xref: /openbmc/linux/tools/perf/util/machine.c (revision cc19db8b)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include <stdlib.h>
7 #include "callchain.h"
8 #include "debug.h"
9 #include "dso.h"
10 #include "env.h"
11 #include "event.h"
12 #include "evsel.h"
13 #include "hist.h"
14 #include "machine.h"
15 #include "map.h"
16 #include "map_symbol.h"
17 #include "branch.h"
18 #include "mem-events.h"
19 #include "path.h"
20 #include "srcline.h"
21 #include "symbol.h"
22 #include "sort.h"
23 #include "strlist.h"
24 #include "target.h"
25 #include "thread.h"
26 #include "util.h"
27 #include "vdso.h"
28 #include <stdbool.h>
29 #include <sys/types.h>
30 #include <sys/stat.h>
31 #include <unistd.h>
32 #include "unwind.h"
33 #include "linux/hash.h"
34 #include "asm/bug.h"
35 #include "bpf-event.h"
36 #include <internal/lib.h> // page_size
37 #include "cgroup.h"
38 #include "arm64-frame-pointer-unwind-support.h"
39 
40 #include <linux/ctype.h>
41 #include <symbol/kallsyms.h>
42 #include <linux/mman.h>
43 #include <linux/string.h>
44 #include <linux/zalloc.h>
45 
46 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
47 
48 static struct dso *machine__kernel_dso(struct machine *machine)
49 {
50 	return machine->vmlinux_map->dso;
51 }
52 
53 static void dsos__init(struct dsos *dsos)
54 {
55 	INIT_LIST_HEAD(&dsos->head);
56 	dsos->root = RB_ROOT;
57 	init_rwsem(&dsos->lock);
58 }
59 
60 static void machine__threads_init(struct machine *machine)
61 {
62 	int i;
63 
64 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
65 		struct threads *threads = &machine->threads[i];
66 		threads->entries = RB_ROOT_CACHED;
67 		init_rwsem(&threads->lock);
68 		threads->nr = 0;
69 		INIT_LIST_HEAD(&threads->dead);
70 		threads->last_match = NULL;
71 	}
72 }
73 
74 static int machine__set_mmap_name(struct machine *machine)
75 {
76 	if (machine__is_host(machine))
77 		machine->mmap_name = strdup("[kernel.kallsyms]");
78 	else if (machine__is_default_guest(machine))
79 		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
80 	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
81 			  machine->pid) < 0)
82 		machine->mmap_name = NULL;
83 
84 	return machine->mmap_name ? 0 : -ENOMEM;
85 }
86 
87 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
88 {
89 	int err = -ENOMEM;
90 
91 	memset(machine, 0, sizeof(*machine));
92 	maps__init(&machine->kmaps, machine);
93 	RB_CLEAR_NODE(&machine->rb_node);
94 	dsos__init(&machine->dsos);
95 
96 	machine__threads_init(machine);
97 
98 	machine->vdso_info = NULL;
99 	machine->env = NULL;
100 
101 	machine->pid = pid;
102 
103 	machine->id_hdr_size = 0;
104 	machine->kptr_restrict_warned = false;
105 	machine->comm_exec = false;
106 	machine->kernel_start = 0;
107 	machine->vmlinux_map = NULL;
108 
109 	machine->root_dir = strdup(root_dir);
110 	if (machine->root_dir == NULL)
111 		return -ENOMEM;
112 
113 	if (machine__set_mmap_name(machine))
114 		goto out;
115 
116 	if (pid != HOST_KERNEL_ID) {
117 		struct thread *thread = machine__findnew_thread(machine, -1,
118 								pid);
119 		char comm[64];
120 
121 		if (thread == NULL)
122 			goto out;
123 
124 		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
125 		thread__set_comm(thread, comm, 0);
126 		thread__put(thread);
127 	}
128 
129 	machine->current_tid = NULL;
130 	err = 0;
131 
132 out:
133 	if (err) {
134 		zfree(&machine->root_dir);
135 		zfree(&machine->mmap_name);
136 	}
137 	return 0;
138 }
139 
140 struct machine *machine__new_host(void)
141 {
142 	struct machine *machine = malloc(sizeof(*machine));
143 
144 	if (machine != NULL) {
145 		machine__init(machine, "", HOST_KERNEL_ID);
146 
147 		if (machine__create_kernel_maps(machine) < 0)
148 			goto out_delete;
149 	}
150 
151 	return machine;
152 out_delete:
153 	free(machine);
154 	return NULL;
155 }
156 
157 struct machine *machine__new_kallsyms(void)
158 {
159 	struct machine *machine = machine__new_host();
160 	/*
161 	 * FIXME:
162 	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
163 	 *    ask for not using the kcore parsing code, once this one is fixed
164 	 *    to create a map per module.
