xref: /openbmc/linux/tools/perf/util/machine.c (revision e2a06704)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include "callchain.h"
7 #include "debug.h"
8 #include "event.h"
9 #include "evsel.h"
10 #include "hist.h"
11 #include "machine.h"
12 #include "map.h"
13 #include "sort.h"
14 #include "strlist.h"
15 #include "thread.h"
16 #include "vdso.h"
17 #include <stdbool.h>
18 #include <sys/types.h>
19 #include <sys/stat.h>
20 #include <unistd.h>
21 #include "unwind.h"
22 #include "linux/hash.h"
23 #include "asm/bug.h"
24 
25 #include "sane_ctype.h"
26 #include <symbol/kallsyms.h>
27 
28 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
29 
30 static void dsos__init(struct dsos *dsos)
31 {
32 	INIT_LIST_HEAD(&dsos->head);
33 	dsos->root = RB_ROOT;
34 	init_rwsem(&dsos->lock);
35 }
36 
37 static void machine__threads_init(struct machine *machine)
38 {
39 	int i;
40 
41 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
42 		struct threads *threads = &machine->threads[i];
43 		threads->entries = RB_ROOT;
44 		init_rwsem(&threads->lock);
45 		threads->nr = 0;
46 		INIT_LIST_HEAD(&threads->dead);
47 		threads->last_match = NULL;
48 	}
49 }
50 
51 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
52 {
53 	memset(machine, 0, sizeof(*machine));
54 	map_groups__init(&machine->kmaps, machine);
55 	RB_CLEAR_NODE(&machine->rb_node);
56 	dsos__init(&machine->dsos);
57 
58 	machine__threads_init(machine);
59 
60 	machine->vdso_info = NULL;
61 	machine->env = NULL;
62 
63 	machine->pid = pid;
64 
65 	machine->id_hdr_size = 0;
66 	machine->kptr_restrict_warned = false;
67 	machine->comm_exec = false;
68 	machine->kernel_start = 0;
69 
70 	memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps));
71 
72 	machine->root_dir = strdup(root_dir);
73 	if (machine->root_dir == NULL)
74 		return -ENOMEM;
75 
76 	if (pid != HOST_KERNEL_ID) {
77 		struct thread *thread = machine__findnew_thread(machine, -1,
78 								pid);
79 		char comm[64];
80 
81 		if (thread == NULL)
82 			return -ENOMEM;
83 
84 		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
85 		thread__set_comm(thread, comm, 0);
86 		thread__put(thread);
87 	}
88 
89 	machine->current_tid = NULL;
90 
91 	return 0;
92 }
93 
94 struct machine *machine__new_host(void)
95 {
96 	struct machine *machine = malloc(sizeof(*machine));
97 
98 	if (machine != NULL) {
99 		machine__init(machine, "", HOST_KERNEL_ID);
100 
101 		if (machine__create_kernel_maps(machine) < 0)
102 			goto out_delete;
103 	}
104 
105 	return machine;
106 out_delete:
107 	free(machine);
108 	return NULL;
109 }
110 
111 struct machine *machine__new_kallsyms(void)
112 {
113 	struct machine *machine = machine__new_host();
114 	/*
115 	 * FIXME:
116 	 * 1) MAP__FUNCTION will go away when we stop loading separate maps for
117 	 *    functions and data objects.
118 	 * 2) We should switch to machine__load_kallsyms(), i.e. not explicitely
119 	 *    ask for not using the kcore parsing code, once this one is fixed
120 	 *    to create a map per module.
121 	 */
122 	if (machine && __machine__load_kallsyms(machine, "/proc/kallsyms", MAP__FUNCTION, true) <= 0) {
123 		machine__delete(machine);
124 		machine = NULL;
125 	}
126 
127 	return machine;
128 }
129 
130 static void dsos__purge(struct dsos *dsos)
131 {
132 	struct dso *pos, *n;
133 
134 	down_write(&dsos->lock);
135 
136 	list_for_each_entry_safe(pos, n, &dsos->head, node) {
137 		RB_CLEAR_NODE(&pos->rb_node);
138 		pos->root = NULL;
139 		list_del_init(&pos->node);
140 		dso__put(pos);
141 	}
142 
143 	up_write(&dsos->lock);
144 }
145 
146 static void dsos__exit(struct dsos *dsos)
147 {
148 	dsos__purge(dsos);
149 	exit_rwsem(&dsos->lock);
150 }
151 
152 void machine__delete_threads(struct machine *machine)
153 {
154 	struct rb_node *nd;
155 	int i;
156 
157 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
158 		struct threads *threads = &machine->threads[i];
159 		down_write(&threads->lock);
160 		nd = rb_first(&threads->entries);
161 		while (nd) {
162 			struct thread *t = rb_entry(nd, struct thread, rb_node);
163 
164 			nd = rb_next(nd);
165 			__machine__remove_thread(machine, t, false);
166 		}
167 		up_write(&threads->lock);
168 	}
169 }
170 
171 void machine__exit(struct machine *machine)
172 {
173 	int i;
174 
175 	machine__destroy_kernel_maps(machine);
176 	map_groups__exit(&machine->kmaps);
177 	dsos__exit(&machine->dsos);
178 	machine__exit_vdso(machine);
179 	zfree(&machine->root_dir);
180 	zfree(&machine->current_tid);
181 
182 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
183 		struct threads *threads = &machine->threads[i];
184 		exit_rwsem(&threads->lock);
185 	}
186 }
187 
188 void machine__delete(struct machine *machine)
189 {
190 	if (machine) {
191 		machine__exit(machine);
192 		free(machine);
193 	}
194 }
195 
196 void machines__init(struct machines *machines)
197 {
198 	machine__init(&machines->host, "", HOST_KERNEL_ID);
199 	machines->guests = RB_ROOT;
200 }
201 
202 void machines__exit(struct machines *machines)
203 {
204 	machine__exit(&machines->host);
205 	/* XXX exit guest */
206 }
207 
208 struct machine *machines__add(struct machines *machines, pid_t pid,
209 			      const char *root_dir)
210 {
211 	struct rb_node **p = &machines->guests.rb_node;
212 	struct rb_node *parent = NULL;
213 	struct machine *pos, *machine = malloc(sizeof(*machine));
214 
215 	if (machine == NULL)
216 		return NULL;
217 
218 	if (machine__init(machine, root_dir, pid) != 0) {
219 		free(machine);
220 		return NULL;
221 	}
222 
223 	while (*p != NULL) {
224 		parent = *p;
225 		pos = rb_entry(parent, struct machine, rb_node);
226 		if (pid < pos->pid)
227 			p = &(*p)->rb_left;
228 		else
229 			p = &(*p)->rb_right;
230 	}
231 
232 	rb_link_node(&machine->rb_node, parent, p);
233 	rb_insert_color(&machine->rb_node, &machines->guests);
234 
235 	return machine;
236 }
237 
238 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
239 {
240 	struct rb_node *nd;
241 
242 	machines->host.comm_exec = comm_exec;
243 
244 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
245 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
246 
247 		machine->comm_exec = comm_exec;
248 	}
249 }
250 
251 struct machine *machines__find(struct machines *machines, pid_t pid)
252 {
253 	struct rb_node **p = &machines->guests.rb_node;
254 	struct rb_node *parent = NULL;
255 	struct machine *machine;
256 	struct machine *default_machine = NULL;
257 
258 	if (pid == HOST_KERNEL_ID)
259 		return &machines->host;
260 
261 	while (*p != NULL) {
262 		parent = *p;
263 		machine = rb_entry(parent, struct machine, rb_node);
264 		if (pid < machine->pid)
265 			p = &(*p)->rb_left;
266 		else if (pid > machine->pid)
267 			p = &(*p)->rb_right;
268 		else
269 			return machine;
270 		if (!machine->pid)
271 			default_machine = machine;
272 	}
273 
274 	return default_machine;
275 }
276 
277 struct machine *machines__findnew(struct machines *machines, pid_t pid)
278 {
279 	char path[PATH_MAX];
280 	const char *root_dir = "";
281 	struct machine *machine = machines__find(machines, pid);
282 
283 	if (machine && (machine->pid == pid))
284 		goto out;
285 
286 	if ((pid != HOST_KERNEL_ID) &&
287 	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
288 	    (symbol_conf.guestmount)) {
289 		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
290 		if (access(path, R_OK)) {
291 			static struct strlist *seen;
292 
293 			if (!seen)
294 				seen = strlist__new(NULL, NULL);
295 
296 			if (!strlist__has_entry(seen, path)) {
297 				pr_err("Can't access file %s\n", path);
298 				strlist__add(seen, path);
299 			}
300 			machine = NULL;
301 			goto out;
302 		}
303 		root_dir = path;
304 	}
305 
306 	machine = machines__add(machines, pid, root_dir);
307 out:
308 	return machine;
309 }
310 
311 void machines__process_guests(struct machines *machines,
312 			      machine__process_t process, void *data)
313 {
314 	struct rb_node *nd;
315 
316 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
317 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
318 		process(pos, data);
319 	}
320 }
321 
322 char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
323 {
324 	if (machine__is_host(machine))
325 		snprintf(bf, size, "[%s]", "kernel.kallsyms");
326 	else if (machine__is_default_guest(machine))
327 		snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
328 	else {
329 		snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
330 			 machine->pid);
331 	}
332 
333 	return bf;
334 }
335 
336 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
337 {
338 	struct rb_node *node;
339 	struct machine *machine;
340 
341 	machines->host.id_hdr_size = id_hdr_size;
342 
343 	for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
344 		machine = rb_entry(node, struct machine, rb_node);
345 		machine->id_hdr_size = id_hdr_size;
346 	}
347 
348 	return;
349 }
350 
351 static void machine__update_thread_pid(struct machine *machine,
352 				       struct thread *th, pid_t pid)
353 {
354 	struct thread *leader;
355 
356 	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
357 		return;
358 
359 	th->pid_ = pid;
360 
361 	if (th->pid_ == th->tid)
362 		return;
363 
364 	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
365 	if (!leader)
366 		goto out_err;
367 
368 	if (!leader->mg)
369 		leader->mg = map_groups__new(machine);
370 
371 	if (!leader->mg)
372 		goto out_err;
373 
374 	if (th->mg == leader->mg)
375 		return;
376 
377 	if (th->mg) {
378 		/*
379 		 * Maps are created from MMAP events which provide the pid and
380 		 * tid.  Consequently there never should be any maps on a thread
381 		 * with an unknown pid.  Just print an error if there are.
