xref: /openbmc/linux/tools/perf/util/machine.c (revision cc8bbe1a)
1 #include "callchain.h"
2 #include "debug.h"
3 #include "event.h"
4 #include "evsel.h"
5 #include "hist.h"
6 #include "machine.h"
7 #include "map.h"
8 #include "sort.h"
9 #include "strlist.h"
10 #include "thread.h"
11 #include "vdso.h"
12 #include <stdbool.h>
13 #include <symbol/kallsyms.h>
14 #include "unwind.h"
15 #include "linux/hash.h"
16 
17 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
18 
19 static void dsos__init(struct dsos *dsos)
20 {
21 	INIT_LIST_HEAD(&dsos->head);
22 	dsos->root = RB_ROOT;
23 	pthread_rwlock_init(&dsos->lock, NULL);
24 }
25 
26 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
27 {
28 	memset(machine, 0, sizeof(*machine));
29 	map_groups__init(&machine->kmaps, machine);
30 	RB_CLEAR_NODE(&machine->rb_node);
31 	dsos__init(&machine->dsos);
32 
33 	machine->threads = RB_ROOT;
34 	pthread_rwlock_init(&machine->threads_lock, NULL);
35 	INIT_LIST_HEAD(&machine->dead_threads);
36 	machine->last_match = NULL;
37 
38 	machine->vdso_info = NULL;
39 	machine->env = NULL;
40 
41 	machine->pid = pid;
42 
43 	machine->symbol_filter = NULL;
44 	machine->id_hdr_size = 0;
45 	machine->comm_exec = false;
46 	machine->kernel_start = 0;
47 
48 	memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps));
49 
50 	machine->root_dir = strdup(root_dir);
51 	if (machine->root_dir == NULL)
52 		return -ENOMEM;
53 
54 	if (pid != HOST_KERNEL_ID) {
55 		struct thread *thread = machine__findnew_thread(machine, -1,
56 								pid);
57 		char comm[64];
58 
59 		if (thread == NULL)
60 			return -ENOMEM;
61 
62 		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
63 		thread__set_comm(thread, comm, 0);
64 		thread__put(thread);
65 	}
66 
67 	machine->current_tid = NULL;
68 
69 	return 0;
70 }
71 
72 struct machine *machine__new_host(void)
73 {
74 	struct machine *machine = malloc(sizeof(*machine));
75 
76 	if (machine != NULL) {
77 		machine__init(machine, "", HOST_KERNEL_ID);
78 
79 		if (machine__create_kernel_maps(machine) < 0)
80 			goto out_delete;
81 	}
82 
83 	return machine;
84 out_delete:
85 	free(machine);
86 	return NULL;
87 }
88 
89 static void dsos__purge(struct dsos *dsos)
90 {
91 	struct dso *pos, *n;
92 
93 	pthread_rwlock_wrlock(&dsos->lock);
94 
95 	list_for_each_entry_safe(pos, n, &dsos->head, node) {
96 		RB_CLEAR_NODE(&pos->rb_node);
97 		pos->root = NULL;
98 		list_del_init(&pos->node);
99 		dso__put(pos);
100 	}
101 
102 	pthread_rwlock_unlock(&dsos->lock);
103 }
104 
105 static void dsos__exit(struct dsos *dsos)
106 {
107 	dsos__purge(dsos);
108 	pthread_rwlock_destroy(&dsos->lock);
109 }
110 
111 void machine__delete_threads(struct machine *machine)
112 {
113 	struct rb_node *nd;
114 
115 	pthread_rwlock_wrlock(&machine->threads_lock);
116 	nd = rb_first(&machine->threads);
117 	while (nd) {
118 		struct thread *t = rb_entry(nd, struct thread, rb_node);
119 
120 		nd = rb_next(nd);
121 		__machine__remove_thread(machine, t, false);
122 	}
123 	pthread_rwlock_unlock(&machine->threads_lock);
124 }
125 
126 void machine__exit(struct machine *machine)
127 {
128 	machine__destroy_kernel_maps(machine);
129 	map_groups__exit(&machine->kmaps);
130 	dsos__exit(&machine->dsos);
131 	machine__exit_vdso(machine);
132 	zfree(&machine->root_dir);
133 	zfree(&machine->current_tid);
134 	pthread_rwlock_destroy(&machine->threads_lock);
135 }
136 
137 void machine__delete(struct machine *machine)
138 {
139 	machine__exit(machine);
140 	free(machine);
141 }
142 
143 void machines__init(struct machines *machines)
144 {
145 	machine__init(&machines->host, "", HOST_KERNEL_ID);
146 	machines->guests = RB_ROOT;
147 	machines->symbol_filter = NULL;
148 }
149 
150 void machines__exit(struct machines *machines)
151 {
152 	machine__exit(&machines->host);
153 	/* XXX exit guest */
154 }
155 
156 struct machine *machines__add(struct machines *machines, pid_t pid,
157 			      const char *root_dir)
158 {
159 	struct rb_node **p = &machines->guests.rb_node;
160 	struct rb_node *parent = NULL;
161 	struct machine *pos, *machine = malloc(sizeof(*machine));
162 
163 	if (machine == NULL)
164 		return NULL;
165 
166 	if (machine__init(machine, root_dir, pid) != 0) {
167 		free(machine);
168 		return NULL;
169 	}
170 
171 	machine->symbol_filter = machines->symbol_filter;
172 
173 	while (*p != NULL) {
174 		parent = *p;
175 		pos = rb_entry(parent, struct machine, rb_node);
176 		if (pid < pos->pid)
177 			p = &(*p)->rb_left;
178 		else
179 			p = &(*p)->rb_right;
180 	}
181 
182 	rb_link_node(&machine->rb_node, parent, p);
183 	rb_insert_color(&machine->rb_node, &machines->guests);
184 
185 	return machine;
186 }
187 
188 void machines__set_symbol_filter(struct machines *machines,
189 				 symbol_filter_t symbol_filter)
190 {
191 	struct rb_node *nd;
192 
193 	machines->symbol_filter = symbol_filter;
194 	machines->host.symbol_filter = symbol_filter;
195 
196 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
197 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
198 
199 		machine->symbol_filter = symbol_filter;
200 	}
201 }
202 
203 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
204 {
205 	struct rb_node *nd;
206 
207 	machines->host.comm_exec = comm_exec;
208 
209 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
210 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
211 
212 		machine->comm_exec = comm_exec;
213 	}
214 }
215 
216 struct machine *machines__find(struct machines *machines, pid_t pid)
217 {
218 	struct rb_node **p = &machines->guests.rb_node;
219 	struct rb_node *parent = NULL;
220 	struct machine *machine;
221 	struct machine *default_machine = NULL;
222 
223 	if (pid == HOST_KERNEL_ID)
224 		return &machines->host;
225 
226 	while (*p != NULL) {
227 		parent = *p;
228 		machine = rb_entry(parent, struct machine, rb_node);
229 		if (pid < machine->pid)
230 			p = &(*p)->rb_left;
231 		else if (pid > machine->pid)
232 			p = &(*p)->rb_right;
233 		else
234 			return machine;
235 		if (!machine->pid)
236 			default_machine = machine;
237 	}
238 
239 	return default_machine;
240 }
241 
242 struct machine *machines__findnew(struct machines *machines, pid_t pid)
243 {
244 	char path[PATH_MAX];
245 	const char *root_dir = "";
246 	struct machine *machine = machines__find(machines, pid);
247 
248 	if (machine && (machine->pid == pid))
249 		goto out;
250 
251 	if ((pid != HOST_KERNEL_ID) &&
252 	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
253 	    (symbol_conf.guestmount)) {
254 		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
255 		if (access(path, R_OK)) {
256 			static struct strlist *seen;
257 
258 			if (!seen)
259 				seen = strlist__new(NULL, NULL);
260 
261 			if (!strlist__has_entry(seen, path)) {
262 				pr_err("Can't access file %s\n", path);
263 				strlist__add(seen, path);
264 			}
265 			machine = NULL;
266 			goto out;
267 		}
268 		root_dir = path;
269 	}
270 
271 	machine = machines__add(machines, pid, root_dir);
272 out:
273 	return machine;
274 }
275 
276 void machines__process_guests(struct machines *machines,
277 			      machine__process_t process, void *data)
278 {
279 	struct rb_node *nd;
280 
281 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
282 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
283 		process(pos, data);
284 	}
285 }
286 
287 char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
288 {
289 	if (machine__is_host(machine))
290 		snprintf(bf, size, "[%s]", "kernel.kallsyms");
291 	else if (machine__is_default_guest(machine))
292 		snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
293 	else {
294 		snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
295 			 machine->pid);
296 	}
297 
298 	return bf;
299 }
300 
301 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
302 {
303 	struct rb_node *node;
304 	struct machine *machine;
305 
306 	machines->host.id_hdr_size = id_hdr_size;
307 
308 	for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
309 		machine = rb_entry(node, struct machine, rb_node);
310 		machine->id_hdr_size = id_hdr_size;
311 	}
312 
313 	return;
314 }
315 
316 static void machine__update_thread_pid(struct machine *machine,
317 				       struct thread *th, pid_t pid)
318 {
319 	struct thread *leader;
320 
321 	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
322 		return;
323 
324 	th->pid_ = pid;
325 
326 	if (th->pid_ == th->tid)
327 		return;
328 
329 	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
330 	if (!leader)
331 		goto out_err;
332 
333 	if (!leader->mg)
334 		leader->mg = map_groups__new(machine);
335 
336 	if (!leader->mg)
337 		goto out_err;
338 
339 	if (th->mg == leader->mg)
340 		return;
341 
342 	if (th->mg) {
343 		/*
344 		 * Maps are created from MMAP events which provide the pid and
345 		 * tid.  Consequently there never should be any maps on a thread
346 		 * with an unknown pid.  Just print an error if there are.
