xref: /openbmc/linux/tools/perf/util/machine.c (revision d236d361)
1 #include <dirent.h>
2 #include <errno.h>
3 #include <inttypes.h>
4 #include <regex.h>
5 #include "callchain.h"
6 #include "debug.h"
7 #include "event.h"
8 #include "evsel.h"
9 #include "hist.h"
10 #include "machine.h"
11 #include "map.h"
12 #include "sort.h"
13 #include "strlist.h"
14 #include "thread.h"
15 #include "vdso.h"
16 #include <stdbool.h>
17 #include <sys/types.h>
18 #include <sys/stat.h>
19 #include <unistd.h>
20 #include "unwind.h"
21 #include "linux/hash.h"
22 #include "asm/bug.h"
23 
24 #include "sane_ctype.h"
25 #include <symbol/kallsyms.h>
26 
27 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
28 
29 static void dsos__init(struct dsos *dsos)
30 {
31 	INIT_LIST_HEAD(&dsos->head);
32 	dsos->root = RB_ROOT;
33 	pthread_rwlock_init(&dsos->lock, NULL);
34 }
35 
36 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
37 {
38 	memset(machine, 0, sizeof(*machine));
39 	map_groups__init(&machine->kmaps, machine);
40 	RB_CLEAR_NODE(&machine->rb_node);
41 	dsos__init(&machine->dsos);
42 
43 	machine->threads = RB_ROOT;
44 	pthread_rwlock_init(&machine->threads_lock, NULL);
45 	machine->nr_threads = 0;
46 	INIT_LIST_HEAD(&machine->dead_threads);
47 	machine->last_match = NULL;
48 
49 	machine->vdso_info = NULL;
50 	machine->env = NULL;
51 
52 	machine->pid = pid;
53 
54 	machine->id_hdr_size = 0;
55 	machine->kptr_restrict_warned = false;
56 	machine->comm_exec = false;
57 	machine->kernel_start = 0;
58 
59 	memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps));
60 
61 	machine->root_dir = strdup(root_dir);
62 	if (machine->root_dir == NULL)
63 		return -ENOMEM;
64 
65 	if (pid != HOST_KERNEL_ID) {
66 		struct thread *thread = machine__findnew_thread(machine, -1,
67 								pid);
68 		char comm[64];
69 
70 		if (thread == NULL)
71 			return -ENOMEM;
72 
73 		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
74 		thread__set_comm(thread, comm, 0);
75 		thread__put(thread);
76 	}
77 
78 	machine->current_tid = NULL;
79 
80 	return 0;
81 }
82 
83 struct machine *machine__new_host(void)
84 {
85 	struct machine *machine = malloc(sizeof(*machine));
86 
87 	if (machine != NULL) {
88 		machine__init(machine, "", HOST_KERNEL_ID);
89 
90 		if (machine__create_kernel_maps(machine) < 0)
91 			goto out_delete;
92 	}
93 
94 	return machine;
95 out_delete:
96 	free(machine);
97 	return NULL;
98 }
99 
100 struct machine *machine__new_kallsyms(void)
101 {
102 	struct machine *machine = machine__new_host();
103 	/*
104 	 * FIXME:
105 	 * 1) MAP__FUNCTION will go away when we stop loading separate maps for
106 	 *    functions and data objects.
107 	 * 2) We should switch to machine__load_kallsyms(), i.e. not explicitely
108 	 *    ask for not using the kcore parsing code, once this one is fixed
109 	 *    to create a map per module.
110 	 */
111 	if (machine && __machine__load_kallsyms(machine, "/proc/kallsyms", MAP__FUNCTION, true) <= 0) {
112 		machine__delete(machine);
113 		machine = NULL;
114 	}
115 
116 	return machine;
117 }
118 
119 static void dsos__purge(struct dsos *dsos)
120 {
121 	struct dso *pos, *n;
122 
123 	pthread_rwlock_wrlock(&dsos->lock);
124 
125 	list_for_each_entry_safe(pos, n, &dsos->head, node) {
126 		RB_CLEAR_NODE(&pos->rb_node);
127 		pos->root = NULL;
128 		list_del_init(&pos->node);
129 		dso__put(pos);
130 	}
131 
132 	pthread_rwlock_unlock(&dsos->lock);
133 }
134 
135 static void dsos__exit(struct dsos *dsos)
136 {
137 	dsos__purge(dsos);
138 	pthread_rwlock_destroy(&dsos->lock);
139 }
140 
141 void machine__delete_threads(struct machine *machine)
142 {
143 	struct rb_node *nd;
144 
145 	pthread_rwlock_wrlock(&machine->threads_lock);
146 	nd = rb_first(&machine->threads);
147 	while (nd) {
148 		struct thread *t = rb_entry(nd, struct thread, rb_node);
149 
150 		nd = rb_next(nd);
151 		__machine__remove_thread(machine, t, false);
152 	}
153 	pthread_rwlock_unlock(&machine->threads_lock);
154 }
155 
156 void machine__exit(struct machine *machine)
157 {
158 	machine__destroy_kernel_maps(machine);
159 	map_groups__exit(&machine->kmaps);
160 	dsos__exit(&machine->dsos);
161 	machine__exit_vdso(machine);
162 	zfree(&machine->root_dir);
163 	zfree(&machine->current_tid);
164 	pthread_rwlock_destroy(&machine->threads_lock);
165 }
166 
167 void machine__delete(struct machine *machine)
168 {
169 	if (machine) {
170 		machine__exit(machine);
171 		free(machine);
172 	}
173 }
174 
175 void machines__init(struct machines *machines)
176 {
177 	machine__init(&machines->host, "", HOST_KERNEL_ID);
178 	machines->guests = RB_ROOT;
179 }
180 
181 void machines__exit(struct machines *machines)
182 {
183 	machine__exit(&machines->host);
184 	/* XXX exit guest */
185 }
186 
187 struct machine *machines__add(struct machines *machines, pid_t pid,
188 			      const char *root_dir)
189 {
190 	struct rb_node **p = &machines->guests.rb_node;
191 	struct rb_node *parent = NULL;
192 	struct machine *pos, *machine = malloc(sizeof(*machine));
193 
194 	if (machine == NULL)
195 		return NULL;
196 
197 	if (machine__init(machine, root_dir, pid) != 0) {
198 		free(machine);
199 		return NULL;
200 	}
201 
202 	while (*p != NULL) {
203 		parent = *p;
204 		pos = rb_entry(parent, struct machine, rb_node);
205 		if (pid < pos->pid)
206 			p = &(*p)->rb_left;
207 		else
208 			p = &(*p)->rb_right;
209 	}
210 
211 	rb_link_node(&machine->rb_node, parent, p);
212 	rb_insert_color(&machine->rb_node, &machines->guests);
213 
214 	return machine;
215 }
216 
217 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
218 {
219 	struct rb_node *nd;
220 
221 	machines->host.comm_exec = comm_exec;
222 
223 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
224 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
225 
226 		machine->comm_exec = comm_exec;
227 	}
228 }
229 
230 struct machine *machines__find(struct machines *machines, pid_t pid)
231 {
232 	struct rb_node **p = &machines->guests.rb_node;
233 	struct rb_node *parent = NULL;
234 	struct machine *machine;
235 	struct machine *default_machine = NULL;
236 
237 	if (pid == HOST_KERNEL_ID)
238 		return &machines->host;
239 
240 	while (*p != NULL) {
241 		parent = *p;
242 		machine = rb_entry(parent, struct machine, rb_node);
243 		if (pid < machine->pid)
244 			p = &(*p)->rb_left;
245 		else if (pid > machine->pid)
246 			p = &(*p)->rb_right;
247 		else
248 			return machine;
249 		if (!machine->pid)
250 			default_machine = machine;
251 	}
252 
253 	return default_machine;
254 }
255 
256 struct machine *machines__findnew(struct machines *machines, pid_t pid)
257 {
258 	char path[PATH_MAX];
259 	const char *root_dir = "";
260 	struct machine *machine = machines__find(machines, pid);
261 
262 	if (machine && (machine->pid == pid))
263 		goto out;
264 
265 	if ((pid != HOST_KERNEL_ID) &&
266 	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
267 	    (symbol_conf.guestmount)) {
268 		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
269 		if (access(path, R_OK)) {
270 			static struct strlist *seen;
271 
272 			if (!seen)
273 				seen = strlist__new(NULL, NULL);
274 
275 			if (!strlist__has_entry(seen, path)) {
276 				pr_err("Can't access file %s\n", path);
277 				strlist__add(seen, path);
278 			}
279 			machine = NULL;
280 			goto out;
281 		}
282 		root_dir = path;
283 	}
284 
285 	machine = machines__add(machines, pid, root_dir);
286 out:
287 	return machine;
288 }
289 
290 void machines__process_guests(struct machines *machines,
291 			      machine__process_t process, void *data)
292 {
293 	struct rb_node *nd;
294 
295 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
296 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
297 		process(pos, data);
298 	}
299 }
300 
301 char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
302 {
303 	if (machine__is_host(machine))
304 		snprintf(bf, size, "[%s]", "kernel.kallsyms");
305 	else if (machine__is_default_guest(machine))
306 		snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
307 	else {
308 		snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
309 			 machine->pid);
310 	}
311 
312 	return bf;
313 }
314 
315 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
316 {
317 	struct rb_node *node;
318 	struct machine *machine;
319 
320 	machines->host.id_hdr_size = id_hdr_size;
321 
322 	for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
323 		machine = rb_entry(node, struct machine, rb_node);
324 		machine->id_hdr_size = id_hdr_size;
325 	}
326 
327 	return;
328 }
329 
330 static void machine__update_thread_pid(struct machine *machine,
331 				       struct thread *th, pid_t pid)
332 {
333 	struct thread *leader;
334 
335 	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
336 		return;
337 
338 	th->pid_ = pid;
339 
340 	if (th->pid_ == th->tid)
341 		return;
342 
343 	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
344 	if (!leader)
345 		goto out_err;
346 
347 	if (!leader->mg)
348 		leader->mg = map_groups__new(machine);
349 
350 	if (!leader->mg)
351 		goto out_err;
352 
353 	if (th->mg == leader->mg)
354 		return;
355 
356 	if (th->mg) {
357 		/*
358 		 * Maps are created from MMAP events which provide the pid and
359 		 * tid.  Consequently there never should be any maps on a thread
360 		 * with an unknown pid.  Just print an error if there are.