382 		 */
383 		if (!map_groups__empty(th->mg))
384 			pr_err("Discarding thread maps for %d:%d\n",
385 			       th->pid_, th->tid);
386 		map_groups__put(th->mg);
387 	}
388 
389 	th->mg = map_groups__get(leader->mg);
390 out_put:
391 	thread__put(leader);
392 	return;
393 out_err:
394 	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
395 	goto out_put;
396 }
397 
398 /*
399  * Caller must eventually drop thread->refcnt returned with a successful
400  * lookup/new thread inserted.
401  */
402 static struct thread *____machine__findnew_thread(struct machine *machine,
403 						  struct threads *threads,
404 						  pid_t pid, pid_t tid,
405 						  bool create)
406 {
407 	struct rb_node **p = &threads->entries.rb_node;
408 	struct rb_node *parent = NULL;
409 	struct thread *th;
410 
411 	/*
412 	 * Front-end cache - TID lookups come in blocks,
413 	 * so most of the time we dont have to look up
414 	 * the full rbtree:
415 	 */
416 	th = threads->last_match;
417 	if (th != NULL) {
418 		if (th->tid == tid) {
419 			machine__update_thread_pid(machine, th, pid);
420 			return thread__get(th);
421 		}
422 
423 		threads->last_match = NULL;
424 	}
425 
426 	while (*p != NULL) {
427 		parent = *p;
428 		th = rb_entry(parent, struct thread, rb_node);
429 
430 		if (th->tid == tid) {
431 			threads->last_match = th;
432 			machine__update_thread_pid(machine, th, pid);
433 			return thread__get(th);
434 		}
435 
436 		if (tid < th->tid)
437 			p = &(*p)->rb_left;
438 		else
439 			p = &(*p)->rb_right;
440 	}
441 
442 	if (!create)
443 		return NULL;
444 
445 	th = thread__new(pid, tid);
446 	if (th != NULL) {
447 		rb_link_node(&th->rb_node, parent, p);
448 		rb_insert_color(&th->rb_node, &threads->entries);
449 
450 		/*
451 		 * We have to initialize map_groups separately
452 		 * after rb tree is updated.
453 		 *
454 		 * The reason is that we call machine__findnew_thread
455 		 * within thread__init_map_groups to find the thread
456 		 * leader and that would screwed the rb tree.
457 		 */
458 		if (thread__init_map_groups(th, machine)) {
459 			rb_erase_init(&th->rb_node, &threads->entries);
460 			RB_CLEAR_NODE(&th->rb_node);
461 			thread__put(th);
462 			return NULL;
463 		}
464 		/*
465 		 * It is now in the rbtree, get a ref
466 		 */
467 		thread__get(th);
468 		threads->last_match = th;
469 		++threads->nr;
470 	}
471 
472 	return th;
473 }
474 
475 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
476 {
477 	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
478 }
479 
480 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
481 				       pid_t tid)
482 {
483 	struct threads *threads = machine__threads(machine, tid);
484 	struct thread *th;
485 
486 	down_write(&threads->lock);
487 	th = __machine__findnew_thread(machine, pid, tid);
488 	up_write(&threads->lock);
489 	return th;
490 }
491 
492 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
493 				    pid_t tid)
494 {
495 	struct threads *threads = machine__threads(machine, tid);
496 	struct thread *th;
497 
498 	down_read(&threads->lock);
499 	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
500 	up_read(&threads->lock);
501 	return th;
502 }
503 
504 struct comm *machine__thread_exec_comm(struct machine *machine,
505 				       struct thread *thread)
506 {
507 	if (machine->comm_exec)
508 		return thread__exec_comm(thread);
509 	else
510 		return thread__comm(thread);
511 }
512 
513 int machine__process_comm_event(struct machine *machine, union perf_event *event,
514 				struct perf_sample *sample)
515 {
516 	struct thread *thread = machine__findnew_thread(machine,
517 							event->comm.pid,
518 							event->comm.tid);
519 	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
520 	int err = 0;
521 
522 	if (exec)
523 		machine->comm_exec = true;
524 
525 	if (dump_trace)
526 		perf_event__fprintf_comm(event, stdout);
527 
528 	if (thread == NULL ||
529 	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
530 		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
531 		err = -1;
532 	}
533 
534 	thread__put(thread);
535 
536 	return err;
537 }
538 
539 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
540 				      union perf_event *event,
541 				      struct perf_sample *sample __maybe_unused)
542 {
543 	struct thread *thread = machine__findnew_thread(machine,
544 							event->namespaces.pid,
545 							event->namespaces.tid);
546 	int err = 0;
547 
548 	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
549 		  "\nWARNING: kernel seems to support more namespaces than perf"
550 		  " tool.\nTry updating the perf tool..\n\n");
551 
552 	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
553 		  "\nWARNING: perf tool seems to support more namespaces than"
554 		  " the kernel.\nTry updating the kernel..\n\n");
555 
556 	if (dump_trace)
557 		perf_event__fprintf_namespaces(event, stdout);
558 
559 	if (thread == NULL ||
560 	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
561 		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
562 		err = -1;
563 	}
564 
565 	thread__put(thread);
566 
567 	return err;
568 }
569 
570 int machine__process_lost_event(struct machine *machine __maybe_unused,
571 				union perf_event *event, struct perf_sample *sample __maybe_unused)
572 {
573 	dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
574 		    event->lost.id, event->lost.lost);
575 	return 0;
576 }
577 
578 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
579 					union perf_event *event, struct perf_sample *sample)
580 {
581 	dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
582 		    sample->id, event->lost_samples.lost);
583 	return 0;
584 }
585 
586 static struct dso *machine__findnew_module_dso(struct machine *machine,
587 					       struct kmod_path *m,
588 					       const char *filename)
589 {
590 	struct dso *dso;
591 
592 	down_write(&machine->dsos.lock);
593 
594 	dso = __dsos__find(&machine->dsos, m->name, true);
595 	if (!dso) {
596 		dso = __dsos__addnew(&machine->dsos, m->name);
597 		if (dso == NULL)
598 			goto out_unlock;
599 
600 		dso__set_module_info(dso, m, machine);
601 		dso__set_long_name(dso, strdup(filename), true);
602 	}
603 
604 	dso__get(dso);
605 out_unlock:
606 	up_write(&machine->dsos.lock);
607 	return dso;
608 }
609 
610 int machine__process_aux_event(struct machine *machine __maybe_unused,
611 			       union perf_event *event)
612 {
613 	if (dump_trace)
614 		perf_event__fprintf_aux(event, stdout);
615 	return 0;
616 }
617 
618 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
619 					union perf_event *event)
620 {
621 	if (dump_trace)
622 		perf_event__fprintf_itrace_start(event, stdout);
623 	return 0;
624 }
625 
626 int machine__process_switch_event(struct machine *machine __maybe_unused,
627 				  union perf_event *event)
628 {
629 	if (dump_trace)
630 		perf_event__fprintf_switch(event, stdout);
631 	return 0;
632 }
633 
634 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
635 {
636 	const char *dup_filename;
637 
638 	if (!filename || !dso || !dso->long_name)
639 		return;
640 	if (dso->long_name[0] != '[')
641 		return;
642 	if (!strchr(filename, '/'))
643 		return;
644 
645 	dup_filename = strdup(filename);
646 	if (!dup_filename)
647 		return;
648 
649 	dso__set_long_name(dso, dup_filename, true);
650 }
651 
652 struct map *machine__findnew_module_map(struct machine *machine, u64 start,
653 					const char *filename)
654 {
655 	struct map *map = NULL;
656 	struct dso *dso = NULL;
657 	struct kmod_path m;
658 
659 	if (kmod_path__parse_name(&m, filename))
660 		return NULL;
661 
662 	map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
663 				       m.name);
664 	if (map) {
665 		/*
666 		 * If the map's dso is an offline module, give dso__load()
667 		 * a chance to find the file path of that module by fixing
668 		 * long_name.