347 		 */
348 		if (!map_groups__empty(th->mg))
349 			pr_err("Discarding thread maps for %d:%d\n",
350 			       th->pid_, th->tid);
351 		map_groups__put(th->mg);
352 	}
353 
354 	th->mg = map_groups__get(leader->mg);
355 out_put:
356 	thread__put(leader);
357 	return;
358 out_err:
359 	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
360 	goto out_put;
361 }
362 
363 /*
364  * Caller must eventually drop thread->refcnt returned with a successfull
365  * lookup/new thread inserted.
366  */
367 static struct thread *____machine__findnew_thread(struct machine *machine,
368 						  pid_t pid, pid_t tid,
369 						  bool create)
370 {
371 	struct rb_node **p = &machine->threads.rb_node;
372 	struct rb_node *parent = NULL;
373 	struct thread *th;
374 
375 	/*
376 	 * Front-end cache - TID lookups come in blocks,
377 	 * so most of the time we dont have to look up
378 	 * the full rbtree:
379 	 */
380 	th = machine->last_match;
381 	if (th != NULL) {
382 		if (th->tid == tid) {
383 			machine__update_thread_pid(machine, th, pid);
384 			return thread__get(th);
385 		}
386 
387 		machine->last_match = NULL;
388 	}
389 
390 	while (*p != NULL) {
391 		parent = *p;
392 		th = rb_entry(parent, struct thread, rb_node);
393 
394 		if (th->tid == tid) {
395 			machine->last_match = th;
396 			machine__update_thread_pid(machine, th, pid);
397 			return thread__get(th);
398 		}
399 
400 		if (tid < th->tid)
401 			p = &(*p)->rb_left;
402 		else
403 			p = &(*p)->rb_right;
404 	}
405 
406 	if (!create)
407 		return NULL;
408 
409 	th = thread__new(pid, tid);
410 	if (th != NULL) {
411 		rb_link_node(&th->rb_node, parent, p);
412 		rb_insert_color(&th->rb_node, &machine->threads);
413 
414 		/*
415 		 * We have to initialize map_groups separately
416 		 * after rb tree is updated.
417 		 *
418 		 * The reason is that we call machine__findnew_thread
419 		 * within thread__init_map_groups to find the thread
420 		 * leader and that would screwed the rb tree.
421 		 */
422 		if (thread__init_map_groups(th, machine)) {
423 			rb_erase_init(&th->rb_node, &machine->threads);
424 			RB_CLEAR_NODE(&th->rb_node);
425 			thread__put(th);
426 			return NULL;
427 		}
428 		/*
429 		 * It is now in the rbtree, get a ref
430 		 */
431 		thread__get(th);
432 		machine->last_match = th;
433 	}
434 
435 	return th;
436 }
437 
438 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
439 {
440 	return ____machine__findnew_thread(machine, pid, tid, true);
441 }
442 
443 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
444 				       pid_t tid)
445 {
446 	struct thread *th;
447 
448 	pthread_rwlock_wrlock(&machine->threads_lock);
449 	th = __machine__findnew_thread(machine, pid, tid);
450 	pthread_rwlock_unlock(&machine->threads_lock);
451 	return th;
452 }
453 
454 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
455 				    pid_t tid)
456 {
457 	struct thread *th;
458 	pthread_rwlock_rdlock(&machine->threads_lock);
459 	th =  ____machine__findnew_thread(machine, pid, tid, false);
460 	pthread_rwlock_unlock(&machine->threads_lock);
461 	return th;
462 }
463 
464 struct comm *machine__thread_exec_comm(struct machine *machine,
465 				       struct thread *thread)
466 {
467 	if (machine->comm_exec)
468 		return thread__exec_comm(thread);
469 	else
470 		return thread__comm(thread);
471 }
472 
473 int machine__process_comm_event(struct machine *machine, union perf_event *event,
474 				struct perf_sample *sample)
475 {
476 	struct thread *thread = machine__findnew_thread(machine,
477 							event->comm.pid,
478 							event->comm.tid);
479 	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
480 	int err = 0;
481 
482 	if (exec)
483 		machine->comm_exec = true;
484 
485 	if (dump_trace)
486 		perf_event__fprintf_comm(event, stdout);
487 
488 	if (thread == NULL ||
489 	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
490 		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
491 		err = -1;
492 	}
493 
494 	thread__put(thread);
495 
496 	return err;
497 }
498 
499 int machine__process_lost_event(struct machine *machine __maybe_unused,
500 				union perf_event *event, struct perf_sample *sample __maybe_unused)
501 {
502 	dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
503 		    event->lost.id, event->lost.lost);
504 	return 0;
505 }
506 
507 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
508 					union perf_event *event, struct perf_sample *sample)
509 {
510 	dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
511 		    sample->id, event->lost_samples.lost);
512 	return 0;
513 }
514 
515 static struct dso *machine__findnew_module_dso(struct machine *machine,
516 					       struct kmod_path *m,
517 					       const char *filename)
518 {
519 	struct dso *dso;
520 
521 	pthread_rwlock_wrlock(&machine->dsos.lock);
522 
523 	dso = __dsos__find(&machine->dsos, m->name, true);
524 	if (!dso) {
525 		dso = __dsos__addnew(&machine->dsos, m->name);
526 		if (dso == NULL)
527 			goto out_unlock;
528 
529 		if (machine__is_host(machine))
530 			dso->symtab_type = DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE;
531 		else
532 			dso->symtab_type = DSO_BINARY_TYPE__GUEST_KMODULE;
533 
534 		/* _KMODULE_COMP should be next to _KMODULE */
535 		if (m->kmod && m->comp)
536 			dso->symtab_type++;
537 
538 		dso__set_short_name(dso, strdup(m->name), true);
539 		dso__set_long_name(dso, strdup(filename), true);
540 	}
541 
542 	dso__get(dso);
543 out_unlock:
544 	pthread_rwlock_unlock(&machine->dsos.lock);
545 	return dso;
546 }
547 
548 int machine__process_aux_event(struct machine *machine __maybe_unused,
549 			       union perf_event *event)
550 {
551 	if (dump_trace)
552 		perf_event__fprintf_aux(event, stdout);
553 	return 0;
554 }
555 
556 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
557 					union perf_event *event)
558 {
559 	if (dump_trace)
560 		perf_event__fprintf_itrace_start(event, stdout);
561 	return 0;
562 }
563 
564 int machine__process_switch_event(struct machine *machine __maybe_unused,
565 				  union perf_event *event)
566 {
567 	if (dump_trace)
568 		perf_event__fprintf_switch(event, stdout);
569 	return 0;
570 }
571 
572 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
573 {
574 	const char *dup_filename;
575 
576 	if (!filename || !dso || !dso->long_name)
577 		return;
578 	if (dso->long_name[0] != '[')
579 		return;
580 	if (!strchr(filename, '/'))
581 		return;
582 
583 	dup_filename = strdup(filename);
584 	if (!dup_filename)
585 		return;
586 
587 	dso__set_long_name(dso, dup_filename, true);
588 }
589 
590 struct map *machine__findnew_module_map(struct machine *machine, u64 start,
591 					const char *filename)
592 {
593 	struct map *map = NULL;
594 	struct dso *dso = NULL;
595 	struct kmod_path m;
596 
597 	if (kmod_path__parse_name(&m, filename))
598 		return NULL;
599 
600 	map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
601 				       m.name);
602 	if (map) {
603 		/*
604 		 * If the map's dso is an offline module, give dso__load()
605 		 * a chance to find the file path of that module by fixing
606 		 * long_name.
