xref: /openbmc/linux/tools/perf/util/machine.c (revision dfc66bef)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include <stdlib.h>
7 #include "callchain.h"
8 #include "debug.h"
9 #include "dso.h"
10 #include "env.h"
11 #include "event.h"
12 #include "evsel.h"
13 #include "hist.h"
14 #include "machine.h"
15 #include "map.h"
16 #include "map_symbol.h"
17 #include "branch.h"
18 #include "mem-events.h"
19 #include "srcline.h"
20 #include "symbol.h"
21 #include "sort.h"
22 #include "strlist.h"
23 #include "target.h"
24 #include "thread.h"
25 #include "util.h"
26 #include "vdso.h"
27 #include <stdbool.h>
28 #include <sys/types.h>
29 #include <sys/stat.h>
30 #include <unistd.h>
31 #include "unwind.h"
32 #include "linux/hash.h"
33 #include "asm/bug.h"
34 #include "bpf-event.h"
35 #include <internal/lib.h> // page_size
36 #include "cgroup.h"
37 #include "arm64-frame-pointer-unwind-support.h"
38 
39 #include <linux/ctype.h>
40 #include <symbol/kallsyms.h>
41 #include <linux/mman.h>
42 #include <linux/string.h>
43 #include <linux/zalloc.h>
44 
45 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
46 
47 static struct dso *machine__kernel_dso(struct machine *machine)
48 {
49 	return machine->vmlinux_map->dso;
50 }
51 
52 static void dsos__init(struct dsos *dsos)
53 {
54 	INIT_LIST_HEAD(&dsos->head);
55 	dsos->root = RB_ROOT;
56 	init_rwsem(&dsos->lock);
57 }
58 
59 static void machine__threads_init(struct machine *machine)
60 {
61 	int i;
62 
63 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
64 		struct threads *threads = &machine->threads[i];
65 		threads->entries = RB_ROOT_CACHED;
66 		init_rwsem(&threads->lock);
67 		threads->nr = 0;
68 		INIT_LIST_HEAD(&threads->dead);
69 		threads->last_match = NULL;
70 	}
71 }
72 
73 static int machine__set_mmap_name(struct machine *machine)
74 {
75 	if (machine__is_host(machine))
76 		machine->mmap_name = strdup("[kernel.kallsyms]");
77 	else if (machine__is_default_guest(machine))
78 		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
79 	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
80 			  machine->pid) < 0)
81 		machine->mmap_name = NULL;
82 
83 	return machine->mmap_name ? 0 : -ENOMEM;
84 }
85 
86 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
87 {
88 	int err = -ENOMEM;
89 
90 	memset(machine, 0, sizeof(*machine));
91 	maps__init(&machine->kmaps, machine);
92 	RB_CLEAR_NODE(&machine->rb_node);
93 	dsos__init(&machine->dsos);
94 
95 	machine__threads_init(machine);
96 
97 	machine->vdso_info = NULL;
98 	machine->env = NULL;
99 
100 	machine->pid = pid;
101 
102 	machine->id_hdr_size = 0;
103 	machine->kptr_restrict_warned = false;
104 	machine->comm_exec = false;
105 	machine->kernel_start = 0;
106 	machine->vmlinux_map = NULL;
107 
108 	machine->root_dir = strdup(root_dir);
109 	if (machine->root_dir == NULL)
110 		return -ENOMEM;
111 
112 	if (machine__set_mmap_name(machine))
113 		goto out;
114 
115 	if (pid != HOST_KERNEL_ID) {
116 		struct thread *thread = machine__findnew_thread(machine, -1,
117 								pid);
118 		char comm[64];
119 
120 		if (thread == NULL)
121 			goto out;
122 
123 		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
124 		thread__set_comm(thread, comm, 0);
125 		thread__put(thread);
126 	}
127 
128 	machine->current_tid = NULL;
129 	err = 0;
130 
131 out:
132 	if (err) {
133 		zfree(&machine->root_dir);
134 		zfree(&machine->mmap_name);
135 	}
136 	return 0;
137 }
138 
139 struct machine *machine__new_host(void)
140 {
141 	struct machine *machine = malloc(sizeof(*machine));
142 
143 	if (machine != NULL) {
144 		machine__init(machine, "", HOST_KERNEL_ID);
145 
146 		if (machine__create_kernel_maps(machine) < 0)
147 			goto out_delete;
148 	}
149 
150 	return machine;
151 out_delete:
152 	free(machine);
153 	return NULL;
154 }
155 
156 struct machine *machine__new_kallsyms(void)
157 {
158 	struct machine *machine = machine__new_host();
159 	/*
160 	 * FIXME:
161 	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
162 	 *    ask for not using the kcore parsing code, once this one is fixed
163 	 *    to create a map per module.
164 	 */
165 	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
166 		machine__delete(machine);
167 		machine = NULL;
168 	}
169 
170 	return machine;
171 }
172 
173 static void dsos__purge(struct dsos *dsos)
174 {
175 	struct dso *pos, *n;
176 
177 	down_write(&dsos->lock);
178 
179 	list_for_each_entry_safe(pos, n, &dsos->head, node) {
180 		RB_CLEAR_NODE(&pos->rb_node);
181 		pos->root = NULL;
182 		list_del_init(&pos->node);
183 		dso__put(pos);
184 	}
185 
186 	up_write(&dsos->lock);
187 }
188 
189 static void dsos__exit(struct dsos *dsos)
190 {
191 	dsos__purge(dsos);
192 	exit_rwsem(&dsos->lock);
193 }
194 
195 void machine__delete_threads(struct machine *machine)
196 {
197 	struct rb_node *nd;
198 	int i;
199 
200 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
201 		struct threads *threads = &machine->threads[i];
202 		down_write(&threads->lock);
203 		nd = rb_first_cached(&threads->entries);
204 		while (nd) {
205 			struct thread *t = rb_entry(nd, struct thread, rb_node);
206 
207 			nd = rb_next(nd);
208 			__machine__remove_thread(machine, t, false);
209 		}
210 		up_write(&threads->lock);
211 	}
212 }
213 
214 void machine__exit(struct machine *machine)
215 {
216 	int i;
217 
218 	if (machine == NULL)
219 		return;
220 
221 	machine__destroy_kernel_maps(machine);
222 	maps__exit(&machine->kmaps);
223 	dsos__exit(&machine->dsos);
224 	machine__exit_vdso(machine);
225 	zfree(&machine->root_dir);
226 	zfree(&machine->mmap_name);
227 	zfree(&machine->current_tid);
228 
229 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
230 		struct threads *threads = &machine->threads[i];
231 		struct thread *thread, *n;
232 		/*
233 		 * Forget about the dead, at this point whatever threads were
234 		 * left in the dead lists better have a reference count taken
235 		 * by who is using them, and then, when they drop those references
236 		 * and it finally hits zero, thread__put() will check and see that
237 		 * its not in the dead threads list and will not try to remove it
238 		 * from there, just calling thread__delete() straight away.
239 		 */
240 		list_for_each_entry_safe(thread, n, &threads->dead, node)
241 			list_del_init(&thread->node);
242 
243 		exit_rwsem(&threads->lock);
244 	}
245 }
246 
247 void machine__delete(struct machine *machine)
248 {
249 	if (machine) {
250 		machine__exit(machine);
251 		free(machine);
252 	}
253 }
254 
255 void machines__init(struct machines *machines)
256 {
257 	machine__init(&machines->host, "", HOST_KERNEL_ID);
258 	machines->guests = RB_ROOT_CACHED;
259 }
260 
261 void machines__exit(struct machines *machines)
262 {
263 	machine__exit(&machines->host);
264 	/* XXX exit guest */
265 }
266 
267 struct machine *machines__add(struct machines *machines, pid_t pid,
268 			      const char *root_dir)
269 {
270 	struct rb_node **p = &machines->guests.rb_root.rb_node;
271 	struct rb_node *parent = NULL;
272 	struct machine *pos, *machine = malloc(sizeof(*machine));
273 	bool leftmost = true;
274 
275 	if (machine == NULL)
276 		return NULL;
277 
278 	if (machine__init(machine, root_dir, pid) != 0) {
279 		free(machine);
280 		return NULL;
281 	}
282 
283 	while (*p != NULL) {
284 		parent = *p;
285 		pos = rb_entry(parent, struct machine, rb_node);
286 		if (pid < pos->pid)
287 			p = &(*p)->rb_left;
288 		else {
289 			p = &(*p)->rb_right;
290 			leftmost = false;
291 		}
292 	}
293 
294 	rb_link_node(&machine->rb_node, parent, p);
295 	rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
296 
297 	return machine;
298 }
299 
300 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
301 {
302 	struct rb_node *nd;
303 
304 	machines->host.comm_exec = comm_exec;
305 
306 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
307 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
308 
309 		machine->comm_exec = comm_exec;
310 	}
311 }
312 
313 struct machine *machines__find(struct machines *machines, pid_t pid)
314 {
315 	struct rb_node **p = &machines->guests.rb_root.rb_node;
316 	struct rb_node *parent = NULL;
317 	struct machine *machine;
318 	struct machine *default_machine = NULL;
319 
320 	if (pid == HOST_KERNEL_ID)
321 		return &machines->host;
322 
323 	while (*p != NULL) {
324 		parent = *p;
325 		machine = rb_entry(parent, struct machine, rb_node);
326 		if (pid < machine->pid)
327 			p = &(*p)->rb_left;
328 		else if (pid > machine->pid)
329 			p = &(*p)->rb_right;
330 		else
331 			return machine;
332 		if (!machine->pid)
333 			default_machine = machine;
334 	}
335 
336 	return default_machine;
337 }
338 
339 struct machine *machines__findnew(struct machines *machines, pid_t pid)
340 {
341 	char path[PATH_MAX];
342 	const char *root_dir = "";
343 	struct machine *machine = machines__find(machines, pid);
344 
345 	if (machine && (machine->pid == pid))
346 		goto out;
347 
348 	if ((pid != HOST_KERNEL_ID) &&
349 	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
350 	    (symbol_conf.guestmount)) {
351 		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
352 		if (access(path, R_OK)) {
353 			static struct strlist *seen;
354 
355 			if (!seen)
356 				seen = strlist__new(NULL, NULL);
357 
358 			if (!strlist__has_entry(seen, path)) {
359 				pr_err("Can't access file %s\n", path);
360 				strlist__add(seen, path);
361 			}
362 			machine = NULL;
363 			goto out;
364 		}
365 		root_dir = path;
366 	}
367 
368 	machine = machines__add(machines, pid, root_dir);
369 out:
370 	return machine;
371 }
372 
373 struct machine *machines__find_guest(struct machines *machines, pid_t pid)
374 {
375 	struct machine *machine = machines__find(machines, pid);
376 
377 	if (!machine)
378 		machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID);
379 	return machine;
380 }
381 
382 void machines__process_guests(struct machines *machines,
383 			      machine__process_t process, void *data)
384 {
385 	struct rb_node *nd;
386 
387 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
388 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
389 		process(pos, data);
390 	}
391 }
392 
393 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
394 {
395 	struct rb_node *node;
396 	struct machine *machine;
397 
398 	machines->host.id_hdr_size = id_hdr_size;
399 
400 	for (node = rb_first_cached(&machines->guests); node;
401 	     node = rb_next(node)) {
402 		machine = rb_entry(node, struct machine, rb_node);
403 		machine->id_hdr_size = id_hdr_size;
404 	}
405 
406 	return;
407 }
408 
409 static void machine__update_thread_pid(struct machine *machine,
410 				       struct thread *th, pid_t pid)
411 {
412 	struct thread *leader;
413 
414 	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
415 		return;
416 
417 	th->pid_ = pid;
418 
419 	if (th->pid_ == th->tid)
420 		return;
421 
422 	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
423 	if (!leader)
424 		goto out_err;
425 
426 	if (!leader->maps)
427 		leader->maps = maps__new(machine);
428 
429 	if (!leader->maps)
430 		goto out_err;
431 
432 	if (th->maps == leader->maps)
433 		return;
434 
435 	if (th->maps) {
436 		/*
437 		 * Maps are created from MMAP events which provide the pid and
438 		 * tid.  Consequently there never should be any maps on a thread
439 		 * with an unknown pid.  Just print an error if there are.