165 	 */
166 	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
167 		machine__delete(machine);
168 		machine = NULL;
169 	}
170 
171 	return machine;
172 }
173 
174 static void dsos__purge(struct dsos *dsos)
175 {
176 	struct dso *pos, *n;
177 
178 	down_write(&dsos->lock);
179 
180 	list_for_each_entry_safe(pos, n, &dsos->head, node) {
181 		RB_CLEAR_NODE(&pos->rb_node);
182 		pos->root = NULL;
183 		list_del_init(&pos->node);
184 		dso__put(pos);
185 	}
186 
187 	up_write(&dsos->lock);
188 }
189 
190 static void dsos__exit(struct dsos *dsos)
191 {
192 	dsos__purge(dsos);
193 	exit_rwsem(&dsos->lock);
194 }
195 
196 void machine__delete_threads(struct machine *machine)
197 {
198 	struct rb_node *nd;
199 	int i;
200 
201 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
202 		struct threads *threads = &machine->threads[i];
203 		down_write(&threads->lock);
204 		nd = rb_first_cached(&threads->entries);
205 		while (nd) {
206 			struct thread *t = rb_entry(nd, struct thread, rb_node);
207 
208 			nd = rb_next(nd);
209 			__machine__remove_thread(machine, t, false);
210 		}
211 		up_write(&threads->lock);
212 	}
213 }
214 
215 void machine__exit(struct machine *machine)
216 {
217 	int i;
218 
219 	if (machine == NULL)
220 		return;
221 
222 	machine__destroy_kernel_maps(machine);
223 	maps__exit(&machine->kmaps);
224 	dsos__exit(&machine->dsos);
225 	machine__exit_vdso(machine);
226 	zfree(&machine->root_dir);
227 	zfree(&machine->mmap_name);
228 	zfree(&machine->current_tid);
229 
230 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
231 		struct threads *threads = &machine->threads[i];
232 		struct thread *thread, *n;
233 		/*
234 		 * Forget about the dead, at this point whatever threads were
235 		 * left in the dead lists better have a reference count taken
236 		 * by who is using them, and then, when they drop those references
237 		 * and it finally hits zero, thread__put() will check and see that
238 		 * its not in the dead threads list and will not try to remove it
239 		 * from there, just calling thread__delete() straight away.
240 		 */
241 		list_for_each_entry_safe(thread, n, &threads->dead, node)
242 			list_del_init(&thread->node);
243 
244 		exit_rwsem(&threads->lock);
245 	}
246 }
247 
248 void machine__delete(struct machine *machine)
249 {
250 	if (machine) {
251 		machine__exit(machine);
252 		free(machine);
253 	}
254 }
255 
256 void machines__init(struct machines *machines)
257 {
258 	machine__init(&machines->host, "", HOST_KERNEL_ID);
259 	machines->guests = RB_ROOT_CACHED;
260 }
261 
262 void machines__exit(struct machines *machines)
263 {
264 	machine__exit(&machines->host);
265 	/* XXX exit guest */
266 }
267 
268 struct machine *machines__add(struct machines *machines, pid_t pid,
269 			      const char *root_dir)
270 {
271 	struct rb_node **p = &machines->guests.rb_root.rb_node;
272 	struct rb_node *parent = NULL;
273 	struct machine *pos, *machine = malloc(sizeof(*machine));
274 	bool leftmost = true;
275 
276 	if (machine == NULL)
277 		return NULL;
278 
279 	if (machine__init(machine, root_dir, pid) != 0) {
280 		free(machine);
281 		return NULL;
282 	}
283 
284 	while (*p != NULL) {
285 		parent = *p;
286 		pos = rb_entry(parent, struct machine, rb_node);
287 		if (pid < pos->pid)
288 			p = &(*p)->rb_left;
289 		else {
290 			p = &(*p)->rb_right;
291 			leftmost = false;
292 		}
293 	}
294 
295 	rb_link_node(&machine->rb_node, parent, p);
296 	rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
297 
298 	return machine;
299 }
300 
301 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
302 {
303 	struct rb_node *nd;
304 
305 	machines->host.comm_exec = comm_exec;
306 
307 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
308 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
309 
310 		machine->comm_exec = comm_exec;
311 	}
312 }
313 
314 struct machine *machines__find(struct machines *machines, pid_t pid)
315 {
316 	struct rb_node **p = &machines->guests.rb_root.rb_node;
317 	struct rb_node *parent = NULL;
318 	struct machine *machine;
319 	struct machine *default_machine = NULL;
320 
321 	if (pid == HOST_KERNEL_ID)
322 		return &machines->host;
323 
324 	while (*p != NULL) {
325 		parent = *p;
326 		machine = rb_entry(parent, struct machine, rb_node);
327 		if (pid < machine->pid)
328 			p = &(*p)->rb_left;
329 		else if (pid > machine->pid)
330 			p = &(*p)->rb_right;
331 		else
332 			return machine;
333 		if (!machine->pid)
