1 #include <dirent.h> 2 #include <errno.h> 3 #include <inttypes.h> 4 #include <regex.h> 5 #include "callchain.h" 6 #include "debug.h" 7 #include "event.h" 8 #include "evsel.h" 9 #include "hist.h" 10 #include "machine.h" 11 #include "map.h" 12 #include "sort.h" 13 #include "strlist.h" 14 #include "thread.h" 15 #include "vdso.h" 16 #include <stdbool.h> 17 #include <sys/types.h> 18 #include <sys/stat.h> 19 #include <unistd.h> 20 #include "unwind.h" 21 #include "linux/hash.h" 22 #include "asm/bug.h" 23 24 #include "sane_ctype.h" 25 #include <symbol/kallsyms.h> 26 27 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock); 28 29 static void dsos__init(struct dsos *dsos) 30 { 31 INIT_LIST_HEAD(&dsos->head); 32 dsos->root = RB_ROOT; 33 pthread_rwlock_init(&dsos->lock, NULL); 34 } 35 36 int machine__init(struct machine *machine, const char *root_dir, pid_t pid) 37 { 38 memset(machine, 0, sizeof(*machine)); 39 map_groups__init(&machine->kmaps, machine); 40 RB_CLEAR_NODE(&machine->rb_node); 41 dsos__init(&machine->dsos); 42 43 machine->threads = RB_ROOT; 44 pthread_rwlock_init(&machine->threads_lock, NULL); 45 machine->nr_threads = 0; 46 INIT_LIST_HEAD(&machine->dead_threads); 47 machine->last_match = NULL; 48 49 machine->vdso_info = NULL; 50 machine->env = NULL; 51 52 machine->pid = pid; 53 54 machine->id_hdr_size = 0; 55 machine->kptr_restrict_warned = false; 56 machine->comm_exec = false; 57 machine->kernel_start = 0; 58 59 memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps)); 60 61 machine->root_dir = strdup(root_dir); 62 if (machine->root_dir == NULL) 63 return -ENOMEM; 64 65 if (pid != HOST_KERNEL_ID) { 66 struct thread *thread = machine__findnew_thread(machine, -1, 67 pid); 68 char comm[64]; 69 70 if (thread == NULL) 71 return -ENOMEM; 72 73 snprintf(comm, sizeof(comm), "[guest/%d]", pid); 74 thread__set_comm(thread, comm, 0); 75 thread__put(thread); 76 } 77 78 machine->current_tid = NULL; 79 80 return 0; 81 } 82 83 struct machine *machine__new_host(void) 84 { 85 struct machine *machine = malloc(sizeof(*machine)); 86 87 if (machine != NULL) { 88 machine__init(machine, "", HOST_KERNEL_ID); 89 90 if (machine__create_kernel_maps(machine) < 0) 91 goto out_delete; 92 } 93 94 return machine; 95 out_delete: 96 free(machine); 97 return NULL; 98 } 99 100 struct machine *machine__new_kallsyms(void) 101 { 102 struct machine *machine = machine__new_host(); 103 /* 104 * FIXME: 105 * 1) MAP__FUNCTION will go away when we stop loading separate maps for 106 * functions and data objects. 107 * 2) We should switch to machine__load_kallsyms(), i.e. not explicitely 108 * ask for not using the kcore parsing code, once this one is fixed 109 * to create a map per module. 110 */ 111 if (machine && __machine__load_kallsyms(machine, "/proc/kallsyms", MAP__FUNCTION, true) <= 0) { 112 machine__delete(machine); 113 machine = NULL; 114 } 115 116 return machine; 117 } 118 119 static void dsos__purge(struct dsos *dsos) 120 { 121 struct dso *pos, *n; 122 123 pthread_rwlock_wrlock(&dsos->lock); 124 125 list_for_each_entry_safe(pos, n, &dsos->head, node) { 126 RB_CLEAR_NODE(&pos->rb_node); 127 pos->root = NULL; 128 list_del_init(&pos->node); 129 dso__put(pos); 130 } 131 132 pthread_rwlock_unlock(&dsos->lock); 133 } 134 135 static void dsos__exit(struct dsos *dsos) 136 { 137 dsos__purge(dsos); 138 pthread_rwlock_destroy(&dsos->lock); 139 } 140 141 void machine__delete_threads(struct machine *machine) 142 { 143 struct rb_node *nd; 144 145 pthread_rwlock_wrlock(&machine->threads_lock); 146 nd = rb_first(&machine->threads); 147 while (nd) { 148 struct thread *t = rb_entry(nd, struct thread, rb_node); 149 150 nd = rb_next(nd); 151 __machine__remove_thread(machine, t, false); 152 } 153 pthread_rwlock_unlock(&machine->threads_lock); 154 } 155 156 void machine__exit(struct machine *machine) 157 { 158 machine__destroy_kernel_maps(machine); 159 map_groups__exit(&machine->kmaps); 160 dsos__exit(&machine->dsos); 161 machine__exit_vdso(machine); 162 zfree(&machine->root_dir); 163 zfree(&machine->current_tid); 164 pthread_rwlock_destroy(&machine->threads_lock); 165 } 166 167 void machine__delete(struct machine *machine) 168 { 169 if (machine) { 170 machine__exit(machine); 171 free(machine); 172 } 173 } 174 175 void machines__init(struct machines *machines) 176 { 177 machine__init(&machines->host, "", HOST_KERNEL_ID); 178 machines->guests = RB_ROOT; 179 } 180 181 void machines__exit(struct machines *machines) 182 { 183 machine__exit(&machines->host); 184 /* XXX exit guest */ 185 } 186 187 struct machine *machines__add(struct machines *machines, pid_t pid, 188 const char *root_dir) 189 { 190 struct rb_node **p = &machines->guests.rb_node; 191 struct rb_node *parent = NULL; 192 struct machine *pos, *machine = malloc(sizeof(*machine)); 193 194 if (machine == NULL) 195 return NULL; 196 197 if (machine__init(machine, root_dir, pid) != 0) { 198 free(machine); 199 return NULL; 200 } 201 202 while (*p != NULL) { 203 parent = *p; 204 pos = rb_entry(parent, struct machine, rb_node); 205 if (pid < pos->pid) 206 p = &(*p)->rb_left; 207 else 208 p = &(*p)->rb_right; 209 } 210 211 rb_link_node(&machine->rb_node, parent, p); 212 rb_insert_color(&machine->rb_node, &machines->guests); 213 214 return machine; 215 } 216 217 void machines__set_comm_exec(struct machines *machines, bool comm_exec) 218 { 219 struct rb_node *nd; 220 221 machines->host.comm_exec = comm_exec; 222 223 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 224 struct machine *machine = rb_entry(nd, struct machine, rb_node); 225 226 machine->comm_exec = comm_exec; 227 } 228 } 229 230 struct machine *machines__find(struct machines *machines, pid_t pid) 231 { 232 struct rb_node **p = &machines->guests.rb_node; 233 struct rb_node *parent = NULL; 234 struct machine *machine; 235 struct machine *default_machine = NULL; 236 237 if (pid == HOST_KERNEL_ID) 238 return &machines->host; 239 240 while (*p != NULL) { 241 parent = *p; 242 machine = rb_entry(parent, struct machine, rb_node); 243 if (pid < machine->pid) 244 p = &(*p)->rb_left; 245 else if (pid > machine->pid) 246 p = &(*p)->rb_right; 247 else 248 return machine; 249 if (!machine->pid) 250 default_machine = machine; 251 } 252 253 return default_machine; 254 } 255 256 struct machine *machines__findnew(struct machines *machines, pid_t pid) 257 { 258 char path[PATH_MAX]; 259 const char *root_dir = ""; 260 struct machine *machine = machines__find(machines, pid); 261 262 if (machine && (machine->pid == pid)) 263 goto out; 264 265 if ((pid != HOST_KERNEL_ID) && 266 (pid != DEFAULT_GUEST_KERNEL_ID) && 267 (symbol_conf.guestmount)) { 268 sprintf(path, "%s/%d", symbol_conf.guestmount, pid); 269 if (access(path, R_OK)) { 270 static struct strlist *seen; 271 272 if (!seen) 273 seen = strlist__new(NULL, NULL); 274 275 if (!strlist__has_entry(seen, path)) { 276 pr_err("Can't access file %s\n", path); 277 strlist__add(seen, path); 278 } 279 machine = NULL; 280 goto out; 281 } 282 root_dir = path; 283 } 284 285 machine = machines__add(machines, pid, root_dir); 286 out: 287 return machine; 288 } 289 290 void machines__process_guests(struct machines *machines, 291 machine__process_t process, void *data) 292 { 293 struct rb_node *nd; 294 295 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 296 struct machine *pos = rb_entry(nd, struct machine, rb_node); 297 process(pos, data); 298 } 299 } 300 301 char *machine__mmap_name(struct machine *machine, char *bf, size_t size) 302 { 303 if (machine__is_host(machine)) 304 