669 		 */
670 		dso__adjust_kmod_long_name(map->dso, filename);
671 		goto out;
672 	}
673 
674 	dso = machine__findnew_module_dso(machine, &m, filename);
675 	if (dso == NULL)
676 		goto out;
677 
678 	map = map__new2(start, dso, MAP__FUNCTION);
679 	if (map == NULL)
680 		goto out;
681 
682 	map_groups__insert(&machine->kmaps, map);
683 
684 	/* Put the map here because map_groups__insert alread got it */
685 	map__put(map);
686 out:
687 	/* put the dso here, corresponding to  machine__findnew_module_dso */
688 	dso__put(dso);
689 	free(m.name);
690 	return map;
691 }
692 
693 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
694 {
695 	struct rb_node *nd;
696 	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
697 
698 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
699 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
700 		ret += __dsos__fprintf(&pos->dsos.head, fp);
701 	}
702 
703 	return ret;
704 }
705 
706 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
707 				     bool (skip)(struct dso *dso, int parm), int parm)
708 {
709 	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
710 }
711 
712 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
713 				     bool (skip)(struct dso *dso, int parm), int parm)
714 {
715 	struct rb_node *nd;
716 	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
717 
718 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
719 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
720 		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
721 	}
722 	return ret;
723 }
724 
725 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
726 {
727 	int i;
728 	size_t printed = 0;
729 	struct dso *kdso = machine__kernel_map(machine)->dso;
730 
731 	if (kdso->has_build_id) {
732 		char filename[PATH_MAX];
733 		if (dso__build_id_filename(kdso, filename, sizeof(filename),
734 					   false))
735 			printed += fprintf(fp, "[0] %s\n", filename);
736 	}
737 
738 	for (i = 0; i < vmlinux_path__nr_entries; ++i)
739 		printed += fprintf(fp, "[%d] %s\n",
740 				   i + kdso->has_build_id, vmlinux_path[i]);
741 
742 	return printed;
743 }
744 
745 size_t machine__fprintf(struct machine *machine, FILE *fp)
746 {
747 	struct rb_node *nd;
748 	size_t ret;
749 	int i;
750 
751 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
752 		struct threads *threads = &machine->threads[i];
753 
754 		down_read(&threads->lock);
755 
756 		ret = fprintf(fp, "Threads: %u\n", threads->nr);
757 
758 		for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
759 			struct thread *pos = rb_entry(nd, struct thread, rb_node);
760 
761 			ret += thread__fprintf(pos, fp);
762 		}
763 
764 		up_read(&threads->lock);
765 	}
766 	return ret;
767 }
768 
769 static struct dso *machine__get_kernel(struct machine *machine)
770 {
771 	const char *vmlinux_name = NULL;
772 	struct dso *kernel;
773 
774 	if (machine__is_host(machine)) {
775 		vmlinux_name = symbol_conf.vmlinux_name;
776 		if (!vmlinux_name)
777 			vmlinux_name = DSO__NAME_KALLSYMS;
778 
779 		kernel = machine__findnew_kernel(machine, vmlinux_name,
780 						 "[kernel]", DSO_TYPE_KERNEL);
781 	} else {
782 		char bf[PATH_MAX];
783 
784 		if (machine__is_default_guest(machine))
785 			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
786 		if (!vmlinux_name)
787 			vmlinux_name = machine__mmap_name(machine, bf,
788 							  sizeof(bf));
789 
790 		kernel = machine__findnew_kernel(machine, vmlinux_name,
791 						 "[guest.kernel]",
792 						 DSO_TYPE_GUEST_KERNEL);
793 	}
794 
795 	if (kernel != NULL && (!kernel->has_build_id))
796 		dso__read_running_kernel_build_id(kernel, machine);
797 
798 	return kernel;
799 }
800 
801 struct process_args {
802 	u64 start;
803 };
804 
805 static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
806 					   size_t bufsz)
807 {
808 	if (machine__is_default_guest(machine))
809 		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
810 	else
811 		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
812 }
813 
814 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
815 
816 /* Figure out the start address of kernel map from /proc/kallsyms.
817  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
818  * symbol_name if it's not that important.
819  */
820 static int machine__get_running_kernel_start(struct machine *machine,
821 					     const char **symbol_name, u64 *start)
822 {
823 	char filename[PATH_MAX];
824 	int i, err = -1;
825 	const char *name;
826 	u64 addr = 0;
827 
828 	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
829 
830 	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
831 		return 0;
832 
833 	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
834 		err = kallsyms__get_function_start(filename, name, &addr);
835 		if (!err)
836 			break;
837 	}
838 
839 	if (err)
840 		return -1;
841 
842 	if (symbol_name)
843 		*symbol_name = name;
844 
845 	*start = addr;
846 	return 0;
847 }
848 
849 int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
850 {
851 	int type;
852 	u64 start = 0;
853 
854 	if (machine__get_running_kernel_start(machine, NULL, &start))
855 		return -1;
856 
857 	/* In case of renewal the kernel map, destroy previous one */
858 	machine__destroy_kernel_maps(machine);
859 
860 	for (type = 0; type < MAP__NR_TYPES; ++type) {
861 		struct kmap *kmap;
862 		struct map *map;
863 
864 		machine->vmlinux_maps[type] = map__new2(start, kernel, type);
865 		if (machine->vmlinux_maps[type] == NULL)
866 			return -1;
867 
868 		machine->vmlinux_maps[type]->map_ip =
869 			machine->vmlinux_maps[type]->unmap_ip =
870 				identity__map_ip;
871 		map = __machine__kernel_map(machine, type);
872 		kmap = map__kmap(map);
873 		if (!kmap)
874 			return -1;
875 
876 		kmap->kmaps = &machine->kmaps;
877 		map_groups__insert(&machine->kmaps, map);
878 	}
879 
880 	return 0;
881 }
882 
883 void machine__destroy_kernel_maps(struct machine *machine)
884 {
885 	int type;
886 
887 	for (type = 0; type < MAP__NR_TYPES; ++type) {
888 		struct kmap *kmap;
889 		struct map *map = __machine__kernel_map(machine, type);
890 
891 		if (map == NULL)
892 			continue;
893 
894 		kmap = map__kmap(map);
895 		map_groups__remove(&machine->kmaps, map);
896 		if (kmap && kmap->ref_reloc_sym) {
897 			/*
898 			 * ref_reloc_sym is shared among all maps, so free just
899 			 * on one of them.
900 			 */
901 			if (type == MAP__FUNCTION) {
902 				zfree((char **)&kmap->ref_reloc_sym->name);
903 				zfree(&kmap->ref_reloc_sym);
904 			} else
905 				kmap->ref_reloc_sym = NULL;
906 		}
907 
908 		map__put(machine->vmlinux_maps[type]);
909 		machine->vmlinux_maps[type] = NULL;
910 	}
911 }
912 
913 int machines__create_guest_kernel_maps(struct machines *machines)
914 {
915 	int ret = 0;
916 	struct dirent **namelist = NULL;
917 	int i, items = 0;
918 	char path[PATH_MAX];
919 	pid_t pid;
920 	char *endp;
921 
922 	if (symbol_conf.default_guest_vmlinux_name ||
923 	    symbol_conf.default_guest_modules ||
924 	    symbol_conf.default_guest_kallsyms) {
925 		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
926 	}
927 
928 	if (symbol_conf.guestmount) {
929 		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
930 		if (items <= 0)
931 			return -ENOENT;
932 		for (i = 0; i < items; i++) {
933 			if (!isdigit(namelist[i]->d_name[0])) {
934 				/* Filter out . and .. */
935 				continue;
936 			}
937 			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
938 			if ((*endp != '\0') ||
939 			    (endp == namelist[i]->d_name) ||
940 			    (errno == ERANGE)) {
941 				pr_debug("invalid directory (%s). Skipping.\n",
942 					 namelist[i]->d_name);
943 				continue;
944 			}
945 			sprintf(path, "%s/%s/proc/kallsyms",
946 				symbol_conf.guestmount,
947 				namelist[i]->d_name);
948 			ret = access(path, R_OK);
949 			if (ret) {
950 				pr_debug("Can't access file %s\n", path);
951 				goto failure;
952 			}
953 			machines__create_kernel_maps(machines, pid);
954 		}
955 failure:
956 		free(namelist);
957 	}
958 
959 	return ret;
960 }
961 
962 void machines__destroy_kernel_maps(struct machines *machines)
963 {
964 	struct rb_node *next = rb_first(&machines->guests);
965 
966 	machine__destroy_kernel_maps(&machines->host);
967 
968 	while (next) {
969 		struct machine *pos = rb_entry(next, struct machine, rb_node);
970 
971 		next = rb_next(&pos->rb_node);
972 		rb_erase(&pos->rb_node, &machines->guests);
973 		machine__delete(pos);
974 	}
975 }
976 
977 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
978 {
979 	struct machine *machine = machines__findnew(machines, pid);
980 
981 	if (machine == NULL)
982 		return -1;
983 
984 	return machine__create_kernel_maps(machine);
985 }
986 
987 int __machine__load_kallsyms(struct machine *machine, const char *filename,
988 			     enum map_type type, bool no_kcore)
989 {
990 	struct map *map = machine__kernel_map(machine);
991 	int ret = __dso__load_kallsyms(map->dso, filename, map, no_kcore);
992 
993 	if (ret > 0) {
994 		dso__set_loaded(map->dso, type);
995 		/*
996 		 * Since /proc/kallsyms will have multiple sessions for the
997 		 * kernel, with modules between them, fixup the end of all
998 		 * sections.