361 		 */
362 		if (!map_groups__empty(th->mg))
363 			pr_err("Discarding thread maps for %d:%d\n",
364 			       th->pid_, th->tid);
365 		map_groups__put(th->mg);
366 	}
367 
368 	th->mg = map_groups__get(leader->mg);
369 out_put:
370 	thread__put(leader);
371 	return;
372 out_err:
373 	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
374 	goto out_put;
375 }
376 
377 /*
378  * Caller must eventually drop thread->refcnt returned with a successful
379  * lookup/new thread inserted.
380  */
381 static struct thread *____machine__findnew_thread(struct machine *machine,
382 						  pid_t pid, pid_t tid,
383 						  bool create)
384 {
385 	struct rb_node **p = &machine->threads.rb_node;
386 	struct rb_node *parent = NULL;
387 	struct thread *th;
388 
389 	/*
390 	 * Front-end cache - TID lookups come in blocks,
391 	 * so most of the time we dont have to look up
392 	 * the full rbtree:
393 	 */
394 	th = machine->last_match;
395 	if (th != NULL) {
396 		if (th->tid == tid) {
397 			machine__update_thread_pid(machine, th, pid);
398 			return thread__get(th);
399 		}
400 
401 		machine->last_match = NULL;
402 	}
403 
404 	while (*p != NULL) {
405 		parent = *p;
406 		th = rb_entry(parent, struct thread, rb_node);
407 
408 		if (th->tid == tid) {
409 			machine->last_match = th;
410 			machine__update_thread_pid(machine, th, pid);
411 			return thread__get(th);
412 		}
413 
414 		if (tid < th->tid)
415 			p = &(*p)->rb_left;
416 		else
417 			p = &(*p)->rb_right;
418 	}
419 
420 	if (!create)
421 		return NULL;
422 
423 	th = thread__new(pid, tid);
424 	if (th != NULL) {
425 		rb_link_node(&th->rb_node, parent, p);
426 		rb_insert_color(&th->rb_node, &machine->threads);
427 
428 		/*
429 		 * We have to initialize map_groups separately
430 		 * after rb tree is updated.
431 		 *
432 		 * The reason is that we call machine__findnew_thread
433 		 * within thread__init_map_groups to find the thread
434 		 * leader and that would screwed the rb tree.
435 		 */
436 		if (thread__init_map_groups(th, machine)) {
437 			rb_erase_init(&th->rb_node, &machine->threads);
438 			RB_CLEAR_NODE(&th->rb_node);
439 			thread__put(th);
440 			return NULL;
441 		}
442 		/*
443 		 * It is now in the rbtree, get a ref
444 		 */
445 		thread__get(th);
446 		machine->last_match = th;
447 		++machine->nr_threads;
448 	}
449 
450 	return th;
451 }
452 
453 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
454 {
455 	return ____machine__findnew_thread(machine, pid, tid, true);
456 }
457 
458 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
459 				       pid_t tid)
460 {
461 	struct thread *th;
462 
463 	pthread_rwlock_wrlock(&machine->threads_lock);
464 	th = __machine__findnew_thread(machine, pid, tid);
465 	pthread_rwlock_unlock(&machine->threads_lock);
466 	return th;
467 }
468 
469 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
470 				    pid_t tid)
471 {
472 	struct thread *th;
473 	pthread_rwlock_rdlock(&machine->threads_lock);
474 	th =  ____machine__findnew_thread(machine, pid, tid, false);
475 	pthread_rwlock_unlock(&machine->threads_lock);
476 	return th;
477 }
478 
479 struct comm *machine__thread_exec_comm(struct machine *machine,
480 				       struct thread *thread)
481 {
482 	if (machine->comm_exec)
483 		return thread__exec_comm(thread);
484 	else
485 		return thread__comm(thread);
486 }
487 
488 int machine__process_comm_event(struct machine *machine, union perf_event *event,
489 				struct perf_sample *sample)
490 {
491 	struct thread *thread = machine__findnew_thread(machine,
492 							event->comm.pid,
493 							event->comm.tid);
494 	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
495 	int err = 0;
496 
497 	if (exec)
498 		machine->comm_exec = true;
499 
500 	if (dump_trace)
501 		perf_event__fprintf_comm(event, stdout);
502 
503 	if (thread == NULL ||
504 	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
505 		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
506 		err = -1;
507 	}
508 
509 	thread__put(thread);
510 
511 	return err;
512 }
513 
514 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
515 				      union perf_event *event,
516 				      struct perf_sample *sample __maybe_unused)
517 {
518 	struct thread *thread = machine__findnew_thread(machine,
519 							event->namespaces.pid,
520 							event->namespaces.tid);
521 	int err = 0;
522 
523 	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
524 		  "\nWARNING: kernel seems to support more namespaces than perf"
525 		  " tool.\nTry updating the perf tool..\n\n");
526 
527 	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
528 		  "\nWARNING: perf tool seems to support more namespaces than"
529 		  " the kernel.\nTry updating the kernel..\n\n");
530 
531 	if (dump_trace)
532 		perf_event__fprintf_namespaces(event, stdout);
533 
534 	if (thread == NULL ||
535 	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
536 		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
537 		err = -1;
538 	}
539 
540 	thread__put(thread);
541 
542 	return err;
543 }
544 
545 int machine__process_lost_event(struct machine *machine __maybe_unused,
546 				union perf_event *event, struct perf_sample *sample __maybe_unused)
547 {
548 	dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
549 		    event->lost.id, event->lost.lost);
550 	return 0;
551 }
552 
553 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
554 					union perf_event *event, struct perf_sample *sample)
555 {
556 	dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
557 		    sample->id, event->lost_samples.lost);
558 	return 0;
559 }
560 
561 static struct dso *machine__findnew_module_dso(struct machine *machine,
562 					       struct kmod_path *m,
563 					       const char *filename)
564 {
565 	struct dso *dso;
566 
567 	pthread_rwlock_wrlock(&machine->dsos.lock);
568 
569 	dso = __dsos__find(&machine->dsos, m->name, true);
570 	if (!dso) {
571 		dso = __dsos__addnew(&machine->dsos, m->name);
572 		if (dso == NULL)
573 			goto out_unlock;
574 
575 		if (machine__is_host(machine))
576 			dso->symtab_type = DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE;
577 		else
578 			dso->symtab_type = DSO_BINARY_TYPE__GUEST_KMODULE;
579 
580 		/* _KMODULE_COMP should be next to _KMODULE */
581 		if (m->kmod && m->comp)
582 			dso->symtab_type++;
583 
584 		dso__set_short_name(dso, strdup(m->name), true);
585 		dso__set_long_name(dso, strdup(filename), true);
586 	}
587 
588 	dso__get(dso);
589 out_unlock:
590 	pthread_rwlock_unlock(&machine->dsos.lock);
591 	return dso;
592 }
593 
594 int machine__process_aux_event(struct machine *machine __maybe_unused,
595 			       union perf_event *event)
596 {
597 	if (dump_trace)
598 		perf_event__fprintf_aux(event, stdout);
599 	return 0;
600 }
601 
602 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
603 					union perf_event *event)
604 {
605 	if (dump_trace)
606 		perf_event__fprintf_itrace_start(event, stdout);
607 	return 0;
608 }
609 
610 int machine__process_switch_event(struct machine *machine __maybe_unused,
611 				  union perf_event *event)
612 {
613 	if (dump_trace)
614 		perf_event__fprintf_switch(event, stdout);
615 	return 0;
616 }
617 
618 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
619 {
620 	const char *dup_filename;
621 
622 	if (!filename || !dso || !dso->long_name)
623 		return;
624 	if (dso->long_name[0] != '[')
625 		return;
626 	if (!strchr(filename, '/'))
627 		return;
628 
629 	dup_filename = strdup(filename);
630 	if (!dup_filename)
631 		return;
632 
633 	dso__set_long_name(dso, dup_filename, true);
634 }
635 
636 struct map *machine__findnew_module_map(struct machine *machine, u64 start,
637 					const char *filename)
638 {
639 	struct map *map = NULL;
640 	struct dso *dso = NULL;
641 	struct kmod_path m;
642 
643 	if (kmod_path__parse_name(&m, filename))
644 		return NULL;
645 
646 	map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
647 				       m.name);
648 	if (map) {
649 		/*
650 		 * If the map's dso is an offline module, give dso__load()
651 		 * a chance to find the file path of that module by fixing
652 		 * long_name.