snprintf(bf, size, "[%s]", "kernel.kallsyms"); 305 else if (machine__is_default_guest(machine)) 306 snprintf(bf, size, "[%s]", "guest.kernel.kallsyms"); 307 else { 308 snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms", 309 machine->pid); 310 } 311 312 return bf; 313 } 314 315 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size) 316 { 317 struct rb_node *node; 318 struct machine *machine; 319 320 machines->host.id_hdr_size = id_hdr_size; 321 322 for (node = rb_first(&machines->guests); node; node = rb_next(node)) { 323 machine = rb_entry(node, struct machine, rb_node); 324 machine->id_hdr_size = id_hdr_size; 325 } 326 327 return; 328 } 329 330 static void machine__update_thread_pid(struct machine *machine, 331 struct thread *th, pid_t pid) 332 { 333 struct thread *leader; 334 335 if (pid == th->pid_ || pid == -1 || th->pid_ != -1) 336 return; 337 338 th->pid_ = pid; 339 340 if (th->pid_ == th->tid) 341 return; 342 343 leader = __machine__findnew_thread(machine, th->pid_, th->pid_); 344 if (!leader) 345 goto out_err; 346 347 if (!leader->mg) 348 leader->mg = map_groups__new(machine); 349 350 if (!leader->mg) 351 goto out_err; 352 353 if (th->mg == leader->mg) 354 return; 355 356 if (th->mg) { 357 /* 358 * Maps are created from MMAP events which provide the pid and 359 * tid. Consequently there never should be any maps on a thread 360 * with an unknown pid. Just print an error if there are. 361 */ 362 if (!map_groups__empty(th->mg)) 363 pr_err("Discarding thread maps for %d:%d\n", 364 th->pid_, th->tid); 365 map_groups__put(th->mg); 366 } 367 368 th->mg = map_groups__get(leader->mg); 369 out_put: 370 thread__put(leader); 371 return; 372 out_err: 373 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid); 374 goto out_put; 375 } 376 377 /* 378 * Caller must eventually drop thread->refcnt returned with a successful 379 * lookup/new thread inserted. 380 */ 381 static struct thread *____machine__findnew_thread(struct machine *machine, 382 pid_t pid, pid_t tid, 383 bool create) 384 { 385 struct rb_node **p = &machine->threads.rb_node; 386 struct rb_node *parent = NULL; 387 struct thread *th; 388 389 /* 390 * Front-end cache - TID lookups come in blocks, 391 * so most of the time we dont have to look up 392 * the full rbtree: 393 */ 394 th = machine->last_match; 395 if (th != NULL) { 396 if (th->tid == tid) { 397 machine__update_thread_pid(machine, th, pid); 398 return thread__get(th); 399 } 400 401 machine->last_match = NULL; 402 } 403 404 while (*p != NULL) { 405 parent = *p; 406 th = rb_entry(parent, struct thread, rb_node); 407 408 if (th->tid == tid) { 409 machine->last_match = th; 410 machine__update_thread_pid(machine, th, pid); 411 return thread__get(th); 412 } 413 414 if (tid < th->tid) 415 p = &(*p)->rb_left; 416 else 417 p = &(*p)->rb_right; 418 } 419 420 if (!create) 421 return NULL; 422 423 th = thread__new(pid, tid); 424 if (th != NULL) { 425 rb_link_node(&th->rb_node, parent, p); 426 rb_insert_color(&th->rb_node, &machine->threads); 427 428 /* 429 * We have to initialize map_groups separately 430 * after rb tree is updated. 431 * 432 * The reason is that we call machine__findnew_thread 433 * within thread__init_map_groups to find the thread 434 * leader and that would screwed the rb tree. 435 */ 436 if (thread__init_map_groups(th, machine)) { 437 rb_erase_init(&th->rb_node, &machine->threads); 438 RB_CLEAR_NODE(&th->rb_node); 439 thread__put(th); 440 return NULL; 441 } 442 /* 443 * It is now in the rbtree, get a ref 444 */ 445 thread__get(th); 446 machine->last_match = th; 447 ++machine->nr_threads; 448 } 449 450 return th; 451 } 452 453 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid) 454 { 455 return ____machine__findnew_thread(machine, pid, tid, true); 456 } 457 458 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, 459 pid_t tid) 460 { 461 struct thread *th; 462 463 pthread_rwlock_wrlock(&machine->threads_lock); 464 th = __machine__findnew_thread(machine, pid, tid); 465 pthread_rwlock_unlock(&machine->threads_lock); 466 return th; 467 } 468 469 struct thread *machine__find_thread(struct machine *machine, pid_t pid, 470 pid_t tid) 471 { 472 struct thread *th; 473 pthread_rwlock_rdlock(&machine->threads_lock); 474 th = ____machine__findnew_thread(machine, pid, tid, false); 475 pthread_rwlock_unlock(&machine->threads_lock); 476 return th; 477 } 478 479 struct comm *machine__thread_exec_comm(struct machine *machine, 480 struct thread *thread) 481 { 482 if (machine->comm_exec) 483 return thread__exec_comm(thread); 484 else 485 return thread__comm(thread); 486 } 487 488 int machine__process_comm_event(struct machine *machine, union perf_event *event, 489 struct perf_sample *sample) 490 { 491 struct thread *thread = machine__findnew_thread(machine, 492 event->comm.pid, 493 event->comm.tid); 494 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC; 495 int err = 0; 496 497 if (exec) 498 machine->comm_exec = true; 499 500 if (dump_trace) 501 perf_event__fprintf_comm(event, stdout); 502 503 if (thread == NULL || 504 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) { 505 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n"); 506 err = -1; 507 } 508 509 thread__put(thread); 510 511 return err; 512 } 513 514 int machine__process_namespaces_event(struct machine *machine __maybe_unused, 515 union perf_event *event, 516 struct perf_sample *sample __maybe_unused) 517 { 518 struct thread *thread = machine__findnew_thread(machine, 519 event->namespaces.pid, 520 event->namespaces.tid); 521 int err = 0; 522 523 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES, 524 "\nWARNING: kernel seems to support more namespaces than perf" 525 " tool.\nTry updating the perf tool..\n\n"); 526 527 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES, 528 "\nWARNING: perf tool seems to support more namespaces than" 529 " the kernel.\nTry updating the kernel..\n\n"); 530 531 if (dump_trace) 532 perf_event__fprintf_namespaces(event, stdout); 533 534 if (thread == NULL || 535 thread__set_namespaces(thread, sample->time, &event->namespaces)) { 536 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n"); 537 err = -1; 538 } 539 540 thread__put(thread); 541 542 return err; 543 } 544 545 int machine__process_lost_event(struct machine *machine __maybe_unused, 546 union perf_event *event, struct perf_sample *sample __maybe_unused) 547 { 548 dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n", 549 event->lost.id, event->lost.lost); 550 return 0; 551 } 552 553 int machine__process_lost_samples_event(struct machine *machine __maybe_unused, 554 union perf_event *event, struct perf_sample *sample) 555 { 556 dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n", 557 sample->id, event->lost_samples.lost); 558 return 0; 559 } 560 561 static struct dso *machine__findnew_module_dso(struct machine *machine, 562 struct kmod_path *m, 563 const char *filename) 564 { 565 struct dso *dso; 566 567 pthread_rwlock_wrlock(&machine->dsos.lock); 568 569 dso = __dsos__find(&machine->dsos, m->name, true); 570 if (!dso) { 571 dso = __dsos__addnew(&machine->dsos, m->name); 572 if (dso == NULL) 573 goto out_unlock; 574 575 if (machine__is_host(machine)) 576 dso->symtab_type = DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE; 577 else 578 dso->symtab_type = DSO_BINARY_TYPE__GUEST_KMODULE; 579 580 /* _KMODULE_COMP should be next to _KMODULE */ 581 if (m->kmod && m->comp) 582 dso->symtab_type++; 583 584 dso__set_short_name(dso, strdup(m->name), true); 585 