334 			default_machine = machine;
335 	}
336 
337 	return default_machine;
338 }
339 
340 struct machine *machines__findnew(struct machines *machines, pid_t pid)
341 {
342 	char path[PATH_MAX];
343 	const char *root_dir = "";
344 	struct machine *machine = machines__find(machines, pid);
345 
346 	if (machine && (machine->pid == pid))
347 		goto out;
348 
349 	if ((pid != HOST_KERNEL_ID) &&
350 	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
351 	    (symbol_conf.guestmount)) {
352 		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
353 		if (access(path, R_OK)) {
354 			static struct strlist *seen;
355 
356 			if (!seen)
357 				seen = strlist__new(NULL, NULL);
358 
359 			if (!strlist__has_entry(seen, path)) {
360 				pr_err("Can't access file %s\n", path);
361 				strlist__add(seen, path);
362 			}
363 			machine = NULL;
364 			goto out;
365 		}
366 		root_dir = path;
367 	}
368 
369 	machine = machines__add(machines, pid, root_dir);
370 out:
371 	return machine;
372 }
373 
374 struct machine *machines__find_guest(struct machines *machines, pid_t pid)
375 {
376 	struct machine *machine = machines__find(machines, pid);
377 
378 	if (!machine)
379 		machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID);
380 	return machine;
381 }
382 
383 void machines__process_guests(struct machines *machines,
384 			      machine__process_t process, void *data)
385 {
386 	struct rb_node *nd;
387 
388 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
389 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
390 		process(pos, data);
391 	}
392 }
393 
394 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
395 {
396 	struct rb_node *node;
397 	struct machine *machine;
398 
399 	machines->host.id_hdr_size = id_hdr_size;
400 
401 	for (node = rb_first_cached(&machines->guests); node;
402 	     node = rb_next(node)) {
403 		machine = rb_entry(node, struct machine, rb_node);
404 		machine->id_hdr_size = id_hdr_size;
405 	}
406 
407 	return;
408 }
409 
410 static void machine__update_thread_pid(struct machine *machine,
411 				       struct thread *th, pid_t pid)
412 {
413 	struct thread *leader;
414 
415 	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
416 		return;
417 
418 	th->pid_ = pid;
419 
420 	if (th->pid_ == th->tid)
421 		return;
422 
423 	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
424 	if (!leader)
425 		goto out_err;
426 
427 	if (!leader->maps)
428 		leader->maps = maps__new(machine);
429 
430 	if (!leader->maps)
431 		goto out_err;
432 
433 	if (th->maps == leader->maps)
434 		return;
435 
436 	if (th->maps) {
437 		/*
438 		 * Maps are created from MMAP events which provide the pid and
439 		 * tid.  Consequently there never should be any maps on a thread
440 		 * with an unknown pid.  Just print an error if there are.
441 		 */
442 		if (!maps__empty(th->maps))
443 			pr_err("Discarding thread maps for %d:%d\n",
444 			       th->pid_, th->tid);
445 		maps__put(th->maps);
446 	}
447 
448 	th->maps = maps__get(leader->maps);
449 out_put:
450 	thread__put(leader);
451 	return;
452 out_err:
453 	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
454 	goto out_put;
455 }
456 
457 /*
458  * Front-end cache - TID lookups come in blocks,
459  * so most of the time we dont have to look up
460  * the full rbtree:
461  */
462 static struct thread*
463 __threads__get_last_match(struct threads *threads, struct machine *machine,
464 			  int pid, int tid)
465 {
466 	struct thread *th;
467 
468 	th = threads->last_match;
469 	if (th != NULL) {
470 		if (th->tid == tid) {
471 			machine__update_thread_pid(machine, th, pid);
472 			return thread__get(th);
473 		}
474 
475 		threads->last_match = NULL;
476 	}
477 
478 	return NULL;
479 }
480 
481 static struct thread*
482 threads__get_last_match(struct threads *threads, struct machine *machine,
483 			int pid, int tid)
484 {
485 	struct thread *th = NULL;
486 
487 	if (perf_singlethreaded)
488 		th = __threads__get_last_match(threads, machine, pid, tid);
489 
490 	return th;
491 }
492 
493 static void
494 __threads__set_last_match(struct threads *threads, struct thread *th)
495 {
496 	threads->last_match = th;
497 }
498 
499 static void
500 threads__set_last_match(struct threads *threads, struct thread *th)
501 {
502 	if (perf_singlethreaded)
503 		__threads__set_last_match(threads, th);
504 }
505 
506 /*
507  * Caller must eventually drop thread->refcnt returned with a successful
508  * lookup/new thread inserted.