653 		 */
654 		dso__adjust_kmod_long_name(map->dso, filename);
655 		goto out;
656 	}
657 
658 	dso = machine__findnew_module_dso(machine, &m, filename);
659 	if (dso == NULL)
660 		goto out;
661 
662 	map = map__new2(start, dso, MAP__FUNCTION);
663 	if (map == NULL)
664 		goto out;
665 
666 	map_groups__insert(&machine->kmaps, map);
667 
668 	/* Put the map here because map_groups__insert alread got it */
669 	map__put(map);
670 out:
671 	/* put the dso here, corresponding to  machine__findnew_module_dso */
672 	dso__put(dso);
673 	free(m.name);
674 	return map;
675 }
676 
677 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
678 {
679 	struct rb_node *nd;
680 	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
681 
682 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
683 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
684 		ret += __dsos__fprintf(&pos->dsos.head, fp);
685 	}
686 
687 	return ret;
688 }
689 
690 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
691 				     bool (skip)(struct dso *dso, int parm), int parm)
692 {
693 	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
694 }
695 
696 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
697 				     bool (skip)(struct dso *dso, int parm), int parm)
698 {
699 	struct rb_node *nd;
700 	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
701 
702 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
703 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
704 		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
705 	}
706 	return ret;
707 }
708 
709 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
710 {
711 	int i;
712 	size_t printed = 0;
713 	struct dso *kdso = machine__kernel_map(machine)->dso;
714 
715 	if (kdso->has_build_id) {
716 		char filename[PATH_MAX];
717 		if (dso__build_id_filename(kdso, filename, sizeof(filename)))
718 			printed += fprintf(fp, "[0] %s\n", filename);
719 	}
720 
721 	for (i = 0; i < vmlinux_path__nr_entries; ++i)
722 		printed += fprintf(fp, "[%d] %s\n",
723 				   i + kdso->has_build_id, vmlinux_path[i]);
724 
725 	return printed;
726 }
727 
728 size_t machine__fprintf(struct machine *machine, FILE *fp)
729 {
730 	size_t ret;
731 	struct rb_node *nd;
732 
733 	pthread_rwlock_rdlock(&machine->threads_lock);
734 
735 	ret = fprintf(fp, "Threads: %u\n", machine->nr_threads);
736 
737 	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
738 		struct thread *pos = rb_entry(nd, struct thread, rb_node);
739 
740 		ret += thread__fprintf(pos, fp);
741 	}
742 
743 	pthread_rwlock_unlock(&machine->threads_lock);
744 
745 	return ret;
746 }
747 
748 static struct dso *machine__get_kernel(struct machine *machine)
749 {
750 	const char *vmlinux_name = NULL;
751 	struct dso *kernel;
752 
753 	if (machine__is_host(machine)) {
754 		vmlinux_name = symbol_conf.vmlinux_name;
755 		if (!vmlinux_name)
756 			vmlinux_name = DSO__NAME_KALLSYMS;
757 
758 		kernel = machine__findnew_kernel(machine, vmlinux_name,
759 						 "[kernel]", DSO_TYPE_KERNEL);
760 	} else {
761 		char bf[PATH_MAX];
762 
763 		if (machine__is_default_guest(machine))
764 			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
765 		if (!vmlinux_name)
766 			vmlinux_name = machine__mmap_name(machine, bf,
767 							  sizeof(bf));
768 
769 		kernel = machine__findnew_kernel(machine, vmlinux_name,
770 						 "[guest.kernel]",
771 						 DSO_TYPE_GUEST_KERNEL);
772 	}
773 
774 	if (kernel != NULL && (!kernel->has_build_id))
775 		dso__read_running_kernel_build_id(kernel, machine);
776 
777 	return kernel;
778 }
779 
780 struct process_args {
781 	u64 start;
782 };
783 
784 static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
785 					   size_t bufsz)
786 {
787 	if (machine__is_default_guest(machine))
788 		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
789 	else
790 		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
791 }
792 
793 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
794 
795 /* Figure out the start address of kernel map from /proc/kallsyms.
796  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
797  * symbol_name if it's not that important.
798  */
799 static int machine__get_running_kernel_start(struct machine *machine,
800 					     const char **symbol_name, u64 *start)
801 {
802 	char filename[PATH_MAX];
803 	int i, err = -1;
804 	const char *name;
805 	u64 addr = 0;
806 
807 	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
808 
809 	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
810 		return 0;
811 
812 	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
813 		err = kallsyms__get_function_start(filename, name, &addr);
814 		if (!err)
815 			break;
816 	}
817 
818 	if (err)
819 		return -1;
820 
821 	if (symbol_name)
822 		*symbol_name = name;
823 
824 	*start = addr;
825 	return 0;
826 }
827 
828 int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
829 {
830 	int type;
831 	u64 start = 0;
832 
833 	if (machine__get_running_kernel_start(machine, NULL, &start))
834 		return -1;
835 
836 	/* In case of renewal the kernel map, destroy previous one */
837 	machine__destroy_kernel_maps(machine);
838 
839 	for (type = 0; type < MAP__NR_TYPES; ++type) {
840 		struct kmap *kmap;
841 		struct map *map;
842 
843 		machine->vmlinux_maps[type] = map__new2(start, kernel, type);
844 		if (machine->vmlinux_maps[type] == NULL)
845 			return -1;
846 
847 		machine->vmlinux_maps[type]->map_ip =
848 			machine->vmlinux_maps[type]->unmap_ip =
849 				identity__map_ip;
850 		map = __machine__kernel_map(machine, type);
851 		kmap = map__kmap(map);
852 		if (!kmap)
853 			return -1;
854 
855 		kmap->kmaps = &machine->kmaps;
856 		map_groups__insert(&machine->kmaps, map);
857 	}
858 
859 	return 0;
860 }
861 
862 void machine__destroy_kernel_maps(struct machine *machine)
863 {
864 	int type;
865 
866 	for (type = 0; type < MAP__NR_TYPES; ++type) {
867 		struct kmap *kmap;
868 		struct map *map = __machine__kernel_map(machine, type);
869 
870 		if (map == NULL)
871 			continue;
872 
873 		kmap = map__kmap(map);
874 		map_groups__remove(&machine->kmaps, map);
875 		if (kmap && kmap->ref_reloc_sym) {
876 			/*
877 			 * ref_reloc_sym is shared among all maps, so free just
878 			 * on one of them.