999 		 */
1000 		__map_groups__fixup_end(&machine->kmaps, type);
1001 	}
1002 
1003 	return ret;
1004 }
1005 
1006 int machine__load_kallsyms(struct machine *machine, const char *filename,
1007 			   enum map_type type)
1008 {
1009 	return __machine__load_kallsyms(machine, filename, type, false);
1010 }
1011 
1012 int machine__load_vmlinux_path(struct machine *machine, enum map_type type)
1013 {
1014 	struct map *map = machine__kernel_map(machine);
1015 	int ret = dso__load_vmlinux_path(map->dso, map);
1016 
1017 	if (ret > 0)
1018 		dso__set_loaded(map->dso, type);
1019 
1020 	return ret;
1021 }
1022 
1023 static void map_groups__fixup_end(struct map_groups *mg)
1024 {
1025 	int i;
1026 	for (i = 0; i < MAP__NR_TYPES; ++i)
1027 		__map_groups__fixup_end(mg, i);
1028 }
1029 
1030 static char *get_kernel_version(const char *root_dir)
1031 {
1032 	char version[PATH_MAX];
1033 	FILE *file;
1034 	char *name, *tmp;
1035 	const char *prefix = "Linux version ";
1036 
1037 	sprintf(version, "%s/proc/version", root_dir);
1038 	file = fopen(version, "r");
1039 	if (!file)
1040 		return NULL;
1041 
1042 	version[0] = '\0';
1043 	tmp = fgets(version, sizeof(version), file);
1044 	fclose(file);
1045 
1046 	name = strstr(version, prefix);
1047 	if (!name)
1048 		return NULL;
1049 	name += strlen(prefix);
1050 	tmp = strchr(name, ' ');
1051 	if (tmp)
1052 		*tmp = '\0';
1053 
1054 	return strdup(name);
1055 }
1056 
1057 static bool is_kmod_dso(struct dso *dso)
1058 {
1059 	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1060 	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1061 }
1062 
1063 static int map_groups__set_module_path(struct map_groups *mg, const char *path,
1064 				       struct kmod_path *m)
1065 {
1066 	struct map *map;
1067 	char *long_name;
1068 
1069 	map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
1070 	if (map == NULL)
1071 		return 0;
1072 
1073 	long_name = strdup(path);
1074 	if (long_name == NULL)
1075 		return -ENOMEM;
1076 
1077 	dso__set_long_name(map->dso, long_name, true);
1078 	dso__kernel_module_get_build_id(map->dso, "");
1079 
1080 	/*
1081 	 * Full name could reveal us kmod compression, so
1082 	 * we need to update the symtab_type if needed.
1083 	 */
1084 	if (m->comp && is_kmod_dso(map->dso))
1085 		map->dso->symtab_type++;
1086 
1087 	return 0;
1088 }
1089 
1090 static int map_groups__set_modules_path_dir(struct map_groups *mg,
1091 				const char *dir_name, int depth)
1092 {
1093 	struct dirent *dent;
1094 	DIR *dir = opendir(dir_name);
1095 	int ret = 0;
1096 
1097 	if (!dir) {
1098 		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1099 		return -1;
1100 	}
1101 
1102 	while ((dent = readdir(dir)) != NULL) {
1103 		char path[PATH_MAX];
1104 		struct stat st;
1105 
1106 		/*sshfs might return bad dent->d_type, so we have to stat*/
1107 		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1108 		if (stat(path, &st))
1109 			continue;
1110 
1111 		if (S_ISDIR(st.st_mode)) {
1112 			if (!strcmp(dent->d_name, ".") ||
1113 			    !strcmp(dent->d_name, ".."))
1114 				continue;
1115 
1116 			/* Do not follow top-level source and build symlinks */
1117 			if (depth == 0) {
1118 				if (!strcmp(dent->d_name, "source") ||
1119 				    !strcmp(dent->d_name, "build"))
1120 					continue;
1121 			}
1122 
1123 			ret = map_groups__set_modules_path_dir(mg, path,
1124 							       depth + 1);
1125 			if (ret < 0)
1126 				goto out;
1127 		} else {
1128 			struct kmod_path m;
1129 
1130 			ret = kmod_path__parse_name(&m, dent->d_name);
1131 			if (ret)
1132 				goto out;
1133 
1134 			if (m.kmod)
1135 				ret = map_groups__set_module_path(mg, path, &m);
1136 
1137 			free(m.name);
1138 
1139 			if (ret)
1140 				goto out;
1141 		}
1142 	}
1143 
1144 out:
1145 	closedir(dir);
1146 	return ret;
1147 }
1148 
1149 static int machine__set_modules_path(struct machine *machine)
1150 {
1151 	char *version;
1152 	char modules_path[PATH_MAX];
1153 
1154 	version = get_kernel_version(machine->root_dir);
1155 	if (!version)
1156 		return -1;
1157 
1158 	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1159 		 machine->root_dir, version);
1160 	free(version);
1161 
1162 	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1163 }
1164 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1165 				const char *name __maybe_unused)
1166 {
1167 	return 0;
1168 }
1169 
1170 static int machine__create_module(void *arg, const char *name, u64 start,
1171 				  u64 size)
1172 {
1173 	struct machine *machine = arg;
1174 	struct map *map;
1175 
1176 	if (arch__fix_module_text_start(&start, name) < 0)
1177 		return -1;
1178 
1179 	map = machine__findnew_module_map(machine, start, name);
1180 	if (map == NULL)
1181 		return -1;
1182 	map->end = start + size;
1183 
1184 	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1185 
1186 	return 0;
1187 }
1188 
1189 static int machine__create_modules(struct machine *machine)
1190 {
1191 	const char *modules;
1192 	char path[PATH_MAX];
1193 
1194 	if (machine__is_default_guest(machine)) {
1195 		modules = symbol_conf.default_guest_modules;
1196 	} else {
1197 		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1198 		modules = path;
1199 	}
1200 
1201 	if (symbol__restricted_filename(modules, "/proc/modules"))
1202 		return -1;
1203 
1204 	if (modules__parse(modules, machine, machine__create_module))
1205 		return -1;
1206 
1207 	if (!machine__set_modules_path(machine))
1208 		return 0;
1209 
1210 	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1211 
1212 	return 0;
1213 }
1214 
1215 int machine__create_kernel_maps(struct machine *machine)
1216 {
1217 	struct dso *kernel = machine__get_kernel(machine);
1218 	const char *name = NULL;
1219 	u64 addr = 0;
1220 	int ret;
1221 
1222 	if (kernel == NULL)
1223 		return -1;
1224 
1225 	ret = __machine__create_kernel_maps(machine, kernel);
1226 	dso__put(kernel);
1227 	if (ret < 0)
1228 		return -1;
1229 
1230 	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1231 		if (machine__is_host(machine))
1232 			pr_debug("Problems creating module maps, "
1233 				 "continuing anyway...\n");
1234 		else
1235 			pr_debug("Problems creating module maps for guest %d, "
1236 				 "continuing anyway...\n", machine->pid);
1237 	}
1238 
1239 	/*
1240 	 * Now that we have all the maps created, just set the ->end of them:
1241 	 */
1242 	map_groups__fixup_end(&machine->kmaps);
1243 
1244 	if (!machine__get_running_kernel_start(machine, &name, &addr)) {
1245 		if (name &&
1246 		    maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name, addr)) {
1247 			machine__destroy_kernel_maps(machine);
1248 			return -1;
1249 		}
1250 	}
1251 
1252 	return 0;
1253 }
1254 
1255 static void machine__set_kernel_mmap_len(struct machine *machine,
1256 					 union perf_event *event)
1257 {
1258 	int i;
1259 
1260 	for (i = 0; i < MAP__NR_TYPES; i++) {
1261 		machine->vmlinux_maps[i]->start = event->mmap.start;
1262 		machine->vmlinux_maps[i]->end   = (event->mmap.start +
1263 						   event->mmap.len);
1264 		/*
1265 		 * Be a bit paranoid here, some perf.data file came with
1266 		 * a zero sized synthesized MMAP event for the kernel.