607 		 */
608 		dso__adjust_kmod_long_name(map->dso, filename);
609 		goto out;
610 	}
611 
612 	dso = machine__findnew_module_dso(machine, &m, filename);
613 	if (dso == NULL)
614 		goto out;
615 
616 	map = map__new2(start, dso, MAP__FUNCTION);
617 	if (map == NULL)
618 		goto out;
619 
620 	map_groups__insert(&machine->kmaps, map);
621 
622 	/* Put the map here because map_groups__insert alread got it */
623 	map__put(map);
624 out:
625 	/* put the dso here, corresponding to  machine__findnew_module_dso */
626 	dso__put(dso);
627 	free(m.name);
628 	return map;
629 }
630 
631 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
632 {
633 	struct rb_node *nd;
634 	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
635 
636 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
637 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
638 		ret += __dsos__fprintf(&pos->dsos.head, fp);
639 	}
640 
641 	return ret;
642 }
643 
644 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
645 				     bool (skip)(struct dso *dso, int parm), int parm)
646 {
647 	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
648 }
649 
650 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
651 				     bool (skip)(struct dso *dso, int parm), int parm)
652 {
653 	struct rb_node *nd;
654 	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
655 
656 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
657 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
658 		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
659 	}
660 	return ret;
661 }
662 
663 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
664 {
665 	int i;
666 	size_t printed = 0;
667 	struct dso *kdso = machine__kernel_map(machine)->dso;
668 
669 	if (kdso->has_build_id) {
670 		char filename[PATH_MAX];
671 		if (dso__build_id_filename(kdso, filename, sizeof(filename)))
672 			printed += fprintf(fp, "[0] %s\n", filename);
673 	}
674 
675 	for (i = 0; i < vmlinux_path__nr_entries; ++i)
676 		printed += fprintf(fp, "[%d] %s\n",
677 				   i + kdso->has_build_id, vmlinux_path[i]);
678 
679 	return printed;
680 }
681 
682 size_t machine__fprintf(struct machine *machine, FILE *fp)
683 {
684 	size_t ret = 0;
685 	struct rb_node *nd;
686 
687 	pthread_rwlock_rdlock(&machine->threads_lock);
688 
689 	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
690 		struct thread *pos = rb_entry(nd, struct thread, rb_node);
691 
692 		ret += thread__fprintf(pos, fp);
693 	}
694 
695 	pthread_rwlock_unlock(&machine->threads_lock);
696 
697 	return ret;
698 }
699 
700 static struct dso *machine__get_kernel(struct machine *machine)
701 {
702 	const char *vmlinux_name = NULL;
703 	struct dso *kernel;
704 
705 	if (machine__is_host(machine)) {
706 		vmlinux_name = symbol_conf.vmlinux_name;
707 		if (!vmlinux_name)
708 			vmlinux_name = "[kernel.kallsyms]";
709 
710 		kernel = machine__findnew_kernel(machine, vmlinux_name,
711 						 "[kernel]", DSO_TYPE_KERNEL);
712 	} else {
713 		char bf[PATH_MAX];
714 
715 		if (machine__is_default_guest(machine))
716 			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
717 		if (!vmlinux_name)
718 			vmlinux_name = machine__mmap_name(machine, bf,
719 							  sizeof(bf));
720 
721 		kernel = machine__findnew_kernel(machine, vmlinux_name,
722 						 "[guest.kernel]",
723 						 DSO_TYPE_GUEST_KERNEL);
724 	}
725 
726 	if (kernel != NULL && (!kernel->has_build_id))
727 		dso__read_running_kernel_build_id(kernel, machine);
728 
729 	return kernel;
730 }
731 
732 struct process_args {
733 	u64 start;
734 };
735 
736 static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
737 					   size_t bufsz)
738 {
739 	if (machine__is_default_guest(machine))
740 		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
741 	else
742 		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
743 }
744 
745 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
746 
747 /* Figure out the start address of kernel map from /proc/kallsyms.
748  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
749  * symbol_name if it's not that important.
750  */
751 static u64 machine__get_running_kernel_start(struct machine *machine,
752 					     const char **symbol_name)
753 {
754 	char filename[PATH_MAX];
755 	int i;
756 	const char *name;
757 	u64 addr = 0;
758 
759 	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
760 
761 	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
762 		return 0;
763 
764 	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
765 		addr = kallsyms__get_function_start(filename, name);
766 		if (addr)
767 			break;
768 	}
769 
770 	if (symbol_name)
771 		*symbol_name = name;
772 
773 	return addr;
774 }
775 
776 int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
777 {
778 	enum map_type type;
779 	u64 start = machine__get_running_kernel_start(machine, NULL);
780 
781 	/* In case of renewal the kernel map, destroy previous one */
782 	machine__destroy_kernel_maps(machine);
783 
784 	for (type = 0; type < MAP__NR_TYPES; ++type) {
785 		struct kmap *kmap;
786 		struct map *map;
787 
788 		machine->vmlinux_maps[type] = map__new2(start, kernel, type);
789 		if (machine->vmlinux_maps[type] == NULL)
790 			return -1;
791 
792 		machine->vmlinux_maps[type]->map_ip =
793 			machine->vmlinux_maps[type]->unmap_ip =
794 				identity__map_ip;
795 		map = __machine__kernel_map(machine, type);
796 		kmap = map__kmap(map);
797 		if (!kmap)
798 			return -1;
799 
800 		kmap->kmaps = &machine->kmaps;
801 		map_groups__insert(&machine->kmaps, map);
802 	}
803 
804 	return 0;
805 }
806 
807 void machine__destroy_kernel_maps(struct machine *machine)
808 {
809 	enum map_type type;
810 
811 	for (type = 0; type < MAP__NR_TYPES; ++type) {
812 		struct kmap *kmap;
813 		struct map *map = __machine__kernel_map(machine, type);
814 
815 		if (map == NULL)
816 			continue;
817 
818 		kmap = map__kmap(map);
819 		map_groups__remove(&machine->kmaps, map);
820 		if (kmap && kmap->ref_reloc_sym) {
821 			/*
822 			 * ref_reloc_sym is shared among all maps, so free just
823 			 * on one of them.