dso__set_long_name(dso, strdup(filename), true); 586 } 587 588 dso__get(dso); 589 out_unlock: 590 pthread_rwlock_unlock(&machine->dsos.lock); 591 return dso; 592 } 593 594 int machine__process_aux_event(struct machine *machine __maybe_unused, 595 union perf_event *event) 596 { 597 if (dump_trace) 598 perf_event__fprintf_aux(event, stdout); 599 return 0; 600 } 601 602 int machine__process_itrace_start_event(struct machine *machine __maybe_unused, 603 union perf_event *event) 604 { 605 if (dump_trace) 606 perf_event__fprintf_itrace_start(event, stdout); 607 return 0; 608 } 609 610 int machine__process_switch_event(struct machine *machine __maybe_unused, 611 union perf_event *event) 612 { 613 if (dump_trace) 614 perf_event__fprintf_switch(event, stdout); 615 return 0; 616 } 617 618 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename) 619 { 620 const char *dup_filename; 621 622 if (!filename || !dso || !dso->long_name) 623 return; 624 if (dso->long_name[0] != '[') 625 return; 626 if (!strchr(filename, '/')) 627 return; 628 629 dup_filename = strdup(filename); 630 if (!dup_filename) 631 return; 632 633 dso__set_long_name(dso, dup_filename, true); 634 } 635 636 struct map *machine__findnew_module_map(struct machine *machine, u64 start, 637 const char *filename) 638 { 639 struct map *map = NULL; 640 struct dso *dso = NULL; 641 struct kmod_path m; 642 643 if (kmod_path__parse_name(&m, filename)) 644 return NULL; 645 646 map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION, 647 m.name); 648 if (map) { 649 /* 650 * If the map's dso is an offline module, give dso__load() 651 * a chance to find the file path of that module by fixing 652 * long_name. 653 */ 654 dso__adjust_kmod_long_name(map->dso, filename); 655 goto out; 656 } 657 658 dso = machine__findnew_module_dso(machine, &m, filename); 659 if (dso == NULL) 660 goto out; 661 662 map = map__new2(start, dso, MAP__FUNCTION); 663 if (map == NULL) 664 goto out; 665 666 map_groups__insert(&machine->kmaps, map); 667 668 /* Put the map here because map_groups__insert alread got it */ 669 map__put(map); 670 out: 671 /* put the dso here, corresponding to machine__findnew_module_dso */ 672 dso__put(dso); 673 free(m.name); 674 return map; 675 } 676 677 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp) 678 { 679 struct rb_node *nd; 680 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp); 681 682 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 683 struct machine *pos = rb_entry(nd, struct machine, rb_node); 684 ret += __dsos__fprintf(&pos->dsos.head, fp); 685 } 686 687 return ret; 688 } 689 690 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp, 691 bool (skip)(struct dso *dso, int parm), int parm) 692 { 693 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm); 694 } 695 696 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp, 697 bool (skip)(struct dso *dso, int parm), int parm) 698 { 699 struct rb_node *nd; 700 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm); 701 702 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 703 struct machine *pos = rb_entry(nd, struct machine, rb_node); 704 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm); 705 } 706 return ret; 707 } 708 709 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp) 710 { 711 int i; 712 size_t printed = 0; 713 struct dso *kdso = machine__kernel_map(machine)->dso; 714 715 if (kdso->has_build_id) { 716 char filename[PATH_MAX]; 717 if (dso__build_id_filename(kdso, filename, sizeof(filename))) 718 printed += fprintf(fp, "[0] %s\n", filename); 719 } 720 721 for (i = 0; i < vmlinux_path__nr_entries; ++i) 722 printed += fprintf(fp, "[%d] %s\n", 723 i + kdso->has_build_id, vmlinux_path[i]); 724 725 return printed; 726 } 727 728 size_t machine__fprintf(struct machine *machine, FILE *fp) 729 { 730 size_t ret; 731 struct rb_node *nd; 732 733 pthread_rwlock_rdlock(&machine->threads_lock); 734 735 ret = fprintf(fp, "Threads: %u\n", machine->nr_threads); 736 737 for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) { 738 struct thread *pos = rb_entry(nd, struct thread, rb_node); 739 740 ret += thread__fprintf(pos, fp); 741 } 742 743 pthread_rwlock_unlock(&machine->threads_lock); 744 745 return ret; 746 } 747 748 static struct dso *machine__get_kernel(struct machine *machine) 749 { 750 const char *vmlinux_name = NULL; 751 struct dso *kernel; 752 753 if (machine__is_host(machine)) { 754 vmlinux_name = symbol_conf.vmlinux_name; 755 if (!vmlinux_name) 756 vmlinux_name = DSO__NAME_KALLSYMS; 757 758 kernel = machine__findnew_kernel(machine, vmlinux_name, 759 "[kernel]", DSO_TYPE_KERNEL); 760 } else { 761 char bf[PATH_MAX]; 762 763 if (machine__is_default_guest(machine)) 764 vmlinux_name = symbol_conf.default_guest_vmlinux_name; 765 if (!vmlinux_name) 766 vmlinux_name = machine__mmap_name(machine, bf, 767 sizeof(bf)); 768 769 kernel = machine__findnew_kernel(machine, vmlinux_name, 770 "[guest.kernel]", 771 DSO_TYPE_GUEST_KERNEL); 772 } 773 774 if (kernel != NULL && (!kernel->has_build_id)) 775 dso__read_running_kernel_build_id(kernel, machine); 776 777 return kernel; 778 } 779 780 struct process_args { 781 u64 start; 782 }; 783 784 static void machine__get_kallsyms_filename(struct machine *machine, char *buf, 785 size_t bufsz) 786 { 787 if (machine__is_default_guest(machine)) 788 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms); 789 else 790 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir); 791 } 792 793 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL}; 794 795 /* Figure out the start address of kernel map from /proc/kallsyms. 796 * Returns the name of the start symbol in *symbol_name. Pass in NULL as 797 * symbol_name if it's not that important. 798 */ 799 static int machine__get_running_kernel_start(struct machine *machine, 800 const char **symbol_name, u64 *start) 801 { 802 char filename[PATH_MAX]; 803 int i, err = -1; 804 const char *name; 805 u64 addr = 0; 806 807 machine__get_kallsyms_filename(machine, filename, PATH_MAX); 808 809 if (symbol__restricted_filename(filename, "/proc/kallsyms")) 810 return 0; 811 812 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) { 813 err = kallsyms__get_function_start(filename, name, &addr); 814 if (!err) 815 break; 816 } 817 818 if (err) 819 return -1; 820 821 if (symbol_name) 822 *symbol_name = name; 823 824 *start = addr; 825 return 0; 826 } 827 828 int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel) 829 { 830 int type; 831 u64 start = 0; 832 833 if (machine__get_running_kernel_start(machine, NULL, &start)) 834 return -1; 835 836 /* In case of renewal the kernel map, destroy previous one */ 837 machine__destroy_kernel_maps(machine); 838 839 for (type = 0; type < MAP__NR_TYPES; ++type) { 840 struct kmap *kmap; 841 struct map *map; 842 843 machine->vmlinux_maps[type] = map__new2(start, kernel, type); 844 if (machine->vmlinux_maps[type] == NULL) 845 return -1; 846 847 machine->vmlinux_maps[type]->map_ip = 848 machine->vmlinux_maps[type]->unmap_ip = 849 identity__map_ip; 850 map = __machine__kernel_map(machine, type); 851 kmap = map__kmap(map); 852 if (!kmap) 853 return -1; 854 855 kmap->kmaps = &machine->kmaps; 856 map_groups__insert(&machine->kmaps, map); 857 } 858 859 return 0; 860 } 861 862 void machine__destroy_kernel_maps(struct machine *machine) 863 { 864 int type; 865 866 for (type = 0; type < MAP__NR_TYPES; ++type) { 867 struct kmap *kmap; 868 struct map *map = __machine__kernel_map(machine, type); 869 870 if (map == NULL) 871 continue; 872 873 kmap = map__kmap(map); 874 map_groups__remove(&machine->kmaps, map); 875 if (kmap && kmap->ref_reloc_sym) { 876 /* 877 * ref_reloc_sym is shared among all maps, so free just 878 * on one of them. 879 */ 880 if (type == MAP__FUNCTION) { 881 zfree((char **)&kmap->ref_reloc_sym->name); 882 zfree(&kmap->ref_reloc_sym); 883 } else 884 kmap->ref_reloc_sym = NULL; 885 } 886 887 map__put(machine->vmlinux_maps[type]); 888 machine->vmlinux_maps[type] = NULL; 889 } 890 } 891 892 int machines__create_guest_kernel_maps(struct machines *machines) 893 { 894 int ret = 0; 895 struct dirent **namelist = NULL; 896 int i, items = 0; 897 char path[PATH_MAX]; 898 pid_t pid; 899 char *endp; 900 901 if (symbol_conf.default_guest_vmlinux_name || 902 symbol_conf.default_guest_modules || 903 symbol_conf.default_guest_kallsyms) { 904 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID); 905 } 906 907 if (symbol_conf.guestmount) { 908 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL); 909 if (items <= 0) 910 return -ENOENT; 911 for (i = 0; i < items; i++) { 912 if (!isdigit(namelist[i]->d_name[0])) { 913 /* Filter out . and .. */ 914 continue; 915 } 916 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10); 917 if ((*endp != '\0') || 918 (endp == namelist[i]->d_name) || 919 (errno == ERANGE)) { 920 pr_debug("invalid directory (%s). Skipping.\n", 921 namelist[i]->d_name); 922 continue; 923 } 924 sprintf(path, "%s/%s/proc/kallsyms", 925 symbol_conf.guestmount, 926 namelist[i]->d_name); 927 ret = access(path, R_OK); 928 if (ret) { 929 pr_debug("Can't access file %s\n", path); 930 goto failure; 931 } 932 machines__create_kernel_maps(machines, pid); 933 } 934 failure: 935 free(namelist); 936 } 937 938 return ret; 939 } 940 941 void machines__destroy_kernel_maps(struct machines *machines) 942 { 943 struct rb_node *next = rb_first(&machines->guests); 944 945 machine__destroy_kernel_maps(&machines->host); 946 947 while (next) { 948 struct machine *pos = rb_entry(next, struct machine, rb_node); 949 950 next = rb_next(&pos->rb_node); 951 rb_erase(&pos->rb_node, &machines->guests); 952 machine__delete(pos); 953 } 954 } 955 956 int machines__create_kernel_maps(struct machines *machines, pid_t pid) 957 { 958 struct machine *machine = machines__findnew(machines, pid); 959 960 if (machine == NULL) 961 return -1; 962 963 return machine__create_kernel_maps(machine); 964 } 965 966 int __machine__load_kallsyms(struct machine *machine, const char *filename, 967 enum map_type type, bool no_kcore) 968 { 969 struct map *map = machine__kernel_map(machine); 970 int ret = __dso__load_kallsyms(map->dso, filename, map, no_kcore); 971 972 if (ret > 0) { 973 dso__set_loaded(map->dso, type); 974 /* 975 * Since /proc/kallsyms will have multiple sessions for the 976 * kernel, with modules between them, fixup the end of all 977 * sections. 978 */ 979 __map_groups__fixup_end(&machine->kmaps, type); 980 } 981 982 return ret; 983 } 984 985 int machine__load_kallsyms(struct machine *machine, const char *filename, 986 enum map_type type) 987 { 988 return __machine__load_kallsyms(machine, filename, type, false); 989 } 990 991 int machine__load_vmlinux_path(struct machine *machine, enum map_type type) 992 { 993 struct map *map = machine__kernel_map(machine); 994 int ret = dso__load_vmlinux_path(map->dso, map); 995 996 if (ret > 0) 997 dso__set_loaded(map->dso, type); 998 999 return ret; 1000 } 1001 1002 static void map_groups__fixup_end(struct map_groups *mg) 1003 { 1004 int i; 1005 for (i = 0; i < MAP__NR_TYPES; ++i) 1006 __map_groups__fixup_end(mg, i); 1007 } 1008 1009 static char *get_kernel_version(const char *root_dir) 1010 { 1011 char version[PATH_MAX]; 1012 FILE *file; 1013 char *name, *tmp; 1014 const char *prefix = "Linux version "; 1015 1016 sprintf(version, "%s/proc/version", root_dir); 1017 file = fopen(version, "r"); 1018 if (!file) 1019 return NULL; 1020 1021 version[0] = '\0'; 1022 tmp = fgets(version, sizeof(version), file); 1023 fclose(file); 1024 1025 name = strstr(version, prefix); 1026 if (!name) 1027 return NULL; 1028 name += strlen(prefix); 1029 tmp = strchr(name, ' '); 1030 if (tmp) 1031 *tmp = '\0'; 1032 1033 return strdup(name); 1034 } 1035 1036 static bool is_kmod_dso(struct dso *dso) 1037 { 1038 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE || 1039 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE; 1040 } 1041 1042 static int map_groups__set_module_path(struct map_groups *mg, const char *path, 1043 struct kmod_path *m) 1044 { 1045 struct map *map; 1046 char *long_name; 1047 1048 map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name); 1049 if (map == NULL) 1050 return 0; 1051 1052 long_name = strdup(path); 1053 if (long_name == NULL) 1054 return -ENOMEM; 1055 1056 dso__set_long_name(map->dso, long_name, true); 1057 dso__kernel_module_get_build_id(map->dso, ""); 1058 1059 /* 1060 * Full name could reveal us kmod compression, so 1061 * we need to update the symtab_type if needed. 1062 */ 1063 if (m->comp && is_kmod_dso(map->dso)) 1064 map->dso->symtab_type++; 1065 1066 return 0; 1067 } 1068 1069 static int map_groups__set_modules_path_dir(struct map_groups *mg, 1070 const char *dir_name, int depth) 1071 { 1072 struct dirent *dent; 1073 DIR *dir = opendir(dir_name); 1074 int ret = 0; 1075 1076 if (!dir) { 1077 pr_debug("%s: cannot open %s dir\n", __func__, dir_name); 1078 return -1; 1079 } 1080 1081 while ((dent = readdir(dir)) != NULL) { 1082 char path[PATH_MAX]; 1083 struct stat st; 1084 1085 /*sshfs might return bad dent->d_type, so we have to stat*/ 1086 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name); 1087 if (stat(path, &st)) 1088 continue; 1089 1090 if (S_ISDIR(st.st_mode)) { 1091 if (!strcmp(dent->d_name, ".") || 1092 !strcmp(dent->d_name, "..")) 1093 continue; 1094 1095 /* Do not follow top-level source and build symlinks */ 1096 if (depth == 0) { 1097 if (!strcmp(dent->d_name, "source") || 1098 !strcmp(dent->d_name, "build")) 1099 continue; 1100 } 1101 1102 ret = map_groups__set_modules_path_dir(mg, path, 1103 depth + 1); 1104 if (ret < 0) 1105 goto out; 1106 } else { 1107 struct kmod_path m; 1108 1109 ret = kmod_path__parse_name(&m, dent->d_name); 1110 if (ret) 1111 goto out; 1112 1113 if (m.kmod) 1114 ret = map_groups__set_module_path(mg, path, &m); 1115 1116 free(m.name); 1117 1118 if (ret) 1119 goto out; 1120 } 1121 } 1122 1123 out: 1124 closedir(dir); 1125 return ret; 1126 } 1127 1128 static int machine__set_modules_path(struct machine *machine) 1129 { 1130 char *version; 1131 char modules_path[PATH_MAX]; 1132 1133 version = get_kernel_version(machine->root_dir); 1134 if (!version) 1135 return -1; 1136 1137 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s", 1138 machine->root_dir, version); 1139 free(version); 1140 1141 return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0); 1142 } 1143 int __weak arch__fix_module_text_start(u64 *start __maybe_unused, 1144 const char *name __maybe_unused) 1145 { 1146 return 0; 1147 } 1148 1149 static int machine__create_module(void *arg, const char *name, u64 start) 1150 { 1151 struct machine *machine = arg; 1152 struct map *map; 1153 1154 if (arch__fix_module_text_start(&start, name) < 0) 1155 return -1; 1156 1157 map = machine__findnew_module_map(machine, start, name); 1158 if (map == NULL) 1159 return -1; 1160 1161 dso__kernel_module_get_build_id(map->dso, machine->root_dir); 1162 1163 return 0; 1164 } 1165 1166 static int machine__create_modules(struct machine *machine) 1167 { 1168 const char *modules; 1169 char path[PATH_MAX]; 1170 1171 if (machine__is_default_guest(machine)) { 1172 modules = symbol_conf.default_guest_modules; 1173 } else { 1174 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir); 1175 modules = path; 1176 } 1177 1178 if (symbol__restricted_filename(modules, "/proc/modules")) 1179 return -1; 1180 1181 if (modules__parse(modules, machine, machine__create_module)) 1182 return -1; 1183 1184 if (!machine__set_modules_path(machine)) 1185 return 0; 1186 1187 pr_debug("Problems setting modules path maps, continuing anyway...