440 		 */
441 		if (!maps__empty(th->maps))
442 			pr_err("Discarding thread maps for %d:%d\n",
443 			       th->pid_, th->tid);
444 		maps__put(th->maps);
445 	}
446 
447 	th->maps = maps__get(leader->maps);
448 out_put:
449 	thread__put(leader);
450 	return;
451 out_err:
452 	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
453 	goto out_put;
454 }
455 
456 /*
457  * Front-end cache - TID lookups come in blocks,
458  * so most of the time we dont have to look up
459  * the full rbtree:
460  */
461 static struct thread*
462 __threads__get_last_match(struct threads *threads, struct machine *machine,
463 			  int pid, int tid)
464 {
465 	struct thread *th;
466 
467 	th = threads->last_match;
468 	if (th != NULL) {
469 		if (th->tid == tid) {
470 			machine__update_thread_pid(machine, th, pid);
471 			return thread__get(th);
472 		}
473 
474 		threads->last_match = NULL;
475 	}
476 
477 	return NULL;
478 }
479 
480 static struct thread*
481 threads__get_last_match(struct threads *threads, struct machine *machine,
482 			int pid, int tid)
483 {
484 	struct thread *th = NULL;
485 
486 	if (perf_singlethreaded)
487 		th = __threads__get_last_match(threads, machine, pid, tid);
488 
489 	return th;
490 }
491 
492 static void
493 __threads__set_last_match(struct threads *threads, struct thread *th)
494 {
495 	threads->last_match = th;
496 }
497 
498 static void
499 threads__set_last_match(struct threads *threads, struct thread *th)
500 {
501 	if (perf_singlethreaded)
502 		__threads__set_last_match(threads, th);
503 }
504 
505 /*
506  * Caller must eventually drop thread->refcnt returned with a successful
507  * lookup/new thread inserted.
508  */
509 static struct thread *____machine__findnew_thread(struct machine *machine,
510 						  struct threads *threads,
511 						  pid_t pid, pid_t tid,
512 						  bool create)
513 {
514 	struct rb_node **p = &threads->entries.rb_root.rb_node;
515 	struct rb_node *parent = NULL;
516 	struct thread *th;
517 	bool leftmost = true;
518 
519 	th = threads__get_last_match(threads, machine, pid, tid);
520 	if (th)
521 		return th;
522 
523 	while (*p != NULL) {
524 		parent = *p;
525 		th = rb_entry(parent, struct thread, rb_node);
526 
527 		if (th->tid == tid) {
528 			threads__set_last_match(threads, th);
529 			machine__update_thread_pid(machine, th, pid);
530 			return thread__get(th);
531 		}
532 
533 		if (tid < th->tid)
534 			p = &(*p)->rb_left;
535 		else {
536 			p = &(*p)->rb_right;
537 			leftmost = false;
538 		}
539 	}
540 
541 	if (!create)
542 		return NULL;
543 
544 	th = thread__new(pid, tid);
545 	if (th != NULL) {
546 		rb_link_node(&th->rb_node, parent, p);
547 		rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
548 
549 		/*
550 		 * We have to initialize maps separately after rb tree is updated.
551 		 *
552 		 * The reason is that we call machine__findnew_thread
553 		 * within thread__init_maps to find the thread
554 		 * leader and that would screwed the rb tree.
555 		 */
556 		if (thread__init_maps(th, machine)) {
557 			rb_erase_cached(&th->rb_node, &threads->entries);
558 			RB_CLEAR_NODE(&th->rb_node);
559 			thread__put(th);
560 			return NULL;
561 		}
562 		/*
563 		 * It is now in the rbtree, get a ref
564 		 */
565 		thread__get(th);
566 		threads__set_last_match(threads, th);
567 		++threads->nr;
568 	}
569 
570 	return th;
571 }
572 
573 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
574 {
575 	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
576 }
577 
578 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
579 				       pid_t tid)
580 {
581 	struct threads *threads = machine__threads(machine, tid);
582 	struct thread *th;
583 
584 	down_write(&threads->lock);
585 	th = __machine__findnew_thread(machine, pid, tid);
586 	up_write(&threads->lock);
587 	return th;
588 }
589 
590 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
591 				    pid_t tid)
592 {
593 	struct threads *threads = machine__threads(machine, tid);
594 	struct thread *th;
595 
596 	down_read(&threads->lock);
597 	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
598 	up_read(&threads->lock);
599 	return th;
600 }
601 
602 /*
603  * Threads are identified by pid and tid, and the idle task has pid == tid == 0.
604  * So here a single thread is created for that, but actually there is a separate
605  * idle task per cpu, so there should be one 'struct thread' per cpu, but there
606  * is only 1. That causes problems for some tools, requiring workarounds. For
607  * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu().
608  */
609 struct thread *machine__idle_thread(struct machine *machine)
610 {
611 	struct thread *thread = machine__findnew_thread(machine, 0, 0);
612 
613 	if (!thread || thread__set_comm(thread, "swapper", 0) ||
614 	    thread__set_namespaces(thread, 0, NULL))
615 		pr_err("problem inserting idle task for machine pid %d\n", machine->pid);
616 
617 	return thread;
618 }
619 
620 struct comm *machine__thread_exec_comm(struct machine *machine,
621 				       struct thread *thread)
622 {
623 	if (machine->comm_exec)
624 		return thread__exec_comm(thread);
625 	else
626 		return thread__comm(thread);
627 }
628 
629 int machine__process_comm_event(struct machine *machine, union perf_event *event,
630 				struct perf_sample *sample)
631 {
632 	struct thread *thread = machine__findnew_thread(machine,
633 							event->comm.pid,
634 							event->comm.tid);
635 	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
636 	int err = 0;
637 
638 	if (exec)
639 		machine->comm_exec = true;
640 
641 	if (dump_trace)
642 		perf_event__fprintf_comm(event, stdout);
643 
644 	if (thread == NULL ||
645 	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
646 		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
647 		err = -1;
648 	}
649 
650 	thread__put(thread);
651 
652 	return err;
653 }
654 
655 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
656 				      union perf_event *event,
657 				      struct perf_sample *sample __maybe_unused)
658 {
659 	struct thread *thread = machine__findnew_thread(machine,
660 							event->namespaces.pid,
661 							event->namespaces.tid);
662 	int err = 0;
663 
664 	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
665 		  "\nWARNING: kernel seems to support more namespaces than perf"
666 		  " tool.\nTry updating the perf tool..\n\n");
667 
668 	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
669 		  "\nWARNING: perf tool seems to support more namespaces than"
670 		  " the kernel.\nTry updating the kernel..\n\n");
671 
672 	if (dump_trace)
673 		perf_event__fprintf_namespaces(event, stdout);
674 
675 	if (thread == NULL ||
676 	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
677 		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
678 		err = -1;
679 	}
680 
681 	thread__put(thread);
682 
683 	return err;
684 }
685 
686 int machine__process_cgroup_event(struct machine *machine,
687 				  union perf_event *event,
688 				  struct perf_sample *sample __maybe_unused)
689 {
690 	struct cgroup *cgrp;
691 
692 	if (dump_trace)
693 		perf_event__fprintf_cgroup(event, stdout);
694 
695 	cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
696 	if (cgrp == NULL)
697 		return -ENOMEM;
698 
699 	return 0;
700 }
701 
702 int machine__process_lost_event(struct machine *machine __maybe_unused,
703 				union perf_event *event, struct perf_sample *sample __maybe_unused)
704 {
705 	dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
706 		    event->lost.id, event->lost.lost);
707 	return 0;
708 }
709 
710 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
711 					union perf_event *event, struct perf_sample *sample)
712 {
713 	dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
714 		    sample->id, event->lost_samples.lost);
715 	return 0;
716 }
717 
718 static struct dso *machine__findnew_module_dso(struct machine *machine,
719 					       struct kmod_path *m,
720 					       const char *filename)
721 {
722 	struct dso *dso;
723 
724 	down_write(&machine->dsos.lock);
725 
726 	dso = __dsos__find(&machine->dsos, m->name, true);
727 	if (!dso) {
728 		dso = __dsos__addnew(&machine->dsos, m->name);
729 		if (dso == NULL)
730 			goto out_unlock;
731 
732 		dso__set_module_info(dso, m, machine);
733 		dso__set_long_name(dso, strdup(filename), true);
734 		dso->kernel = DSO_SPACE__KERNEL;
735 	}
736 
737 	dso__get(dso);
738 out_unlock:
739 	up_write(&machine->dsos.lock);
740 	return dso;
741 }
742 
743 int machine__process_aux_event(struct machine *machine __maybe_unused,
744 			       union perf_event *event)
745 {
746 	if (dump_trace)
747 		perf_event__fprintf_aux(event, stdout);
748 	return 0;
749 }
750 
751 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
752 					union perf_event *event)
753 {
754 	if (dump_trace)
755 		perf_event__fprintf_itrace_start(event, stdout);
756 	return 0;
757 }
758 
759 int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused,
760 					    union perf_event *event)
761 {
762 	if (dump_trace)
763 		perf_event__fprintf_aux_output_hw_id(event, stdout);
764 	return 0;
765 }
766 
767 int machine__process_switch_event(struct machine *machine __maybe_unused,
768 				  union perf_event *event)
769 {
770 	if (dump_trace)
771 		perf_event__fprintf_switch(event, stdout);
772 	return 0;
773 }
774 
775 static int machine__process_ksymbol_register(struct machine *machine,
776 					     union perf_event *event,
777 					     struct perf_sample *sample __maybe_unused)
778 {
779 	struct symbol *sym;
780 	struct map *map = maps__find(&machine->kmaps, event->ksymbol.addr);
781 
782 	if (!map) {
783 		struct dso *dso = dso__new(event->ksymbol.name);
784 
785 		if (dso) {
786 			dso->kernel = DSO_SPACE__KERNEL;
787 			map = map__new2(0, dso);
788 			dso__put(dso);
789 		}
790 
791 		if (!dso || !map) {
792 			return -ENOMEM;
793 		}
794 
795 		if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
796 			map->dso->binary_type = DSO_BINARY_TYPE__OOL;
797 			map->dso->data.file_size = event->ksymbol.len;
798 			dso__set_loaded(map->dso);
799 		}
800 
801 		map->start = event->ksymbol.addr;
802 		map->end = map->start + event->ksymbol.len;
803 		maps__insert(&machine->kmaps, map);
804 		map__put(map);
805 		dso__set_loaded(dso);
806 
807 		if (is_bpf_image(event->ksymbol.name)) {
808 			dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE;
809 			dso__set_long_name(dso, "", false);
810 		}
811 	}
812 
813 	sym = symbol__new(map->map_ip(map, map->start),
814 			  event->ksymbol.len,
815 			  0, 0, event->ksymbol.name);
816 	if (!sym)
817 		return -ENOMEM;
818 	dso__insert_symbol(map->dso, sym);
819 	return 0;
820 }
821 
822 static int machine__process_ksymbol_unregister(struct machine *machine,
823 					       union perf_event *event,
824 					       struct perf_sample *sample __maybe_unused)
825 {
826 	struct symbol *sym;
827 	struct map *map;
828 
829 	map = maps__find(&machine->kmaps, event->ksymbol.addr);
830 	if (!map)
831 		return 0;
832 
833 	if (map != machine->vmlinux_map)
834 		maps__remove(&machine->kmaps, map);
835 	else {
836 		sym = dso__find_symbol(map->dso, map->map_ip(map, map->start));
837 		if (sym)
838 			dso__delete_symbol(map->dso, sym);
839 	}
840 
841 	return 0;
842 }
843 
844 int machine__process_ksymbol(struct machine *machine __maybe_unused,
845 			     union perf_event *event,
846 			     struct perf_sample *sample)
847 {
848 	if (dump_trace)
849 		perf_event__fprintf_ksymbol(event, stdout);
850 
851 	if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
852 		return machine__process_ksymbol_unregister(machine, event,
853 							   sample);
854 	return machine__process_ksymbol_register(machine, event, sample);
855 }
856 
857 int machine__process_text_poke(struct machine *machine, union perf_event *event,
858 			       struct perf_sample *sample __maybe_unused)
859 {
860 	struct map *map = maps__find(&machine->kmaps, event->text_poke.addr);
861 	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
862 
863 	if (dump_trace)
864 		perf_event__fprintf_text_poke(event, machine, stdout);
865 
866 	if (!event->text_poke.new_len)
867 		return 0;
868 
869 	if (cpumode != PERF_RECORD_MISC_KERNEL) {
870 		pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
871 		return 0;
872 	}
873 
874 	if (map && map->dso) {
875 		u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
876 		int ret;
877 
878 		/*
879 		 * Kernel maps might be changed when loading symbols so loading
880 		 * must be done prior to using kernel maps.