824 			 */
825 			if (type == MAP__FUNCTION) {
826 				zfree((char **)&kmap->ref_reloc_sym->name);
827 				zfree(&kmap->ref_reloc_sym);
828 			} else
829 				kmap->ref_reloc_sym = NULL;
830 		}
831 
832 		map__put(machine->vmlinux_maps[type]);
833 		machine->vmlinux_maps[type] = NULL;
834 	}
835 }
836 
837 int machines__create_guest_kernel_maps(struct machines *machines)
838 {
839 	int ret = 0;
840 	struct dirent **namelist = NULL;
841 	int i, items = 0;
842 	char path[PATH_MAX];
843 	pid_t pid;
844 	char *endp;
845 
846 	if (symbol_conf.default_guest_vmlinux_name ||
847 	    symbol_conf.default_guest_modules ||
848 	    symbol_conf.default_guest_kallsyms) {
849 		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
850 	}
851 
852 	if (symbol_conf.guestmount) {
853 		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
854 		if (items <= 0)
855 			return -ENOENT;
856 		for (i = 0; i < items; i++) {
857 			if (!isdigit(namelist[i]->d_name[0])) {
858 				/* Filter out . and .. */
859 				continue;
860 			}
861 			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
862 			if ((*endp != '\0') ||
863 			    (endp == namelist[i]->d_name) ||
864 			    (errno == ERANGE)) {
865 				pr_debug("invalid directory (%s). Skipping.\n",
866 					 namelist[i]->d_name);
867 				continue;
868 			}
869 			sprintf(path, "%s/%s/proc/kallsyms",
870 				symbol_conf.guestmount,
871 				namelist[i]->d_name);
872 			ret = access(path, R_OK);
873 			if (ret) {
874 				pr_debug("Can't access file %s\n", path);
875 				goto failure;
876 			}
877 			machines__create_kernel_maps(machines, pid);
878 		}
879 failure:
880 		free(namelist);
881 	}
882 
883 	return ret;
884 }
885 
886 void machines__destroy_kernel_maps(struct machines *machines)
887 {
888 	struct rb_node *next = rb_first(&machines->guests);
889 
890 	machine__destroy_kernel_maps(&machines->host);
891 
892 	while (next) {
893 		struct machine *pos = rb_entry(next, struct machine, rb_node);
894 
895 		next = rb_next(&pos->rb_node);
896 		rb_erase(&pos->rb_node, &machines->guests);
897 		machine__delete(pos);
898 	}
899 }
900 
901 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
902 {
903 	struct machine *machine = machines__findnew(machines, pid);
904 
905 	if (machine == NULL)
906 		return -1;
907 
908 	return machine__create_kernel_maps(machine);
909 }
910 
911 int machine__load_kallsyms(struct machine *machine, const char *filename,
912 			   enum map_type type, symbol_filter_t filter)
913 {
914 	struct map *map = machine__kernel_map(machine);
915 	int ret = dso__load_kallsyms(map->dso, filename, map, filter);
916 
917 	if (ret > 0) {
918 		dso__set_loaded(map->dso, type);
919 		/*
920 		 * Since /proc/kallsyms will have multiple sessions for the
921 		 * kernel, with modules between them, fixup the end of all
922 		 * sections.
923 		 */
924 		__map_groups__fixup_end(&machine->kmaps, type);
925 	}
926 
927 	return ret;
928 }
929 
930 int machine__load_vmlinux_path(struct machine *machine, enum map_type type,
931 			       symbol_filter_t filter)
932 {
933 	struct map *map = machine__kernel_map(machine);
934 	int ret = dso__load_vmlinux_path(map->dso, map, filter);
935 
936 	if (ret > 0)
937 		dso__set_loaded(map->dso, type);
938 
939 	return ret;
940 }
941 
942 static void map_groups__fixup_end(struct map_groups *mg)
943 {
944 	int i;
945 	for (i = 0; i < MAP__NR_TYPES; ++i)
946 		__map_groups__fixup_end(mg, i);
947 }
948 
949 static char *get_kernel_version(const char *root_dir)
950 {
951 	char version[PATH_MAX];
952 	FILE *file;
953 	char *name, *tmp;
954 	const char *prefix = "Linux version ";
955 
956 	sprintf(version, "%s/proc/version", root_dir);
957 	file = fopen(version, "r");
958 	if (!file)
959 		return NULL;
960 
961 	version[0] = '\0';
962 	tmp = fgets(version, sizeof(version), file);
963 	fclose(file);
964 
965 	name = strstr(version, prefix);
966 	if (!name)
967 		return NULL;
968 	name += strlen(prefix);
969 	tmp = strchr(name, ' ');
970 	if (tmp)
971 		*tmp = '\0';
972 
973 	return strdup(name);
974 }
975 
976 static bool is_kmod_dso(struct dso *dso)
977 {
978 	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
979 	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
980 }
981 
982 static int map_groups__set_module_path(struct map_groups *mg, const char *path,
983 				       struct kmod_path *m)
984 {
985 	struct map *map;
986 	char *long_name;
987 
988 	map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
989 	if (map == NULL)
990 		return 0;
991 
992 	long_name = strdup(path);
993 	if (long_name == NULL)
994 		return -ENOMEM;
995 
996 	dso__set_long_name(map->dso, long_name, true);
997 	dso__kernel_module_get_build_id(map->dso, "");
998 
999 	/*
1000 	 * Full name could reveal us kmod compression, so
1001 	 * we need to update the symtab_type if needed.
1002 	 */
1003 	if (m->comp && is_kmod_dso(map->dso))
1004 		map->dso->symtab_type++;
1005 
1006 	return 0;
1007 }
1008 
1009 static int map_groups__set_modules_path_dir(struct map_groups *mg,
1010 				const char *dir_name, int depth)
1011 {
1012 	struct dirent *dent;
1013 	DIR *dir = opendir(dir_name);
1014 	int ret = 0;
1015 
1016 	if (!dir) {
1017 		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1018 		return -1;
1019 	}
1020 
1021 	while ((dent = readdir(dir)) != NULL) {
1022 		char path[PATH_MAX];
1023 		struct stat st;
1024 
1025 		/*sshfs might return bad dent->d_type, so we have to stat*/
1026 		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1027 		if (stat(path, &st))
1028 			continue;
1029 
1030 		if (S_ISDIR(st.st_mode)) {
1031 			if (!strcmp(dent->d_name, ".") ||
1032 			    !strcmp(dent->d_name, ".."))
1033 				continue;
1034 
1035 			/* Do not follow top-level source and build symlinks */
1036 			if (depth == 0) {
1037 				if (!strcmp(dent->d_name, "source") ||
1038 				    !strcmp(dent->d_name, "build"))
1039 					continue;
1040 			}
1041 
1042 			ret = map_groups__set_modules_path_dir(mg, path,
1043 							       depth + 1);
1044 			if (ret < 0)
1045 				goto out;
1046 		} else {
1047 			struct kmod_path m;
1048 
1049 			ret = kmod_path__parse_name(&m, dent->d_name);
1050 			if (ret)
1051 				goto out;
1052 
1053 			if (m.kmod)
1054 				ret = map_groups__set_module_path(mg, path, &m);
1055 
1056 			free(m.name);
1057 
1058 			if (ret)
1059 				goto out;
1060 		}
1061 	}
1062 
1063 out:
1064 	closedir(dir);
1065 	return ret;
1066 }
1067 
1068 static int machine__set_modules_path(struct machine *machine)
1069 {
1070 	char *version;
1071 	char modules_path[PATH_MAX];
1072 
1073 	version = get_kernel_version(machine->root_dir);
1074 	if (!version)
1075 		return -1;
1076 
1077 	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1078 		 machine->root_dir, version);
1079 	free(version);
1080 
1081 	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1082 }
1083 
1084 static int machine__create_module(void *arg, const char *name, u64 start)
1085 {
1086 	struct machine *machine = arg;
1087 	struct map *map;
1088 
1089 	map = machine__findnew_module_map(machine, start, name);
1090 	if (map == NULL)
1091 		return -1;
1092 
1093 	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1094 
1095 	return 0;
1096 }
1097 
1098 static int machine__create_modules(struct machine *machine)
1099 {
1100 	const char *modules;
1101 	char path[PATH_MAX];
1102 
1103 	if (machine__is_default_guest(machine)) {
1104 		modules = symbol_conf.default_guest_modules;
1105 	} else {
1106 		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1107 		modules = path;
1108 	}
1109 
1110 	if (symbol__restricted_filename(modules, "/proc/modules"))
1111 		return -1;
1112 
1113 	if (modules__parse(modules, machine, machine__create_module))
1114 		return -1;
1115 
1116 	if (!machine__set_modules_path(machine))
1117 		return 0;
1118 
1119 	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1120 
1121 	return 0;
1122 }
1123 
1124 int machine__create_kernel_maps(struct machine *machine)
1125 {
1126 	struct dso *kernel = machine__get_kernel(machine);
1127 	const char *name;
1128 	u64 addr = machine__get_running_kernel_start(machine, &name);
1129 	int ret;
1130 
1131 	if (!addr || kernel == NULL)
1132 		return -1;
1133 
1134 	ret = __machine__create_kernel_maps(machine, kernel);
1135 	dso__put(kernel);
1136 	if (ret < 0)
1137 		return -1;
1138 
1139 	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1140 		if (machine__is_host(machine))
1141 			pr_debug("Problems creating module maps, "
1142 				 "continuing anyway...\n");
1143 		else
1144 			pr_debug("Problems creating module maps for guest %d, "
1145 				 "continuing anyway...\n", machine->pid);
1146 	}
1147 
1148 	/*
1149 	 * Now that we have all the maps created, just set the ->end of them:
1150 	 */
1151 	map_groups__fixup_end(&machine->kmaps);
1152 
1153 	if (maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name,
1154 					     addr)) {
1155 		machine__destroy_kernel_maps(machine);
1156 		return -1;
1157 	}
1158 
1159 	return 0;
1160 }
1161 
1162 static void machine__set_kernel_mmap_len(struct machine *machine,
1163 					 union perf_event *event)
1164 {
1165 	int i;
1166 
1167 	for (i = 0; i < MAP__NR_TYPES; i++) {
1168 		machine->vmlinux_maps[i]->start = event->mmap.start;
1169 		machine->vmlinux_maps[i]->end   = (event->mmap.start +
1170 						   event->mmap.len);
1171 		/*
1172 		 * Be a bit paranoid here, some perf.data file came with
1173 		 * a zero sized synthesized MMAP event for the kernel.