\n"); 1188 1189 return 0; 1190 } 1191 1192 int machine__create_kernel_maps(struct machine *machine) 1193 { 1194 struct dso *kernel = machine__get_kernel(machine); 1195 const char *name = NULL; 1196 u64 addr = 0; 1197 int ret; 1198 1199 if (kernel == NULL) 1200 return -1; 1201 1202 ret = __machine__create_kernel_maps(machine, kernel); 1203 dso__put(kernel); 1204 if (ret < 0) 1205 return -1; 1206 1207 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) { 1208 if (machine__is_host(machine)) 1209 pr_debug("Problems creating module maps, " 1210 "continuing anyway...\n"); 1211 else 1212 pr_debug("Problems creating module maps for guest %d, " 1213 "continuing anyway...\n", machine->pid); 1214 } 1215 1216 /* 1217 * Now that we have all the maps created, just set the ->end of them: 1218 */ 1219 map_groups__fixup_end(&machine->kmaps); 1220 1221 if (machine__get_running_kernel_start(machine, &name, &addr)) { 1222 } else if (maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name, addr)) { 1223 machine__destroy_kernel_maps(machine); 1224 return -1; 1225 } 1226 1227 return 0; 1228 } 1229 1230 static void machine__set_kernel_mmap_len(struct machine *machine, 1231 union perf_event *event) 1232 { 1233 int i; 1234 1235 for (i = 0; i < MAP__NR_TYPES; i++) { 1236 machine->vmlinux_maps[i]->start = event->mmap.start; 1237 machine->vmlinux_maps[i]->end = (event->mmap.start + 1238 event->mmap.len); 1239 /* 1240 * Be a bit paranoid here, some perf.data file came with 1241 * a zero sized synthesized MMAP event for the kernel. 1242 */ 1243 if (machine->vmlinux_maps[i]->end == 0) 1244 machine->vmlinux_maps[i]->end = ~0ULL; 1245 } 1246 } 1247 1248 static bool machine__uses_kcore(struct machine *machine) 1249 { 1250 struct dso *dso; 1251 1252 list_for_each_entry(dso, &machine->dsos.head, node) { 1253 if (dso__is_kcore(dso)) 1254 return true; 1255 } 1256 1257 return false; 1258 } 1259 1260 static int machine__process_kernel_mmap_event(struct machine *machine, 1261 union perf_event *event) 1262 { 1263 struct map *map; 1264 char kmmap_prefix[PATH_MAX]; 1265 enum dso_kernel_type kernel_type; 1266 bool is_kernel_mmap; 1267 1268 /* If we have maps from kcore then we do not need or want any others */ 1269 if (machine__uses_kcore(machine)) 1270 return 0; 1271 1272 machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix)); 1273 if (machine__is_host(machine)) 1274 kernel_type = DSO_TYPE_KERNEL; 1275 else 1276 kernel_type = DSO_TYPE_GUEST_KERNEL; 1277 1278 is_kernel_mmap = memcmp(event->mmap.filename, 1279 kmmap_prefix, 1280 strlen(kmmap_prefix) - 1) == 0; 1281 if (event->mmap.filename[0] == '/' || 1282 (!is_kernel_mmap && event->mmap.filename[0] == '[')) { 1283 map = machine__findnew_module_map(machine, event->mmap.start, 1284 event->mmap.filename); 1285 if (map == NULL) 1286 goto out_problem; 1287 1288 map->end = map->start + event->mmap.len; 1289 } else if (is_kernel_mmap) { 1290 const char *symbol_name = (event->mmap.filename + 1291 strlen(kmmap_prefix)); 1292 /* 1293 * Should be there already, from the build-id table in 1294 * the header. 1295 */ 1296 struct dso *kernel = NULL; 1297 struct dso *dso; 1298 1299 pthread_rwlock_rdlock(&machine->dsos.lock); 1300 1301 list_for_each_entry(dso, &machine->dsos.head, node) { 1302 1303 /* 1304 * The cpumode passed to is_kernel_module is not the 1305 * cpumode of *this* event. If we insist on passing 1306 * correct cpumode to is_kernel_module, we should 1307 * record the cpumode when we adding this dso to the 1308 * linked list. 1309 * 1310 * However we don't really need passing correct 1311 * cpumode. We know the correct cpumode must be kernel 1312 * mode (if not, we should not link it onto kernel_dsos 1313 * list). 1314 * 1315 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN. 1316 * is_kernel_module() treats it as a kernel cpumode. 1317 */ 1318 1319 if (!dso->kernel || 1320 is_kernel_module(dso->long_name, 1321 PERF_RECORD_MISC_CPUMODE_UNKNOWN)) 1322 continue; 1323 1324 1325 kernel = dso; 1326 break; 1327 } 1328 1329 pthread_rwlock_unlock(&machine->dsos.lock); 1330 1331 if (kernel == NULL) 1332 kernel = machine__findnew_dso(machine, kmmap_prefix); 1333 if (kernel == NULL) 1334 goto out_problem; 1335 1336 kernel->kernel = kernel_type; 1337 if (__machine__create_kernel_maps(machine, kernel) < 0) { 1338 dso__put(kernel); 1339 goto out_problem; 1340 } 1341 1342 if (strstr(kernel->long_name, "vmlinux")) 1343 dso__set_short_name(kernel, "[kernel.vmlinux]", false); 1344 1345 machine__set_kernel_mmap_len(machine, event); 1346 1347 /* 1348 * Avoid using a zero address (kptr_restrict) for the ref reloc 1349 * symbol. Effectively having zero here means that at record 1350 * time /proc/sys/kernel/kptr_restrict was non zero. 1351 */ 1352 if (event->mmap.pgoff != 0) { 1353 maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, 1354 symbol_name, 1355 event->mmap.pgoff); 1356 } 1357 1358 if (machine__is_default_guest(machine)) { 1359 /* 1360 * preload dso of guest kernel and modules 1361 */ 1362 dso__load(kernel, machine__kernel_map(machine)); 1363 } 1364 } 1365 return 0; 1366 out_problem: 1367 return -1; 1368 } 1369 1370 int machine__process_mmap2_event(struct machine *machine, 1371 union perf_event *event, 1372 struct perf_sample *sample) 1373 { 1374 struct thread *thread; 1375 struct map *map; 1376 enum map_type type; 1377 int ret = 0; 1378 1379 if (dump_trace) 1380 perf_event__fprintf_mmap2(event, stdout); 1381 1382 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1383 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1384 ret = machine__process_kernel_mmap_event(machine, event); 1385 if (ret < 0) 1386 goto out_problem; 1387 return 0; 1388 } 1389 1390 thread = machine__findnew_thread(machine, event->mmap2.pid, 1391 event->mmap2.tid); 1392 if (thread == NULL) 1393 goto out_problem; 1394 1395 if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA) 1396 type = MAP__VARIABLE; 1397 else 1398 type = MAP__FUNCTION; 1399 1400 map = map__new(machine, event->mmap2.start, 1401 event->mmap2.len, event->mmap2.pgoff, 1402 event->mmap2.pid, event->mmap2.maj, 1403 event->mmap2.min, event->mmap2.ino, 1404 event->mmap2.ino_generation, 1405 event->mmap2.prot, 1406 event->mmap2.flags, 1407 event->mmap2.filename, type, thread); 1408 1409 if (map == NULL) 1410 goto out_problem_map; 1411 1412 ret = thread__insert_map(thread, map); 1413 if (ret) 1414 goto out_problem_insert; 1415 1416 thread__put(thread); 1417 map__put(map); 1418 return 0; 1419 1420 out_problem_insert: 1421 map__put(map); 1422 out_problem_map: 1423 thread__put(thread); 1424 out_problem: 1425 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n"); 1426 return 0; 1427 } 1428 1429 int machine__process_mmap_event(struct machine *machine, union perf_event *event, 1430 struct perf_sample *sample) 1431 { 1432 struct thread *thread; 1433 struct map *map; 1434 enum map_type type; 1435 int ret = 0; 1436 1437 if (dump_trace) 1438 perf_event__fprintf_mmap(event, stdout); 