881 		 */
882 		map__load(map);
883 		ret = dso__data_write_cache_addr(map->dso, map, machine,
884 						 event->text_poke.addr,
885 						 new_bytes,
886 						 event->text_poke.new_len);
887 		if (ret != event->text_poke.new_len)
888 			pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
889 				 event->text_poke.addr);
890 	} else {
891 		pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
892 			 event->text_poke.addr);
893 	}
894 
895 	return 0;
896 }
897 
898 static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
899 					      const char *filename)
900 {
901 	struct map *map = NULL;
902 	struct kmod_path m;
903 	struct dso *dso;
904 
905 	if (kmod_path__parse_name(&m, filename))
906 		return NULL;
907 
908 	dso = machine__findnew_module_dso(machine, &m, filename);
909 	if (dso == NULL)
910 		goto out;
911 
912 	map = map__new2(start, dso);
913 	if (map == NULL)
914 		goto out;
915 
916 	maps__insert(&machine->kmaps, map);
917 
918 	/* Put the map here because maps__insert already got it */
919 	map__put(map);
920 out:
921 	/* put the dso here, corresponding to  machine__findnew_module_dso */
922 	dso__put(dso);
923 	zfree(&m.name);
924 	return map;
925 }
926 
927 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
928 {
929 	struct rb_node *nd;
930 	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
931 
932 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
933 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
934 		ret += __dsos__fprintf(&pos->dsos.head, fp);
935 	}
936 
937 	return ret;
938 }
939 
940 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
941 				     bool (skip)(struct dso *dso, int parm), int parm)
942 {
943 	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
944 }
945 
946 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
947 				     bool (skip)(struct dso *dso, int parm), int parm)
948 {
949 	struct rb_node *nd;
950 	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
951 
952 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
953 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
954 		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
955 	}
956 	return ret;
957 }
958 
959 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
960 {
961 	int i;
962 	size_t printed = 0;
963 	struct dso *kdso = machine__kernel_dso(machine);
964 
965 	if (kdso->has_build_id) {
966 		char filename[PATH_MAX];
967 		if (dso__build_id_filename(kdso, filename, sizeof(filename),
968 					   false))
969 			printed += fprintf(fp, "[0] %s\n", filename);
970 	}
971 
972 	for (i = 0; i < vmlinux_path__nr_entries; ++i)
973 		printed += fprintf(fp, "[%d] %s\n",
974 				   i + kdso->has_build_id, vmlinux_path[i]);
975 
976 	return printed;
977 }
978 
979 size_t machine__fprintf(struct machine *machine, FILE *fp)
980 {
981 	struct rb_node *nd;
982 	size_t ret;
983 	int i;
984 
985 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
986 		struct threads *threads = &machine->threads[i];
987 
988 		down_read(&threads->lock);
989 
990 		ret = fprintf(fp, "Threads: %u\n", threads->nr);
991 
992 		for (nd = rb_first_cached(&threads->entries); nd;
993 		     nd = rb_next(nd)) {
994 			struct thread *pos = rb_entry(nd, struct thread, rb_node);
995 
996 			ret += thread__fprintf(pos, fp);
997 		}
998 
999 		up_read(&threads->lock);
1000 	}
1001 	return ret;
1002 }
1003 
1004 static struct dso *machine__get_kernel(struct machine *machine)
1005 {
1006 	const char *vmlinux_name = machine->mmap_name;
1007 	struct dso *kernel;
1008 
1009 	if (machine__is_host(machine)) {
1010 		if (symbol_conf.vmlinux_name)
1011 			vmlinux_name = symbol_conf.vmlinux_name;
1012 
1013 		kernel = machine__findnew_kernel(machine, vmlinux_name,
1014 						 "[kernel]", DSO_SPACE__KERNEL);
1015 	} else {
1016 		if (symbol_conf.default_guest_vmlinux_name)
1017 			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
1018 
1019 		kernel = machine__findnew_kernel(machine, vmlinux_name,
1020 						 "[guest.kernel]",
1021 						 DSO_SPACE__KERNEL_GUEST);
1022 	}
1023 
1024 	if (kernel != NULL && (!kernel->has_build_id))
1025 		dso__read_running_kernel_build_id(kernel, machine);
1026 
1027 	return kernel;
1028 }
1029 
1030 struct process_args {
1031 	u64 start;
1032 };
1033 
1034 void machine__get_kallsyms_filename(struct machine *machine, char *buf,
1035 				    size_t bufsz)
1036 {
1037 	if (machine__is_default_guest(machine))
1038 		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
1039 	else
1040 		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
1041 }
1042 
1043 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
1044 
1045 /* Figure out the start address of kernel map from /proc/kallsyms.
1046  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
1047  * symbol_name if it's not that important.
1048  */
1049 static int machine__get_running_kernel_start(struct machine *machine,
1050 					     const char **symbol_name,
1051 					     u64 *start, u64 *end)
1052 {
1053 	char filename[PATH_MAX];
1054 	int i, err = -1;
1055 	const char *name;
1056 	u64 addr = 0;
1057 
1058 	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
1059 
1060 	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1061 		return 0;
1062 
1063 	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
1064 		err = kallsyms__get_function_start(filename, name, &addr);
1065 		if (!err)
1066 			break;
1067 	}
1068 
1069 	if (err)
1070 		return -1;
1071 
1072 	if (symbol_name)
1073 		*symbol_name = name;
1074 
1075 	*start = addr;
1076 
1077 	err = kallsyms__get_function_start(filename, "_etext", &addr);
1078 	if (!err)
1079 		*end = addr;
1080 
1081 	return 0;
1082 }
1083 
1084 int machine__create_extra_kernel_map(struct machine *machine,
1085 				     struct dso *kernel,
1086 				     struct extra_kernel_map *xm)
1087 {
1088 	struct kmap *kmap;
1089 	struct map *map;
1090 
1091 	map = map__new2(xm->start, kernel);
1092 	if (!map)
1093 		return -1;
1094 
1095 	map->end   = xm->end;
1096 	map->pgoff = xm->pgoff;
1097 
1098 	kmap = map__kmap(map);
1099 
1100 	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1101 
1102 	maps__insert(&machine->kmaps, map);
1103 
1104 	pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1105 		  kmap->name, map->start, map->end);
1106 
1107 	map__put(map);
1108 
1109 	return 0;
1110 }
1111 
1112 static u64 find_entry_trampoline(struct dso *dso)
1113 {
1114 	/* Duplicates are removed so lookup all aliases */
1115 	const char *syms[] = {
1116 		"_entry_trampoline",
1117 		"__entry_trampoline_start",
1118 		"entry_SYSCALL_64_trampoline",
1119 	};
1120 	struct symbol *sym = dso__first_symbol(dso);
1121 	unsigned int i;
1122 
1123 	for (; sym; sym = dso__next_symbol(sym)) {
1124 		if (sym->binding != STB_GLOBAL)
1125 			continue;
1126 		for (i = 0; i < ARRAY_SIZE(syms); i++) {
1127 			if (!strcmp(sym->name, syms[i]))
1128 				return sym->start;
1129 		}
1130 	}
1131 
1132 	return 0;
1133 }
1134 
1135 /*
1136  * These values can be used for kernels that do not have symbols for the entry
1137  * trampolines in kallsyms.
1138  */
1139 #define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
1140 #define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
1141 #define X86_64_ENTRY_TRAMPOLINE		0x6000
1142 
1143 /* Map x86_64 PTI entry trampolines */
1144 int machine__map_x86_64_entry_trampolines(struct machine *machine,
1145 					  struct dso *kernel)
1146 {
1147 	struct maps *kmaps = &machine->kmaps;
1148 	int nr_cpus_avail, cpu;
1149 	bool found = false;
1150 	struct map *map;
1151 	u64 pgoff;
1152 
1153 	/*
1154 	 * In the vmlinux case, pgoff is a virtual address which must now be
1155 	 * mapped to a vmlinux offset.
1156 	 */
1157 	maps__for_each_entry(kmaps, map) {
1158 		struct kmap *kmap = __map__kmap(map);
1159 		struct map *dest_map;
1160 
1161 		if (!kmap || !is_entry_trampoline(kmap->name))
1162 			continue;
1163 
1164 		dest_map = maps__find(kmaps, map->pgoff);
1165 		if (dest_map != map)
1166 			map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1167 		found = true;
1168 	}
1169 	if (found || machine->trampolines_mapped)
1170 		return 0;
1171 
1172 	pgoff = find_entry_trampoline(kernel);
1173 	if (!pgoff)
1174 		return 0;
1175 
1176 	nr_cpus_avail = machine__nr_cpus_avail(machine);
1177 
1178 	/* Add a 1 page map for each CPU's entry trampoline */
1179 	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1180 		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1181 			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1182 			 X86_64_ENTRY_TRAMPOLINE;
1183 		struct extra_kernel_map xm = {
1184 			.start = va,
1185 			.end   = va + page_size,
1186 			.pgoff = pgoff,
1187 		};
1188 
1189 		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1190 
1191 		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1192 			return -1;
1193 	}
1194 
1195 	machine->trampolines_mapped = nr_cpus_avail;
1196 
1197 	return 0;
1198 }
1199 
1200 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1201 					     struct dso *kernel __maybe_unused)
1202 {
1203 	return 0;
1204 }
1205 
1206 static int
1207 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1208 {
1209 	/* In case of renewal the kernel map, destroy previous one */
1210 	machine__destroy_kernel_maps(machine);
1211 
1212 	machine->vmlinux_map = map__new2(0, kernel);
1213 	if (machine->vmlinux_map == NULL)
1214 		return -1;
1215 
1216 	machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1217 	maps__insert(&machine->kmaps, machine->vmlinux_map);
1218 	return 0;
1219 }
1220 
1221 void machine__destroy_kernel_maps(struct machine *machine)
1222 {
1223 	struct kmap *kmap;
1224 	struct map *map = machine__kernel_map(machine);
1225 
1226 	if (map == NULL)
1227 		return;
1228 
1229 	kmap = map__kmap(map);
1230 	maps__remove(&machine->kmaps, map);
1231 	if (kmap && kmap->ref_reloc_sym) {
1232 		zfree((char **)&kmap->ref_reloc_sym->name);
1233 		zfree(&kmap->ref_reloc_sym);
1234 	}
1235 
1236 	map__zput(machine->vmlinux_map);
1237 }
1238 
1239 int machines__create_guest_kernel_maps(struct machines *machines)
1240 {
1241 	int ret = 0;
1242 	struct dirent **namelist = NULL;
1243 	int i, items = 0;
1244 	char path[PATH_MAX];
1245 	pid_t pid;
1246 	char *endp;
1247 
1248 	if (symbol_conf.default_guest_vmlinux_name ||
1249 	    symbol_conf.default_guest_modules ||
1250 	    symbol_conf.default_guest_kallsyms) {
1251 		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1252 	}
1253 
1254 	if (symbol_conf.guestmount) {
1255 		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1256 		if (items <= 0)
1257 			return -ENOENT;
1258 		for (i = 0; i < items; i++) {
1259 			if (!isdigit(namelist[i]->d_name[0])) {
1260 				/* Filter out . and .. */
1261 				continue;
1262 			}
1263 			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1264 			if ((*endp != '\0') ||
1265 			    (endp == namelist[i]->d_name) ||
1266 			    (errno == ERANGE)) {
1267 				pr_debug("invalid directory (%s). Skipping.\n",
1268 					 namelist[i]->d_name);
1269 				continue;
1270 			}
1271 			sprintf(path, "%s/%s/proc/kallsyms",
1272 				symbol_conf.guestmount,
1273 				namelist[i]->d_name);
1274 			ret = access(path, R_OK);
1275 			if (ret) {
1276 				pr_debug("Can't access file %s\n", path);
1277 				goto failure;
1278 			}
1279 			machines__create_kernel_maps(machines, pid);
1280 		}
1281 failure:
1282 		free(namelist);
1283 	}
1284 
1285 	return ret;
1286 }
1287 
1288 void machines__destroy_kernel_maps(struct machines *machines)
1289 {
1290 	struct rb_node *next = rb_first_cached(&machines->guests);
1291 
1292 	machine__destroy_kernel_maps(&machines->host);
1293 
1294 	while (next) {
1295 		struct machine *pos = rb_entry(next, struct machine, rb_node);
1296 
1297 		next = rb_next(&pos->rb_node);
1298 		rb_erase_cached(&pos->rb_node, &machines->guests);
1299 		machine__delete(pos);
1300 	}
1301 }
1302 
1303 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1304 {
1305 	struct machine *machine = machines__findnew(machines, pid);
1306 
1307 	if (machine == NULL)
1308 		return -1;
1309 
1310 	return machine__create_kernel_maps(machine);
1311 }
1312 
1313 int machine__load_kallsyms(struct machine *machine, const char *filename)
1314 {
1315 	struct map *map = machine__kernel_map(machine);
1316 	int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1317 
1318 	if (ret > 0) {
1319 		dso__set_loaded(map->dso);
1320 		/*
1321 		 * Since /proc/kallsyms will have multiple sessions for the
1322 		 * kernel, with modules between them, fixup the end of all
1323 		 * sections.