509  */
510 static struct thread *____machine__findnew_thread(struct machine *machine,
511 						  struct threads *threads,
512 						  pid_t pid, pid_t tid,
513 						  bool create)
514 {
515 	struct rb_node **p = &threads->entries.rb_root.rb_node;
516 	struct rb_node *parent = NULL;
517 	struct thread *th;
518 	bool leftmost = true;
519 
520 	th = threads__get_last_match(threads, machine, pid, tid);
521 	if (th)
522 		return th;
523 
524 	while (*p != NULL) {
525 		parent = *p;
526 		th = rb_entry(parent, struct thread, rb_node);
527 
528 		if (th->tid == tid) {
529 			threads__set_last_match(threads, th);
530 			machine__update_thread_pid(machine, th, pid);
531 			return thread__get(th);
532 		}
533 
534 		if (tid < th->tid)
535 			p = &(*p)->rb_left;
536 		else {
537 			p = &(*p)->rb_right;
538 			leftmost = false;
539 		}
540 	}
541 
542 	if (!create)
543 		return NULL;
544 
545 	th = thread__new(pid, tid);
546 	if (th != NULL) {
547 		rb_link_node(&th->rb_node, parent, p);
548 		rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
549 
550 		/*
551 		 * We have to initialize maps separately after rb tree is updated.
552 		 *
553 		 * The reason is that we call machine__findnew_thread
554 		 * within thread__init_maps to find the thread
555 		 * leader and that would screwed the rb tree.
556 		 */
557 		if (thread__init_maps(th, machine)) {
558 			rb_erase_cached(&th->rb_node, &threads->entries);
559 			RB_CLEAR_NODE(&th->rb_node);
560 			thread__put(th);
561 			return NULL;
562 		}
563 		/*
564 		 * It is now in the rbtree, get a ref
565 		 */
566 		thread__get(th);
567 		threads__set_last_match(threads, th);
568 		++threads->nr;
569 	}
570 
571 	return th;
572 }
573 
574 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
575 {
576 	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
577 }
578 
579 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
580 				       pid_t tid)
581 {
582 	struct threads *threads = machine__threads(machine, tid);
583 	struct thread *th;
584 
585 	down_write(&threads->lock);
586 	th = __machine__findnew_thread(machine, pid, tid);
587 	up_write(&threads->lock);
588 	return th;
589 }
590 
591 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
592 				    pid_t tid)
593 {
594 	struct threads *threads = machine__threads(machine, tid);
595 	struct thread *th;
596 
597 	down_read(&threads->lock);
598 	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
599 	up_read(&threads->lock);
600 	return th;
601 }
602 
603 /*
604  * Threads are identified by pid and tid, and the idle task has pid == tid == 0.
605  * So here a single thread is created for that, but actually there is a separate
606  * idle task per cpu, so there should be one 'struct thread' per cpu, but there
607  * is only 1. That causes problems for some tools, requiring workarounds. For
608  * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu().
609  */
610 struct thread *machine__idle_thread(struct machine *machine)
611 {
612 	struct thread *thread = machine__findnew_thread(machine, 0, 0);
613 
614 	if (!thread || thread__set_comm(thread, "swapper", 0) ||
615 	    thread__set_namespaces(thread, 0, NULL))
616 		pr_err("problem inserting idle task for machine pid %d\n", machine->pid);
617 
618 	return thread;
619 }
620 
621 struct comm *machine__thread_exec_comm(struct machine *machine,
622 				       struct thread *thread)
623 {
624 	if (machine->comm_exec)
625 		return thread__exec_comm(thread);
626 	else
627 		return thread__comm(thread);
628 }
629 
630 int machine__process_comm_event(struct machine *machine, union perf_event *event,
631 				struct perf_sample *sample)
632 {
633 	struct thread *thread = machine__findnew_thread(machine,
634 							event->comm.pid,
635 							event->comm.tid);
636 	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
637 	int err = 0;
638 
639 	if (exec)
640 		machine->comm_exec = true;
641 
642 	if (dump_trace)
643 		perf_event__fprintf_comm(event, stdout);
644 
645 	if (thread == NULL ||
646 	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
647 		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
648 		err = -1;
649 	}
650 
651 	thread__put(thread);
652 
653 	return err;
654 }
655 
656 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
657 				      union perf_event *event,
658 				      struct perf_sample *sample __maybe_unused)
659 {
660 	struct thread *thread = machine__findnew_thread(machine,
661 							event->namespaces.pid,
662 							event->namespaces.tid);
663 	int err = 0;
664 
665 	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
666 		  "\nWARNING: kernel seems to support more namespaces than perf"
667 		  " tool.\nTry updating the perf tool..\n\n");
668 
669 	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
670 		  "\nWARNING: perf tool seems to support more namespaces than"
671 		  " the kernel.\nTry updating the kernel..\n\n");
672 
673 	if (dump_trace)
674 		perf_event__fprintf_namespaces(event, stdout);
675 
676 	if (thread == NULL ||
677 	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
678 		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
679 		err = -1;
680 	}
681 
682 	thread__put(thread);
683 
684 	return err;
685 }
686 
687 int machine__process_cgroup_event(struct machine *machine,
688 				  union perf_event *event,
689 				  struct perf_sample *sample __maybe_unused)
690 {
691 	struct cgroup *cgrp;
692 
693 	if (dump_trace)