1267 		 */
1268 		if (machine->vmlinux_maps[i]->end == 0)
1269 			machine->vmlinux_maps[i]->end = ~0ULL;
1270 	}
1271 }
1272 
1273 static bool machine__uses_kcore(struct machine *machine)
1274 {
1275 	struct dso *dso;
1276 
1277 	list_for_each_entry(dso, &machine->dsos.head, node) {
1278 		if (dso__is_kcore(dso))
1279 			return true;
1280 	}
1281 
1282 	return false;
1283 }
1284 
1285 static int machine__process_kernel_mmap_event(struct machine *machine,
1286 					      union perf_event *event)
1287 {
1288 	struct map *map;
1289 	char kmmap_prefix[PATH_MAX];
1290 	enum dso_kernel_type kernel_type;
1291 	bool is_kernel_mmap;
1292 
1293 	/* If we have maps from kcore then we do not need or want any others */
1294 	if (machine__uses_kcore(machine))
1295 		return 0;
1296 
1297 	machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
1298 	if (machine__is_host(machine))
1299 		kernel_type = DSO_TYPE_KERNEL;
1300 	else
1301 		kernel_type = DSO_TYPE_GUEST_KERNEL;
1302 
1303 	is_kernel_mmap = memcmp(event->mmap.filename,
1304 				kmmap_prefix,
1305 				strlen(kmmap_prefix) - 1) == 0;
1306 	if (event->mmap.filename[0] == '/' ||
1307 	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1308 		map = machine__findnew_module_map(machine, event->mmap.start,
1309 						  event->mmap.filename);
1310 		if (map == NULL)
1311 			goto out_problem;
1312 
1313 		map->end = map->start + event->mmap.len;
1314 	} else if (is_kernel_mmap) {
1315 		const char *symbol_name = (event->mmap.filename +
1316 				strlen(kmmap_prefix));
1317 		/*
1318 		 * Should be there already, from the build-id table in
1319 		 * the header.
1320 		 */
1321 		struct dso *kernel = NULL;
1322 		struct dso *dso;
1323 
1324 		down_read(&machine->dsos.lock);
1325 
1326 		list_for_each_entry(dso, &machine->dsos.head, node) {
1327 
1328 			/*
1329 			 * The cpumode passed to is_kernel_module is not the
1330 			 * cpumode of *this* event. If we insist on passing
1331 			 * correct cpumode to is_kernel_module, we should
1332 			 * record the cpumode when we adding this dso to the
1333 			 * linked list.
1334 			 *
1335 			 * However we don't really need passing correct
1336 			 * cpumode.  We know the correct cpumode must be kernel
1337 			 * mode (if not, we should not link it onto kernel_dsos
1338 			 * list).
1339 			 *
1340 			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1341 			 * is_kernel_module() treats it as a kernel cpumode.
1342 			 */
1343 
1344 			if (!dso->kernel ||
1345 			    is_kernel_module(dso->long_name,
1346 					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1347 				continue;
1348 
1349 
1350 			kernel = dso;
1351 			break;
1352 		}
1353 
1354 		up_read(&machine->dsos.lock);
1355 
1356 		if (kernel == NULL)
1357 			kernel = machine__findnew_dso(machine, kmmap_prefix);
1358 		if (kernel == NULL)
1359 			goto out_problem;
1360 
1361 		kernel->kernel = kernel_type;
1362 		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1363 			dso__put(kernel);
1364 			goto out_problem;
1365 		}
1366 
1367 		if (strstr(kernel->long_name, "vmlinux"))
1368 			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1369 
1370 		machine__set_kernel_mmap_len(machine, event);
1371 
1372 		/*
1373 		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1374 		 * symbol. Effectively having zero here means that at record
1375 		 * time /proc/sys/kernel/kptr_restrict was non zero.
1376 		 */
1377 		if (event->mmap.pgoff != 0) {
1378 			maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
1379 							 symbol_name,
1380 							 event->mmap.pgoff);
1381 		}
1382 
1383 		if (machine__is_default_guest(machine)) {
1384 			/*
1385 			 * preload dso of guest kernel and modules
1386 			 */
1387 			dso__load(kernel, machine__kernel_map(machine));
1388 		}
1389 	}
1390 	return 0;
1391 out_problem:
1392 	return -1;
1393 }
1394 
1395 int machine__process_mmap2_event(struct machine *machine,
1396 				 union perf_event *event,
1397 				 struct perf_sample *sample)
1398 {
1399 	struct thread *thread;
1400 	struct map *map;
1401 	enum map_type type;
1402 	int ret = 0;
1403 
1404 	if (dump_trace)
1405 		perf_event__fprintf_mmap2(event, stdout);
1406 
1407 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1408 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1409 		ret = machine__process_kernel_mmap_event(machine, event);
1410 		if (ret < 0)
1411 			goto out_problem;
1412 		return 0;
1413 	}
1414 
1415 	thread = machine__findnew_thread(machine, event->mmap2.pid,
1416 					event->mmap2.tid);
1417 	if (thread == NULL)
1418 		goto out_problem;
1419 
1420 	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1421 		type = MAP__VARIABLE;
1422 	else
1423 		type = MAP__FUNCTION;
1424 
1425 	map = map__new(machine, event->mmap2.start,
1426 			event->mmap2.len, event->mmap2.pgoff,
1427 			event->mmap2.maj,
1428 			event->mmap2.min, event->mmap2.ino,
1429 			event->mmap2.ino_generation,
1430 			event->mmap2.prot,
1431 			event->mmap2.flags,
1432 			event->mmap2.filename, type, thread);
1433 
1434 	if (map == NULL)
1435 		goto out_problem_map;
1436 
1437 	ret = thread__insert_map(thread, map);
1438 	if (ret)
1439 		goto out_problem_insert;
1440 
1441 	thread__put(thread);
1442 	map__put(map);
1443 	return 0;
1444 
1445 out_problem_insert:
1446 	map__put(map);
1447 out_problem_map:
1448 	thread__put(thread);
1449 out_problem:
1450 	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1451 	return 0;
1452 }
1453 
1454 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1455 				struct perf_sample *sample)
1456 {
1457 	struct thread *thread;
1458 	struct map *map;
1459 	enum map_type type;
1460 	int ret = 0;
1461 
1462 	if (dump_trace)
1463 		perf_event__fprintf_mmap(event, stdout);
1464 
1465 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1466 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1467 		ret = machine__process_kernel_mmap_event(machine, event);
1468 		if (ret < 0)
1469 			goto out_problem;
1470 		return 0;
1471 	}
1472 
1473 	thread = machine__findnew_thread(machine, event->mmap.pid,
1474 					 event->mmap.tid);
1475 	if (thread == NULL)
1476 		goto out_problem;
1477 
1478 	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1479 		type = MAP__VARIABLE;
1480 	else
1481 		type = MAP__FUNCTION;
1482 
1483 	map = map__new(machine, event->mmap.start,
1484 			event->mmap.len, event->mmap.pgoff,
1485 			0, 0, 0, 0, 0, 0,
1486 			event->mmap.filename,
1487 			type, thread);
1488 
1489 	if (map == NULL)
1490 		goto out_problem_map;
1491 
1492 	ret = thread__insert_map(thread, map);
1493 	if (ret)
1494 		goto out_problem_insert;
1495 
1496 	thread__put(thread);
1497 	map__put(map);
1498 	return 0;
1499 
1500 out_problem_insert:
1501 	map__put(map);
1502 out_problem_map:
1503 	thread__put(thread);
1504 out_problem:
1505 	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1506 	return 0;
1507 }
1508 
1509 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1510 {
1511 	struct threads *threads = machine__threads(machine, th->tid);
1512 
1513 	if (threads->last_match == th)
1514 		threads->last_match = NULL;
1515 
1516 	BUG_ON(refcount_read(&th->refcnt) == 0);
1517 	if (lock)
1518 		down_write(&threads->lock);
1519 	rb_erase_init(&th->rb_node, &threads->entries);
1520 	RB_CLEAR_NODE(&th->rb_node);
1521 	--threads->nr;
1522 	/*
1523 	 * Move it first to the dead_threads list, then drop the reference,
1524 	 * if this is the last reference, then the thread__delete destructor
1525 	 * will be called and we will remove it from the dead_threads list.
1526 	 */
1527 	list_add_tail(&th->node, &threads->dead);
1528 	if (lock)
1529 		up_write(&threads->lock);
1530 	thread__put(th);
1531 }
1532 
1533 void machine__remove_thread(struct machine *machine, struct thread *th)
1534 {
1535 	return __machine__remove_thread(machine, th, true);
1536 }
1537 
1538 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1539 				struct perf_sample *sample)
1540 {
1541 	struct thread *thread = machine__find_thread(machine,
1542 						     event->fork.pid,
1543 						     event->fork.tid);
1544 	struct thread *parent = machine__findnew_thread(machine,
1545 							event->fork.ppid,
1546 							event->fork.ptid);
1547 	int err = 0;
1548 
1549 	if (dump_trace)
1550 		perf_event__fprintf_task(event, stdout);
1551 
1552 	/*
1553 	 * There may be an existing thread that is not actually the parent,
1554 	 * either because we are processing events out of order, or because the
1555 	 * (fork) event that would have removed the thread was lost. Assume the
1556 	 * latter case and continue on as best we can.