1324 		 */
1325 		maps__fixup_end(&machine->kmaps);
1326 	}
1327 
1328 	return ret;
1329 }
1330 
1331 int machine__load_vmlinux_path(struct machine *machine)
1332 {
1333 	struct map *map = machine__kernel_map(machine);
1334 	int ret = dso__load_vmlinux_path(map->dso, map);
1335 
1336 	if (ret > 0)
1337 		dso__set_loaded(map->dso);
1338 
1339 	return ret;
1340 }
1341 
1342 static char *get_kernel_version(const char *root_dir)
1343 {
1344 	char version[PATH_MAX];
1345 	FILE *file;
1346 	char *name, *tmp;
1347 	const char *prefix = "Linux version ";
1348 
1349 	sprintf(version, "%s/proc/version", root_dir);
1350 	file = fopen(version, "r");
1351 	if (!file)
1352 		return NULL;
1353 
1354 	tmp = fgets(version, sizeof(version), file);
1355 	fclose(file);
1356 	if (!tmp)
1357 		return NULL;
1358 
1359 	name = strstr(version, prefix);
1360 	if (!name)
1361 		return NULL;
1362 	name += strlen(prefix);
1363 	tmp = strchr(name, ' ');
1364 	if (tmp)
1365 		*tmp = '\0';
1366 
1367 	return strdup(name);
1368 }
1369 
1370 static bool is_kmod_dso(struct dso *dso)
1371 {
1372 	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1373 	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1374 }
1375 
1376 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1377 {
1378 	char *long_name;
1379 	struct map *map = maps__find_by_name(maps, m->name);
1380 
1381 	if (map == NULL)
1382 		return 0;
1383 
1384 	long_name = strdup(path);
1385 	if (long_name == NULL)
1386 		return -ENOMEM;
1387 
1388 	dso__set_long_name(map->dso, long_name, true);
1389 	dso__kernel_module_get_build_id(map->dso, "");
1390 
1391 	/*
1392 	 * Full name could reveal us kmod compression, so
1393 	 * we need to update the symtab_type if needed.
1394 	 */
1395 	if (m->comp && is_kmod_dso(map->dso)) {
1396 		map->dso->symtab_type++;
1397 		map->dso->comp = m->comp;
1398 	}
1399 
1400 	return 0;
1401 }
1402 
1403 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1404 {
1405 	struct dirent *dent;
1406 	DIR *dir = opendir(dir_name);
1407 	int ret = 0;
1408 
1409 	if (!dir) {
1410 		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1411 		return -1;
1412 	}
1413 
1414 	while ((dent = readdir(dir)) != NULL) {
1415 		char path[PATH_MAX];
1416 		struct stat st;
1417 
1418 		/*sshfs might return bad dent->d_type, so we have to stat*/
1419 		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1420 		if (stat(path, &st))
1421 			continue;
1422 
1423 		if (S_ISDIR(st.st_mode)) {
1424 			if (!strcmp(dent->d_name, ".") ||
1425 			    !strcmp(dent->d_name, ".."))
1426 				continue;
1427 
1428 			/* Do not follow top-level source and build symlinks */
1429 			if (depth == 0) {
1430 				if (!strcmp(dent->d_name, "source") ||
1431 				    !strcmp(dent->d_name, "build"))
1432 					continue;
1433 			}
1434 
1435 			ret = maps__set_modules_path_dir(maps, path, depth + 1);
1436 			if (ret < 0)
1437 				goto out;
1438 		} else {
1439 			struct kmod_path m;
1440 
1441 			ret = kmod_path__parse_name(&m, dent->d_name);
1442 			if (ret)
1443 				goto out;
1444 
1445 			if (m.kmod)
1446 				ret = maps__set_module_path(maps, path, &m);
1447 
1448 			zfree(&m.name);
1449 
1450 			if (ret)
1451 				goto out;
1452 		}
1453 	}
1454 
1455 out:
1456 	closedir(dir);
1457 	return ret;
1458 }
1459 
1460 static int machine__set_modules_path(struct machine *machine)
1461 {
1462 	char *version;
1463 	char modules_path[PATH_MAX];
1464 
1465 	version = get_kernel_version(machine->root_dir);
1466 	if (!version)
1467 		return -1;
1468 
1469 	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1470 		 machine->root_dir, version);
1471 	free(version);
1472 
1473 	return maps__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1474 }
1475 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1476 				u64 *size __maybe_unused,
1477 				const char *name __maybe_unused)
1478 {
1479 	return 0;
1480 }
1481 
1482 static int machine__create_module(void *arg, const char *name, u64 start,
1483 				  u64 size)
1484 {
1485 	struct machine *machine = arg;
1486 	struct map *map;
1487 
1488 	if (arch__fix_module_text_start(&start, &size, name) < 0)
1489 		return -1;
1490 
1491 	map = machine__addnew_module_map(machine, start, name);
1492 	if (map == NULL)
1493 		return -1;
1494 	map->end = start + size;
1495 
1496 	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1497 
1498 	return 0;
1499 }
1500 
1501 static int machine__create_modules(struct machine *machine)
1502 {
1503 	const char *modules;
1504 	char path[PATH_MAX];
1505 
1506 	if (machine__is_default_guest(machine)) {
1507 		modules = symbol_conf.default_guest_modules;
1508 	} else {
1509 		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1510 		modules = path;
1511 	}
1512 
1513 	if (symbol__restricted_filename(modules, "/proc/modules"))
1514 		return -1;
1515 
1516 	if (modules__parse(modules, machine, machine__create_module))
1517 		return -1;
1518 
1519 	if (!machine__set_modules_path(machine))
1520 		return 0;
1521 
1522 	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1523 
1524 	return 0;
1525 }
1526 
1527 static void machine__set_kernel_mmap(struct machine *machine,
1528 				     u64 start, u64 end)
1529 {
1530 	machine->vmlinux_map->start = start;
1531 	machine->vmlinux_map->end   = end;
1532 	/*
1533 	 * Be a bit paranoid here, some perf.data file came with
1534 	 * a zero sized synthesized MMAP event for the kernel.
1535 	 */
1536 	if (start == 0 && end == 0)
1537 		machine->vmlinux_map->end = ~0ULL;
1538 }
1539 
1540 static void machine__update_kernel_mmap(struct machine *machine,
1541 				     u64 start, u64 end)
1542 {
1543 	struct map *map = machine__kernel_map(machine);
1544 
1545 	map__get(map);
1546 	maps__remove(&machine->kmaps, map);
1547 
1548 	machine__set_kernel_mmap(machine, start, end);
1549 
1550 	maps__insert(&machine->kmaps, map);
1551 	map__put(map);
1552 }
1553 
1554 int machine__create_kernel_maps(struct machine *machine)
1555 {
1556 	struct dso *kernel = machine__get_kernel(machine);
1557 	const char *name = NULL;
1558 	struct map *map;
1559 	u64 start = 0, end = ~0ULL;
1560 	int ret;
1561 
1562 	if (kernel == NULL)
1563 		return -1;
1564 
1565 	ret = __machine__create_kernel_maps(machine, kernel);
1566 	if (ret < 0)
1567 		goto out_put;
1568 
1569 	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1570 		if (machine__is_host(machine))
1571 			pr_debug("Problems creating module maps, "
1572 				 "continuing anyway...\n");
1573 		else
1574 			pr_debug("Problems creating module maps for guest %d, "
1575 				 "continuing anyway...\n", machine->pid);
1576 	}
1577 
1578 	if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1579 		if (name &&
1580 		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1581 			machine__destroy_kernel_maps(machine);
1582 			ret = -1;
1583 			goto out_put;
1584 		}
1585 
1586 		/*
1587 		 * we have a real start address now, so re-order the kmaps
1588 		 * assume it's the last in the kmaps
1589 		 */
1590 		machine__update_kernel_mmap(machine, start, end);
1591 	}
1592 
1593 	if (machine__create_extra_kernel_maps(machine, kernel))
1594 		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1595 
1596 	if (end == ~0ULL) {
1597 		/* update end address of the kernel map using adjacent module address */
1598 		map = map__next(machine__kernel_map(machine));
1599 		if (map)
1600 			machine__set_kernel_mmap(machine, start, map->start);
1601 	}
1602 
1603 out_put:
1604 	dso__put(kernel);
1605 	return ret;
1606 }
1607 
1608 static bool machine__uses_kcore(struct machine *machine)
1609 {
1610 	struct dso *dso;
1611 
1612 	list_for_each_entry(dso, &machine->dsos.head, node) {
1613 		if (dso__is_kcore(dso))
1614 			return true;
1615 	}
1616 
1617 	return false;
1618 }
1619 
1620 static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1621 					     struct extra_kernel_map *xm)
1622 {
1623 	return machine__is(machine, "x86_64") &&
1624 	       is_entry_trampoline(xm->name);
1625 }
1626 
1627 static int machine__process_extra_kernel_map(struct machine *machine,
1628 					     struct extra_kernel_map *xm)
1629 {
1630 	struct dso *kernel = machine__kernel_dso(machine);
1631 
1632 	if (kernel == NULL)
1633 		return -1;
1634 
1635 	return machine__create_extra_kernel_map(machine, kernel, xm);
1636 }
1637 
1638 static int machine__process_kernel_mmap_event(struct machine *machine,
1639 					      struct extra_kernel_map *xm,
1640 					      struct build_id *bid)
1641 {
1642 	struct map *map;
1643 	enum dso_space_type dso_space;
1644 	bool is_kernel_mmap;
1645 
1646 	/* If we have maps from kcore then we do not need or want any others */
1647 	if (machine__uses_kcore(machine))
1648 		return 0;
1649 
1650 	if (machine__is_host(machine))
1651 		dso_space = DSO_SPACE__KERNEL;
1652 	else
1653 		dso_space = DSO_SPACE__KERNEL_GUEST;
1654 
1655 	is_kernel_mmap = memcmp(xm->name, machine->mmap_name,
1656 				strlen(machine->mmap_name) - 1) == 0;
1657 	if (xm->name[0] == '/' ||
1658 	    (!is_kernel_mmap && xm->name[0] == '[')) {
1659 		map = machine__addnew_module_map(machine, xm->start,
1660 						 xm->name);
1661 		if (map == NULL)
1662 			goto out_problem;
1663 
1664 		map->end = map->start + xm->end - xm->start;
1665 
1666 		if (build_id__is_defined(bid))
1667 			dso__set_build_id(map->dso, bid);
1668 
1669 	} else if (is_kernel_mmap) {
1670 		const char *symbol_name = (xm->name + strlen(machine->mmap_name));
1671 		/*
1672 		 * Should be there already, from the build-id table in
1673 		 * the header.
1674 		 */
1675 		struct dso *kernel = NULL;
1676 		struct dso *dso;
1677 
1678 		down_read(&machine->dsos.lock);
1679 
1680 		list_for_each_entry(dso, &machine->dsos.head, node) {
1681 
1682 			/*
1683 			 * The cpumode passed to is_kernel_module is not the
1684 			 * cpumode of *this* event. If we insist on passing
1685 			 * correct cpumode to is_kernel_module, we should
1686 			 * record the cpumode when we adding this dso to the
1687 			 * linked list.
1688 			 *
1689 			 * However we don't really need passing correct
1690 			 * cpumode.  We know the correct cpumode must be kernel
1691 			 * mode (if not, we should not link it onto kernel_dsos
1692 			 * list).
1693 			 *
1694 			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1695 			 * is_kernel_module() treats it as a kernel cpumode.
