER_CALLEE) { 2864 err = find_prev_cpumode(chain, thread, cursor, parent, 2865 root_al, &cpumode, j); 2866 if (err) 2867 return (err < 0) ? err : 0; 2868 continue; 2869 } 2870 2871 /* 2872 * PERF_CONTEXT_USER allows us to locate where the user stack ends. 2873 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER, 2874 * the index will be different in order to add the missing frame 2875 * at the right place. 2876 */ 2877 2878 usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1; 2879 2880 if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) { 2881 2882 leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx); 2883 2884 /* 2885 * check if leaf_frame_Caller != ip to not add the same 2886 * value twice. 2887 */ 2888 2889 if (leaf_frame_caller && leaf_frame_caller != ip) { 2890 2891 err = add_callchain_ip(thread, cursor, parent, 2892 root_al, &cpumode, leaf_frame_caller, 2893 false, NULL, NULL, 0); 2894 if (err) 2895 return (err < 0) ? err : 0; 2896 } 2897 } 2898 2899 err = add_callchain_ip(thread, cursor, parent, 2900 root_al, &cpumode, ip, 2901 false, NULL, NULL, 0); 2902 2903 if (err) 2904 return (err < 0) ? err : 0; 2905 } 2906 2907 return 0; 2908 } 2909 2910 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip) 2911 { 2912 struct symbol *sym = ms->sym; 2913 struct map *map = ms->map; 2914 struct inline_node *inline_node; 2915 struct inline_list *ilist; 2916 u64 addr; 2917 int ret = 1; 2918 2919 if (!symbol_conf.inline_name || !map || !sym) 2920 return ret; 2921 2922 addr = map__map_ip(map, ip); 2923 addr = map__rip_2objdump(map, addr); 2924 2925 inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr); 2926 if (!inline_node) { 2927 inline_node = dso__parse_addr_inlines(map->dso, addr, sym); 2928 if (!inline_node) 2929 return ret; 2930 inlines__tree_insert(&map->dso->inlined_nodes, inline_node); 2931 } 2932 2933 list_for_each_entry(ilist, &inline_node->val, list) { 2934 struct map_symbol ilist_ms = { 2935 .maps = ms->maps, 2936 .map = map, 2937 .sym = ilist->symbol, 2938 }; 2939 ret = callchain_cursor_append(cursor, ip, &ilist_ms, false, 2940 NULL, 0, 0, 0, ilist->srcline); 2941 2942 if (ret != 0) 2943 return ret; 2944 } 2945 2946 return ret; 2947 } 2948 2949 static int unwind_entry(struct unwind_entry *entry, void *arg) 2950 { 2951 struct callchain_cursor *cursor = arg; 2952 const char *srcline = NULL; 2953 u64 addr = entry->ip; 2954 2955 if (symbol_conf.hide_unresolved && entry->ms.sym == NULL) 2956 return 0; 2957 2958 if (append_inlines(cursor, &entry->ms, entry->ip) == 0) 2959 return 0; 2960 2961 /* 2962 * Convert entry->ip from a virtual address to an offset in 2963 * its corresponding binary. 2964 */ 2965 if (entry->ms.map) 2966 addr = map__map_ip(entry->ms.map, entry->ip); 2967 2968 srcline = callchain_srcline(&entry->ms, addr); 2969 return callchain_cursor_append(cursor, entry->ip, &entry->ms, 2970 false, NULL, 0, 0, 0, srcline); 2971 } 2972 2973 static int thread__resolve_callchain_unwind(struct thread *thread, 2974 struct callchain_cursor *cursor, 2975 struct evsel *evsel, 2976 struct perf_sample *sample, 2977 int max_stack) 2978 { 2979 /* Can we do dwarf post unwind? */ 2980 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) && 2981 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER))) 2982 return 0; 2983 2984 /* Bail out if nothing was captured. */ 