1174 		 */
1175 		if (machine->vmlinux_maps[i]->end == 0)
1176 			machine->vmlinux_maps[i]->end = ~0ULL;
1177 	}
1178 }
1179 
1180 static bool machine__uses_kcore(struct machine *machine)
1181 {
1182 	struct dso *dso;
1183 
1184 	list_for_each_entry(dso, &machine->dsos.head, node) {
1185 		if (dso__is_kcore(dso))
1186 			return true;
1187 	}
1188 
1189 	return false;
1190 }
1191 
1192 static int machine__process_kernel_mmap_event(struct machine *machine,
1193 					      union perf_event *event)
1194 {
1195 	struct map *map;
1196 	char kmmap_prefix[PATH_MAX];
1197 	enum dso_kernel_type kernel_type;
1198 	bool is_kernel_mmap;
1199 
1200 	/* If we have maps from kcore then we do not need or want any others */
1201 	if (machine__uses_kcore(machine))
1202 		return 0;
1203 
1204 	machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
1205 	if (machine__is_host(machine))
1206 		kernel_type = DSO_TYPE_KERNEL;
1207 	else
1208 		kernel_type = DSO_TYPE_GUEST_KERNEL;
1209 
1210 	is_kernel_mmap = memcmp(event->mmap.filename,
1211 				kmmap_prefix,
1212 				strlen(kmmap_prefix) - 1) == 0;
1213 	if (event->mmap.filename[0] == '/' ||
1214 	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1215 		map = machine__findnew_module_map(machine, event->mmap.start,
1216 						  event->mmap.filename);
1217 		if (map == NULL)
1218 			goto out_problem;
1219 
1220 		map->end = map->start + event->mmap.len;
1221 	} else if (is_kernel_mmap) {
1222 		const char *symbol_name = (event->mmap.filename +
1223 				strlen(kmmap_prefix));
1224 		/*
1225 		 * Should be there already, from the build-id table in
1226 		 * the header.
1227 		 */
1228 		struct dso *kernel = NULL;
1229 		struct dso *dso;
1230 
1231 		pthread_rwlock_rdlock(&machine->dsos.lock);
1232 
1233 		list_for_each_entry(dso, &machine->dsos.head, node) {
1234 
1235 			/*
1236 			 * The cpumode passed to is_kernel_module is not the
1237 			 * cpumode of *this* event. If we insist on passing
1238 			 * correct cpumode to is_kernel_module, we should
1239 			 * record the cpumode when we adding this dso to the
1240 			 * linked list.
1241 			 *
1242 			 * However we don't really need passing correct
1243 			 * cpumode.  We know the correct cpumode must be kernel
1244 			 * mode (if not, we should not link it onto kernel_dsos
1245 			 * list).
1246 			 *
1247 			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1248 			 * is_kernel_module() treats it as a kernel cpumode.
1249 			 */
1250 
1251 			if (!dso->kernel ||
1252 			    is_kernel_module(dso->long_name,
1253 					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1254 				continue;
1255 
1256 
1257 			kernel = dso;
1258 			break;
1259 		}
1260 
1261 		pthread_rwlock_unlock(&machine->dsos.lock);
1262 
1263 		if (kernel == NULL)
1264 			kernel = machine__findnew_dso(machine, kmmap_prefix);
1265 		if (kernel == NULL)
1266 			goto out_problem;
1267 
1268 		kernel->kernel = kernel_type;
1269 		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1270 			dso__put(kernel);
1271 			goto out_problem;
1272 		}
1273 
1274 		if (strstr(kernel->long_name, "vmlinux"))
1275 			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1276 
1277 		machine__set_kernel_mmap_len(machine, event);
1278 
1279 		/*
1280 		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1281 		 * symbol. Effectively having zero here means that at record
1282 		 * time /proc/sys/kernel/kptr_restrict was non zero.
1283 		 */
1284 		if (event->mmap.pgoff != 0) {
1285 			maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
1286 							 symbol_name,
1287 							 event->mmap.pgoff);
1288 		}
1289 
1290 		if (machine__is_default_guest(machine)) {
1291 			/*
1292 			 * preload dso of guest kernel and modules
1293 			 */
1294 			dso__load(kernel, machine__kernel_map(machine), NULL);
1295 		}
1296 	}
1297 	return 0;
1298 out_problem:
1299 	return -1;
1300 }
1301 
1302 int machine__process_mmap2_event(struct machine *machine,
1303 				 union perf_event *event,
1304 				 struct perf_sample *sample __maybe_unused)
1305 {
1306 	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1307 	struct thread *thread;
1308 	struct map *map;
1309 	enum map_type type;
1310 	int ret = 0;
1311 
1312 	if (dump_trace)
1313 		perf_event__fprintf_mmap2(event, stdout);
1314 
1315 	if (cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1316 	    cpumode == PERF_RECORD_MISC_KERNEL) {
1317 		ret = machine__process_kernel_mmap_event(machine, event);
1318 		if (ret < 0)
1319 			goto out_problem;
1320 		return 0;
1321 	}
1322 
1323 	thread = machine__findnew_thread(machine, event->mmap2.pid,
1324 					event->mmap2.tid);
1325 	if (thread == NULL)
1326 		goto out_problem;
1327 
1328 	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1329 		type = MAP__VARIABLE;
1330 	else
1331 		type = MAP__FUNCTION;
1332 
1333 	map = map__new(machine, event->mmap2.start,
1334 			event->mmap2.len, event->mmap2.pgoff,
1335 			event->mmap2.pid, event->mmap2.maj,
1336 			event->mmap2.min, event->mmap2.ino,
1337 			event->mmap2.ino_generation,
1338 			event->mmap2.prot,
1339 			event->mmap2.flags,
1340 			event->mmap2.filename, type, thread);
1341 
1342 	if (map == NULL)
1343 		goto out_problem_map;
1344 
1345 	thread__insert_map(thread, map);
1346 	thread__put(thread);
1347 	map__put(map);
1348 	return 0;
1349 
1350 out_problem_map:
1351 	thread__put(thread);
1352 out_problem:
1353 	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1354 	return 0;
1355 }
1356 
1357 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1358 				struct perf_sample *sample __maybe_unused)
1359 {
1360 	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1361 	struct thread *thread;
1362 	struct map *map;
1363 	enum map_type type;
1364 	int ret = 0;
1365 
1366 	if (dump_trace)
1367 		perf_event__fprintf_mmap(event, stdout);
1368 
1369 	if (cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1370 	    cpumode == PERF_RECORD_MISC_KERNEL) {
1371 		ret = machine__process_kernel_mmap_event(machine, event);
1372 		if (ret < 0)
1373 			goto out_problem;
1374 		return 0;
1375 	}
1376 
1377 	thread = machine__findnew_thread(machine, event->mmap.pid,
1378 					 event->mmap.tid);
1379 	if (thread == NULL)
1380 		goto out_problem;
1381 
1382 	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1383 		type = MAP__VARIABLE;
1384 	else
1385 		type = MAP__FUNCTION;
1386 
1387 	map = map__new(machine, event->mmap.start,
1388 			event->mmap.len, event->mmap.pgoff,
1389 			event->mmap.pid, 0, 0, 0, 0, 0, 0,
1390 			event->mmap.filename,
1391 			type, thread);
1392 
1393 	if (map == NULL)
1394 		goto out_problem_map;
1395 
1396 	thread__insert_map(thread, map);
1397 	thread__put(thread);
1398 	map__put(map);
1399 	return 0;
1400 
1401 out_problem_map:
1402 	thread__put(thread);
1403 out_problem:
1404 	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1405 	return 0;
1406 }
1407 
1408 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1409 {
1410 	if (machine->last_match == th)
1411 		machine->last_match = NULL;
1412 
1413 	BUG_ON(atomic_read(&th->refcnt) == 0);
1414 	if (lock)
1415 		pthread_rwlock_wrlock(&machine->threads_lock);
1416 	rb_erase_init(&th->rb_node, &machine->threads);
1417 	RB_CLEAR_NODE(&th->rb_node);
1418 	/*
1419 	 * Move it first to the dead_threads list, then drop the reference,
1420 	 * if this is the last reference, then the thread__delete destructor
1421 	 * will be called and we will remove it from the dead_threads list.