1557 	 */
1558 	if (parent->pid_ != (pid_t)event->fork.ppid) {
1559 		dump_printf("removing erroneous parent thread %d/%d\n",
1560 			    parent->pid_, parent->tid);
1561 		machine__remove_thread(machine, parent);
1562 		thread__put(parent);
1563 		parent = machine__findnew_thread(machine, event->fork.ppid,
1564 						 event->fork.ptid);
1565 	}
1566 
1567 	/* if a thread currently exists for the thread id remove it */
1568 	if (thread != NULL) {
1569 		machine__remove_thread(machine, thread);
1570 		thread__put(thread);
1571 	}
1572 
1573 	thread = machine__findnew_thread(machine, event->fork.pid,
1574 					 event->fork.tid);
1575 
1576 	if (thread == NULL || parent == NULL ||
1577 	    thread__fork(thread, parent, sample->time) < 0) {
1578 		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1579 		err = -1;
1580 	}
1581 	thread__put(thread);
1582 	thread__put(parent);
1583 
1584 	return err;
1585 }
1586 
1587 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1588 				struct perf_sample *sample __maybe_unused)
1589 {
1590 	struct thread *thread = machine__find_thread(machine,
1591 						     event->fork.pid,
1592 						     event->fork.tid);
1593 
1594 	if (dump_trace)
1595 		perf_event__fprintf_task(event, stdout);
1596 
1597 	if (thread != NULL) {
1598 		thread__exited(thread);
1599 		thread__put(thread);
1600 	}
1601 
1602 	return 0;
1603 }
1604 
1605 int machine__process_event(struct machine *machine, union perf_event *event,
1606 			   struct perf_sample *sample)
1607 {
1608 	int ret;
1609 
1610 	switch (event->header.type) {
1611 	case PERF_RECORD_COMM:
1612 		ret = machine__process_comm_event(machine, event, sample); break;
1613 	case PERF_RECORD_MMAP:
1614 		ret = machine__process_mmap_event(machine, event, sample); break;
1615 	case PERF_RECORD_NAMESPACES:
1616 		ret = machine__process_namespaces_event(machine, event, sample); break;
1617 	case PERF_RECORD_MMAP2:
1618 		ret = machine__process_mmap2_event(machine, event, sample); break;
1619 	case PERF_RECORD_FORK:
1620 		ret = machine__process_fork_event(machine, event, sample); break;
1621 	case PERF_RECORD_EXIT:
1622 		ret = machine__process_exit_event(machine, event, sample); break;
1623 	case PERF_RECORD_LOST:
1624 		ret = machine__process_lost_event(machine, event, sample); break;
1625 	case PERF_RECORD_AUX:
1626 		ret = machine__process_aux_event(machine, event); break;
1627 	case PERF_RECORD_ITRACE_START:
1628 		ret = machine__process_itrace_start_event(machine, event); break;
1629 	case PERF_RECORD_LOST_SAMPLES:
1630 		ret = machine__process_lost_samples_event(machine, event, sample); break;
1631 	case PERF_RECORD_SWITCH:
1632 	case PERF_RECORD_SWITCH_CPU_WIDE:
1633 		ret = machine__process_switch_event(machine, event); break;
1634 	default:
1635 		ret = -1;
1636 		break;
1637 	}
1638 
1639 	return ret;
1640 }
1641 
1642 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1643 {
1644 	if (!regexec(regex, sym->name, 0, NULL, 0))
1645 		return 1;
1646 	return 0;
1647 }
1648 
1649 static void ip__resolve_ams(struct thread *thread,
1650 			    struct addr_map_symbol *ams,
1651 			    u64 ip)
1652 {
1653 	struct addr_location al;
1654 
1655 	memset(&al, 0, sizeof(al));
1656 	/*
1657 	 * We cannot use the header.misc hint to determine whether a
1658 	 * branch stack address is user, kernel, guest, hypervisor.
1659 	 * Branches may straddle the kernel/user/hypervisor boundaries.
1660 	 * Thus, we have to try consecutively until we find a match
1661 	 * or else, the symbol is unknown
1662 	 */
1663 	thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1664 
1665 	ams->addr = ip;
1666 	ams->al_addr = al.addr;
1667 	ams->sym = al.sym;
1668 	ams->map = al.map;
1669 	ams->phys_addr = 0;
1670 }
1671 
1672 static void ip__resolve_data(struct thread *thread,
1673 			     u8 m, struct addr_map_symbol *ams,
1674 			     u64 addr, u64 phys_addr)
1675 {
1676 	struct addr_location al;
1677 
1678 	memset(&al, 0, sizeof(al));
1679 
1680 	thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1681 	if (al.map == NULL) {
1682 		/*
1683 		 * some shared data regions have execute bit set which puts
1684 		 * their mapping in the MAP__FUNCTION type array.
1685 		 * Check there as a fallback option before dropping the sample.
1686 		 */
1687 		thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1688 	}
1689 
1690 	ams->addr = addr;
1691 	ams->al_addr = al.addr;
1692 	ams->sym = al.sym;
1693 	ams->map = al.map;
1694 	ams->phys_addr = phys_addr;
1695 }
1696 
1697 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1698 				     struct addr_location *al)
1699 {
1700 	struct mem_info *mi = zalloc(sizeof(*mi));
1701 
1702 	if (!mi)
1703 		return NULL;
1704 
1705 	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1706 	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
1707 			 sample->addr, sample->phys_addr);
1708 	mi->data_src.val = sample->data_src;
1709 
1710 	return mi;
1711 }
1712 
1713 static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
1714 {
1715 	char *srcline = NULL;
1716 
1717 	if (!map || callchain_param.key == CCKEY_FUNCTION)
1718 		return srcline;
1719 
1720 	srcline = srcline__tree_find(&map->dso->srclines, ip);
1721 	if (!srcline) {
1722 		bool show_sym = false;
1723 		bool show_addr = callchain_param.key == CCKEY_ADDRESS;
1724 
1725 		srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
1726 				      sym, show_sym, show_addr);
1727 		srcline__tree_insert(&map->dso->srclines, ip, srcline);
1728 	}
1729 
1730 	return srcline;
1731 }
1732 
1733 struct iterations {
1734 	int nr_loop_iter;
1735 	u64 cycles;
1736 };
1737 
1738 static int add_callchain_ip(struct thread *thread,
1739 			    struct callchain_cursor *cursor,
1740 			    struct symbol **parent,
1741 			    struct addr_location *root_al,
1742 			    u8 *cpumode,
1743 			    u64 ip,
1744 			    bool branch,
1745 			    struct branch_flags *flags,
1746 			    struct iterations *iter,
1747 			    u64 branch_from)
1748 {
1749 	struct addr_location al;
1750 	int nr_loop_iter = 0;
1751 	u64 iter_cycles = 0;
1752 	const char *srcline = NULL;
1753 
1754 	al.filtered = 0;
1755 	al.sym = NULL;
1756 	if (!cpumode) {
1757 		thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
1758 						   ip, &al);
1759 	} else {
1760 		if (ip >= PERF_CONTEXT_MAX) {
1761 			switch (ip) {
1762 			case PERF_CONTEXT_HV:
1763 				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
1764 				break;
1765 			case PERF_CONTEXT_KERNEL:
1766 				*cpumode = PERF_RECORD_MISC_KERNEL;
1767 				break;
1768 			case PERF_CONTEXT_USER:
1769 				*cpumode = PERF_RECORD_MISC_USER;
1770 				break;
1771 			default:
1772 				pr_debug("invalid callchain context: "
1773 					 "%"PRId64"\n", (s64) ip);
1774 				/*
1775 				 * It seems the callchain is corrupted.
1776 				 * Discard all.