694 		perf_event__fprintf_cgroup(event, stdout);
695 
696 	cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
697 	if (cgrp == NULL)
698 		return -ENOMEM;
699 
700 	return 0;
701 }
702 
703 int machine__process_lost_event(struct machine *machine __maybe_unused,
704 				union perf_event *event, struct perf_sample *sample __maybe_unused)
705 {
706 	dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
707 		    event->lost.id, event->lost.lost);
708 	return 0;
709 }
710 
711 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
712 					union perf_event *event, struct perf_sample *sample)
713 {
714 	dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
715 		    sample->id, event->lost_samples.lost);
716 	return 0;
717 }
718 
719 static struct dso *machine__findnew_module_dso(struct machine *machine,
720 					       struct kmod_path *m,
721 					       const char *filename)
722 {
723 	struct dso *dso;
724 
725 	down_write(&machine->dsos.lock);
726 
727 	dso = __dsos__find(&machine->dsos, m->name, true);
728 	if (!dso) {
729 		dso = __dsos__addnew(&machine->dsos, m->name);
730 		if (dso == NULL)
731 			goto out_unlock;
732 
733 		dso__set_module_info(dso, m, machine);
734 		dso__set_long_name(dso, strdup(filename), true);
735 		dso->kernel = DSO_SPACE__KERNEL;
736 	}
737 
738 	dso__get(dso);
739 out_unlock:
740 	up_write(&machine->dsos.lock);
741 	return dso;
742 }
743 
744 int machine__process_aux_event(struct machine *machine __maybe_unused,
745 			       union perf_event *event)
746 {
747 	if (dump_trace)
748 		perf_event__fprintf_aux(event, stdout);
749 	return 0;
750 }
751 
752 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
753 					union perf_event *event)
754 {
755 	if (dump_trace)
756 		perf_event__fprintf_itrace_start(event, stdout);
757 	return 0;
758 }
759 
760 int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused,
761 					    union perf_event *event)
762 {
763 	if (dump_trace)
764 		perf_event__fprintf_aux_output_hw_id(event, stdout);
765 	return 0;
766 }
767 
768 int machine__process_switch_event(struct machine *machine __maybe_unused,
769 				  union perf_event *event)
770 {
771 	if (dump_trace)
772 		perf_event__fprintf_switch(event, stdout);
773 	return 0;
774 }
775 
776 static int machine__process_ksymbol_register(struct machine *machine,
777 					     union perf_event *event,
778 					     struct perf_sample *sample __maybe_unused)
779 {
780 	struct symbol *sym;
781 	struct map *map = maps__find(&machine->kmaps, event->ksymbol.addr);
782 
783 	if (!map) {
784 		struct dso *dso = dso__new(event->ksymbol.name);
785 
786 		if (dso) {
787 			dso->kernel = DSO_SPACE__KERNEL;
788 			map = map__new2(0, dso);
789 			dso__put(dso);
790 		}
791 
792 		if (!dso || !map) {
793 			return -ENOMEM;
794 		}
795 
796 		if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
797 			map->dso->binary_type = DSO_BINARY_TYPE__OOL;
798 			map->dso->data.file_size = event->ksymbol.len;
799 			dso__set_loaded(map->dso);
800 		}
801 
802 		map->start = event->ksymbol.addr;
803 		map->end = map->start + event->ksymbol.len;
804 		maps__insert(&machine->kmaps, map);
805 		map__put(map);
806 		dso__set_loaded(dso);
807 
808 		if (is_bpf_image(event->ksymbol.name)) {
809 			dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE;
810 			dso__set_long_name(dso, "", false);
811 		}
812 	}
813 
814 	sym = symbol__new(map->map_ip(map, map->start),
815 			  event->ksymbol.len,
816 			  0, 0, event->ksymbol.name);
817 	if (!sym)
818 		return -ENOMEM;
819 	dso__insert_symbol(map->dso, sym);
820 	return 0;
821 }
822 
823 static int machine__process_ksymbol_unregister(struct machine *machine,
824 					       union perf_event *event,
825 					       struct perf_sample *sample __maybe_unused)
826 {
827 	struct symbol *sym;
828 	struct map *map;
829 
830 	map = maps__find(&machine->kmaps, event->ksymbol.addr);
831 	if (!map)
832 		return 0;
833 
834 	if (map != machine->vmlinux_map)
835 		maps__remove(&machine->kmaps, map);
836 	else {
837 		sym = dso__find_symbol(map->dso, map->map_ip(map, map->start));
838 		if (sym)
839 			dso__delete_symbol(map->dso, sym);
840 	}
841 
842 	return 0;
843 }
844 
845 int machine__process_ksymbol(struct machine *machine __maybe_unused,
846 			     union perf_event *event,
847 			     struct perf_sample *sample)
848 {
849 	if (dump_trace)
850 		perf_event__fprintf_ksymbol(event, stdout);
851 
852 	if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
853 		return machine__process_ksymbol_unregister(machine, event,
854 							   sample);
855 	return machine__process_ksymbol_register(machine, event, sample);
856 }
857 
858 int machine__process_text_poke(struct machine *machine, union perf_event *event,
859 			       struct perf_sample *sample __maybe_unused)
860 {
861 	struct map *map = maps__find(&machine->kmaps, event->text_poke.addr);
862 	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
863 
864 	if (dump_trace)
865 		perf_event__fprintf_text_poke(event, machine, stdout);
866 
867 	if (!event->text_poke.new_len)
868 		return 0;
869 
870 	if (cpumode != PERF_RECORD_MISC_KERNEL) {
871 		pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
872 		return 0;
873 	}
874 
875 	if (map && map->dso) {
876 		u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
877 		int ret;
878 
879 		/*
880 		 * Kernel maps might be changed when loading symbols so loading
881 		 * must be done prior to using kernel maps.