2985 if ((!sample->user_regs.regs) || 2986 (!sample->user_stack.size)) 2987 return 0; 2988 2989 return unwind__get_entries(unwind_entry, cursor, 2990 thread, sample, max_stack, false); 2991 } 2992 2993 int thread__resolve_callchain(struct thread *thread, 2994 struct callchain_cursor *cursor, 2995 struct evsel *evsel, 2996 struct perf_sample *sample, 2997 struct symbol **parent, 2998 struct addr_location *root_al, 2999 int max_stack) 3000 { 3001 int ret = 0; 3002 3003 callchain_cursor_reset(cursor); 3004 3005 if (callchain_param.order == ORDER_CALLEE) { 3006 ret = thread__resolve_callchain_sample(thread, cursor, 3007 evsel, sample, 3008 parent, root_al, 3009 max_stack); 3010 if (ret) 3011 return ret; 3012 ret = thread__resolve_callchain_unwind(thread, cursor, 3013 evsel, sample, 3014 max_stack); 3015 } else { 3016 ret = thread__resolve_callchain_unwind(thread, cursor, 3017 evsel, sample, 3018 max_stack); 3019 if (ret) 3020 return ret; 3021 ret = thread__resolve_callchain_sample(thread, cursor, 3022 evsel, sample, 3023 parent, root_al, 3024 max_stack); 3025 } 3026 3027 return ret; 3028 } 3029 3030 int machine__for_each_thread(struct machine *machine, 3031 int (*fn)(struct thread *thread, void *p), 3032 void *priv) 3033 { 3034 struct threads *threads; 3035 struct rb_node *nd; 3036 struct thread *thread; 3037 int rc = 0; 3038 int i; 3039 3040 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 3041 threads = &machine->threads[i]; 3042 for (nd = rb_first_cached(&threads->entries); nd; 3043 nd = rb_next(nd)) { 3044 thread = rb_entry(nd, struct thread, rb_node); 3045 rc = fn(thread, priv); 3046 if (rc != 0) 3047 return rc; 3048 } 3049 3050 list_for_each_entry(thread, &threads->dead, node) { 3051 rc = fn(thread, priv); 3052 if (rc != 0) 3053 return rc; 3054 } 3055 } 3056 return rc; 3057 } 3058 3059 int machines__for_each_thread(struct machines *machines, 3060 int (*fn)(struct thread *thread, void *p), 3061 void *priv) 3062 { 3063 struct rb_node *nd; 3064 int rc = 0; 3065 3066 rc = machine__for_each_thread(&machines->host, fn, priv); 3067 if (rc != 0) 3068 return rc; 3069 3070 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 3071 struct machine *machine = rb_entry(nd, struct machine, rb_node); 3072 3073 rc = machine__for_each_thread(machine, fn, priv); 3074 if (rc != 0) 3075 return rc; 3076 } 3077 return rc; 3078 } 3079 3080 pid_t machine__get_current_tid(struct machine *machine, int cpu) 3081 { 3082 int nr_cpus = min(machine->env->nr_cpus_avail, MAX_NR_CPUS); 3083 3084 if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid) 3085 return -1; 3086 3087 return machine->current_tid[cpu]; 3088 } 3089 3090 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid, 3091 pid_t tid) 3092 { 3093 struct thread *thread; 3094 int nr_cpus = min(machine->env->nr_cpus_avail, MAX_NR_CPUS); 3095 3096 if (cpu < 0) 3097 return -EINVAL; 3098 3099 if (!machine->current_tid) { 3100 int i; 3101 3102 machine->current_tid = calloc(nr_cpus, sizeof(pid_t)); 3103 if (!machine->current_tid) 3104 return -ENOMEM; 3105 for (i = 0; i < nr_cpus; i++) 3106 machine->current_tid[i] = -1; 3107 } 3108 3109 if (cpu >= nr_cpus) { 3110 pr_err("Requested CPU %d too large. ", cpu); 3111 pr_err("Consider raising MAX_NR_CPUS\n"); 3112 return -EINVAL; 3113 } 3114 3115 machine->current_tid[cpu] = tid; 3116 3117 thread = machine__findnew_thread(machine, pid, tid); 3118 if (!thread) 3119 return -ENOMEM; 3120 3121 thread->cpu = cpu; 3122 thread__put(thread); 3123 3124 return 0; 3125 } 3126 3127 /* 3128 * Compares the raw arch string. N.B. see instead perf_env__arch() or 3129 * machine__normalized_is() if a normalized arch is needed. 