1777 				 */
1778 				callchain_cursor_reset(cursor);
1779 				return 1;
1780 			}
1781 			return 0;
1782 		}
1783 		thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
1784 					   ip, &al);
1785 	}
1786 
1787 	if (al.sym != NULL) {
1788 		if (perf_hpp_list.parent && !*parent &&
1789 		    symbol__match_regex(al.sym, &parent_regex))
1790 			*parent = al.sym;
1791 		else if (have_ignore_callees && root_al &&
1792 		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
1793 			/* Treat this symbol as the root,
1794 			   forgetting its callees. */
1795 			*root_al = al;
1796 			callchain_cursor_reset(cursor);
1797 		}
1798 	}
1799 
1800 	if (symbol_conf.hide_unresolved && al.sym == NULL)
1801 		return 0;
1802 
1803 	if (iter) {
1804 		nr_loop_iter = iter->nr_loop_iter;
1805 		iter_cycles = iter->cycles;
1806 	}
1807 
1808 	srcline = callchain_srcline(al.map, al.sym, al.addr);
1809 	return callchain_cursor_append(cursor, al.addr, al.map, al.sym,
1810 				       branch, flags, nr_loop_iter,
1811 				       iter_cycles, branch_from, srcline);
1812 }
1813 
1814 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1815 					   struct addr_location *al)
1816 {
1817 	unsigned int i;
1818 	const struct branch_stack *bs = sample->branch_stack;
1819 	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1820 
1821 	if (!bi)
1822 		return NULL;
1823 
1824 	for (i = 0; i < bs->nr; i++) {
1825 		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1826 		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1827 		bi[i].flags = bs->entries[i].flags;
1828 	}
1829 	return bi;
1830 }
1831 
1832 static void save_iterations(struct iterations *iter,
1833 			    struct branch_entry *be, int nr)
1834 {
1835 	int i;
1836 
1837 	iter->nr_loop_iter = nr;
1838 	iter->cycles = 0;
1839 
1840 	for (i = 0; i < nr; i++)
1841 		iter->cycles += be[i].flags.cycles;
1842 }
1843 
1844 #define CHASHSZ 127
1845 #define CHASHBITS 7
1846 #define NO_ENTRY 0xff
1847 
1848 #define PERF_MAX_BRANCH_DEPTH 127
1849 
1850 /* Remove loops. */
1851 static int remove_loops(struct branch_entry *l, int nr,
1852 			struct iterations *iter)
1853 {
1854 	int i, j, off;
1855 	unsigned char chash[CHASHSZ];
1856 
1857 	memset(chash, NO_ENTRY, sizeof(chash));
1858 
1859 	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
1860 
1861 	for (i = 0; i < nr; i++) {
1862 		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
1863 
1864 		/* no collision handling for now */
1865 		if (chash[h] == NO_ENTRY) {
1866 			chash[h] = i;
1867 		} else if (l[chash[h]].from == l[i].from) {
1868 			bool is_loop = true;
1869 			/* check if it is a real loop */
1870 			off = 0;
1871 			for (j = chash[h]; j < i && i + off < nr; j++, off++)
1872 				if (l[j].from != l[i + off].from) {
1873 					is_loop = false;
1874 					break;
1875 				}
1876 			if (is_loop) {
1877 				j = nr - (i + off);
1878 				if (j > 0) {
1879 					save_iterations(iter + i + off,
1880 						l + i, off);
1881 
1882 					memmove(iter + i, iter + i + off,
1883 						j * sizeof(*iter));
1884 
1885 					memmove(l + i, l + i + off,
1886 						j * sizeof(*l));
1887 				}
1888 
1889 				nr -= off;
1890 			}
1891 		}
1892 	}
1893 	return nr;
1894 }
1895 
1896 /*
1897  * Recolve LBR callstack chain sample
1898  * Return:
1899  * 1 on success get LBR callchain information
1900  * 0 no available LBR callchain information, should try fp
1901  * negative error code on other errors.
1902  */
1903 static int resolve_lbr_callchain_sample(struct thread *thread,
1904 					struct callchain_cursor *cursor,
1905 					struct perf_sample *sample,
1906 					struct symbol **parent,
1907 					struct addr_location *root_al,
1908 					int max_stack)
1909 {
1910 	struct ip_callchain *chain = sample->callchain;
1911 	int chain_nr = min(max_stack, (int)chain->nr), i;
1912 	u8 cpumode = PERF_RECORD_MISC_USER;
1913 	u64 ip, branch_from = 0;
1914 
1915 	for (i = 0; i < chain_nr; i++) {
1916 		if (chain->ips[i] == PERF_CONTEXT_USER)
1917 			break;
1918 	}
1919 
1920 	/* LBR only affects the user callchain */
1921 	if (i != chain_nr) {
1922 		struct branch_stack *lbr_stack = sample->branch_stack;
1923 		int lbr_nr = lbr_stack->nr, j, k;
1924 		bool branch;
1925 		struct branch_flags *flags;
1926 		/*
1927 		 * LBR callstack can only get user call chain.
1928 		 * The mix_chain_nr is kernel call chain
1929 		 * number plus LBR user call chain number.
1930 		 * i is kernel call chain number,
1931 		 * 1 is PERF_CONTEXT_USER,
1932 		 * lbr_nr + 1 is the user call chain number.
1933 		 * For details, please refer to the comments
1934 		 * in callchain__printf
1935 		 */
1936 		int mix_chain_nr = i + 1 + lbr_nr + 1;
1937 
1938 		for (j = 0; j < mix_chain_nr; j++) {
1939 			int err;
1940 			branch = false;
1941 			flags = NULL;
1942 
1943 			if (callchain_param.order == ORDER_CALLEE) {
1944 				if (j < i + 1)
1945 					ip = chain->ips[j];
1946 				else if (j > i + 1) {
1947 					k = j - i - 2;
1948 					ip = lbr_stack->entries[k].from;
1949 					branch = true;
1950 					flags = &lbr_stack->entries[k].flags;
1951 				} else {
1952 					ip = lbr_stack->entries[0].to;
1953 					branch = true;
1954 					flags = &lbr_stack->entries[0].flags;
1955 					branch_from =
1956 						lbr_stack->entries[0].from;
1957 				}
1958 			} else {
1959 				if (j < lbr_nr) {
1960 					k = lbr_nr - j - 1;
1961 					ip = lbr_stack->entries[k].from;
1962 					branch = true;
1963 					flags = &lbr_stack->entries[k].flags;
1964 				}
1965 				else if (j > lbr_nr)
1966 					ip = chain->ips[i + 1 - (j - lbr_nr)];
1967 				else {
1968 					ip = lbr_stack->entries[0].to;
1969 					branch = true;
1970 					flags = &lbr_stack->entries[0].flags;
1971 					branch_from =
1972 						lbr_stack->entries[0].from;
1973 				}
1974 			}
1975 
1976 			err = add_callchain_ip(thread, cursor, parent,
1977 					       root_al, &cpumode, ip,
1978 					       branch, flags, NULL,
1979 					       branch_from);
1980 			if (err)
1981 				return (err < 0) ? err : 0;
1982 		}
1983 		return 1;
1984 	}
1985 
1986 	return 0;
1987 }
1988 
1989 static int thread__resolve_callchain_sample(struct thread *thread,
1990 					    struct callchain_cursor *cursor,
1991 					    struct perf_evsel *evsel,
1992 					    struct perf_sample *sample,
1993 					    struct symbol **parent,
1994 					    struct addr_location *root_al,
1995 					    int max_stack)
1996 {
1997 	struct branch_stack *branch = sample->branch_stack;
1998 	struct ip_callchain *chain = sample->callchain;
1999 	int chain_nr = 0;
2000 	u8 cpumode = PERF_RECORD_MISC_USER;
2001 	int i, j, err, nr_entries;
2002 	int skip_idx = -1;
2003 	int first_call = 0;
2004 
2005 	if (chain)
2006 		chain_nr = chain->nr;
2007 
2008 	if (perf_evsel__has_branch_callstack(evsel)) {
2009 		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2010 						   root_al, max_stack);
2011 		if (err)
2012 			return (err < 0) ? err : 0;
2013 	}
2014 
2015 	/*
2016 	 * Based on DWARF debug information, some architectures skip
2017 	 * a callchain entry saved by the kernel.
2018 	 */
2019 	skip_idx = arch_skip_callchain_idx(thread, chain);
2020 
2021 	/*
2022 	 * Add branches to call stack for easier browsing. This gives
2023 	 * more context for a sample than just the callers.
2024 	 *
2025 	 * This uses individual histograms of paths compared to the
2026 	 * aggregated histograms the normal LBR mode uses.
2027 	 *
2028 	 * Limitations for now:
2029 	 * - No extra filters
2030 	 * - No annotations (should annotate somehow)
2031 	 */
2032 
2033 	if (branch && callchain_param.branch_callstack) {
2034 		int nr = min(max_stack, (int)branch->nr);
2035 		struct branch_entry be[nr];
2036 		struct iterations iter[nr];
2037 
2038 		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2039 			pr_warning("corrupted branch chain. skipping...\n");
2040 			goto check_calls;
2041 		}
2042 
2043 		for (i = 0; i < nr; i++) {
2044 			if (callchain_param.order == ORDER_CALLEE) {
2045 				be[i] = branch->entries[i];
2046 
2047 				if (chain == NULL)
2048 					continue;
2049 
2050 				/*
2051 				 * Check for overlap into the callchain.
2052 				 * The return address is one off compared to
2053 				 * the branch entry. To adjust for this
2054 				 * assume the calling instruction is not longer
2055 				 * than 8 bytes.