882 		 */
883 		map__load(map);
884 		ret = dso__data_write_cache_addr(map->dso, map, machine,
885 						 event->text_poke.addr,
886 						 new_bytes,
887 						 event->text_poke.new_len);
888 		if (ret != event->text_poke.new_len)
889 			pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
890 				 event->text_poke.addr);
891 	} else {
892 		pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
893 			 event->text_poke.addr);
894 	}
895 
896 	return 0;
897 }
898 
899 static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
900 					      const char *filename)
901 {
902 	struct map *map = NULL;
903 	struct kmod_path m;
904 	struct dso *dso;
905 
906 	if (kmod_path__parse_name(&m, filename))
907 		return NULL;
908 
909 	dso = machine__findnew_module_dso(machine, &m, filename);
910 	if (dso == NULL)
911 		goto out;
912 
913 	map = map__new2(start, dso);
914 	if (map == NULL)
915 		goto out;
916 
917 	maps__insert(&machine->kmaps, map);
918 
919 	/* Put the map here because maps__insert already got it */
920 	map__put(map);
921 out:
922 	/* put the dso here, corresponding to  machine__findnew_module_dso */
923 	dso__put(dso);
924 	zfree(&m.name);
925 	return map;
926 }
927 
928 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
929 {
930 	struct rb_node *nd;
931 	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
932 
933 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
934 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
935 		ret += __dsos__fprintf(&pos->dsos.head, fp);
936 	}
937 
938 	return ret;
939 }
940 
941 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
942 				     bool (skip)(struct dso *dso, int parm), int parm)
943 {
944 	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
945 }
946 
947 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
948 				     bool (skip)(struct dso *dso, int parm), int parm)
949 {
950 	struct rb_node *nd;
951 	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
952 
953 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
954 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
955 		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
956 	}
957 	return ret;
958 }
959 
960 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
961 {
962 	int i;
963 	size_t printed = 0;
964 	struct dso *kdso = machine__kernel_dso(machine);
965 
966 	if (kdso->has_build_id) {
967 		char filename[PATH_MAX];
968 		if (dso__build_id_filename(kdso, filename, sizeof(filename),
969 					   false))
970 			printed += fprintf(fp, "[0] %s\n", filename);
971 	}
972 
973 	for (i = 0; i < vmlinux_path__nr_entries; ++i)
974 		printed += fprintf(fp, "[%d] %s\n",
975 				   i + kdso->has_build_id, vmlinux_path[i]);
976 
977 	return printed;
978 }
979 
980 size_t machine__fprintf(struct machine *machine, FILE *fp)
981 {
982 	struct rb_node *nd;
983 	size_t ret;
984 	int i;
985 
986 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
987 		struct threads *threads = &machine->threads[i];
988 
989 		down_read(&threads->lock);
990 
991 		ret = fprintf(fp, "Threads: %u\n", threads->nr);
992 
993 		for (nd = rb_first_cached(&threads->entries); nd;
994 		     nd = rb_next(nd)) {
995 			struct thread *pos = rb_entry(nd, struct thread, rb_node);
996 
997 			ret += thread__fprintf(pos, fp);
998 		}
999 
1000 		up_read(&threads->lock);
1001 	}
1002 	return ret;
1003 }
1004 
1005 static struct dso *machine__get_kernel(struct machine *machine)
1006 {
1007 	const char *vmlinux_name = machine->mmap_name;
1008 	struct dso *kernel;
1009 
1010 	if (machine__is_host(machine)) {
1011 		if (symbol_conf.vmlinux_name)
1012 			vmlinux_name = symbol_conf.vmlinux_name;
1013 
1014 		kernel = machine__findnew_kernel(machine, vmlinux_name,
1015 						 "[kernel]", DSO_SPACE__KERNEL);
1016 	} else {
1017 		if (symbol_conf.default_guest_vmlinux_name)
1018 			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
1019 
1020 		kernel = machine__findnew_kernel(machine, vmlinux_name,
1021 						 "[guest.kernel]",
1022 						 DSO_SPACE__KERNEL_GUEST);
1023 	}
1024 
1025 	if (kernel != NULL && (!kernel->has_build_id))
1026 		dso__read_running_kernel_build_id(kernel, machine);
1027 
1028 	return kernel;
1029 }
1030 
1031 struct process_args {
1032 	u64 start;
1033 };
1034 
1035 void machine__get_kallsyms_filename(struct machine *machine, char *buf,
1036 				    size_t bufsz)
1037 {
1038 	if (machine__is_default_guest(machine))
1039 		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
1040 	else
1041 		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
1042 }
1043 
1044 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
1045 
1046 /* Figure out the start address of kernel map from /proc/kallsyms.