879 			 */
880 			if (type == MAP__FUNCTION) {
881 				zfree((char **)&kmap->ref_reloc_sym->name);
882 				zfree(&kmap->ref_reloc_sym);
883 			} else
884 				kmap->ref_reloc_sym = NULL;
885 		}
886 
887 		map__put(machine->vmlinux_maps[type]);
888 		machine->vmlinux_maps[type] = NULL;
889 	}
890 }
891 
892 int machines__create_guest_kernel_maps(struct machines *machines)
893 {
894 	int ret = 0;
895 	struct dirent **namelist = NULL;
896 	int i, items = 0;
897 	char path[PATH_MAX];
898 	pid_t pid;
899 	char *endp;
900 
901 	if (symbol_conf.default_guest_vmlinux_name ||
902 	    symbol_conf.default_guest_modules ||
903 	    symbol_conf.default_guest_kallsyms) {
904 		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
905 	}
906 
907 	if (symbol_conf.guestmount) {
908 		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
909 		if (items <= 0)
910 			return -ENOENT;
911 		for (i = 0; i < items; i++) {
912 			if (!isdigit(namelist[i]->d_name[0])) {
913 				/* Filter out . and .. */
914 				continue;
915 			}
916 			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
917 			if ((*endp != '\0') ||
918 			    (endp == namelist[i]->d_name) ||
919 			    (errno == ERANGE)) {
920 				pr_debug("invalid directory (%s). Skipping.\n",
921 					 namelist[i]->d_name);
922 				continue;
923 			}
924 			sprintf(path, "%s/%s/proc/kallsyms",
925 				symbol_conf.guestmount,
926 				namelist[i]->d_name);
927 			ret = access(path, R_OK);
928 			if (ret) {
929 				pr_debug("Can't access file %s\n", path);
930 				goto failure;
931 			}
932 			machines__create_kernel_maps(machines, pid);
933 		}
934 failure:
935 		free(namelist);
936 	}
937 
938 	return ret;
939 }
940 
941 void machines__destroy_kernel_maps(struct machines *machines)
942 {
943 	struct rb_node *next = rb_first(&machines->guests);
944 
945 	machine__destroy_kernel_maps(&machines->host);
946 
947 	while (next) {
948 		struct machine *pos = rb_entry(next, struct machine, rb_node);
949 
950 		next = rb_next(&pos->rb_node);
951 		rb_erase(&pos->rb_node, &machines->guests);
952 		machine__delete(pos);
953 	}
954 }
955 
956 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
957 {
958 	struct machine *machine = machines__findnew(machines, pid);
959 
960 	if (machine == NULL)
961 		return -1;
962 
963 	return machine__create_kernel_maps(machine);
964 }
965 
966 int __machine__load_kallsyms(struct machine *machine, const char *filename,
967 			     enum map_type type, bool no_kcore)
968 {
969 	struct map *map = machine__kernel_map(machine);
970 	int ret = __dso__load_kallsyms(map->dso, filename, map, no_kcore);
971 
972 	if (ret > 0) {
973 		dso__set_loaded(map->dso, type);
974 		/*
975 		 * Since /proc/kallsyms will have multiple sessions for the
976 		 * kernel, with modules between them, fixup the end of all
977 		 * sections.
978 		 */
979 		__map_groups__fixup_end(&machine->kmaps, type);
980 	}
981 
982 	return ret;
983 }
984 
985 int machine__load_kallsyms(struct machine *machine, const char *filename,
986 			   enum map_type type)
987 {
988 	return __machine__load_kallsyms(machine, filename, type, false);
989 }
990 
991 int machine__load_vmlinux_path(struct machine *machine, enum map_type type)
992 {
993 	struct map *map = machine__kernel_map(machine);
994 	int ret = dso__load_vmlinux_path(map->dso, map);
995 
996 	if (ret > 0)
997 		dso__set_loaded(map->dso, type);
998 
999 	return ret;
1000 }
1001 
1002 static void map_groups__fixup_end(struct map_groups *mg)
1003 {
1004 	int i;
1005 	for (i = 0; i < MAP__NR_TYPES; ++i)
1006 		__map_groups__fixup_end(mg, i);
1007 }
1008 
1009 static char *get_kernel_version(const char *root_dir)
1010 {
1011 	char version[PATH_MAX];
1012 	FILE *file;
1013 	char *name, *tmp;
1014 	const char *prefix = "Linux version ";
1015 
1016 	sprintf(version, "%s/proc/version", root_dir);
1017 	file = fopen(version, "r");
1018 	if (!file)
1019 		return NULL;
1020 
1021 	version[0] = '\0';
1022 	tmp = fgets(version, sizeof(version), file);
1023 	fclose(file);
1024 
1025 	name = strstr(version, prefix);
1026 	if (!name)
1027 		return NULL;
1028 	name += strlen(prefix);
1029 	tmp = strchr(name, ' ');
1030 	if (tmp)
1031 		*tmp = '\0';
1032 
1033 	return strdup(name);
1034 }
1035 
1036 static bool is_kmod_dso(struct dso *dso)
1037 {
1038 	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1039 	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1040 }
1041 
1042 static int map_groups__set_module_path(struct map_groups *mg, const char *path,
1043 				       struct kmod_path *m)
1044 {
1045 	struct map *map;
1046 	char *long_name;
1047 
1048 	map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
1049 	if (map == NULL)
1050 		return 0;
1051 
1052 	long_name = strdup(path);
1053 	if (long_name == NULL)
1054 		return -ENOMEM;
1055 
1056 	dso__set_long_name(map->dso, long_name, true);
1057 	dso__kernel_module_get_build_id(map->dso, "");
1058 
1059 	/*
1060 	 * Full name could reveal us kmod compression, so
1061 	 * we need to update the symtab_type if needed.
1062 	 */
1063 	if (m->comp && is_kmod_dso(map->dso))
1064 		map->dso->symtab_type++;
1065 
1066 	return 0;
1067 }
1068 
1069 static int map_groups__set_modules_path_dir(struct map_groups *mg,
1070 				const char *dir_name, int depth)
1071 {
1072 	struct dirent *dent;
1073 	DIR *dir = opendir(dir_name);
1074 	int ret = 0;
1075 
1076 	if (!dir) {
1077 		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1078 		return -1;
1079 	}
1080 
1081 	while ((dent = readdir(dir)) != NULL) {
1082 		char path[PATH_MAX];
1083 		struct stat st;
1084 
1085 		/*sshfs might return bad dent->d_type, so we have to stat*/
1086 		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1087 		if (stat(path, &st))
1088 			continue;
1089 
1090 		if (S_ISDIR(st.st_mode)) {
1091 			if (!strcmp(dent->d_name, ".") ||
1092 			    !strcmp(dent->d_name, ".."))
1093 				continue;
1094 
1095 			/* Do not follow top-level source and build symlinks */
1096 			if (depth == 0) {
1097 				if (!strcmp(dent->d_name, "source") ||
1098 				    !strcmp(dent->d_name, "build"))
1099 					continue;
1100 			}
1101 
1102 			ret = map_groups__set_modules_path_dir(mg, path,
1103 							       depth + 1);
1104 			if (ret < 0)
1105 				goto out;
1106 		} else {
1107 			struct kmod_path m;
1108 
1109 			ret = kmod_path__parse_name(&m, dent->d_name);
1110 			if (ret)
1111 				goto out;
1112 
1113 			if (m.kmod)
1114 				ret = map_groups__set_module_path(mg, path, &m);
1115 
1116 			free(m.name);
1117 
1118 			if (ret)
1119 				goto out;
1120 		}
1121 	}
1122 
1123 out:
1124 	closedir(dir);
1125 	return ret;
1126 }
1127 
1128 static int machine__set_modules_path(struct machine *machine)
1129 {
1130 	char *version;
1131 	char modules_path[PATH_MAX];
1132 
1133 	version = get_kernel_version(machine->root_dir);
1134 	if (!version)
1135 		return -1;
1136 
1137 	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1138 		 machine->root_dir, version);
1139 	free(version);
1140 
1141 	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1142 }
1143 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1144 				const char *name __maybe_unused)
1145 {
1146 	return 0;
1147 }
1148 
1149 static int machine__create_module(void *arg, const char *name, u64 start)
1150 {
1151 	struct machine *machine = arg;
1152 	struct map *map;
1153 
1154 	if (arch__fix_module_text_start(&start, name) < 0)
1155 		return -1;
1156 
1157 	map = machine__findnew_module_map(machine, start, name);
1158 	if (map == NULL)
1159 		return -1;
1160 
1161 	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1162 
1163 	return 0;
1164 }
1165 
1166 static int machine__create_modules(struct machine *machine)
1167 {
1168 	const char *modules;
1169 	char path[PATH_MAX];
1170 
1171 	if (machine__is_default_guest(machine)) {
1172 		modules = symbol_conf.default_guest_modules;
1173 	} else {
1174 		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1175 		modules = path;
1176 	}
1177 
1178 	if (symbol__restricted_filename(modules, "/proc/modules"))
1179 		return -1;
1180 
1181 	if (modules__parse(modules, machine, machine__create_module))
1182 		return -1;
1183 
1184 	if (!machine__set_modules_path(machine))
1185 		return 0;
1186 
1187 	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1188 
1189 	return 0;
1190 }
1191 
1192 int machine__create_kernel_maps(struct machine *machine)
1193 {
1194 	struct dso *kernel = machine__get_kernel(machine);
1195 	const char *name = NULL;
1196 	u64 addr = 0;
1197 	int ret;
1198 
1199 	if (kernel == NULL)
1200 		return -1;
1201 
1202 	ret = __machine__create_kernel_maps(machine, kernel);
1203 	dso__put(kernel);
1204 	if (ret < 0)
1205 		return -1;
1206 
1207 	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1208 		if (machine__is_host(machine))
1209 			pr_debug("Problems creating module maps, "
1210 				 "continuing anyway...\n");
1211 		else
1212 			pr_debug("Problems creating module maps for guest %d, "
1213 				 "continuing anyway...\n", machine->pid);
1214 	}
1215 
1216 	/*
1217 	 * Now that we have all the maps created, just set the ->end of them:
1218 	 */
1219 	map_groups__fixup_end(&machine->kmaps);
1220 
1221 	if (machine__get_running_kernel_start(machine, &name, &addr)) {
1222 	} else if (maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name, addr)) {
1223 		machine__destroy_kernel_maps(machine);
1224 		return -1;
1225 	}
1226 
1227 	return 0;
1228 }
1229 
1230 static void machine__set_kernel_mmap_len(struct machine *machine,
1231 					 union perf_event *event)
1232 {
1233 	int i;
1234 
1235 	for (i = 0; i < MAP__NR_TYPES; i++) {
1236 		machine->vmlinux_maps[i]->start = event->mmap.start;
1237 		machine->vmlinux_maps[i]->end   = (event->mmap.start +
1238 						   event->mmap.len);
1239 		/*
1240 		 * Be a bit paranoid here, some perf.data file came with
1241 		 * a zero sized synthesized MMAP event for the kernel.