1439 1440 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1441 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1442 ret = machine__process_kernel_mmap_event(machine, event); 1443 if (ret < 0) 1444 goto out_problem; 1445 return 0; 1446 } 1447 1448 thread = machine__findnew_thread(machine, event->mmap.pid, 1449 event->mmap.tid); 1450 if (thread == NULL) 1451 goto out_problem; 1452 1453 if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA) 1454 type = MAP__VARIABLE; 1455 else 1456 type = MAP__FUNCTION; 1457 1458 map = map__new(machine, event->mmap.start, 1459 event->mmap.len, event->mmap.pgoff, 1460 event->mmap.pid, 0, 0, 0, 0, 0, 0, 1461 event->mmap.filename, 1462 type, thread); 1463 1464 if (map == NULL) 1465 goto out_problem_map; 1466 1467 ret = thread__insert_map(thread, map); 1468 if (ret) 1469 goto out_problem_insert; 1470 1471 thread__put(thread); 1472 map__put(map); 1473 return 0; 1474 1475 out_problem_insert: 1476 map__put(map); 1477 out_problem_map: 1478 thread__put(thread); 1479 out_problem: 1480 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n"); 1481 return 0; 1482 } 1483 1484 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock) 1485 { 1486 if (machine->last_match == th) 1487 machine->last_match = NULL; 1488 1489 BUG_ON(refcount_read(&th->refcnt) == 0); 1490 if (lock) 1491 pthread_rwlock_wrlock(&machine->threads_lock); 1492 rb_erase_init(&th->rb_node, &machine->threads); 1493 RB_CLEAR_NODE(&th->rb_node); 1494 --machine->nr_threads; 1495 /* 1496 * Move it first to the dead_threads list, then drop the reference, 1497 * if this is the last reference, then the thread__delete destructor 1498 * will be called and we will remove it from the dead_threads list. 1499 */ 1500 list_add_tail(&th->node, &machine->dead_threads); 1501 if (lock) 1502 pthread_rwlock_unlock(&machine->threads_lock); 1503 thread__put(th); 1504 } 1505 1506 void machine__remove_thread(struct machine *machine, struct thread *th) 1507 { 1508 return __machine__remove_thread(machine, th, true); 1509 } 1510 1511 int machine__process_fork_event(struct machine *machine, union perf_event *event, 1512 struct perf_sample *sample) 1513 { 1514 struct thread *thread = machine__find_thread(machine, 1515 event->fork.pid, 1516 event->fork.tid); 1517 struct thread *parent = machine__findnew_thread(machine, 1518 event->fork.ppid, 1519 event->fork.ptid); 1520 int err = 0; 1521 1522 if (dump_trace) 1523 perf_event__fprintf_task(event, stdout); 1524 1525 /* 1526 * There may be an existing thread that is not actually the parent, 1527 * either because we are processing events out of order, or because the 1528 * (fork) event that would have removed the thread was lost. Assume the 1529 * latter case and continue on as best we can. 1530 */ 1531 if (parent->pid_ != (pid_t)event->fork.ppid) { 1532 dump_printf("removing erroneous parent thread %d/%d\n", 1533 parent->pid_, parent->tid); 1534 machine__remove_thread(machine, parent); 1535 thread__put(parent); 1536 parent = machine__findnew_thread(machine, event->fork.ppid, 1537 event->fork.ptid); 1538 } 1539 1540 /* if a thread currently exists for the thread id remove it */ 1541 if (thread != NULL) { 1542 machine__remove_thread(machine, thread); 1543 thread__put(thread); 1544 } 1545 1546 thread = machine__findnew_thread(machine, event->fork.pid, 1547 event->fork.tid); 1548 1549 if (thread == NULL || parent == NULL || 1550 thread__fork(thread, parent, sample->time) < 0) { 1551 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n"); 1552 err = -1; 1553 } 1554 thread__put(thread); 1555 thread__put(parent); 1556 1557 return err; 1558 } 1559 1560 int machine__process_exit_event(struct machine *machine, union perf_event *event, 1561 struct perf_sample *sample __maybe_unused) 1562 { 1563 struct thread *thread = machine__find_thread(machine, 1564 event->fork.pid, 1565 event->fork.tid); 1566 1567 if (dump_trace) 1568 perf_event__fprintf_task(event, stdout); 1569 1570 if (thread != NULL) { 1571 thread__exited(thread); 1572 thread__put(thread); 1573 } 1574 1575 return 0; 1576 } 1577 1578 int machine__process_event(struct machine *machine, union perf_event *event, 1579 struct perf_sample *sample) 1580 { 1581 int ret; 1582 1583 switch (event->header.type) { 1584 case PERF_RECORD_COMM: 1585 ret = machine__process_comm_event(machine, event, sample); break; 1586 case PERF_RECORD_MMAP: 1587 ret = machine__process_mmap_event(machine, event, sample); break; 1588 case PERF_RECORD_NAMESPACES: 1589 ret = machine__process_namespaces_event(machine, event, sample); break; 1590 case PERF_RECORD_MMAP2: 1591 ret = machine__process_mmap2_event(machine, event, sample); break; 1592 case PERF_RECORD_FORK: 1593 ret = machine__process_fork_event(machine, event, sample); break; 1594 case PERF_RECORD_EXIT: 1595 ret = machine__process_exit_event(machine, event, sample); break; 1596 case PERF_RECORD_LOST: 1597 ret = machine__process_lost_event(machine, event, sample); break; 1598 case PERF_RECORD_AUX: 1599 ret = machine__process_aux_event(machine, event); break; 1600 case PERF_RECORD_ITRACE_START: 1601 ret = machine__process_itrace_start_event(machine, event); break; 1602 case PERF_RECORD_LOST_SAMPLES: 1603 ret = machine__process_lost_samples_event(machine, event, sample); break; 1604 case PERF_RECORD_SWITCH: 1605 case PERF_RECORD_SWITCH_CPU_WIDE: 1606 ret = machine__process_switch_event(machine, event); break; 1607 default: 1608 ret = -1; 1609 break; 1610 } 1611 1612 return ret; 1613 } 1614 1615 static bool symbol__match_regex(struct symbol *sym, regex_t *regex) 1616 { 1617 if (!regexec(regex, sym->name, 0, NULL, 0)) 1618 return 1; 1619 return 0; 1620 } 1621 1622 static void ip__resolve_ams(struct thread *thread, 1623 struct addr_map_symbol *ams, 1624 u64 ip) 1625 { 1626 struct addr_location al; 1627 1628 memset(&al, 0, sizeof(al)); 1629 /* 1630 * We cannot use the header.misc hint to determine whether a 1631 * branch stack address is user, kernel, guest, hypervisor. 1632 * Branches may straddle the kernel/user/hypervisor boundaries. 1633 * Thus, we have to try consecutively until we find a match 1634 * or else, the symbol is unknown 1635 */ 1636 thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al); 1637 1638 ams->addr = ip; 1639 ams->al_addr = al.addr; 1640 ams->sym = al.sym; 1641 ams->map = al.map; 1642 } 1643 1644 static void ip__resolve_data(struct thread *thread, 1645 u8 m, struct addr_map_symbol *ams, u64 addr) 1646 { 1647 struct addr_location al; 1648 1649 memset(&al, 0, sizeof(al)); 1650 1651 thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al); 1652 if (al.map == NULL) { 1653 /* 1654 * some shared data regions have execute bit set which puts 1655 * their mapping in the MAP__FUNCTION type array. 1656 * Check there as a fallback option before dropping the sample. 