1422 	 */
1423 	list_add_tail(&th->node, &machine->dead_threads);
1424 	if (lock)
1425 		pthread_rwlock_unlock(&machine->threads_lock);
1426 	thread__put(th);
1427 }
1428 
1429 void machine__remove_thread(struct machine *machine, struct thread *th)
1430 {
1431 	return __machine__remove_thread(machine, th, true);
1432 }
1433 
1434 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1435 				struct perf_sample *sample)
1436 {
1437 	struct thread *thread = machine__find_thread(machine,
1438 						     event->fork.pid,
1439 						     event->fork.tid);
1440 	struct thread *parent = machine__findnew_thread(machine,
1441 							event->fork.ppid,
1442 							event->fork.ptid);
1443 	int err = 0;
1444 
1445 	if (dump_trace)
1446 		perf_event__fprintf_task(event, stdout);
1447 
1448 	/*
1449 	 * There may be an existing thread that is not actually the parent,
1450 	 * either because we are processing events out of order, or because the
1451 	 * (fork) event that would have removed the thread was lost. Assume the
1452 	 * latter case and continue on as best we can.
1453 	 */
1454 	if (parent->pid_ != (pid_t)event->fork.ppid) {
1455 		dump_printf("removing erroneous parent thread %d/%d\n",
1456 			    parent->pid_, parent->tid);
1457 		machine__remove_thread(machine, parent);
1458 		thread__put(parent);
1459 		parent = machine__findnew_thread(machine, event->fork.ppid,
1460 						 event->fork.ptid);
1461 	}
1462 
1463 	/* if a thread currently exists for the thread id remove it */
1464 	if (thread != NULL) {
1465 		machine__remove_thread(machine, thread);
1466 		thread__put(thread);
1467 	}
1468 
1469 	thread = machine__findnew_thread(machine, event->fork.pid,
1470 					 event->fork.tid);
1471 
1472 	if (thread == NULL || parent == NULL ||
1473 	    thread__fork(thread, parent, sample->time) < 0) {
1474 		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1475 		err = -1;
1476 	}
1477 	thread__put(thread);
1478 	thread__put(parent);
1479 
1480 	return err;
1481 }
1482 
1483 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1484 				struct perf_sample *sample __maybe_unused)
1485 {
1486 	struct thread *thread = machine__find_thread(machine,
1487 						     event->fork.pid,
1488 						     event->fork.tid);
1489 
1490 	if (dump_trace)
1491 		perf_event__fprintf_task(event, stdout);
1492 
1493 	if (thread != NULL) {
1494 		thread__exited(thread);
1495 		thread__put(thread);
1496 	}
1497 
1498 	return 0;
1499 }
1500 
1501 int machine__process_event(struct machine *machine, union perf_event *event,
1502 			   struct perf_sample *sample)
1503 {
1504 	int ret;
1505 
1506 	switch (event->header.type) {
1507 	case PERF_RECORD_COMM:
1508 		ret = machine__process_comm_event(machine, event, sample); break;
1509 	case PERF_RECORD_MMAP:
1510 		ret = machine__process_mmap_event(machine, event, sample); break;
1511 	case PERF_RECORD_MMAP2:
1512 		ret = machine__process_mmap2_event(machine, event, sample); break;
1513 	case PERF_RECORD_FORK:
1514 		ret = machine__process_fork_event(machine, event, sample); break;
1515 	case PERF_RECORD_EXIT:
1516 		ret = machine__process_exit_event(machine, event, sample); break;
1517 	case PERF_RECORD_LOST:
1518 		ret = machine__process_lost_event(machine, event, sample); break;
1519 	case PERF_RECORD_AUX:
1520 		ret = machine__process_aux_event(machine, event); break;
1521 	case PERF_RECORD_ITRACE_START:
1522 		ret = machine__process_itrace_start_event(machine, event); break;
1523 	case PERF_RECORD_LOST_SAMPLES:
1524 		ret = machine__process_lost_samples_event(machine, event, sample); break;
1525 	case PERF_RECORD_SWITCH:
1526 	case PERF_RECORD_SWITCH_CPU_WIDE:
1527 		ret = machine__process_switch_event(machine, event); break;
1528 	default:
1529 		ret = -1;
1530 		break;
1531 	}
1532 
1533 	return ret;
1534 }
1535 
1536 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1537 {
1538 	if (sym->name && !regexec(regex, sym->name, 0, NULL, 0))
1539 		return 1;
1540 	return 0;
1541 }
1542 
1543 static void ip__resolve_ams(struct thread *thread,
1544 			    struct addr_map_symbol *ams,
1545 			    u64 ip)
1546 {
1547 	struct addr_location al;
1548 
1549 	memset(&al, 0, sizeof(al));
1550 	/*
1551 	 * We cannot use the header.misc hint to determine whether a
1552 	 * branch stack address is user, kernel, guest, hypervisor.
1553 	 * Branches may straddle the kernel/user/hypervisor boundaries.
1554 	 * Thus, we have to try consecutively until we find a match
1555 	 * or else, the symbol is unknown
1556 	 */
1557 	thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1558 
1559 	ams->addr = ip;
1560 	ams->al_addr = al.addr;
1561 	ams->sym = al.sym;
1562 	ams->map = al.map;
1563 }
1564 
1565 static void ip__resolve_data(struct thread *thread,
1566 			     u8 m, struct addr_map_symbol *ams, u64 addr)
1567 {
1568 	struct addr_location al;
1569 
1570 	memset(&al, 0, sizeof(al));
1571 
1572 	thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1573 	if (al.map == NULL) {
1574 		/*
1575 		 * some shared data regions have execute bit set which puts
1576 		 * their mapping in the MAP__FUNCTION type array.
1577 		 * Check there as a fallback option before dropping the sample.