2056 				 */
2057 				if (i == skip_idx ||
2058 				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2059 					first_call++;
2060 				else if (be[i].from < chain->ips[first_call] &&
2061 				    be[i].from >= chain->ips[first_call] - 8)
2062 					first_call++;
2063 			} else
2064 				be[i] = branch->entries[branch->nr - i - 1];
2065 		}
2066 
2067 		memset(iter, 0, sizeof(struct iterations) * nr);
2068 		nr = remove_loops(be, nr, iter);
2069 
2070 		for (i = 0; i < nr; i++) {
2071 			err = add_callchain_ip(thread, cursor, parent,
2072 					       root_al,
2073 					       NULL, be[i].to,
2074 					       true, &be[i].flags,
2075 					       NULL, be[i].from);
2076 
2077 			if (!err)
2078 				err = add_callchain_ip(thread, cursor, parent, root_al,
2079 						       NULL, be[i].from,
2080 						       true, &be[i].flags,
2081 						       &iter[i], 0);
2082 			if (err == -EINVAL)
2083 				break;
2084 			if (err)
2085 				return err;
2086 		}
2087 
2088 		if (chain_nr == 0)
2089 			return 0;
2090 
2091 		chain_nr -= nr;
2092 	}
2093 
2094 check_calls:
2095 	for (i = first_call, nr_entries = 0;
2096 	     i < chain_nr && nr_entries < max_stack; i++) {
2097 		u64 ip;
2098 
2099 		if (callchain_param.order == ORDER_CALLEE)
2100 			j = i;
2101 		else
2102 			j = chain->nr - i - 1;
2103 
2104 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2105 		if (j == skip_idx)
2106 			continue;
2107 #endif
2108 		ip = chain->ips[j];
2109 
2110 		if (ip < PERF_CONTEXT_MAX)
2111                        ++nr_entries;
2112 
2113 		err = add_callchain_ip(thread, cursor, parent,
2114 				       root_al, &cpumode, ip,
2115 				       false, NULL, NULL, 0);
2116 
2117 		if (err)
2118 			return (err < 0) ? err : 0;
2119 	}
2120 
2121 	return 0;
2122 }
2123 
2124 static int append_inlines(struct callchain_cursor *cursor,
2125 			  struct map *map, struct symbol *sym, u64 ip)
2126 {
2127 	struct inline_node *inline_node;
2128 	struct inline_list *ilist;
2129 	u64 addr;
2130 	int ret = 1;
2131 
2132 	if (!symbol_conf.inline_name || !map || !sym)
2133 		return ret;
2134 
2135 	addr = map__rip_2objdump(map, ip);
2136 
2137 	inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2138 	if (!inline_node) {
2139 		inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2140 		if (!inline_node)
2141 			return ret;
2142 		inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2143 	}
2144 
2145 	list_for_each_entry(ilist, &inline_node->val, list) {
2146 		ret = callchain_cursor_append(cursor, ip, map,
2147 					      ilist->symbol, false,
2148 					      NULL, 0, 0, 0, ilist->srcline);
2149 
2150 		if (ret != 0)
2151 			return ret;
2152 	}
2153 
2154 	return ret;
2155 }
2156 
2157 static int unwind_entry(struct unwind_entry *entry, void *arg)
2158 {
2159 	struct callchain_cursor *cursor = arg;
2160 	const char *srcline = NULL;
2161 
2162 	if (symbol_conf.hide_unresolved && entry->sym == NULL)
2163 		return 0;
2164 
2165 	if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
2166 		return 0;
2167 
2168 	srcline = callchain_srcline(entry->map, entry->sym, entry->ip);
2169 	return callchain_cursor_append(cursor, entry->ip,
2170 				       entry->map, entry->sym,
2171 				       false, NULL, 0, 0, 0, srcline);
2172 }
2173 
2174 static int thread__resolve_callchain_unwind(struct thread *thread,
2175 					    struct callchain_cursor *cursor,
2176 					    struct perf_evsel *evsel,
2177 					    struct perf_sample *sample,
2178 					    int max_stack)
2179 {
2180 	/* Can we do dwarf post unwind? */
2181 	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2182 	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
2183 		return 0;
2184 
2185 	/* Bail out if nothing was captured. */
2186 	if ((!sample->user_regs.regs) ||
2187 	    (!sample->user_stack.size))
2188 		return 0;
2189 
2190 	return unwind__get_entries(unwind_entry, cursor,
2191 				   thread, sample, max_stack);
2192 }
2193 
2194 int thread__resolve_callchain(struct thread *thread,
2195 			      struct callchain_cursor *cursor,
2196 			      struct perf_evsel *evsel,
2197 			      struct perf_sample *sample,
2198 			      struct symbol **parent,
2199 			      struct addr_location *root_al,
2200 			      int max_stack)
2201 {
2202 	int ret = 0;
2203 
2204 	callchain_cursor_reset(&callchain_cursor);
2205 
2206 	if (callchain_param.order == ORDER_CALLEE) {
2207 		ret = thread__resolve_callchain_sample(thread, cursor,
2208 						       evsel, sample,
2209 						       parent, root_al,
2210 						       max_stack);
2211 		if (ret)
2212 			return ret;
2213 		ret = thread__resolve_callchain_unwind(thread, cursor,
2214 						       evsel, sample,
2215 						       max_stack);
2216 	} else {
2217 		ret = thread__resolve_callchain_unwind(thread, cursor,
2218 						       evsel, sample,
2219 						       max_stack);
2220 		if (ret)
2221 			return ret;
2222 		ret = thread__resolve_callchain_sample(thread, cursor,
2223 						       evsel, sample,
2224 						       parent, root_al,
2225 						       max_stack);
2226 	}
2227 
2228 	return ret;
2229 }
2230 
2231 int machine__for_each_thread(struct machine *machine,
2232 			     int (*fn)(struct thread *thread, void *p),
2233 			     void *priv)
2234 {
2235 	struct threads *threads;
2236 	struct rb_node *nd;
2237 	struct thread *thread;
2238 	int rc = 0;
2239 	int i;
2240 
2241 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2242 		threads = &machine->threads[i];
2243 		for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
2244 			thread = rb_entry(nd, struct thread, rb_node);
2245 			rc = fn(thread, priv);
2246 			if (rc != 0)
2247 				return rc;
2248 		}
2249 
2250 		list_for_each_entry(thread, &threads->dead, node) {
2251 			rc = fn(thread, priv);
2252 			if (rc != 0)
2253 				return rc;
2254 		}
2255 	}
2256 	return rc;
2257 }
2258 
2259 int machines__for_each_thread(struct machines *machines,
2260 			      int (*fn)(struct thread *thread, void *p),
2261 			      void *priv)
2262 {
2263 	struct rb_node *nd;
2264 	int rc = 0;
2265 
2266 	rc = machine__for_each_thread(&machines->host, fn, priv);
2267 	if (rc != 0)
2268 		return rc;
2269 
2270 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
2271 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
2272 
2273 		rc = machine__for_each_thread(machine, fn, priv);
2274 		if (rc != 0)
2275 			return rc;
2276 	}
2277 	return rc;
2278 }
2279 
2280 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2281 				  struct target *target, struct thread_map *threads,
2282 				  perf_event__handler_t process, bool data_mmap,
2283 				  unsigned int proc_map_timeout,
2284 				  unsigned int nr_threads_synthesize)
2285 {
2286 	if (target__has_task(target))
2287 		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
2288 	else if (target__has_cpu(target))
2289 		return perf_event__synthesize_threads(tool, process,
2290 						      machine, data_mmap,
2291 						      proc_map_timeout,
2292 						      nr_threads_synthesize);
2293 	/* command specified */
2294 	return 0;
2295 }
2296 
2297 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2298 {
2299 	if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
2300 		return -1;
2301 
2302 	return machine->current_tid[cpu];
2303 }
2304 
2305 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2306 			     pid_t tid)
2307 {
2308 	struct thread *thread;
2309 
2310 	if (cpu < 0)
2311 		return -EINVAL;
2312 
2313 	if (!machine->current_tid) {
2314 		int i;
2315 
2316 		machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
2317 		if (!machine->current_tid)
2318 			return -ENOMEM;
2319 		for (i = 0; i < MAX_NR_CPUS; i++)
2320 			machine->current_tid[i] = -1;
2321 	}
2322 
2323 	if (cpu >= MAX_NR_CPUS) {
2324 		pr_err("Requested CPU %d too large. ", cpu);
2325 		pr_err("Consider raising MAX_NR_CPUS\n");
2326 		return -EINVAL;
2327 	}
2328 
2329 	machine->current_tid[cpu] = tid;
2330 
2331 	thread = machine__findnew_thread(machine, pid, tid);
2332 	if (!thread)
2333 		return -ENOMEM;
2334 
2335 	thread->cpu = cpu;
2336 	thread__put(thread);
2337 
2338 	return 0;
2339 }
2340 
2341 int machine__get_kernel_start(struct machine *machine)
2342 {
2343 	struct map *map = machine__kernel_map(machine);
2344 	int err = 0;
2345 
2346 	/*
2347 	 * The only addresses above 2^63 are kernel addresses of a 64-bit
2348 	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
2349 	 * all addresses including kernel addresses are less than 2^32.  In
2350 	 * that case (32-bit system), if the kernel mapping is unknown, all
2351 	 * addresses will be assumed to be in user space - see
2352 	 * machine__kernel_ip().
2353 	 */
2354 	machine->kernel_start = 1ULL << 63;
2355 	if (map) {
2356 		err = map__load(map);
2357 		if (!err)
2358 			machine->kernel_start = map->start;
2359 	}
2360 	return err;
2361 }
2362 
2363 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2364 {
2365 	return dsos__findnew(&machine->dsos, filename);
2366 }
2367 
2368 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2369 {
2370 	struct machine *machine = vmachine;
2371 	struct map *map;
2372 	struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map);
2373 
2374 	if (sym == NULL)
2375 		return NULL;
2376 
2377 	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2378 	*addrp = map->unmap_ip(map, sym->start);
2379 	return sym->name;
2380 }
2381