1047  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
1048  * symbol_name if it's not that important.
1049  */
1050 static int machine__get_running_kernel_start(struct machine *machine,
1051 					     const char **symbol_name,
1052 					     u64 *start, u64 *end)
1053 {
1054 	char filename[PATH_MAX];
1055 	int i, err = -1;
1056 	const char *name;
1057 	u64 addr = 0;
1058 
1059 	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
1060 
1061 	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1062 		return 0;
1063 
1064 	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
1065 		err = kallsyms__get_function_start(filename, name, &addr);
1066 		if (!err)
1067 			break;
1068 	}
1069 
1070 	if (err)
1071 		return -1;
1072 
1073 	if (symbol_name)
1074 		*symbol_name = name;
1075 
1076 	*start = addr;
1077 
1078 	err = kallsyms__get_function_start(filename, "_etext", &addr);
1079 	if (!err)
1080 		*end = addr;
1081 
1082 	return 0;
1083 }
1084 
1085 int machine__create_extra_kernel_map(struct machine *machine,
1086 				     struct dso *kernel,
1087 				     struct extra_kernel_map *xm)
1088 {
1089 	struct kmap *kmap;
1090 	struct map *map;
1091 
1092 	map = map__new2(xm->start, kernel);
1093 	if (!map)
1094 		return -1;
1095 
1096 	map->end   = xm->end;
1097 	map->pgoff = xm->pgoff;
1098 
1099 	kmap = map__kmap(map);
1100 
1101 	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1102 
1103 	maps__insert(&machine->kmaps, map);
1104 
1105 	pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1106 		  kmap->name, map->start, map->end);
1107 
1108 	map__put(map);
1109 
1110 	return 0;
1111 }
1112 
1113 static u64 find_entry_trampoline(struct dso *dso)
1114 {
1115 	/* Duplicates are removed so lookup all aliases */
1116 	const char *syms[] = {
1117 		"_entry_trampoline",
1118 		"__entry_trampoline_start",
1119 		"entry_SYSCALL_64_trampoline",
1120 	};
1121 	struct symbol *sym = dso__first_symbol(dso);
1122 	unsigned int i;
1123 
1124 	for (; sym; sym = dso__next_symbol(sym)) {
1125 		if (sym->binding != STB_GLOBAL)
1126 			continue;
1127 		for (i = 0; i < ARRAY_SIZE(syms); i++) {
1128 			if (!strcmp(sym->name, syms[i]))
1129 				return sym->start;
1130 		}
1131 	}
1132 
1133 	return 0;
1134 }
1135 
1136 /*
1137  * These values can be used for kernels that do not have symbols for the entry
1138  * trampolines in kallsyms.
1139  */
1140 #define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
1141 #define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
1142 #define X86_64_ENTRY_TRAMPOLINE		0x6000
1143 
1144 /* Map x86_64 PTI entry trampolines */
1145 int machine__map_x86_64_entry_trampolines(struct machine *machine,
1146 					  struct dso *kernel)
1147 {
1148 	struct maps *kmaps = &machine->kmaps;
1149 	int nr_cpus_avail, cpu;
1150 	bool found = false;
1151 	struct map *map;
1152 	u64 pgoff;
1153 
1154 	/*
1155 	 * In the vmlinux case, pgoff is a virtual address which must now be
1156 	 * mapped to a vmlinux offset.