1578 		 */
1579 		thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1580 	}
1581 
1582 	ams->addr = addr;
1583 	ams->al_addr = al.addr;
1584 	ams->sym = al.sym;
1585 	ams->map = al.map;
1586 }
1587 
1588 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1589 				     struct addr_location *al)
1590 {
1591 	struct mem_info *mi = zalloc(sizeof(*mi));
1592 
1593 	if (!mi)
1594 		return NULL;
1595 
1596 	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1597 	ip__resolve_data(al->thread, al->cpumode, &mi->daddr, sample->addr);
1598 	mi->data_src.val = sample->data_src;
1599 
1600 	return mi;
1601 }
1602 
1603 static int add_callchain_ip(struct thread *thread,
1604 			    struct symbol **parent,
1605 			    struct addr_location *root_al,
1606 			    u8 *cpumode,
1607 			    u64 ip)
1608 {
1609 	struct addr_location al;
1610 
1611 	al.filtered = 0;
1612 	al.sym = NULL;
1613 	if (!cpumode) {
1614 		thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
1615 						   ip, &al);
1616 	} else {
1617 		if (ip >= PERF_CONTEXT_MAX) {
1618 			switch (ip) {
1619 			case PERF_CONTEXT_HV:
1620 				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
1621 				break;
1622 			case PERF_CONTEXT_KERNEL:
1623 				*cpumode = PERF_RECORD_MISC_KERNEL;
1624 				break;
1625 			case PERF_CONTEXT_USER:
1626 				*cpumode = PERF_RECORD_MISC_USER;
1627 				break;
1628 			default:
1629 				pr_debug("invalid callchain context: "
1630 					 "%"PRId64"\n", (s64) ip);
1631 				/*
1632 				 * It seems the callchain is corrupted.
1633 				 * Discard all.
1634 				 */
1635 				callchain_cursor_reset(&callchain_cursor);
1636 				return 1;
1637 			}
1638 			return 0;
1639 		}
1640 		thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
1641 					   ip, &al);
1642 	}
1643 
1644 	if (al.sym != NULL) {
1645 		if (sort__has_parent && !*parent &&
1646 		    symbol__match_regex(al.sym, &parent_regex))
1647 			*parent = al.sym;
1648 		else if (have_ignore_callees && root_al &&
1649 		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
1650 			/* Treat this symbol as the root,
1651 			   forgetting its callees. */
1652 			*root_al = al;
1653 			callchain_cursor_reset(&callchain_cursor);
1654 		}
1655 	}
1656 
1657 	if (symbol_conf.hide_unresolved && al.sym == NULL)
1658 		return 0;
1659 	return callchain_cursor_append(&callchain_cursor, al.addr, al.map, al.sym);
1660 }
1661 
1662 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1663 					   struct addr_location *al)
1664 {
1665 	unsigned int i;
1666 	const struct branch_stack *bs = sample->branch_stack;
1667 	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1668 
1669 	if (!bi)
1670 		return NULL;
1671 
1672 	for (i = 0; i < bs->nr; i++) {
1673 		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1674 		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1675 		bi[i].flags = bs->entries[i].flags;
1676 	}
1677 	return bi;
1678 }
1679 
1680 #define CHASHSZ 127
1681 #define CHASHBITS 7
1682 #define NO_ENTRY 0xff
1683 
1684 #define PERF_MAX_BRANCH_DEPTH 127
1685 
1686 /* Remove loops. */
1687 static int remove_loops(struct branch_entry *l, int nr)
1688 {
1689 	int i, j, off;
1690 	unsigned char chash[CHASHSZ];
1691 
1692 	memset(chash, NO_ENTRY, sizeof(chash));
1693 
1694 	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
1695 
1696 	for (i = 0; i < nr; i++) {
1697 		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
1698 
1699 		/* no collision handling for now */
1700 		if (chash[h] == NO_ENTRY) {
1701 			chash[h] = i;
1702 		} else if (l[chash[h]].from == l[i].from) {
1703 			bool is_loop = true;
1704 			/* check if it is a real loop */
1705 			off = 0;
1706 			for (j = chash[h]; j < i && i + off < nr; j++, off++)
1707 				if (l[j].from != l[i + off].from) {
1708 					is_loop = false;
1709 					break;
1710 				}
1711 			if (is_loop) {
1712 				memmove(l + i, l + i + off,
1713 					(nr - (i + off)) * sizeof(*l));
1714 				nr -= off;
1715 			}
1716 		}
1717 	}
1718 	return nr;
1719 }
1720 
1721 /*
1722  * Recolve LBR callstack chain sample
1723  * Return:
1724  * 1 on success get LBR callchain information
1725  * 0 no available LBR callchain information, should try fp
1726  * negative error code on other errors.
1727  */
1728 static int resolve_lbr_callchain_sample(struct thread *thread,
1729 					struct perf_sample *sample,
1730 					struct symbol **parent,
1731 					struct addr_location *root_al,
1732 					int max_stack)
1733 {
1734 	struct ip_callchain *chain = sample->callchain;
1735 	int chain_nr = min(max_stack, (int)chain->nr);
1736 	u8 cpumode = PERF_RECORD_MISC_USER;
1737 	int i, j, err;
1738 	u64 ip;
1739 
1740 	for (i = 0; i < chain_nr; i++) {
1741 		if (chain->ips[i] == PERF_CONTEXT_USER)
1742 			break;
1743 	}
1744 
1745 	/* LBR only affects the user callchain */
1746 	if (i != chain_nr) {
1747 		struct branch_stack *lbr_stack = sample->branch_stack;
1748 		int lbr_nr = lbr_stack->nr;
1749 		/*
1750 		 * LBR callstack can only get user call chain.
1751 		 * The mix_chain_nr is kernel call chain
1752 		 * number plus LBR user call chain number.
1753 		 * i is kernel call chain number,
1754 		 * 1 is PERF_CONTEXT_USER,
1755 		 * lbr_nr + 1 is the user call chain number.
1756 		 * For details, please refer to the comments
1757 		 * in callchain__printf
1758 		 */
1759 		int mix_chain_nr = i + 1 + lbr_nr + 1;
1760 
1761 		if (mix_chain_nr > PERF_MAX_STACK_DEPTH + PERF_MAX_BRANCH_DEPTH) {
1762 			pr_warning("corrupted callchain. skipping...\n");
1763 			return 0;
1764 		}
1765 
1766 		for (j = 0; j < mix_chain_nr; j++) {
1767 			if (callchain_param.order == ORDER_CALLEE) {
1768 				if (j < i + 1)
1769 					ip = chain->ips[j];
1770 				else if (j > i + 1)
1771 					ip = lbr_stack->entries[j - i - 2].from;
1772 				else
1773 					ip = lbr_stack->entries[0].to;
1774 			} else {
1775 				if (j < lbr_nr)
1776 					ip = lbr_stack->entries[lbr_nr - j - 1].from;
1777 				else if (j > lbr_nr)
1778 					ip = chain->ips[i + 1 - (j - lbr_nr)];
1779 				else
1780 					ip = lbr_stack->entries[0].to;
1781 			}
1782 
1783 			err = add_callchain_ip(thread, parent, root_al, &cpumode, ip);
1784 			if (err)
1785 				return (err < 0) ? err : 0;
1786 		}
1787 		return 1;
1788 	}
1789 
1790 	return 0;
1791 }
1792 
1793 static int thread__resolve_callchain_sample(struct thread *thread,
1794 					    struct perf_evsel *evsel,
1795 					    struct perf_sample *sample,
1796 					    struct symbol **parent,
1797 					    struct addr_location *root_al,
1798 					    int max_stack)
1799 {
1800 	struct branch_stack *branch = sample->branch_stack;
1801 	struct ip_callchain *chain = sample->callchain;
1802 	int chain_nr = min(max_stack, (int)chain->nr);
1803 	u8 cpumode = PERF_RECORD_MISC_USER;
1804 	int i, j, err;
1805 	int skip_idx = -1;
1806 	int first_call = 0;
1807 
1808 	callchain_cursor_reset(&callchain_cursor);
1809 
1810 	if (has_branch_callstack(evsel)) {
1811 		err = resolve_lbr_callchain_sample(thread, sample, parent,
1812 						   root_al, max_stack);
1813 		if (err)
1814 			return (err < 0) ? err : 0;
1815 	}
1816 
1817 	/*
1818 	 * Based on DWARF debug information, some architectures skip
1819 	 * a callchain entry saved by the kernel.
1820 	 */
1821 	if (chain->nr < PERF_MAX_STACK_DEPTH)
1822 		skip_idx = arch_skip_callchain_idx(thread, chain);
1823 
1824 	/*
1825 	 * Add branches to call stack for easier browsing. This gives
1826 	 * more context for a sample than just the callers.
1827 	 *
1828 	 * This uses individual histograms of paths compared to the
1829 	 * aggregated histograms the normal LBR mode uses.