1657 */ 1658 thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al); 1659 } 1660 1661 ams->addr = addr; 1662 ams->al_addr = al.addr; 1663 ams->sym = al.sym; 1664 ams->map = al.map; 1665 } 1666 1667 struct mem_info *sample__resolve_mem(struct perf_sample *sample, 1668 struct addr_location *al) 1669 { 1670 struct mem_info *mi = zalloc(sizeof(*mi)); 1671 1672 if (!mi) 1673 return NULL; 1674 1675 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip); 1676 ip__resolve_data(al->thread, al->cpumode, &mi->daddr, sample->addr); 1677 mi->data_src.val = sample->data_src; 1678 1679 return mi; 1680 } 1681 1682 static int add_callchain_ip(struct thread *thread, 1683 struct callchain_cursor *cursor, 1684 struct symbol **parent, 1685 struct addr_location *root_al, 1686 u8 *cpumode, 1687 u64 ip, 1688 bool branch, 1689 struct branch_flags *flags, 1690 int nr_loop_iter, 1691 int samples) 1692 { 1693 struct addr_location al; 1694 1695 al.filtered = 0; 1696 al.sym = NULL; 1697 if (!cpumode) { 1698 thread__find_cpumode_addr_location(thread, MAP__FUNCTION, 1699 ip, &al); 1700 } else { 1701 if (ip >= PERF_CONTEXT_MAX) { 1702 switch (ip) { 1703 case PERF_CONTEXT_HV: 1704 *cpumode = PERF_RECORD_MISC_HYPERVISOR; 1705 break; 1706 case PERF_CONTEXT_KERNEL: 1707 *cpumode = PERF_RECORD_MISC_KERNEL; 1708 break; 1709 case PERF_CONTEXT_USER: 1710 *cpumode = PERF_RECORD_MISC_USER; 1711 break; 1712 default: 1713 pr_debug("invalid callchain context: " 1714 "%"PRId64"\n", (s64) ip); 1715 /* 1716 * It seems the callchain is corrupted. 1717 * Discard all. 1718 */ 1719 callchain_cursor_reset(cursor); 1720 return 1; 1721 } 1722 return 0; 1723 } 1724 thread__find_addr_location(thread, *cpumode, MAP__FUNCTION, 1725 ip, &al); 1726 } 1727 1728 if (al.sym != NULL) { 1729 if (perf_hpp_list.parent && !*parent && 1730 symbol__match_regex(al.sym, &parent_regex)) 1731 *parent = al.sym; 1732 else if (have_ignore_callees && root_al && 1733 symbol__match_regex(al.sym, &ignore_callees_regex)) { 1734 /* Treat this symbol as the root, 1735 forgetting its callees. */ 1736 *root_al = al; 1737 callchain_cursor_reset(cursor); 1738 } 1739 } 1740 1741 if (symbol_conf.hide_unresolved && al.sym == NULL) 1742 return 0; 1743 return callchain_cursor_append(cursor, al.addr, al.map, al.sym, 1744 branch, flags, nr_loop_iter, samples); 1745 } 1746 1747 struct branch_info *sample__resolve_bstack(struct perf_sample *sample, 1748 struct addr_location *al) 1749 { 1750 unsigned int i; 1751 const struct branch_stack *bs = sample->branch_stack; 1752 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info)); 1753 1754 if (!bi) 1755 return NULL; 1756 1757 for (i = 0; i < bs->nr; i++) { 1758 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to); 1759 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from); 1760 bi[i].flags = bs->entries[i].flags; 1761 } 1762 return bi; 1763 } 1764 1765 #define CHASHSZ 127 1766 #define CHASHBITS 7 1767 #define NO_ENTRY 0xff 1768 1769 #define PERF_MAX_BRANCH_DEPTH 127 1770 1771 /* Remove loops. */ 1772 static int remove_loops(struct branch_entry *l, int nr) 1773 { 1774 int i, j, off; 1775 unsigned char chash[CHASHSZ]; 1776 1777 memset(chash, NO_ENTRY, sizeof(chash)); 1778 1779 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255); 1780 1781 for (i = 0; i < nr; i++) { 1782 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ; 1783 1784 /* no collision handling for now */ 1785 if (chash[h] == NO_ENTRY) { 1786 chash[h] = i; 1787 } else if (l[chash[h]].from == l[i].from) { 1788 bool is_loop = true; 1789 /* check if it is a real loop */ 1790 off = 0; 1791 for (j = chash[h]; j < i && i + off < nr; j++, off++) 1792 if (l[j].from != l[i + off].from) { 1793 is_loop = false; 1794 break; 1795 } 1796 if (is_loop) { 1797 memmove(l + i, l + i + off, 1798 (nr - (i + off)) * sizeof(*l)); 1799 nr -= off; 1800 } 1801 } 1802 } 1803 return nr; 1804 } 1805 1806 /* 1807 * Recolve LBR callstack chain sample 1808 * Return: 1809 * 1 on success get LBR callchain information 1810 * 0 no available LBR callchain information, should try fp 1811 * negative error code on other errors. 1812 */ 1813 static int resolve_lbr_callchain_sample(struct thread *thread, 1814 struct callchain_cursor *cursor, 1815 struct perf_sample *sample, 1816 struct symbol **parent, 1817 struct addr_location *root_al, 1818 int max_stack) 1819 { 1820 struct ip_callchain *chain = sample->callchain; 1821 int chain_nr = min(max_stack, (int)chain->nr), i; 1822 u8 cpumode = PERF_RECORD_MISC_USER; 1823 u64 ip; 1824 1825 for (i = 0; i < chain_nr; i++) { 1826 if (chain->ips[i] == PERF_CONTEXT_USER) 1827 break; 1828 } 1829 1830 /* LBR only affects the user callchain */ 1831 if (i != chain_nr) { 1832 struct branch_stack *lbr_stack = sample->branch_stack; 1833 int lbr_nr = lbr_stack->nr, j, k; 1834 bool branch; 1835 struct branch_flags *flags; 1836 /* 1837 * LBR callstack can only get user call chain. 1838 * The mix_chain_nr is kernel call chain 1839 * number plus LBR user call chain number. 1840 * i is kernel call chain number, 1841 * 1 is PERF_CONTEXT_USER, 1842 * lbr_nr + 1 is the user call chain number. 1843 * For details, please refer to the comments 1844 * in callchain__printf 1845 */ 1846 int mix_chain_nr = i + 1 + lbr_nr + 1; 1847 1848 for (j = 0; j < mix_chain_nr; j++) { 1849 int err; 1850 branch = false; 1851 flags = NULL; 1852 1853 if (callchain_param.order == ORDER_CALLEE) { 1854 if (j < i + 1) 1855 ip = chain->ips[j]; 1856 else if (j > i + 1) { 1857 k = j - i - 2; 1858 ip = lbr_stack->entries[k].from; 1859 branch = true; 1860 flags = &lbr_stack->entries[k].flags; 1861 } else { 1862 ip = lbr_stack->entries[0].to; 1863 branch = true; 1864 flags = &lbr_stack->entries[0].flags; 1865 } 1866 } else { 1867 if (j < lbr_nr) { 1868 k = lbr_nr - j - 1; 1869 ip = lbr_stack->entries[k].from; 1870 branch = true; 1871 flags = &lbr_stack->entries[k].flags; 1872 } 1873 else if (j > lbr_nr) 1874 ip = chain->ips[i + 1 - (j - lbr_nr)]; 1875 else { 1876 ip = lbr_stack->entries[0].to; 1877 branch = true; 1878 flags = &lbr_stack->entries[0].flags; 1879 } 1880 } 1881 1882 err = add_callchain_ip(thread, cursor, parent, 1883 root_al, &cpumode, ip, 1884 branch, flags, 0, 0); 1885 if (err) 1886 return (err < 0) ? err : 0; 1887 } 1888 return 1; 1889 } 1890 1891 return 0; 1892 } 1893 1894 static int thread__resolve_callchain_sample(struct thread *thread, 1895 struct callchain_cursor *cursor, 1896 struct perf_evsel *evsel, 1897 struct perf_sample *sample, 1898 struct symbol **parent, 1899 struct addr_location *root_al, 1900 int max_stack) 1901 { 1902 struct branch_stack *branch = sample->branch_stack; 1903 struct ip_callchain *chain = sample->callchain; 1904 int chain_nr = chain->nr; 1905 u8 cpumode = PERF_RECORD_MISC_USER; 1906 int i, j, err, nr_entries; 1907 int skip_idx = -1; 1908 int first_call = 0; 1909 int nr_loop_iter; 1910 1911 if (perf_evsel__has_branch_callstack(evsel)) { 1912 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent, 1913 root_al, max_stack); 1914 if (err) 1915 return (err < 0) ? err : 0; 1916 } 1917 1918 /* 1919 * Based on DWARF debug information, some architectures skip 1920 * a callchain entry saved by the kernel. 1921 */ 1922 skip_idx = arch_skip_callchain_idx(thread, chain); 1923 1924 /* 1925 * Add branches to call stack for easier browsing. This gives 1926 * more context for a sample than just the callers. 1927 * 1928 * This uses individual histograms of paths compared to the 1929 * aggregated histograms the normal LBR mode uses. 1930 * 1931 * Limitations for now: 1932 * - No extra filters 1933 * - No annotations (should annotate somehow) 1934 */ 1935 1936 if (branch && callchain_param.branch_callstack) { 1937 int nr = min(max_stack, (int)branch->nr); 1938 struct branch_entry be[nr]; 1939 1940 if (branch->nr > PERF_MAX_BRANCH_DEPTH) { 1941 pr_warning("corrupted branch chain. skipping...\n"); 1942 goto check_calls; 1943 } 1944 1945 for (i = 0; i < nr; i++) { 1946 if (callchain_param.order == ORDER_CALLEE) { 1947 be[i] = branch->entries[i]; 1948 /* 1949 * Check for overlap into the callchain. 1950 * The return address is one off compared to 1951 * the branch entry. To adjust for this 1952 * assume the calling instruction is not longer 1953 * than 8 bytes. 