1242 		 */
1243 		if (machine->vmlinux_maps[i]->end == 0)
1244 			machine->vmlinux_maps[i]->end = ~0ULL;
1245 	}
1246 }
1247 
1248 static bool machine__uses_kcore(struct machine *machine)
1249 {
1250 	struct dso *dso;
1251 
1252 	list_for_each_entry(dso, &machine->dsos.head, node) {
1253 		if (dso__is_kcore(dso))
1254 			return true;
1255 	}
1256 
1257 	return false;
1258 }
1259 
1260 static int machine__process_kernel_mmap_event(struct machine *machine,
1261 					      union perf_event *event)
1262 {
1263 	struct map *map;
1264 	char kmmap_prefix[PATH_MAX];
1265 	enum dso_kernel_type kernel_type;
1266 	bool is_kernel_mmap;
1267 
1268 	/* If we have maps from kcore then we do not need or want any others */
1269 	if (machine__uses_kcore(machine))
1270 		return 0;
1271 
1272 	machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
1273 	if (machine__is_host(machine))
1274 		kernel_type = DSO_TYPE_KERNEL;
1275 	else
1276 		kernel_type = DSO_TYPE_GUEST_KERNEL;
1277 
1278 	is_kernel_mmap = memcmp(event->mmap.filename,
1279 				kmmap_prefix,
1280 				strlen(kmmap_prefix) - 1) == 0;
1281 	if (event->mmap.filename[0] == '/' ||
1282 	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1283 		map = machine__findnew_module_map(machine, event->mmap.start,
1284 						  event->mmap.filename);
1285 		if (map == NULL)
1286 			goto out_problem;
1287 
1288 		map->end = map->start + event->mmap.len;
1289 	} else if (is_kernel_mmap) {
1290 		const char *symbol_name = (event->mmap.filename +
1291 				strlen(kmmap_prefix));
1292 		/*
1293 		 * Should be there already, from the build-id table in
1294 		 * the header.
1295 		 */
1296 		struct dso *kernel = NULL;
1297 		struct dso *dso;
1298 
1299 		pthread_rwlock_rdlock(&machine->dsos.lock);
1300 
1301 		list_for_each_entry(dso, &machine->dsos.head, node) {
1302 
1303 			/*
1304 			 * The cpumode passed to is_kernel_module is not the
1305 			 * cpumode of *this* event. If we insist on passing
1306 			 * correct cpumode to is_kernel_module, we should
1307 			 * record the cpumode when we adding this dso to the
1308 			 * linked list.
1309 			 *
1310 			 * However we don't really need passing correct
1311 			 * cpumode.  We know the correct cpumode must be kernel
1312 			 * mode (if not, we should not link it onto kernel_dsos
1313 			 * list).
1314 			 *
1315 			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1316 			 * is_kernel_module() treats it as a kernel cpumode.
1317 			 */
1318 
1319 			if (!dso->kernel ||
1320 			    is_kernel_module(dso->long_name,
1321 					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1322 				continue;
1323 
1324 
1325 			kernel = dso;
1326 			break;
1327 		}
1328 
1329 		pthread_rwlock_unlock(&machine->dsos.lock);
1330 
1331 		if (kernel == NULL)
1332 			kernel = machine__findnew_dso(machine, kmmap_prefix);
1333 		if (kernel == NULL)
1334 			goto out_problem;
1335 
1336 		kernel->kernel = kernel_type;
1337 		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1338 			dso__put(kernel);
1339 			goto out_problem;
1340 		}
1341 
1342 		if (strstr(kernel->long_name, "vmlinux"))
1343 			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1344 
1345 		machine__set_kernel_mmap_len(machine, event);
1346 
1347 		/*
1348 		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1349 		 * symbol. Effectively having zero here means that at record
1350 		 * time /proc/sys/kernel/kptr_restrict was non zero.
1351 		 */
1352 		if (event->mmap.pgoff != 0) {
1353 			maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
1354 							 symbol_name,
1355 							 event->mmap.pgoff);
1356 		}
1357 
1358 		if (machine__is_default_guest(machine)) {
1359 			/*
1360 			 * preload dso of guest kernel and modules
1361 			 */
1362 			dso__load(kernel, machine__kernel_map(machine));
1363 		}
1364 	}
1365 	return 0;
1366 out_problem:
1367 	return -1;
1368 }
1369 
1370 int machine__process_mmap2_event(struct machine *machine,
1371 				 union perf_event *event,
1372 				 struct perf_sample *sample)
1373 {
1374 	struct thread *thread;
1375 	struct map *map;
1376 	enum map_type type;
1377 	int ret = 0;
1378 
1379 	if (dump_trace)
1380 		perf_event__fprintf_mmap2(event, stdout);
1381 
1382 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1383 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1384 		ret = machine__process_kernel_mmap_event(machine, event);
1385 		if (ret < 0)
1386 			goto out_problem;
1387 		return 0;
1388 	}
1389 
1390 	thread = machine__findnew_thread(machine, event->mmap2.pid,
1391 					event->mmap2.tid);
1392 	if (thread == NULL)
1393 		goto out_problem;
1394 
1395 	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1396 		type = MAP__VARIABLE;
1397 	else
1398 		type = MAP__FUNCTION;
1399 
1400 	map = map__new(machine, event->mmap2.start,
1401 			event->mmap2.len, event->mmap2.pgoff,
1402 			event->mmap2.pid, event->mmap2.maj,
1403 			event->mmap2.min, event->mmap2.ino,
1404 			event->mmap2.ino_generation,
1405 			event->mmap2.prot,
1406 			event->mmap2.flags,
1407 			event->mmap2.filename, type, thread);
1408 
1409 	if (map == NULL)
1410 		goto out_problem_map;
1411 
1412 	ret = thread__insert_map(thread, map);
1413 	if (ret)
1414 		goto out_problem_insert;
1415 
1416 	thread__put(thread);
1417 	map__put(map);
1418 	return 0;
1419 
1420 out_problem_insert:
1421 	map__put(map);
1422 out_problem_map:
1423 	thread__put(thread);
1424 out_problem:
1425 	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1426 	return 0;
1427 }
1428 
1429 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1430 				struct perf_sample *sample)
1431 {
1432 	struct thread *thread;
1433 	struct map *map;
1434 	enum map_type type;
1435 	int ret = 0;
1436 
1437 	if (dump_trace)
1438 		perf_event__fprintf_mmap(event, stdout);
1439 
1440 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1441 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1442 		ret = machine__process_kernel_mmap_event(machine, event);
1443 		if (ret < 0)
1444 			goto out_problem;
1445 		return 0;
1446 	}
1447 
1448 	thread = machine__findnew_thread(machine, event->mmap.pid,
1449 					 event->mmap.tid);
1450 	if (thread == NULL)
1451 		goto out_problem;
1452 
1453 	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1454 		type = MAP__VARIABLE;
1455 	else
1456 		type = MAP__FUNCTION;
1457 
1458 	map = map__new(machine, event->mmap.start,
1459 			event->mmap.len, event->mmap.pgoff,
1460 			event->mmap.pid, 0, 0, 0, 0, 0, 0,
1461 			event->mmap.filename,
1462 			type, thread);
1463 
1464 	if (map == NULL)
1465 		goto out_problem_map;
1466 
1467 	ret = thread__insert_map(thread, map);
1468 	if (ret)
1469 		goto out_problem_insert;
1470 
1471 	thread__put(thread);
1472 	map__put(map);
1473 	return 0;
1474 
1475 out_problem_insert:
1476 	map__put(map);
1477 out_problem_map:
1478 	thread__put(thread);
1479 out_problem:
1480 	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1481 	return 0;
1482 }
1483 
1484 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1485 {
1486 	if (machine->last_match == th)
1487 		machine->last_match = NULL;
1488 
1489 	BUG_ON(refcount_read(&th->refcnt) == 0);
1490 	if (lock)
1491 		pthread_rwlock_wrlock(&machine->threads_lock);
1492 	rb_erase_init(&th->rb_node, &machine->threads);
1493 	RB_CLEAR_NODE(&th->rb_node);
1494 	--machine->nr_threads;
1495 	/*
1496 	 * Move it first to the dead_threads list, then drop the reference,
1497 	 * if this is the last reference, then the thread__delete destructor
1498 	 * will be called and we will remove it from the dead_threads list.