1830 	 *
1831 	 * Limitations for now:
1832 	 * - No extra filters
1833 	 * - No annotations (should annotate somehow)
1834 	 */
1835 
1836 	if (branch && callchain_param.branch_callstack) {
1837 		int nr = min(max_stack, (int)branch->nr);
1838 		struct branch_entry be[nr];
1839 
1840 		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
1841 			pr_warning("corrupted branch chain. skipping...\n");
1842 			goto check_calls;
1843 		}
1844 
1845 		for (i = 0; i < nr; i++) {
1846 			if (callchain_param.order == ORDER_CALLEE) {
1847 				be[i] = branch->entries[i];
1848 				/*
1849 				 * Check for overlap into the callchain.
1850 				 * The return address is one off compared to
1851 				 * the branch entry. To adjust for this
1852 				 * assume the calling instruction is not longer
1853 				 * than 8 bytes.
1854 				 */
1855 				if (i == skip_idx ||
1856 				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
1857 					first_call++;
1858 				else if (be[i].from < chain->ips[first_call] &&
1859 				    be[i].from >= chain->ips[first_call] - 8)
1860 					first_call++;
1861 			} else
1862 				be[i] = branch->entries[branch->nr - i - 1];
1863 		}
1864 
1865 		nr = remove_loops(be, nr);
1866 
1867 		for (i = 0; i < nr; i++) {
1868 			err = add_callchain_ip(thread, parent, root_al,
1869 					       NULL, be[i].to);
1870 			if (!err)
1871 				err = add_callchain_ip(thread, parent, root_al,
1872 						       NULL, be[i].from);
1873 			if (err == -EINVAL)
1874 				break;
1875 			if (err)
1876 				return err;
1877 		}
1878 		chain_nr -= nr;
1879 	}
1880 
1881 check_calls:
1882 	if (chain->nr > PERF_MAX_STACK_DEPTH && (int)chain->nr > max_stack) {
1883 		pr_warning("corrupted callchain. skipping...\n");
1884 		return 0;
1885 	}
1886 
1887 	for (i = first_call; i < chain_nr; i++) {
1888 		u64 ip;
1889 
1890 		if (callchain_param.order == ORDER_CALLEE)
1891 			j = i;
1892 		else
1893 			j = chain->nr - i - 1;
1894 
1895 #ifdef HAVE_SKIP_CALLCHAIN_IDX
1896 		if (j == skip_idx)
1897 			continue;
1898 #endif
1899 		ip = chain->ips[j];
1900 
1901 		err = add_callchain_ip(thread, parent, root_al, &cpumode, ip);
1902 
1903 		if (err)
1904 			return (err < 0) ? err : 0;
1905 	}
1906 
1907 	return 0;
1908 }
1909 
1910 static int unwind_entry(struct unwind_entry *entry, void *arg)
1911 {
1912 	struct callchain_cursor *cursor = arg;
1913 
1914 	if (symbol_conf.hide_unresolved && entry->sym == NULL)
1915 		return 0;
1916 	return callchain_cursor_append(cursor, entry->ip,
1917 				       entry->map, entry->sym);
1918 }
1919 
1920 int thread__resolve_callchain(struct thread *thread,
1921 			      struct perf_evsel *evsel,
1922 			      struct perf_sample *sample,
1923 			      struct symbol **parent,
1924 			      struct addr_location *root_al,
1925 			      int max_stack)
1926 {
1927 	int ret = thread__resolve_callchain_sample(thread, evsel,
1928 						   sample, parent,
1929 						   root_al, max_stack);
1930 	if (ret)
1931 		return ret;
1932 
1933 	/* Can we do dwarf post unwind? */
1934 	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
1935 	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
1936 		return 0;
1937 
1938 	/* Bail out if nothing was captured. */
1939 	if ((!sample->user_regs.regs) ||
1940 	    (!sample->user_stack.size))
1941 		return 0;
1942 
1943 	return unwind__get_entries(unwind_entry, &callchain_cursor,
1944 				   thread, sample, max_stack);
1945 
1946 }
1947 
1948 int machine__for_each_thread(struct machine *machine,
1949 			     int (*fn)(struct thread *thread, void *p),
1950 			     void *priv)
1951 {
1952 	struct rb_node *nd;
1953 	struct thread *thread;
1954 	int rc = 0;
1955 
1956 	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
1957 		thread = rb_entry(nd, struct thread, rb_node);
1958 		rc = fn(thread, priv);
1959 		if (rc != 0)
1960 			return rc;
1961 	}
1962 
1963 	list_for_each_entry(thread, &machine->dead_threads, node) {
1964 		rc = fn(thread, priv);
1965 		if (rc != 0)
1966 			return rc;
1967 	}
1968 	return rc;
1969 }
1970 
1971 int machines__for_each_thread(struct machines *machines,
1972 			      int (*fn)(struct thread *thread, void *p),
1973 			      void *priv)
1974 {
1975 	struct rb_node *nd;
1976 	int rc = 0;
1977 
1978 	rc = machine__for_each_thread(&machines->host, fn, priv);
1979 	if (rc != 0)
1980 		return rc;
1981 
1982 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
1983 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
1984 
1985 		rc = machine__for_each_thread(machine, fn, priv);
1986 		if (rc != 0)
1987 			return rc;
1988 	}
1989 	return rc;
1990 }
1991 
1992 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
1993 				  struct target *target, struct thread_map *threads,
1994 				  perf_event__handler_t process, bool data_mmap,
1995 				  unsigned int proc_map_timeout)
1996 {
1997 	if (target__has_task(target))
1998 		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
1999 	else if (target__has_cpu(target))
2000 		return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout);
2001 	/* command specified */
2002 	return 0;
2003 }
2004 
2005 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2006 {
2007 	if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
2008 		return -1;
2009 
2010 	return machine->current_tid[cpu];
2011 }
2012 
2013 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2014 			     pid_t tid)
2015 {
2016 	struct thread *thread;
2017 
2018 	if (cpu < 0)
2019 		return -EINVAL;
2020 
2021 	if (!machine->current_tid) {
2022 		int i;
2023 
2024 		machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
2025 		if (!machine->current_tid)
2026 			return -ENOMEM;
2027 		for (i = 0; i < MAX_NR_CPUS; i++)
2028 			machine->current_tid[i] = -1;
2029 	}
2030 
2031 	if (cpu >= MAX_NR_CPUS) {
2032 		pr_err("Requested CPU %d too large. ", cpu);
2033 		pr_err("Consider raising MAX_NR_CPUS\n");
2034 		return -EINVAL;
2035 	}
2036 
2037 	machine->current_tid[cpu] = tid;
2038 
2039 	thread = machine__findnew_thread(machine, pid, tid);
2040 	if (!thread)
2041 		return -ENOMEM;
2042 
2043 	thread->cpu = cpu;
2044 	thread__put(thread);
2045 
2046 	return 0;
2047 }
2048 
2049 int machine__get_kernel_start(struct machine *machine)
2050 {
2051 	struct map *map = machine__kernel_map(machine);
2052 	int err = 0;
2053 
2054 	/*
2055 	 * The only addresses above 2^63 are kernel addresses of a 64-bit
2056 	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
2057 	 * all addresses including kernel addresses are less than 2^32.  In
2058 	 * that case (32-bit system), if the kernel mapping is unknown, all
2059 	 * addresses will be assumed to be in user space - see
2060 	 * machine__kernel_ip().
2061 	 */
2062 	machine->kernel_start = 1ULL << 63;
2063 	if (map) {
2064 		err = map__load(map, machine->symbol_filter);
2065 		if (map->start)
2066 			machine->kernel_start = map->start;
2067 	}
2068 	return err;
2069 }
2070 
2071 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2072 {
2073 	return dsos__findnew(&machine->dsos, filename);
2074 }
2075 
2076 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2077 {
2078 	struct machine *machine = vmachine;
2079 	struct map *map;
2080 	struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map,  NULL);
2081 
2082 	if (sym == NULL)
2083 		return NULL;
2084 
2085 	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2086 	*addrp = map->unmap_ip(map, sym->start);
2087 	return sym->name;
2088 }
2089