1954 */ 1955 if (i == skip_idx || 1956 chain->ips[first_call] >= PERF_CONTEXT_MAX) 1957 first_call++; 1958 else if (be[i].from < chain->ips[first_call] && 1959 be[i].from >= chain->ips[first_call] - 8) 1960 first_call++; 1961 } else 1962 be[i] = branch->entries[branch->nr - i - 1]; 1963 } 1964 1965 nr_loop_iter = nr; 1966 nr = remove_loops(be, nr); 1967 1968 /* 1969 * Get the number of iterations. 1970 * It's only approximation, but good enough in practice. 1971 */ 1972 if (nr_loop_iter > nr) 1973 nr_loop_iter = nr_loop_iter - nr + 1; 1974 else 1975 nr_loop_iter = 0; 1976 1977 for (i = 0; i < nr; i++) { 1978 if (i == nr - 1) 1979 err = add_callchain_ip(thread, cursor, parent, 1980 root_al, 1981 NULL, be[i].to, 1982 true, &be[i].flags, 1983 nr_loop_iter, 1); 1984 else 1985 err = add_callchain_ip(thread, cursor, parent, 1986 root_al, 1987 NULL, be[i].to, 1988 true, &be[i].flags, 1989 0, 0); 1990 1991 if (!err) 1992 err = add_callchain_ip(thread, cursor, parent, root_al, 1993 NULL, be[i].from, 1994 true, &be[i].flags, 1995 0, 0); 1996 if (err == -EINVAL) 1997 break; 1998 if (err) 1999 return err; 2000 } 2001 chain_nr -= nr; 2002 } 2003 2004 check_calls: 2005 for (i = first_call, nr_entries = 0; 2006 i < chain_nr && nr_entries < max_stack; i++) { 2007 u64 ip; 2008 2009 if (callchain_param.order == ORDER_CALLEE) 2010 j = i; 2011 else 2012 j = chain->nr - i - 1; 2013 2014 #ifdef HAVE_SKIP_CALLCHAIN_IDX 2015 if (j == skip_idx) 2016 continue; 2017 #endif 2018 ip = chain->ips[j]; 2019 2020 if (ip < PERF_CONTEXT_MAX) 2021 ++nr_entries; 2022 2023 err = add_callchain_ip(thread, cursor, parent, 2024 root_al, &cpumode, ip, 2025 false, NULL, 0, 0); 2026 2027 if (err) 2028 return (err < 0) ? err : 0; 2029 } 2030 2031 return 0; 2032 } 2033 2034 static int unwind_entry(struct unwind_entry *entry, void *arg) 2035 { 2036 struct callchain_cursor *cursor = arg; 2037 2038 if (symbol_conf.hide_unresolved && entry->sym == NULL) 2039 return 0; 2040 return callchain_cursor_append(cursor, entry->ip, 2041 entry->map, entry->sym, 2042 false, NULL, 0, 0); 2043 } 2044 2045 static int thread__resolve_callchain_unwind(struct thread *thread, 2046 struct callchain_cursor *cursor, 2047 struct perf_evsel *evsel, 2048 struct perf_sample *sample, 2049 int max_stack) 2050 { 2051 /* Can we do dwarf post unwind? */ 2052 if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) && 2053 (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER))) 2054 return 0; 2055 2056 /* Bail out if nothing was captured. */ 2057 if ((!sample->user_regs.regs) || 2058 (!sample->user_stack.size)) 2059 return 0; 2060 2061 return unwind__get_entries(unwind_entry, cursor, 2062 thread, sample, max_stack); 2063 } 2064 2065 int thread__resolve_callchain(struct thread *thread, 2066 struct callchain_cursor *cursor, 2067 struct perf_evsel *evsel, 2068 struct perf_sample *sample, 2069 struct symbol **parent, 2070 struct addr_location *root_al, 2071 int max_stack) 2072 { 2073 int ret = 0; 2074 2075 callchain_cursor_reset(&callchain_cursor); 2076 2077 if (callchain_param.order == ORDER_CALLEE) { 2078 ret = thread__resolve_callchain_sample(thread, cursor, 2079 evsel, sample, 2080 parent, root_al, 2081 max_stack); 2082 if (ret) 2083 return ret; 2084 ret = thread__resolve_callchain_unwind(thread, cursor, 2085 evsel, sample, 2086 max_stack); 2087 } else { 2088 ret = thread__resolve_callchain_unwind(thread, cursor, 2089 evsel, sample, 2090 max_stack); 2091 if (ret) 2092 return ret; 2093 ret = thread__resolve_callchain_sample(thread, cursor, 2094 evsel, sample, 2095 parent, root_al, 2096 max_stack); 2097 } 2098 2099 return ret; 2100 } 2101 2102 int machine__for_each_thread(struct machine *machine, 2103 int (*fn)(struct thread *thread, void *p), 2104 void *priv) 2105 { 2106 struct rb_node *nd; 2107 struct thread *thread; 2108 int rc = 0; 2109 2110 for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) { 2111 thread = rb_entry(nd, struct thread, rb_node); 2112 rc = fn(thread, priv); 2113 if (rc != 0) 2114 return rc; 2115 } 2116 2117 list_for_each_entry(thread, &machine->dead_threads, node) { 2118 rc = fn(thread, priv); 2119 if (rc != 0) 2120 return rc; 2121 } 2122 return rc; 2123 } 2124 2125 int machines__for_each_thread(struct machines *machines, 2126 int (*fn)(struct thread *thread, void *p), 2127 void *priv) 2128 { 2129 struct rb_node *nd; 2130 int rc = 0; 2131 2132 rc = machine__for_each_thread(&machines->host, fn, priv); 2133 if (rc != 0) 2134 return rc; 2135 2136 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 2137 struct machine *machine = rb_entry(nd, struct machine, rb_node); 2138 2139 rc = machine__for_each_thread(machine, fn, priv); 2140 if (rc != 0) 2141 return rc; 2142 } 2143 return rc; 2144 } 2145 2146 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool, 2147 struct target *target, struct thread_map *threads, 2148 perf_event__handler_t process, bool data_mmap, 2149 unsigned int proc_map_timeout) 2150 { 2151 if (target__has_task(target)) 2152 return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout); 2153 else if (target__has_cpu(target)) 2154 return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout); 2155 /* command specified */ 2156 return 0; 2157 } 2158 2159 pid_t machine__get_current_tid(struct machine *machine, int cpu) 2160 { 2161 if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid) 2162 return -1; 2163 2164 return machine->current_tid[cpu]; 2165 } 2166 2167 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid, 2168 pid_t tid) 2169 { 2170 struct thread *thread; 2171 2172 if (cpu < 0) 2173 return -EINVAL; 2174 2175 if (!machine->current_tid) { 2176 int i; 2177 2178 machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t)); 2179 if (!machine->current_tid) 2180 return -ENOMEM; 2181 for (i = 0; i < MAX_NR_CPUS; i++) 2182 machine->current_tid[i] = -1; 2183 } 2184 2185 if (cpu >= MAX_NR_CPUS) { 2186 pr_err("Requested CPU %d too large. ", cpu); 2187 pr_err("Consider raising MAX_NR_CPUS\n"); 2188 return -EINVAL; 2189 } 2190 2191 machine->current_tid[cpu] = tid; 2192 2193 thread = machine__findnew_thread(machine, pid, tid); 2194 if (!thread) 2195 return -ENOMEM; 2196 2197 thread->cpu = cpu; 2198 thread__put(thread); 2199 2200 return 0; 2201 } 2202 2203 int machine__get_kernel_start(struct machine *machine) 2204 { 2205 struct map *map = machine__kernel_map(machine); 2206 int err = 0; 2207 2208 /* 2209 * The only addresses above 2^63 are kernel addresses of a 64-bit 2210 * kernel. Note that addresses are unsigned so that on a 32-bit system 2211 * all addresses including kernel addresses are less than 2^32. In 2212 * that case (32-bit system), if the kernel mapping is unknown, all 2213 * addresses will be assumed to be in user space - see 2214 * machine__kernel_ip(). 2215 */ 2216 machine->kernel_start = 1ULL << 63; 2217 if (map) { 2218 err = map__load(map); 2219 if (map->start) 2220 machine->kernel_start = map->start; 2221 } 2222 return err; 2223 } 2224 2225 struct dso *machine__findnew_dso(struct machine *machine, const char *filename) 2226 { 2227 return dsos__findnew(&machine->dsos, filename); 2228 } 2229 2230 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp) 2231 { 2232 struct machine *machine = vmachine; 2233 struct map *map; 2234 struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map); 2235 2236 if (sym == NULL) 2237 return NULL; 2238 2239 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL; 2240 *addrp = map->unmap_ip(map, sym->start); 2241 return sym->name; 2242 } 2243