1696 			 */
1697 
1698 			if (!dso->kernel ||
1699 			    is_kernel_module(dso->long_name,
1700 					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1701 				continue;
1702 
1703 
1704 			kernel = dso;
1705 			break;
1706 		}
1707 
1708 		up_read(&machine->dsos.lock);
1709 
1710 		if (kernel == NULL)
1711 			kernel = machine__findnew_dso(machine, machine->mmap_name);
1712 		if (kernel == NULL)
1713 			goto out_problem;
1714 
1715 		kernel->kernel = dso_space;
1716 		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1717 			dso__put(kernel);
1718 			goto out_problem;
1719 		}
1720 
1721 		if (strstr(kernel->long_name, "vmlinux"))
1722 			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1723 
1724 		machine__update_kernel_mmap(machine, xm->start, xm->end);
1725 
1726 		if (build_id__is_defined(bid))
1727 			dso__set_build_id(kernel, bid);
1728 
1729 		/*
1730 		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1731 		 * symbol. Effectively having zero here means that at record
1732 		 * time /proc/sys/kernel/kptr_restrict was non zero.
1733 		 */
1734 		if (xm->pgoff != 0) {
1735 			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1736 							symbol_name,
1737 							xm->pgoff);
1738 		}
1739 
1740 		if (machine__is_default_guest(machine)) {
1741 			/*
1742 			 * preload dso of guest kernel and modules
1743 			 */
1744 			dso__load(kernel, machine__kernel_map(machine));
1745 		}
1746 	} else if (perf_event__is_extra_kernel_mmap(machine, xm)) {
1747 		return machine__process_extra_kernel_map(machine, xm);
1748 	}
1749 	return 0;
1750 out_problem:
1751 	return -1;
1752 }
1753 
1754 int machine__process_mmap2_event(struct machine *machine,
1755 				 union perf_event *event,
1756 				 struct perf_sample *sample)
1757 {
1758 	struct thread *thread;
1759 	struct map *map;
1760 	struct dso_id dso_id = {
1761 		.maj = event->mmap2.maj,
1762 		.min = event->mmap2.min,
1763 		.ino = event->mmap2.ino,
1764 		.ino_generation = event->mmap2.ino_generation,
1765 	};
1766 	struct build_id __bid, *bid = NULL;
1767 	int ret = 0;
1768 
1769 	if (dump_trace)
1770 		perf_event__fprintf_mmap2(event, stdout);
1771 
1772 	if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) {
1773 		bid = &__bid;
1774 		build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size);
1775 	}
1776 
1777 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1778 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1779 		struct extra_kernel_map xm = {
1780 			.start = event->mmap2.start,
1781 			.end   = event->mmap2.start + event->mmap2.len,
1782 			.pgoff = event->mmap2.pgoff,
1783 		};
1784 
1785 		strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN);
1786 		ret = machine__process_kernel_mmap_event(machine, &xm, bid);
1787 		if (ret < 0)
1788 			goto out_problem;
1789 		return 0;
1790 	}
1791 
1792 	thread = machine__findnew_thread(machine, event->mmap2.pid,
1793 					event->mmap2.tid);
1794 	if (thread == NULL)
1795 		goto out_problem;
1796 
1797 	map = map__new(machine, event->mmap2.start,
1798 			event->mmap2.len, event->mmap2.pgoff,
1799 			&dso_id, event->mmap2.prot,
1800 			event->mmap2.flags, bid,
1801 			event->mmap2.filename, thread);
1802 
1803 	if (map == NULL)
1804 		goto out_problem_map;
1805 
1806 	ret = thread__insert_map(thread, map);
1807 	if (ret)
1808 		goto out_problem_insert;
1809 
1810 	thread__put(thread);
1811 	map__put(map);
1812 	return 0;
1813 
1814 out_problem_insert:
1815 	map__put(map);
1816 out_problem_map:
1817 	thread__put(thread);
1818 out_problem:
1819 	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1820 	return 0;
1821 }
1822 
1823 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1824 				struct perf_sample *sample)
1825 {
1826 	struct thread *thread;
1827 	struct map *map;
1828 	u32 prot = 0;
1829 	int ret = 0;
1830 
1831 	if (dump_trace)
1832 		perf_event__fprintf_mmap(event, stdout);
1833 
1834 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1835 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1836 		struct extra_kernel_map xm = {
1837 			.start = event->mmap.start,
1838 			.end   = event->mmap.start + event->mmap.len,
1839 			.pgoff = event->mmap.pgoff,
1840 		};
1841 
1842 		strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1843 		ret = machine__process_kernel_mmap_event(machine, &xm, NULL);
1844 		if (ret < 0)
1845 			goto out_problem;
1846 		return 0;
1847 	}
1848 
1849 	thread = machine__findnew_thread(machine, event->mmap.pid,
1850 					 event->mmap.tid);
1851 	if (thread == NULL)
1852 		goto out_problem;
1853 
1854 	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1855 		prot = PROT_EXEC;
1856 
1857 	map = map__new(machine, event->mmap.start,
1858 			event->mmap.len, event->mmap.pgoff,
1859 			NULL, prot, 0, NULL, event->mmap.filename, thread);
1860 
1861 	if (map == NULL)
1862 		goto out_problem_map;
1863 
1864 	ret = thread__insert_map(thread, map);
1865 	if (ret)
1866 		goto out_problem_insert;
1867 
1868 	thread__put(thread);
1869 	map__put(map);
1870 	return 0;
1871 
1872 out_problem_insert:
1873 	map__put(map);
1874 out_problem_map:
1875 	thread__put(thread);
1876 out_problem:
1877 	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1878 	return 0;
1879 }
1880 
1881 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1882 {
1883 	struct threads *threads = machine__threads(machine, th->tid);
1884 
1885 	if (threads->last_match == th)
1886 		threads__set_last_match(threads, NULL);
1887 
1888 	if (lock)
1889 		down_write(&threads->lock);
1890 
1891 	BUG_ON(refcount_read(&th->refcnt) == 0);
1892 
1893 	rb_erase_cached(&th->rb_node, &threads->entries);
1894 	RB_CLEAR_NODE(&th->rb_node);
1895 	--threads->nr;
1896 	/*
1897 	 * Move it first to the dead_threads list, then drop the reference,
1898 	 * if this is the last reference, then the thread__delete destructor
1899 	 * will be called and we will remove it from the dead_threads list.
1900 	 */
1901 	list_add_tail(&th->node, &threads->dead);
1902 
1903 	/*
1904 	 * We need to do the put here because if this is the last refcount,
1905 	 * then we will be touching the threads->dead head when removing the
1906 	 * thread.
1907 	 */
1908 	thread__put(th);
1909 
1910 	if (lock)
1911 		up_write(&threads->lock);
1912 }
1913 
1914 void machine__remove_thread(struct machine *machine, struct thread *th)
1915 {
1916 	return __machine__remove_thread(machine, th, true);
1917 }
1918 
1919 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1920 				struct perf_sample *sample)
1921 {
1922 	struct thread *thread = machine__find_thread(machine,
1923 						     event->fork.pid,
1924 						     event->fork.tid);
1925 	struct thread *parent = machine__findnew_thread(machine,
1926 							event->fork.ppid,
1927 							event->fork.ptid);
1928 	bool do_maps_clone = true;
1929 	int err = 0;
1930 
1931 	if (dump_trace)
1932 		perf_event__fprintf_task(event, stdout);
1933 
1934 	/*
1935 	 * There may be an existing thread that is not actually the parent,
1936 	 * either because we are processing events out of order, or because the
1937 	 * (fork) event that would have removed the thread was lost. Assume the
1938 	 * latter case and continue on as best we can.
1939 	 */
1940 	if (parent->pid_ != (pid_t)event->fork.ppid) {
1941 		dump_printf("removing erroneous parent thread %d/%d\n",
1942 			    parent->pid_, parent->tid);
1943 		machine__remove_thread(machine, parent);
1944 		thread__put(parent);
1945 		parent = machine__findnew_thread(machine, event->fork.ppid,
1946 						 event->fork.ptid);
1947 	}
1948 
1949 	/* if a thread currently exists for the thread id remove it */
1950 	if (thread != NULL) {
1951 		machine__remove_thread(machine, thread);
1952 		thread__put(thread);
1953 	}
1954 
1955 	thread = machine__findnew_thread(machine, event->fork.pid,
1956 					 event->fork.tid);
1957 	/*
1958 	 * When synthesizing FORK events, we are trying to create thread
1959 	 * objects for the already running tasks on the machine.
1960 	 *
1961 	 * Normally, for a kernel FORK event, we want to clone the parent's
1962 	 * maps because that is what the kernel just did.
1963 	 *
1964 	 * But when synthesizing, this should not be done.  If we do, we end up
1965 	 * with overlapping maps as we process the synthesized MMAP2 events that
1966 	 * get delivered shortly thereafter.
1967 	 *
1968 	 * Use the FORK event misc flags in an internal way to signal this
1969 	 * situation, so we can elide the map clone when appropriate.
1970 	 */
1971 	if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1972 		do_maps_clone = false;
1973 
1974 	if (thread == NULL || parent == NULL ||
1975 	    thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1976 		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1977 		err = -1;
1978 	}
1979 	thread__put(thread);
1980 	thread__put(parent);
1981 
1982 	return err;
1983 }
1984 
1985 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1986 				struct perf_sample *sample __maybe_unused)
1987 {
1988 	struct thread *thread = machine__find_thread(machine,
1989 						     event->fork.pid,
1990 						     event->fork.tid);
1991 
1992 	if (dump_trace)
1993 		perf_event__fprintf_task(event, stdout);
1994 
1995 	if (thread != NULL) {
1996 		thread__exited(thread);
1997 		thread__put(thread);
1998 	}
1999 
2000 	return 0;
2001 }
2002 
2003 int machine__process_event(struct machine *machine, union perf_event *event,
2004 			   struct perf_sample *sample)
2005 {
2006 	int ret;
2007 
2008 	switch (event->header.type) {
2009 	case PERF_RECORD_COMM:
2010 		ret = machine__process_comm_event(machine, event, sample); break;
2011 	case PERF_RECORD_MMAP:
2012 		ret = machine__process_mmap_event(machine, event, sample); break;
2013 	case PERF_RECORD_NAMESPACES:
2014 		ret = machine__process_namespaces_event(machine, event, sample); break;
2015 	case PERF_RECORD_CGROUP:
2016 		ret = machine__process_cgroup_event(machine, event, sample); break;
2017 	case PERF_RECORD_MMAP2:
2018 		ret = machine__process_mmap2_event(machine, event, sample); break;
2019 	case PERF_RECORD_FORK:
2020 		ret = machine__process_fork_event(machine, event, sample); break;
2021 	case PERF_RECORD_EXIT:
2022 		ret = machine__process_exit_event(machine, event, sample); break;
2023 	case PERF_RECORD_LOST:
2024 		ret = machine__process_lost_event(machine, event, sample); break;
2025 	case PERF_RECORD_AUX:
2026 		ret = machine__process_aux_event(machine, event); break;
2027 	case PERF_RECORD_ITRACE_START:
2028 		ret = machine__process_itrace_start_event(machine, event); break;
2029 	case PERF_RECORD_LOST_SAMPLES:
2030 		ret = machine__process_lost_samples_event(machine, event, sample); break;
2031 	case PERF_RECORD_SWITCH:
2032 	case PERF_RECORD_SWITCH_CPU_WIDE:
2033 		ret = machine__process_switch_event(machine, event); break;
2034 	case PERF_RECORD_KSYMBOL:
2035 		ret = machine__process_ksymbol(machine, event, sample); break;
2036 	case PERF_RECORD_BPF_EVENT:
2037 		ret = machine__process_bpf(machine, event, sample); break;
2038 	case PERF_RECORD_TEXT_POKE:
2039 		ret = machine__process_text_poke(machine, event, sample); break;
2040 	case PERF_RECORD_AUX_OUTPUT_HW_ID:
2041 		ret = machine__process_aux_output_hw_id_event(machine, event); break;
2042 	default:
2043 		ret = -1;
2044 		break;
2045 	}
2046 
2047 	return ret;
2048 }
2049 
2050 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
2051 {
2052 	if (!regexec(regex, sym->name, 0, NULL, 0))
2053 		return true;
2054 	return false;
2055 }
2056 
2057 static void ip__resolve_ams(struct thread *thread,
2058 			    struct addr_map_symbol *ams,
2059 			    u64 ip)
2060 {
2061 	struct addr_location al;
2062 
2063 	memset(&al, 0, sizeof(al));
2064 	/*
2065 	 * We cannot use the header.misc hint to determine whether a
2066 	 * branch stack address is user, kernel, guest, hypervisor.
2067 	 * Branches may straddle the kernel/user/hypervisor boundaries.