3130 */ 3131 bool machine__is(struct machine *machine, const char *arch) 3132 { 3133 return machine && !strcmp(perf_env__raw_arch(machine->env), arch); 3134 } 3135 3136 bool machine__normalized_is(struct machine *machine, const char *arch) 3137 { 3138 return machine && !strcmp(perf_env__arch(machine->env), arch); 3139 } 3140 3141 int machine__nr_cpus_avail(struct machine *machine) 3142 { 3143 return machine ? perf_env__nr_cpus_avail(machine->env) : 0; 3144 } 3145 3146 int machine__get_kernel_start(struct machine *machine) 3147 { 3148 struct map *map = machine__kernel_map(machine); 3149 int err = 0; 3150 3151 /* 3152 * The only addresses above 2^63 are kernel addresses of a 64-bit 3153 * kernel. Note that addresses are unsigned so that on a 32-bit system 3154 * all addresses including kernel addresses are less than 2^32. In 3155 * that case (32-bit system), if the kernel mapping is unknown, all 3156 * addresses will be assumed to be in user space - see 3157 * machine__kernel_ip(). 3158 */ 3159 machine->kernel_start = 1ULL << 63; 3160 if (map) { 3161 err = map__load(map); 3162 /* 3163 * On x86_64, PTI entry trampolines are less than the 3164 * start of kernel text, but still above 2^63. So leave 3165 * kernel_start = 1ULL << 63 for x86_64. 3166 */ 3167 if (!err && !machine__is(machine, "x86_64")) 3168 machine->kernel_start = map->start; 3169 } 3170 return err; 3171 } 3172 3173 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr) 3174 { 3175 u8 addr_cpumode = cpumode; 3176 bool kernel_ip; 3177 3178 if (!machine->single_address_space) 3179 goto out; 3180 3181 kernel_ip = machine__kernel_ip(machine, addr); 3182 switch (cpumode) { 3183 case PERF_RECORD_MISC_KERNEL: 3184 case PERF_RECORD_MISC_USER: 3185 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL : 3186 PERF_RECORD_MISC_USER; 3187 break; 3188 case PERF_RECORD_MISC_GUEST_KERNEL: 3189 case PERF_RECORD_MISC_GUEST_USER: 3190 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL : 3191 PERF_RECORD_MISC_GUEST_USER; 3192 break; 3193 default: 3194 break; 3195 } 3196 out: 3197 return addr_cpumode; 3198 } 3199 3200 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id) 3201 { 3202 return dsos__findnew_id(&machine->dsos, filename, id); 3203 } 3204 3205 struct dso *machine__findnew_dso(struct machine *machine, const char *filename) 3206 { 3207 return machine__findnew_dso_id(machine, filename, NULL); 3208 } 3209 3210 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp) 3211 { 3212 struct machine *machine = vmachine; 3213 struct map *map; 3214 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map); 3215 3216 if (sym == NULL) 3217 return NULL; 3218 3219 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL; 3220 *addrp = map->unmap_ip(map, sym->start); 3221 return sym->name; 3222 } 3223 3224 int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv) 3225 { 3226 struct dso *pos; 3227 int err = 0; 3228 3229 list_for_each_entry(pos, &machine->dsos.head, node) { 3230 if (fn(pos, machine, priv)) 3231 err = -1; 3232 } 3233 return err; 3234 } 3235