1499 	 */
1500 	list_add_tail(&th->node, &machine->dead_threads);
1501 	if (lock)
1502 		pthread_rwlock_unlock(&machine->threads_lock);
1503 	thread__put(th);
1504 }
1505 
1506 void machine__remove_thread(struct machine *machine, struct thread *th)
1507 {
1508 	return __machine__remove_thread(machine, th, true);
1509 }
1510 
1511 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1512 				struct perf_sample *sample)
1513 {
1514 	struct thread *thread = machine__find_thread(machine,
1515 						     event->fork.pid,
1516 						     event->fork.tid);
1517 	struct thread *parent = machine__findnew_thread(machine,
1518 							event->fork.ppid,
1519 							event->fork.ptid);
1520 	int err = 0;
1521 
1522 	if (dump_trace)
1523 		perf_event__fprintf_task(event, stdout);
1524 
1525 	/*
1526 	 * There may be an existing thread that is not actually the parent,
1527 	 * either because we are processing events out of order, or because the
1528 	 * (fork) event that would have removed the thread was lost. Assume the
1529 	 * latter case and continue on as best we can.
1530 	 */
1531 	if (parent->pid_ != (pid_t)event->fork.ppid) {
1532 		dump_printf("removing erroneous parent thread %d/%d\n",
1533 			    parent->pid_, parent->tid);
1534 		machine__remove_thread(machine, parent);
1535 		thread__put(parent);
1536 		parent = machine__findnew_thread(machine, event->fork.ppid,
1537 						 event->fork.ptid);
1538 	}
1539 
1540 	/* if a thread currently exists for the thread id remove it */
1541 	if (thread != NULL) {
1542 		machine__remove_thread(machine, thread);
1543 		thread__put(thread);
1544 	}
1545 
1546 	thread = machine__findnew_thread(machine, event->fork.pid,
1547 					 event->fork.tid);
1548 
1549 	if (thread == NULL || parent == NULL ||
1550 	    thread__fork(thread, parent, sample->time) < 0) {
1551 		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1552 		err = -1;
1553 	}
1554 	thread__put(thread);
1555 	thread__put(parent);
1556 
1557 	return err;
1558 }
1559 
1560 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1561 				struct perf_sample *sample __maybe_unused)
1562 {
1563 	struct thread *thread = machine__find_thread(machine,
1564 						     event->fork.pid,
1565 						     event->fork.tid);
1566 
1567 	if (dump_trace)
1568 		perf_event__fprintf_task(event, stdout);
1569 
1570 	if (thread != NULL) {
1571 		thread__exited(thread);
1572 		thread__put(thread);
1573 	}
1574 
1575 	return 0;
1576 }
1577 
1578 int machine__process_event(struct machine *machine, union perf_event *event,
1579 			   struct perf_sample *sample)
1580 {
1581 	int ret;
1582 
1583 	switch (event->header.type) {
1584 	case PERF_RECORD_COMM:
1585 		ret = machine__process_comm_event(machine, event, sample); break;
1586 	case PERF_RECORD_MMAP:
1587 		ret = machine__process_mmap_event(machine, event, sample); break;
1588 	case PERF_RECORD_NAMESPACES:
1589 		ret = machine__process_namespaces_event(machine, event, sample); break;
1590 	case PERF_RECORD_MMAP2:
1591 		ret = machine__process_mmap2_event(machine, event, sample); break;
1592 	case PERF_RECORD_FORK:
1593 		ret = machine__process_fork_event(machine, event, sample); break;
1594 	case PERF_RECORD_EXIT:
1595 		ret = machine__process_exit_event(machine, event, sample); break;
1596 	case PERF_RECORD_LOST:
1597 		ret = machine__process_lost_event(machine, event, sample); break;
1598 	case PERF_RECORD_AUX:
1599 		ret = machine__process_aux_event(machine, event); break;
1600 	case PERF_RECORD_ITRACE_START:
1601 		ret = machine__process_itrace_start_event(machine, event); break;
1602 	case PERF_RECORD_LOST_SAMPLES:
1603 		ret = machine__process_lost_samples_event(machine, event, sample); break;
1604 	case PERF_RECORD_SWITCH:
1605 	case PERF_RECORD_SWITCH_CPU_WIDE:
1606 		ret = machine__process_switch_event(machine, event); break;
1607 	default:
1608 		ret = -1;
1609 		break;
1610 	}
1611 
1612 	return ret;
1613 }
1614 
1615 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1616 {
1617 	if (!regexec(regex, sym->name, 0, NULL, 0))
1618 		return 1;
1619 	return 0;
1620 }
1621 
1622 static void ip__resolve_ams(struct thread *thread,
1623 			    struct addr_map_symbol *ams,
1624 			    u64 ip)
1625 {
1626 	struct addr_location al;
1627 
1628 	memset(&al, 0, sizeof(al));
1629 	/*
1630 	 * We cannot use the header.misc hint to determine whether a
1631 	 * branch stack address is user, kernel, guest, hypervisor.
1632 	 * Branches may straddle the kernel/user/hypervisor boundaries.
1633 	 * Thus, we have to try consecutively until we find a match
1634 	 * or else, the symbol is unknown
1635 	 */
1636 	thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1637 
1638 	ams->addr = ip;
1639 	ams->al_addr = al.addr;
1640 	ams->sym = al.sym;
1641 	ams->map = al.map;
1642 }
1643 
1644 static void ip__resolve_data(struct thread *thread,
1645 			     u8 m, struct addr_map_symbol *ams, u64 addr)
1646 {
1647 	struct addr_location al;
1648 
1649 	memset(&al, 0, sizeof(al));
1650 
1651 	thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1652 	if (al.map == NULL) {
1653 		/*
1654 		 * some shared data regions have execute bit set which puts
1655 		 * their mapping in the MAP__FUNCTION type array.
1656 		 * Check there as a fallback option before dropping the sample.
1657 		 */
1658 		thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1659 	}
1660 
1661 	ams->addr = addr;
1662 	ams->al_addr = al.addr;
1663 	ams->sym = al.sym;
1664 	ams->map = al.map;
1665 }
1666 
1667 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1668 				     struct addr_location *al)
1669 {
1670 	struct mem_info *mi = zalloc(sizeof(*mi));
1671 
1672 	if (!mi)
1673 		return NULL;
1674 
1675 	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1676 	ip__resolve_data(al->thread, al->cpumode, &mi->daddr, sample->addr);
1677 	mi->data_src.val = sample->data_src;
1678 
1679 	return mi;
1680 }
1681 
1682 static int add_callchain_ip(struct thread *thread,
1683 			    struct callchain_cursor *cursor,
1684 			    struct symbol **parent,
1685 			    struct addr_location *root_al,
1686 			    u8 *cpumode,
1687 			    u64 ip,
1688 			    bool branch,
1689 			    struct branch_flags *flags,
1690 			    int nr_loop_iter,
1691 			    int samples)
1692 {
1693 	struct addr_location al;
1694 
1695 	al.filtered = 0;
1696 	al.sym = NULL;
1697 	if (!cpumode) {
1698 		thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
1699 						   ip, &al);
1700 	} else {
1701 		if (ip >= PERF_CONTEXT_MAX) {
1702 			switch (ip) {
1703 			case PERF_CONTEXT_HV:
1704 				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
1705 				break;
1706 			case PERF_CONTEXT_KERNEL:
1707 				*cpumode = PERF_RECORD_MISC_KERNEL;
1708 				break;
1709 			case PERF_CONTEXT_USER:
1710 				*cpumode = PERF_RECORD_MISC_USER;
1711 				break;
1712 			default:
1713 				pr_debug("invalid callchain context: "
1714 					 "%"PRId64"\n", (s64) ip);
1715 				/*
1716 				 * It seems the callchain is corrupted.