2068 	 * Thus, we have to try consecutively until we find a match
2069 	 * or else, the symbol is unknown
2070 	 */
2071 	thread__find_cpumode_addr_location(thread, ip, &al);
2072 
2073 	ams->addr = ip;
2074 	ams->al_addr = al.addr;
2075 	ams->ms.maps = al.maps;
2076 	ams->ms.sym = al.sym;
2077 	ams->ms.map = al.map;
2078 	ams->phys_addr = 0;
2079 	ams->data_page_size = 0;
2080 }
2081 
2082 static void ip__resolve_data(struct thread *thread,
2083 			     u8 m, struct addr_map_symbol *ams,
2084 			     u64 addr, u64 phys_addr, u64 daddr_page_size)
2085 {
2086 	struct addr_location al;
2087 
2088 	memset(&al, 0, sizeof(al));
2089 
2090 	thread__find_symbol(thread, m, addr, &al);
2091 
2092 	ams->addr = addr;
2093 	ams->al_addr = al.addr;
2094 	ams->ms.maps = al.maps;
2095 	ams->ms.sym = al.sym;
2096 	ams->ms.map = al.map;
2097 	ams->phys_addr = phys_addr;
2098 	ams->data_page_size = daddr_page_size;
2099 }
2100 
2101 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2102 				     struct addr_location *al)
2103 {
2104 	struct mem_info *mi = mem_info__new();
2105 
2106 	if (!mi)
2107 		return NULL;
2108 
2109 	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
2110 	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
2111 			 sample->addr, sample->phys_addr,
2112 			 sample->data_page_size);
2113 	mi->data_src.val = sample->data_src;
2114 
2115 	return mi;
2116 }
2117 
2118 static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2119 {
2120 	struct map *map = ms->map;
2121 	char *srcline = NULL;
2122 
2123 	if (!map || callchain_param.key == CCKEY_FUNCTION)
2124 		return srcline;
2125 
2126 	srcline = srcline__tree_find(&map->dso->srclines, ip);
2127 	if (!srcline) {
2128 		bool show_sym = false;
2129 		bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2130 
2131 		srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
2132 				      ms->sym, show_sym, show_addr, ip);
2133 		srcline__tree_insert(&map->dso->srclines, ip, srcline);
2134 	}
2135 
2136 	return srcline;
2137 }
2138 
2139 struct iterations {
2140 	int nr_loop_iter;
2141 	u64 cycles;
2142 };
2143 
2144 static int add_callchain_ip(struct thread *thread,
2145 			    struct callchain_cursor *cursor,
2146 			    struct symbol **parent,
2147 			    struct addr_location *root_al,
2148 			    u8 *cpumode,
2149 			    u64 ip,
2150 			    bool branch,
2151 			    struct branch_flags *flags,
2152 			    struct iterations *iter,
2153 			    u64 branch_from)
2154 {
2155 	struct map_symbol ms;
2156 	struct addr_location al;
2157 	int nr_loop_iter = 0;
2158 	u64 iter_cycles = 0;
2159 	const char *srcline = NULL;
2160 
2161 	al.filtered = 0;
2162 	al.sym = NULL;
2163 	al.srcline = NULL;
2164 	if (!cpumode) {
2165 		thread__find_cpumode_addr_location(thread, ip, &al);
2166 	} else {
2167 		if (ip >= PERF_CONTEXT_MAX) {
2168 			switch (ip) {
2169 			case PERF_CONTEXT_HV:
2170 				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
2171 				break;
2172 			case PERF_CONTEXT_KERNEL:
2173 				*cpumode = PERF_RECORD_MISC_KERNEL;
2174 				break;
2175 			case PERF_CONTEXT_USER:
2176 				*cpumode = PERF_RECORD_MISC_USER;
2177 				break;
2178 			default:
2179 				pr_debug("invalid callchain context: "
2180 					 "%"PRId64"\n", (s64) ip);
2181 				/*
2182 				 * It seems the callchain is corrupted.
2183 				 * Discard all.
2184 				 */
2185 				callchain_cursor_reset(cursor);
2186 				return 1;
2187 			}
2188 			return 0;
2189 		}
2190 		thread__find_symbol(thread, *cpumode, ip, &al);
2191 	}
2192 
2193 	if (al.sym != NULL) {
2194 		if (perf_hpp_list.parent && !*parent &&
2195 		    symbol__match_regex(al.sym, &parent_regex))
2196 			*parent = al.sym;
2197 		else if (have_ignore_callees && root_al &&
2198 		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
2199 			/* Treat this symbol as the root,
2200 			   forgetting its callees. */
2201 			*root_al = al;
2202 			callchain_cursor_reset(cursor);
2203 		}
2204 	}
2205 
2206 	if (symbol_conf.hide_unresolved && al.sym == NULL)
2207 		return 0;
2208 
2209 	if (iter) {
2210 		nr_loop_iter = iter->nr_loop_iter;
2211 		iter_cycles = iter->cycles;
2212 	}
2213 
2214 	ms.maps = al.maps;
2215 	ms.map = al.map;
2216 	ms.sym = al.sym;
2217 	srcline = callchain_srcline(&ms, al.addr);
2218 	return callchain_cursor_append(cursor, ip, &ms,
2219 				       branch, flags, nr_loop_iter,
2220 				       iter_cycles, branch_from, srcline);
2221 }
2222 
2223 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2224 					   struct addr_location *al)
2225 {
2226 	unsigned int i;
2227 	const struct branch_stack *bs = sample->branch_stack;
2228 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2229 	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2230 
2231 	if (!bi)
2232 		return NULL;
2233 
2234 	for (i = 0; i < bs->nr; i++) {
2235 		ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2236 		ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2237 		bi[i].flags = entries[i].flags;
2238 	}
2239 	return bi;
2240 }
2241 
2242 static void save_iterations(struct iterations *iter,
2243 			    struct branch_entry *be, int nr)
2244 {
2245 	int i;
2246 
2247 	iter->nr_loop_iter++;
2248 	iter->cycles = 0;
2249 
2250 	for (i = 0; i < nr; i++)
2251 		iter->cycles += be[i].flags.cycles;
2252 }
2253 
2254 #define CHASHSZ 127
2255 #define CHASHBITS 7
2256 #define NO_ENTRY 0xff
2257 
2258 #define PERF_MAX_BRANCH_DEPTH 127
2259 
2260 /* Remove loops. */
2261 static int remove_loops(struct branch_entry *l, int nr,
2262 			struct iterations *iter)
2263 {
2264 	int i, j, off;
2265 	unsigned char chash[CHASHSZ];
2266 
2267 	memset(chash, NO_ENTRY, sizeof(chash));
2268 
2269 	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2270 
2271 	for (i = 0; i < nr; i++) {
2272 		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2273 
2274 		/* no collision handling for now */
2275 		if (chash[h] == NO_ENTRY) {
2276 			chash[h] = i;
2277 		} else if (l[chash[h]].from == l[i].from) {
2278 			bool is_loop = true;
2279 			/* check if it is a real loop */
2280 			off = 0;
2281 			for (j = chash[h]; j < i && i + off < nr; j++, off++)
2282 				if (l[j].from != l[i + off].from) {
2283 					is_loop = false;
2284 					break;
2285 				}
2286 			if (is_loop) {
2287 				j = nr - (i + off);
2288 				if (j > 0) {
2289 					save_iterations(iter + i + off,
2290 						l + i, off);
2291 
2292 					memmove(iter + i, iter + i + off,
2293 						j * sizeof(*iter));
2294 
2295 					memmove(l + i, l + i + off,
2296 						j * sizeof(*l));
2297 				}
2298 
2299 				nr -= off;
2300 			}
2301 		}
2302 	}
2303 	return nr;
2304 }
2305 
2306 static int lbr_callchain_add_kernel_ip(struct thread *thread,
2307 				       struct callchain_cursor *cursor,
2308 				       struct perf_sample *sample,
2309 				       struct symbol **parent,
2310 				       struct addr_location *root_al,
2311 				       u64 branch_from,
2312 				       bool callee, int end)
2313 {
2314 	struct ip_callchain *chain = sample->callchain;
2315 	u8 cpumode = PERF_RECORD_MISC_USER;
2316 	int err, i;
2317 
2318 	if (callee) {
2319 		for (i = 0; i < end + 1; i++) {
2320 			err = add_callchain_ip(thread, cursor, parent,
2321 					       root_al, &cpumode, chain->ips[i],
2322 					       false, NULL, NULL, branch_from);
2323 			if (err)
2324 				return err;
2325 		}
2326 		return 0;
2327 	}
2328 
2329 	for (i = end; i >= 0; i--) {
2330 		err = add_callchain_ip(thread, cursor, parent,
2331 				       root_al, &cpumode, chain->ips[i],
2332 				       false, NULL, NULL, branch_from);
2333 		if (err)
2334 			return err;
2335 	}
2336 
2337 	return 0;
2338 }
2339 
2340 static void save_lbr_cursor_node(struct thread *thread,
2341 				 struct callchain_cursor *cursor,
2342 				 int idx)
2343 {
2344 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2345 
2346 	if (!lbr_stitch)
2347 		return;
2348 
2349 	if (cursor->pos == cursor->nr) {
2350 		lbr_stitch->prev_lbr_cursor[idx].valid = false;
2351 		return;
2352 	}
2353 
2354 	if (!cursor->curr)
2355 		cursor->curr = cursor->first;
2356 	else
2357 		cursor->curr = cursor->curr->next;
2358 	memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2359 	       sizeof(struct callchain_cursor_node));
2360 
2361 	lbr_stitch->prev_lbr_cursor[idx].valid = true;
2362 	cursor->pos++;
2363 }
2364 
2365 static int lbr_callchain_add_lbr_ip(struct thread *thread,
2366 				    struct callchain_cursor *cursor,
2367 				    struct perf_sample *sample,
2368 				    struct symbol **parent,
2369 				    struct addr_location *root_al,
2370 				    u64 *branch_from,
2371 				    bool callee)
2372 {
2373 	struct branch_stack *lbr_stack = sample->branch_stack;
2374 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2375 	u8 cpumode = PERF_RECORD_MISC_USER;
2376 	int lbr_nr = lbr_stack->nr;
2377 	struct branch_flags *flags;
2378 	int err, i;
2379 	u64 ip;
2380 
2381 	/*
2382 	 * The curr and pos are not used in writing session. They are cleared
2383 	 * in callchain_cursor_commit() when the writing session is closed.
2384 	 * Using curr and pos to track the current cursor node.
2385 	 */
2386 	if (thread->lbr_stitch) {
2387 		cursor->curr = NULL;
2388 		cursor->pos = cursor->nr;
2389 		if (cursor->nr) {
2390 			cursor->curr = cursor->first;
2391 			for (i = 0; i < (int)(cursor->nr - 1); i++)
2392 				cursor->curr = cursor->curr->next;
2393 		}
2394 	}
2395 
2396 	if (callee) {
2397 		/* Add LBR ip from first entries.to */
2398 		ip = entries[0].to;
2399 		flags = &entries[0].flags;
2400 		*branch_from = entries[0].from;
2401 		err = add_callchain_ip(thread, cursor, parent,
2402 				       root_al, &cpumode, ip,
2403 				       true, flags, NULL,
2404 				       *branch_from);
2405 		if (err)
2406 			return err;
2407 
2408 		/*
2409 		 * The number of cursor node increases.
2410 		 * Move the current cursor node.
2411 		 * But does not need to save current cursor node for entry 0.
2412 		 * It's impossible to stitch the whole LBRs of previous sample.