1717 				 * Discard all.
1718 				 */
1719 				callchain_cursor_reset(cursor);
1720 				return 1;
1721 			}
1722 			return 0;
1723 		}
1724 		thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
1725 					   ip, &al);
1726 	}
1727 
1728 	if (al.sym != NULL) {
1729 		if (perf_hpp_list.parent && !*parent &&
1730 		    symbol__match_regex(al.sym, &parent_regex))
1731 			*parent = al.sym;
1732 		else if (have_ignore_callees && root_al &&
1733 		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
1734 			/* Treat this symbol as the root,
1735 			   forgetting its callees. */
1736 			*root_al = al;
1737 			callchain_cursor_reset(cursor);
1738 		}
1739 	}
1740 
1741 	if (symbol_conf.hide_unresolved && al.sym == NULL)
1742 		return 0;
1743 	return callchain_cursor_append(cursor, al.addr, al.map, al.sym,
1744 				       branch, flags, nr_loop_iter, samples);
1745 }
1746 
1747 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1748 					   struct addr_location *al)
1749 {
1750 	unsigned int i;
1751 	const struct branch_stack *bs = sample->branch_stack;
1752 	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1753 
1754 	if (!bi)
1755 		return NULL;
1756 
1757 	for (i = 0; i < bs->nr; i++) {
1758 		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1759 		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1760 		bi[i].flags = bs->entries[i].flags;
1761 	}
1762 	return bi;
1763 }
1764 
1765 #define CHASHSZ 127
1766 #define CHASHBITS 7
1767 #define NO_ENTRY 0xff
1768 
1769 #define PERF_MAX_BRANCH_DEPTH 127
1770 
1771 /* Remove loops. */
1772 static int remove_loops(struct branch_entry *l, int nr)
1773 {
1774 	int i, j, off;
1775 	unsigned char chash[CHASHSZ];
1776 
1777 	memset(chash, NO_ENTRY, sizeof(chash));
1778 
1779 	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
1780 
1781 	for (i = 0; i < nr; i++) {
1782 		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
1783 
1784 		/* no collision handling for now */
1785 		if (chash[h] == NO_ENTRY) {
1786 			chash[h] = i;
1787 		} else if (l[chash[h]].from == l[i].from) {
1788 			bool is_loop = true;
1789 			/* check if it is a real loop */
1790 			off = 0;
1791 			for (j = chash[h]; j < i && i + off < nr; j++, off++)
1792 				if (l[j].from != l[i + off].from) {
1793 					is_loop = false;
1794 					break;
1795 				}
1796 			if (is_loop) {
1797 				memmove(l + i, l + i + off,
1798 					(nr - (i + off)) * sizeof(*l));
1799 				nr -= off;
1800 			}
1801 		}
1802 	}
1803 	return nr;
1804 }
1805 
1806 /*
1807  * Recolve LBR callstack chain sample
1808  * Return:
1809  * 1 on success get LBR callchain information
1810  * 0 no available LBR callchain information, should try fp
1811  * negative error code on other errors.
1812  */
1813 static int resolve_lbr_callchain_sample(struct thread *thread,
1814 					struct callchain_cursor *cursor,
1815 					struct perf_sample *sample,
1816 					struct symbol **parent,
1817 					struct addr_location *root_al,
1818 					int max_stack)
1819 {
1820 	struct ip_callchain *chain = sample->callchain;
1821 	int chain_nr = min(max_stack, (int)chain->nr), i;
1822 	u8 cpumode = PERF_RECORD_MISC_USER;
1823 	u64 ip;
1824 
1825 	for (i = 0; i < chain_nr; i++) {
1826 		if (chain->ips[i] == PERF_CONTEXT_USER)
1827 			break;
1828 	}
1829 
1830 	/* LBR only affects the user callchain */
1831 	if (i != chain_nr) {
1832 		struct branch_stack *lbr_stack = sample->branch_stack;
1833 		int lbr_nr = lbr_stack->nr, j, k;
1834 		bool branch;
1835 		struct branch_flags *flags;
1836 		/*
1837 		 * LBR callstack can only get user call chain.
1838 		 * The mix_chain_nr is kernel call chain
1839 		 * number plus LBR user call chain number.
1840 		 * i is kernel call chain number,
1841 		 * 1 is PERF_CONTEXT_USER,
1842 		 * lbr_nr + 1 is the user call chain number.
1843 		 * For details, please refer to the comments
1844 		 * in callchain__printf
1845 		 */
1846 		int mix_chain_nr = i + 1 + lbr_nr + 1;
1847 
1848 		for (j = 0; j < mix_chain_nr; j++) {
1849 			int err;
1850 			branch = false;
1851 			flags = NULL;
1852 
1853 			if (callchain_param.order == ORDER_CALLEE) {
1854 				if (j < i + 1)
1855 					ip = chain->ips[j];
1856 				else if (j > i + 1) {
1857 					k = j - i - 2;
1858 					ip = lbr_stack->entries[k].from;
1859 					branch = true;
1860 					flags = &lbr_stack->entries[k].flags;
1861 				} else {
1862 					ip = lbr_stack->entries[0].to;
1863 					branch = true;
1864 					flags = &lbr_stack->entries[0].flags;
1865 				}
1866 			} else {
1867 				if (j < lbr_nr) {
1868 					k = lbr_nr - j - 1;
1869 					ip = lbr_stack->entries[k].from;
1870 					branch = true;
1871 					flags = &lbr_stack->entries[k].flags;
1872 				}
1873 				else if (j > lbr_nr)
1874 					ip = chain->ips[i + 1 - (j - lbr_nr)];
1875 				else {
1876 					ip = lbr_stack->entries[0].to;
1877 					branch = true;
1878 					flags = &lbr_stack->entries[0].flags;
1879 				}
1880 			}
1881 
1882 			err = add_callchain_ip(thread, cursor, parent,
1883 					       root_al, &cpumode, ip,
1884 					       branch, flags, 0, 0);
1885 			if (err)
1886 				return (err < 0) ? err : 0;
1887 		}
1888 		return 1;
1889 	}
1890 
1891 	return 0;
1892 }
1893 
1894 static int thread__resolve_callchain_sample(struct thread *thread,
1895 					    struct callchain_cursor *cursor,
1896 					    struct perf_evsel *evsel,
1897 					    struct perf_sample *sample,
1898 					    struct symbol **parent,
1899 					    struct addr_location *root_al,
1900 					    int max_stack)
1901 {
1902 	struct branch_stack *branch = sample->branch_stack;
1903 	struct ip_callchain *chain = sample->callchain;
1904 	int chain_nr = chain->nr;
1905 	u8 cpumode = PERF_RECORD_MISC_USER;
1906 	int i, j, err, nr_entries;
1907 	int skip_idx = -1;
1908 	int first_call = 0;
1909 	int nr_loop_iter;
1910 
1911 	if (perf_evsel__has_branch_callstack(evsel)) {
1912 		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
1913 						   root_al, max_stack);
1914 		if (err)
1915 			return (err < 0) ? err : 0;
1916 	}
1917 
1918 	/*
1919 	 * Based on DWARF debug information, some architectures skip
1920 	 * a callchain entry saved by the kernel.
1921 	 */
1922 	skip_idx = arch_skip_callchain_idx(thread, chain);
1923 
1924 	/*
1925 	 * Add branches to call stack for easier browsing. This gives
1926 	 * more context for a sample than just the callers.
1927 	 *
1928 	 * This uses individual histograms of paths compared to the
1929 	 * aggregated histograms the normal LBR mode uses.
1930 	 *
1931 	 * Limitations for now:
1932 	 * - No extra filters
1933 	 * - No annotations (should annotate somehow)
1934 	 */
1935 
1936 	if (branch && callchain_param.branch_callstack) {
1937 		int nr = min(max_stack, (int)branch->nr);
1938 		struct branch_entry be[nr];
1939 
1940 		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
1941 			pr_warning("corrupted branch chain. skipping...\n");
1942 			goto check_calls;
1943 		}
1944 
1945 		for (i = 0; i < nr; i++) {
1946 			if (callchain_param.order == ORDER_CALLEE) {
1947 				be[i] = branch->entries[i];
1948 				/*
1949 				 * Check for overlap into the callchain.
1950 				 * The return address is one off compared to
1951 				 * the branch entry. To adjust for this
1952 				 * assume the calling instruction is not longer
1953 				 * than 8 bytes.
1954 				 */
1955 				if (i == skip_idx ||
1956 				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
1957 					first_call++;
1958 				else if (be[i].from < chain->ips[first_call] &&
1959 				    be[i].from >= chain->ips[first_call] - 8)
1960 					first_call++;
1961 			} else
1962 				be[i] = branch->entries[branch->nr - i - 1];
1963 		}
1964 
1965 		nr_loop_iter = nr;
1966 		nr = remove_loops(be, nr);
1967 
1968 		/*
1969 		 * Get the number of iterations.
1970 		 * It's only approximation, but good enough in practice.
1971 		 */
1972 		if (nr_loop_iter > nr)
1973 			nr_loop_iter = nr_loop_iter - nr + 1;
1974 		else
1975 			nr_loop_iter = 0;
1976 
1977 		for (i = 0; i < nr; i++) {
1978 			if (i == nr - 1)
1979 				err = add_callchain_ip(thread, cursor, parent,
1980 						       root_al,
1981 						       NULL, be[i].to,
1982 						       true, &be[i].flags,
1983 						       nr_loop_iter, 1);
1984 			else
1985 				err = add_callchain_ip(thread, cursor, parent,
1986 						       root_al,
1987 						       NULL, be[i].to,
1988 						       true, &be[i].flags,
1989 						       0, 0);
1990 
1991 			if (!err)
1992 				err = add_callchain_ip(thread, cursor, parent, root_al,
1993 						       NULL, be[i].from,
1994 						       true, &be[i].flags,
1995 						       0, 0);
1996 			if (err == -EINVAL)
1997 				break;
1998 			if (err)
1999 				return err;
2000 		}
2001 		chain_nr -= nr;
2002 	}
2003 
2004 check_calls:
2005 	for (i = first_call, nr_entries = 0;
2006 	     i < chain_nr && nr_entries < max_stack; i++) {
2007 		u64 ip;
2008 
2009 		if (callchain_param.order == ORDER_CALLEE)
2010 			j = i;
2011 		else
2012 			j = chain->nr - i - 1;
2013 
2014 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2015 		if (j == skip_idx)
2016 			continue;
2017 #endif
2018 		ip = chain->ips[j];
2019 
2020 		if (ip < PERF_CONTEXT_MAX)
2021                        ++nr_entries;
2022 
2023 		err = add_callchain_ip(thread, cursor, parent,
2024 				       root_al, &cpumode, ip,
2025 				       false, NULL, 0, 0);
2026 
2027 		if (err)
2028 			return (err < 0) ? err : 0;
2029 	}
2030 
2031 	return 0;
2032 }
2033 
2034 static int unwind_entry(struct unwind_entry *entry, void *arg)
2035 {
2036 	struct callchain_cursor *cursor = arg;
2037 
2038 	if (symbol_conf.hide_unresolved && entry->sym == NULL)
2039 		return 0;
2040 	return callchain_cursor_append(cursor, entry->ip,
2041 				       entry->map, entry->sym,
2042 				       false, NULL, 0, 0);
2043 }
2044 
2045 static int thread__resolve_callchain_unwind(struct thread *thread,
2046 					    struct callchain_cursor *cursor,
2047 					    struct perf_evsel *evsel,
2048 					    struct perf_sample *sample,
2049 					    int max_stack)
2050 {
2051 	/* Can we do dwarf post unwind? */
2052 	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2053 	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
2054 		return 0;
2055 
2056 	/* Bail out if nothing was captured. */
2057 	if ((!sample->user_regs.regs) ||
2058 	    (!sample->user_stack.size))
2059 		return 0;
2060 
2061 	return unwind__get_entries(unwind_entry, cursor,
2062 				   thread, sample, max_stack);
2063 }
2064 
2065 int thread__resolve_callchain(struct thread *thread,
2066 			      struct callchain_cursor *cursor,
2067 			      struct perf_evsel *evsel,
2068 			      struct perf_sample *sample,
2069 			      struct symbol **parent,
2070 			      struct addr_location *root_al,
2071 			      int max_stack)
2072 {
2073 	int ret = 0;
2074 
2075 	callchain_cursor_reset(&callchain_cursor);
2076 
2077 	if (callchain_param.order == ORDER_CALLEE) {
2078 		ret = thread__resolve_callchain_sample(thread, cursor,
2079 						       evsel, sample,
2080 						       parent, root_al,
2081 						       max_stack);
2082 		if (ret)
2083 			return ret;
2084 		ret = thread__resolve_callchain_unwind(thread, cursor,
2085 						       evsel, sample,
2086 						       max_stack);
2087 	} else {
2088 		ret = thread__resolve_callchain_unwind(thread, cursor,
2089 						       evsel, sample,
2090 						       max_stack);
2091 		if (ret)
2092 			return ret;
2093 		ret = thread__resolve_callchain_sample(thread, cursor,
2094 						       evsel, sample,
2095 						       parent, root_al,
2096 						       max_stack);
2097 	}
2098 
2099 	return ret;
2100 }
2101 
2102 int machine__for_each_thread(struct machine *machine,
2103 			     int (*fn)(struct thread *thread, void *p),
2104 			     void *priv)
2105 {
2106 	struct rb_node *nd;
2107 	struct thread *thread;
2108 	int rc = 0;
2109 
2110 	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
2111 		thread = rb_entry(nd, struct thread, rb_node);
2112 		rc = fn(thread, priv);
2113 		if (rc != 0)
2114 			return rc;
2115 	}
2116 
2117 	list_for_each_entry(thread, &machine->dead_threads, node) {
2118 		rc = fn(thread, priv);
2119 		if (rc != 0)
2120 			return rc;
2121 	}
2122 	return rc;
2123 }
2124 
2125 int machines__for_each_thread(struct machines *machines,
2126 			      int (*fn)(struct thread *thread, void *p),
2127 			      void *priv)
2128 {
2129 	struct rb_node *nd;
2130 	int rc = 0;
2131 
2132 	rc = machine__for_each_thread(&machines->host, fn, priv);
2133 	if (rc != 0)
2134 		return rc;
2135 
2136 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
2137 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
2138 
2139 		rc = machine__for_each_thread(machine, fn, priv);
2140 		if (rc != 0)
2141 			return rc;
2142 	}
2143 	return rc;
2144 }
2145 
2146 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2147 				  struct target *target, struct thread_map *threads,
2148 				  perf_event__handler_t process, bool data_mmap,
2149 				  unsigned int proc_map_timeout)
2150 {
2151 	if (target__has_task(target))
2152 		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
2153 	else if (target__has_cpu(target))
2154 		return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout);
2155 	/* command specified */
2156 	return 0;
2157 }
2158 
2159 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2160 {
2161 	if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
2162 		return -1;
2163 
2164 	return machine->current_tid[cpu];
2165 }
2166 
2167 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2168 			     pid_t tid)
2169 {
2170 	struct thread *thread;
2171 
2172 	if (cpu < 0)
2173 		return -EINVAL;
2174 
2175 	if (!machine->current_tid) {
2176 		int i;
2177 
2178 		machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
2179 		if (!machine->current_tid)
2180 			return -ENOMEM;
2181 		for (i = 0; i < MAX_NR_CPUS; i++)
2182 			machine->current_tid[i] = -1;
2183 	}
2184 
2185 	if (cpu >= MAX_NR_CPUS) {
2186 		pr_err("Requested CPU %d too large. ", cpu);
2187 		pr_err("Consider raising MAX_NR_CPUS\n");
2188 		return -EINVAL;
2189 	}
2190 
2191 	machine->current_tid[cpu] = tid;
2192 
2193 	thread = machine__findnew_thread(machine, pid, tid);
2194 	if (!thread)
2195 		return -ENOMEM;
2196 
2197 	thread->cpu = cpu;
2198 	thread__put(thread);
2199 
2200 	return 0;
2201 }
2202 
2203 int machine__get_kernel_start(struct machine *machine)
2204 {
2205 	struct map *map = machine__kernel_map(machine);
2206 	int err = 0;
2207 
2208 	/*
2209 	 * The only addresses above 2^63 are kernel addresses of a 64-bit
2210 	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
2211 	 * all addresses including kernel addresses are less than 2^32.  In
2212 	 * that case (32-bit system), if the kernel mapping is unknown, all
2213 	 * addresses will be assumed to be in user space - see
2214 	 * machine__kernel_ip().
2215 	 */
2216 	machine->kernel_start = 1ULL << 63;
2217 	if (map) {
2218 		err = map__load(map);
2219 		if (map->start)
2220 			machine->kernel_start = map->start;
2221 	}
2222 	return err;
2223 }
2224 
2225 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2226 {
2227 	return dsos__findnew(&machine->dsos, filename);
2228 }
2229 
2230 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2231 {
2232 	struct machine *machine = vmachine;
2233 	struct map *map;
2234 	struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map);
2235 
2236 	if (sym == NULL)
2237 		return NULL;
2238 
2239 	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2240 	*addrp = map->unmap_ip(map, sym->start);
2241 	return sym->name;
2242 }
2243