2413 		 */
2414 		if (thread->lbr_stitch && (cursor->pos != cursor->nr)) {
2415 			if (!cursor->curr)
2416 				cursor->curr = cursor->first;
2417 			else
2418 				cursor->curr = cursor->curr->next;
2419 			cursor->pos++;
2420 		}
2421 
2422 		/* Add LBR ip from entries.from one by one. */
2423 		for (i = 0; i < lbr_nr; i++) {
2424 			ip = entries[i].from;
2425 			flags = &entries[i].flags;
2426 			err = add_callchain_ip(thread, cursor, parent,
2427 					       root_al, &cpumode, ip,
2428 					       true, flags, NULL,
2429 					       *branch_from);
2430 			if (err)
2431 				return err;
2432 			save_lbr_cursor_node(thread, cursor, i);
2433 		}
2434 		return 0;
2435 	}
2436 
2437 	/* Add LBR ip from entries.from one by one. */
2438 	for (i = lbr_nr - 1; i >= 0; i--) {
2439 		ip = entries[i].from;
2440 		flags = &entries[i].flags;
2441 		err = add_callchain_ip(thread, cursor, parent,
2442 				       root_al, &cpumode, ip,
2443 				       true, flags, NULL,
2444 				       *branch_from);
2445 		if (err)
2446 			return err;
2447 		save_lbr_cursor_node(thread, cursor, i);
2448 	}
2449 
2450 	/* Add LBR ip from first entries.to */
2451 	ip = entries[0].to;
2452 	flags = &entries[0].flags;
2453 	*branch_from = entries[0].from;
2454 	err = add_callchain_ip(thread, cursor, parent,
2455 			       root_al, &cpumode, ip,
2456 			       true, flags, NULL,
2457 			       *branch_from);
2458 	if (err)
2459 		return err;
2460 
2461 	return 0;
2462 }
2463 
2464 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2465 					     struct callchain_cursor *cursor)
2466 {
2467 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2468 	struct callchain_cursor_node *cnode;
2469 	struct stitch_list *stitch_node;
2470 	int err;
2471 
2472 	list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2473 		cnode = &stitch_node->cursor;
2474 
2475 		err = callchain_cursor_append(cursor, cnode->ip,
2476 					      &cnode->ms,
2477 					      cnode->branch,
2478 					      &cnode->branch_flags,
2479 					      cnode->nr_loop_iter,
2480 					      cnode->iter_cycles,
2481 					      cnode->branch_from,
2482 					      cnode->srcline);
2483 		if (err)
2484 			return err;
2485 	}
2486 	return 0;
2487 }
2488 
2489 static struct stitch_list *get_stitch_node(struct thread *thread)
2490 {
2491 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2492 	struct stitch_list *stitch_node;
2493 
2494 	if (!list_empty(&lbr_stitch->free_lists)) {
2495 		stitch_node = list_first_entry(&lbr_stitch->free_lists,
2496 					       struct stitch_list, node);
2497 		list_del(&stitch_node->node);
2498 
2499 		return stitch_node;
2500 	}
2501 
2502 	return malloc(sizeof(struct stitch_list));
2503 }
2504 
2505 static bool has_stitched_lbr(struct thread *thread,
2506 			     struct perf_sample *cur,
2507 			     struct perf_sample *prev,
2508 			     unsigned int max_lbr,
2509 			     bool callee)
2510 {
2511 	struct branch_stack *cur_stack = cur->branch_stack;
2512 	struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2513 	struct branch_stack *prev_stack = prev->branch_stack;
2514 	struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2515 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2516 	int i, j, nr_identical_branches = 0;
2517 	struct stitch_list *stitch_node;
2518 	u64 cur_base, distance;
2519 
2520 	if (!cur_stack || !prev_stack)
2521 		return false;
2522 
2523 	/* Find the physical index of the base-of-stack for current sample. */
2524 	cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2525 
2526 	distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2527 						     (max_lbr + prev_stack->hw_idx - cur_base);
2528 	/* Previous sample has shorter stack. Nothing can be stitched. */
2529 	if (distance + 1 > prev_stack->nr)
2530 		return false;
2531 
2532 	/*
2533 	 * Check if there are identical LBRs between two samples.
2534 	 * Identical LBRs must have same from, to and flags values. Also,
2535 	 * they have to be saved in the same LBR registers (same physical
2536 	 * index).
2537 	 *
2538 	 * Starts from the base-of-stack of current sample.
2539 	 */
2540 	for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2541 		if ((prev_entries[i].from != cur_entries[j].from) ||
2542 		    (prev_entries[i].to != cur_entries[j].to) ||
2543 		    (prev_entries[i].flags.value != cur_entries[j].flags.value))
2544 			break;
2545 		nr_identical_branches++;
2546 	}
2547 
2548 	if (!nr_identical_branches)
2549 		return false;
2550 
2551 	/*
2552 	 * Save the LBRs between the base-of-stack of previous sample
2553 	 * and the base-of-stack of current sample into lbr_stitch->lists.
2554 	 * These LBRs will be stitched later.
2555 	 */
2556 	for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2557 
2558 		if (!lbr_stitch->prev_lbr_cursor[i].valid)
2559 			continue;
2560 
2561 		stitch_node = get_stitch_node(thread);
2562 		if (!stitch_node)
2563 			return false;
2564 
2565 		memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2566 		       sizeof(struct callchain_cursor_node));
2567 
2568 		if (callee)
2569 			list_add(&stitch_node->node, &lbr_stitch->lists);
2570 		else
2571 			list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2572 	}
2573 
2574 	return true;
2575 }
2576 
2577 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2578 {
2579 	if (thread->lbr_stitch)
2580 		return true;
2581 
2582 	thread->lbr_stitch = zalloc(sizeof(*thread->lbr_stitch));
2583 	if (!thread->lbr_stitch)
2584 		goto err;
2585 
2586 	thread->lbr_stitch->prev_lbr_cursor = calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2587 	if (!thread->lbr_stitch->prev_lbr_cursor)
2588 		goto free_lbr_stitch;
2589 
2590 	INIT_LIST_HEAD(&thread->lbr_stitch->lists);
2591 	INIT_LIST_HEAD(&thread->lbr_stitch->free_lists);
2592 
2593 	return true;
2594 
2595 free_lbr_stitch:
2596 	zfree(&thread->lbr_stitch);
2597 err:
2598 	pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2599 	thread->lbr_stitch_enable = false;
2600 	return false;
2601 }
2602 
2603 /*
2604  * Resolve LBR callstack chain sample
2605  * Return:
2606  * 1 on success get LBR callchain information
2607  * 0 no available LBR callchain information, should try fp
2608  * negative error code on other errors.
2609  */
2610 static int resolve_lbr_callchain_sample(struct thread *thread,
2611 					struct callchain_cursor *cursor,
2612 					struct perf_sample *sample,
2613 					struct symbol **parent,
2614 					struct addr_location *root_al,
2615 					int max_stack,
2616 					unsigned int max_lbr)
2617 {
2618 	bool callee = (callchain_param.order == ORDER_CALLEE);
2619 	struct ip_callchain *chain = sample->callchain;
2620 	int chain_nr = min(max_stack, (int)chain->nr), i;
2621 	struct lbr_stitch *lbr_stitch;
2622 	bool stitched_lbr = false;
2623 	u64 branch_from = 0;
2624 	int err;
2625 
2626 	for (i = 0; i < chain_nr; i++) {
2627 		if (chain->ips[i] == PERF_CONTEXT_USER)
2628 			break;
2629 	}
2630 
2631 	/* LBR only affects the user callchain */
2632 	if (i == chain_nr)
2633 		return 0;
2634 
2635 	if (thread->lbr_stitch_enable && !sample->no_hw_idx &&
2636 	    (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2637 		lbr_stitch = thread->lbr_stitch;
2638 
2639 		stitched_lbr = has_stitched_lbr(thread, sample,
2640 						&lbr_stitch->prev_sample,
2641 						max_lbr, callee);
2642 
2643 		if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2644 			list_replace_init(&lbr_stitch->lists,
2645 					  &lbr_stitch->free_lists);
2646 		}
2647 		memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2648 	}
2649 
2650 	if (callee) {
2651 		/* Add kernel ip */
2652 		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2653 						  parent, root_al, branch_from,
2654 						  true, i);
2655 		if (err)
2656 			goto error;
2657 
2658 		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2659 					       root_al, &branch_from, true);
2660 		if (err)
2661 			goto error;
2662 
2663 		if (stitched_lbr) {
2664 			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2665 			if (err)
2666 				goto error;
2667 		}
2668 
2669 	} else {
2670 		if (stitched_lbr) {
2671 			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2672 			if (err)
2673 				goto error;
2674 		}
2675 		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2676 					       root_al, &branch_from, false);
2677 		if (err)
2678 			goto error;
2679 
2680 		/* Add kernel ip */
2681 		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2682 						  parent, root_al, branch_from,
2683 						  false, i);
2684 		if (err)
2685 			goto error;
2686 	}
2687 	return 1;
2688 
2689 error:
2690 	return (err < 0) ? err : 0;
2691 }
2692 
2693 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2694 			     struct callchain_cursor *cursor,
2695 			     struct symbol **parent,
2696 			     struct addr_location *root_al,
2697 			     u8 *cpumode, int ent)
2698 {
2699 	int err = 0;
2700 
2701 	while (--ent >= 0) {
2702 		u64 ip = chain->ips[ent];
2703 
2704 		if (ip >= PERF_CONTEXT_MAX) {
2705 			err = add_callchain_ip(thread, cursor, parent,
2706 					       root_al, cpumode, ip,
2707 					       false, NULL, NULL, 0);
2708 			break;
2709 		}
2710 	}
2711 	return err;
2712 }
2713 
2714 static u64 get_leaf_frame_caller(struct perf_sample *sample,
2715 		struct thread *thread, int usr_idx)
2716 {
2717 	if (machine__normalized_is(thread->maps->machine, "arm64"))
2718 		return get_leaf_frame_caller_aarch64(sample, thread, usr_idx);
2719 	else
2720 		return 0;
2721 }
2722 
2723 static int thread__resolve_callchain_sample(struct thread *thread,
2724 					    struct callchain_cursor *cursor,
2725 					    struct evsel *evsel,
2726 					    struct perf_sample *sample,
2727 					    struct symbol **parent,
2728 					    struct addr_location *root_al,
2729 					    int max_stack)
2730 {
2731 	struct branch_stack *branch = sample->branch_stack;
2732 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2733 	struct ip_callchain *chain = sample->callchain;
2734 	int chain_nr = 0;
2735 	u8 cpumode = PERF_RECORD_MISC_USER;
2736 	int i, j, err, nr_entries, usr_idx;
2737 	int skip_idx = -1;
2738 	int first_call = 0;
2739 	u64 leaf_frame_caller;
2740 
2741 	if (chain)
2742 		chain_nr = chain->nr;
2743 
2744 	if (evsel__has_branch_callstack(evsel)) {
2745 		struct perf_env *env = evsel__env(evsel);
2746 
2747 		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2748 						   root_al, max_stack,
2749 						   !env ? 0 : env->max_branches);
2750 		if (err)
2751 			return (err < 0) ? err : 0;
2752 	}
2753 
2754 	/*
2755 	 * Based on DWARF debug information, some architectures skip
2756 	 * a callchain entry saved by the kernel.
2757 	 */
2758 	skip_idx = arch_skip_callchain_idx(thread, chain);
2759 
2760 	/*
2761 	 * Add branches to call stack for easier browsing. This gives
2762 	 * more context for a sample than just the callers.
2763 	 *
2764 	 * This uses individual histograms of paths compared to the
2765 	 * aggregated histograms the normal LBR mode uses.
2766 	 *
2767 	 * Limitations for now:
2768 	 * - No extra filters
2769 	 * - No annotations (should annotate somehow)
2770 	 */
2771 
2772 	if (branch && callchain_param.branch_callstack) {
2773 		int nr = min(max_stack, (int)branch->nr);
2774 		struct branch_entry be[nr];
2775 		struct iterations iter[nr];
2776 
2777 		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2778 			pr_warning("corrupted branch chain. skipping...\n");
2779 			goto check_calls;
2780 		}
2781 
2782 		for (i = 0; i < nr; i++) {
2783 			if (callchain_param.order == ORDER_CALLEE) {
2784 				be[i] = entries[i];
2785 
2786 				if (chain == NULL)
2787 					continue;
2788 
2789 				/*
2790 				 * Check for overlap into the callchain.
2791 				 * The return address is one off compared to
2792 				 * the branch entry. To adjust for this
2793 				 * assume the calling instruction is not longer
2794 				 * than 8 bytes.
2795 				 */
2796 				if (i == skip_idx ||
2797 				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2798 					first_call++;
2799 				else if (be[i].from < chain->ips[first_call] &&
2800 				    be[i].from >= chain->ips[first_call] - 8)
2801 					first_call++;
2802 			} else
2803 				be[i] = entries[branch->nr - i - 1];
2804 		}
2805 
2806 		memset(iter, 0, sizeof(struct iterations) * nr);
2807 		nr = remove_loops(be, nr, iter);
2808 
2809 		for (i = 0; i < nr; i++) {
2810 			err = add_callchain_ip(thread, cursor, parent,
2811 					       root_al,
2812 					       NULL, be[i].to,
2813 					       true, &be[i].flags,
2814 					       NULL, be[i].from);
2815 
2816 			if (!err)
2817 				err = add_callchain_ip(thread, cursor, parent, root_al,
2818 						       NULL, be[i].from,
2819 						       true, &be[i].flags,
2820 						       &iter[i], 0);
2821 			if (err == -EINVAL)
2822 				break;
2823 			if (err)
2824 				return err;
2825 		}
2826 
2827 		if (chain_nr == 0)
2828 			return 0;
2829 
2830 		chain_nr -= nr;
2831 	}
2832 
2833 check_calls:
2834 	if (chain && callchain_param.order != ORDER_CALLEE) {
2835 		err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2836 					&cpumode, chain->nr - first_call);
2837 		if (err)
2838 			return (err < 0) ? err : 0;
2839 	}
2840 	for (i = first_call, nr_entries = 0;
2841 	     i < chain_nr && nr_entries < max_stack; i++) {
2842 		u64 ip;
2843 
2844 		if (callchain_param.order == ORDER_CALLEE)
2845 			j = i;
2846 		else
2847 			j = chain->nr - i - 1;
2848 
2849 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2850 		if (j == skip_idx)
2851 			continue;
2852 #endif
2853 		ip = chain->ips[j];
2854 		if (ip < PERF_CONTEXT_MAX)
2855                        ++nr_entries;
2856 		else if (callchain_param.order != ORDER_CALLEE) {
2857 			err = find_prev_cpumode(chain, thread, cursor, parent,
2858 						root_al, &cpumode, j);
2859 			if (err)
2860 				return (err < 0) ? err : 0;
2861 			continue;
2862 		}
2863 
2864 		/*
2865 		 * PERF_CONTEXT_USER allows us to locate where the user stack ends.
2866 		 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER,
2867 		 * the index will be different in order to add the missing frame
2868 		 * at the right place.
2869 		 */
2870 
2871 		usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1;
2872 
2873 		if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) {
2874 
2875 			leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx);
2876 
2877 			/*
2878 			 * check if leaf_frame_Caller != ip to not add the same
2879 			 * value twice.
2880 			 */
2881 
2882 			if (leaf_frame_caller && leaf_frame_caller != ip) {
2883 
2884 				err = add_callchain_ip(thread, cursor, parent,
2885 					       root_al, &cpumode, leaf_frame_caller,
2886 					       false, NULL, NULL, 0);
2887 				if (err)
2888 					return (err < 0) ? err : 0;
2889 			}
2890 		}
2891 
2892 		err = add_callchain_ip(thread, cursor, parent,
2893 				       root_al, &cpumode, ip,
2894 				       false, NULL, NULL, 0);
2895 
2896 		if (err)
2897 			return (err < 0) ? err : 0;
2898 	}
2899 
2900 	return 0;
2901 }
2902 
2903 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
2904 {
2905 	struct symbol *sym = ms->sym;
2906 	struct map *map = ms->map;
2907 	struct inline_node *inline_node;
2908 	struct inline_list *ilist;
2909 	u64 addr;
2910 	int ret = 1;
2911 
2912 	if (!symbol_conf.inline_name || !map || !sym)
2913 		return ret;
2914 
2915 	addr = map__map_ip(map, ip);
2916 	addr = map__rip_2objdump(map, addr);
2917 
2918 	inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2919 	if (!inline_node) {
2920 		inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2921 		if (!inline_node)
2922 			return ret;
2923 		inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2924 	}
2925 
2926 	list_for_each_entry(ilist, &inline_node->val, list) {
2927 		struct map_symbol ilist_ms = {
2928 			.maps = ms->maps,
2929 			.map = map,
2930 			.sym = ilist->symbol,
2931 		};
2932 		ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
2933 					      NULL, 0, 0, 0, ilist->srcline);
2934 
2935 		if (ret != 0)
2936 			return ret;
2937 	}
2938 
2939 	return ret;
2940 }
2941 
2942 static int unwind_entry(struct unwind_entry *entry, void *arg)
2943 {
2944 	struct callchain_cursor *cursor = arg;
2945 	const char *srcline = NULL;
2946 	u64 addr = entry->ip;
2947 
2948 	if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
2949 		return 0;
2950 
2951 	if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
2952 		return 0;
2953 
2954 	/*
2955 	 * Convert entry->ip from a virtual address to an offset in
2956 	 * its corresponding binary.
2957 	 */
2958 	if (entry->ms.map)
2959 		addr = map__map_ip(entry->ms.map, entry->ip);
2960 
2961 	srcline = callchain_srcline(&entry->ms, addr);
2962 	return callchain_cursor_append(cursor, entry->ip, &entry->ms,
2963 				       false, NULL, 0, 0, 0, srcline);
2964 }
2965 
2966 static int thread__resolve_callchain_unwind(struct thread *thread,
2967 					    struct callchain_cursor *cursor,
2968 					    struct evsel *evsel,
2969 					    struct perf_sample *sample,
2970 					    int max_stack)
2971 {
2972 	/* Can we do dwarf post unwind? */
2973 	if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2974 	      (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2975 		return 0;
2976 
2977 	/* Bail out if nothing was captured. */
2978 	if ((!sample->user_regs.regs) ||
2979 	    (!sample->user_stack.size))
2980 		return 0;
2981 
2982 	return unwind__get_entries(unwind_entry, cursor,
2983 				   thread, sample, max_stack);
2984 }
2985 
2986 int thread__resolve_callchain(struct thread *thread,
2987 			      struct callchain_cursor *cursor,
2988 			      struct evsel *evsel,
2989 			      struct perf_sample *sample,
2990 			      struct symbol **parent,
2991 			      struct addr_location *root_al,
2992 			      int max_stack)
2993 {
2994 	int ret = 0;
2995 
2996 	callchain_cursor_reset(cursor);
2997 
2998 	if (callchain_param.order == ORDER_CALLEE) {
2999 		ret = thread__resolve_callchain_sample(thread, cursor,
3000 						       evsel, sample,
3001 						       parent, root_al,
3002 						       max_stack);
3003 		if (ret)
3004 			return ret;
3005 		ret = thread__resolve_callchain_unwind(thread, cursor,
3006 						       evsel, sample,
3007 						       max_stack);
3008 	} else {
3009 		ret = thread__resolve_callchain_unwind(thread, cursor,
3010 						       evsel, sample,
3011 						       max_stack);
3012 		if (ret)
3013 			return ret;
3014 		ret = thread__resolve_callchain_sample(thread, cursor,
3015 						       evsel, sample,
3016 						       parent, root_al,
3017 						       max_stack);
3018 	}
3019 
3020 	return ret;
3021 }
3022 
3023 int machine__for_each_thread(struct machine *machine,
3024 			     int (*fn)(struct thread *thread, void *p),
3025 			     void *priv)
3026 {
3027 	struct threads *threads;
3028 	struct rb_node *nd;
3029 	struct thread *thread;
3030 	int rc = 0;
3031 	int i;
3032 
3033 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
3034 		threads = &machine->threads[i];
3035 		for (nd = rb_first_cached(&threads->entries); nd;
3036 		     nd = rb_next(nd)) {
3037 			thread = rb_entry(nd, struct thread, rb_node);
3038 			rc = fn(thread, priv);
3039 			if (rc != 0)
3040 				return rc;
3041 		}
3042 
3043 		list_for_each_entry(thread, &threads->dead, node) {
3044 			rc = fn(thread, priv);
3045 			if (rc != 0)
3046 				return rc;
3047 		}
3048 	}
3049 	return rc;
3050 }
3051 
3052 int machines__for_each_thread(struct machines *machines,
3053 			      int (*fn)(struct thread *thread, void *p),
3054 			      void *priv)
3055 {
3056 	struct rb_node *nd;
3057 	int rc = 0;
3058 
3059 	rc = machine__for_each_thread(&machines->host, fn, priv);
3060 	if (rc != 0)
3061 		return rc;
3062 
3063 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
3064 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
3065 
3066 		rc = machine__for_each_thread(machine, fn, priv);
3067 		if (rc != 0)
3068 			return rc;
3069 	}
3070 	return rc;
3071 }
3072 
3073 pid_t machine__get_current_tid(struct machine *machine, int cpu)
3074 {
3075 	int nr_cpus = min(machine->env->nr_cpus_avail, MAX_NR_CPUS);
3076 
3077 	if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid)
3078 		return -1;
3079 
3080 	return machine->current_tid[cpu];
3081 }
3082 
3083 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
3084 			     pid_t tid)
3085 {
3086 	struct thread *thread;
3087 	int nr_cpus = min(machine->env->nr_cpus_avail, MAX_NR_CPUS);
3088 
3089 	if (cpu < 0)
3090 		return -EINVAL;
3091 
3092 	if (!machine->current_tid) {
3093 		int i;
3094 
3095 		machine->current_tid = calloc(nr_cpus, sizeof(pid_t));
3096 		if (!machine->current_tid)
3097 			return -ENOMEM;
3098 		for (i = 0; i < nr_cpus; i++)
3099 			machine->current_tid[i] = -1;
3100 	}
3101 
3102 	if (cpu >= nr_cpus) {
3103 		pr_err("Requested CPU %d too large. ", cpu);
3104 		pr_err("Consider raising MAX_NR_CPUS\n");
3105 		return -EINVAL;
3106 	}
3107 
3108 	machine->current_tid[cpu] = tid;
3109 
3110 	thread = machine__findnew_thread(machine, pid, tid);
3111 	if (!thread)
3112 		return -ENOMEM;
3113 
3114 	thread->cpu = cpu;
3115 	thread__put(thread);
3116 
3117 	return 0;
3118 }
3119 
3120 /*
3121  * Compares the raw arch string. N.B. see instead perf_env__arch() or
3122  * machine__normalized_is() if a normalized arch is needed.
3123  */
3124 bool machine__is(struct machine *machine, const char *arch)
3125 {
3126 	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3127 }
3128 
3129 bool machine__normalized_is(struct machine *machine, const char *arch)
3130 {
3131 	return machine && !strcmp(perf_env__arch(machine->env), arch);
3132 }
3133 
3134 int machine__nr_cpus_avail(struct machine *machine)
3135 {
3136 	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3137 }
3138 
3139 int machine__get_kernel_start(struct machine *machine)
3140 {
3141 	struct map *map = machine__kernel_map(machine);
3142 	int err = 0;
3143 
3144 	/*
3145 	 * The only addresses above 2^63 are kernel addresses of a 64-bit
3146 	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
3147 	 * all addresses including kernel addresses are less than 2^32.  In
3148 	 * that case (32-bit system), if the kernel mapping is unknown, all
3149 	 * addresses will be assumed to be in user space - see
3150 	 * machine__kernel_ip().
3151 	 */
3152 	machine->kernel_start = 1ULL << 63;
3153 	if (map) {
3154 		err = map__load(map);
3155 		/*
3156 		 * On x86_64, PTI entry trampolines are less than the
3157 		 * start of kernel text, but still above 2^63. So leave
3158 		 * kernel_start = 1ULL << 63 for x86_64.
3159 		 */
3160 		if (!err && !machine__is(machine, "x86_64"))
3161 			machine->kernel_start = map->start;
3162 	}
3163 	return err;
3164 }
3165 
3166 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3167 {
3168 	u8 addr_cpumode = cpumode;
3169 	bool kernel_ip;
3170 
3171 	if (!machine->single_address_space)
3172 		goto out;
3173 
3174 	kernel_ip = machine__kernel_ip(machine, addr);
3175 	switch (cpumode) {
3176 	case PERF_RECORD_MISC_KERNEL:
3177 	case PERF_RECORD_MISC_USER:
3178 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3179 					   PERF_RECORD_MISC_USER;
3180 		break;
3181 	case PERF_RECORD_MISC_GUEST_KERNEL:
3182 	case PERF_RECORD_MISC_GUEST_USER:
3183 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3184 					   PERF_RECORD_MISC_GUEST_USER;
3185 		break;
3186 	default:
3187 		break;
3188 	}
3189 out:
3190 	return addr_cpumode;
3191 }
3192 
3193 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
3194 {
3195 	return dsos__findnew_id(&machine->dsos, filename, id);
3196 }
3197 
3198 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3199 {
3200 	return machine__findnew_dso_id(machine, filename, NULL);
3201 }
3202 
3203 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3204 {
3205 	struct machine *machine = vmachine;
3206 	struct map *map;
3207 	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3208 
3209 	if (sym == NULL)
3210 		return NULL;
3211 
3212 	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
3213 	*addrp = map->unmap_ip(map, sym->start);
3214 	return sym->name;
3215 }
3216 
3217 int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv)
3218 {
3219 	struct dso *pos;
3220 	int err = 0;
3221 
3222 	list_for_each_entry(pos, &machine->dsos.head, node) {
3223 		if (fn(pos, machine, priv))
3224 			err = -1;
3225 	}
3226 	return err;
3227 }
3228