1157 	 */
1158 	maps__for_each_entry(kmaps, map) {
1159 		struct kmap *kmap = __map__kmap(map);
1160 		struct map *dest_map;
1161 
1162 		if (!kmap || !is_entry_trampoline(kmap->name))
1163 			continue;
1164 
1165 		dest_map = maps__find(kmaps, map->pgoff);
1166 		if (dest_map != map)
1167 			map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1168 		found = true;
1169 	}
1170 	if (found || machine->trampolines_mapped)
1171 		return 0;
1172 
1173 	pgoff = find_entry_trampoline(kernel);
1174 	if (!pgoff)
1175 		return 0;
1176 
1177 	nr_cpus_avail = machine__nr_cpus_avail(machine);
1178 
1179 	/* Add a 1 page map for each CPU's entry trampoline */
1180 	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1181 		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1182 			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1183 			 X86_64_ENTRY_TRAMPOLINE;
1184 		struct extra_kernel_map xm = {
1185 			.start = va,
1186 			.end   = va + page_size,
1187 			.pgoff = pgoff,
1188 		};
1189 
1190 		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1191 
1192 		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1193 			return -1;
1194 	}
1195 
1196 	machine->trampolines_mapped = nr_cpus_avail;
1197 
1198 	return 0;
1199 }
1200 
1201 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1202 					     struct dso *kernel __maybe_unused)
1203 {
1204 	return 0;
1205 }
1206 
1207 static int
1208 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1209 {
1210 	/* In case of renewal the kernel map, destroy previous one */
1211 	machine__destroy_kernel_maps(machine);
1212 
1213 	machine->vmlinux_map = map__new2(0, kernel);
1214 	if (machine->vmlinux_map == NULL)
1215 		return -1;
1216 
1217 	machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1218 	maps__insert(&machine->kmaps, machine->vmlinux_map);
1219 	return 0;
1220 }
1221 
1222 void machine__destroy_kernel_maps(struct machine *machine)
1223 {
1224 	struct kmap *kmap;
1225 	struct map *map = machine__kernel_map(machine);
1226 
1227 	if (map == NULL)
1228 		return;
1229 
1230 	kmap = map__kmap(map);
1231 	maps__remove(&machine->kmaps, map);
1232 	if (kmap && kmap->ref_reloc_sym) {
1233 		zfree((char **)&kmap->ref_reloc_sym->name);
1234 		zfree(&kmap->ref_reloc_sym);
1235 	}
1236 
1237 	map__zput(machine->vmlinux_map);
1238 }
1239 
1240 int machines__create_guest_kernel_maps(struct machines *machines)
1241 {
1242 	int ret = 0;
1243 	struct dirent **namelist = NULL;
1244 	int i, items = 0;
1245 	char path[PATH_MAX];
1246 	pid_t pid;
1247 	char *endp;
1248 
1249 	if (symbol_conf.default_guest_vmlinux_name ||
1250 	    symbol_conf.default_guest_modules ||
1251 	    symbol_conf.default_guest_kallsyms) {
1252 		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1253 	}
1254 
1255 	if (symbol_conf.guestmount) {
1256 		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1257 		if (items <= 0)
1258 			return -ENOENT;
1259 		for (i = 0; i < items; i++) {
1260 			if (!isdigit(namelist[i]->d_name[0])) {
1261 				/* Filter out . and .. */
1262 				continue;
1263 			}
1264 			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1265 			if ((*endp != '\0') ||
1266 			    (endp == namelist[i]->d_name) ||
1267 			    (errno == ERANGE)) {
1268 				pr_debug("invalid directory (%s). Skipping.\n",
1269 					 namelist[i]->d_name);
1270 				continue;
1271 			}
1272 			sprintf(path, "%s/%s/proc/kallsyms",
1273 				symbol_conf.guestmount,
1274 				namelist[i]->d_name);
1275 			ret = access(path, R_OK);
1276 			if (ret) {
1277 				pr_debug("Can't access file %s\n", path);
1278 				goto failure;
1279 			}
1280 			machines__create_kernel_maps(machines, pid);
1281 		}
1282 failure:
1283 		free(namelist);
1284 	}
1285 
1286 	return ret;
1287 }
1288 
1289 void machines__destroy_kernel_maps(struct machines *machines)
1290 {
1291 	struct rb_node *next = rb_first_cached(&machines->guests);
1292 
1293 	machine__destroy_kernel_maps(&machines->host);
1294 
1295 	while (next) {
1296 		struct machine *pos = rb_entry(next, struct machine, rb_node);
1297 
1298 		next = rb_next(&pos->rb_node);
1299 		rb_erase_cached(&pos->rb_node, &machines->guests);
1300 		machine__delete(pos);
1301 	}
1302 }
1303 
1304 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1305 {
1306 	struct machine *machine = machines__findnew(machines, pid);
1307 
1308 	if (machine == NULL)
1309 		return -1;
1310 
1311 	return machine__create_kernel_maps(machine);
1312 }
1313 
1314 int machine__load_kallsyms(struct machine *machine, const char *filename)
1315 {
1316 	struct map *map = machine__kernel_map(machine);
1317 	int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1318 
1319 	if (ret > 0) {
1320 		dso__set_loaded(map->dso);
1321 		/*
1322 		 * Since /proc/kallsyms will have multiple sessions for the
1323 		 * kernel, with modules between them, fixup the end of all
1324 		 * sections.
1325 		 */
1326 		maps__fixup_end(&machine->kmaps);
1327 	}
1328 
1329 	return ret;
1330 }
1331 
1332 int machine__load_vmlinux_path(struct machine *machine)
1333 {
1334 	struct map *map = machine__kernel_map(machine);
1335 	int ret = dso__load_vmlinux_path(map->dso, map);
1336 
1337 	if (ret > 0)
1338 		dso__set_loaded(map->dso);
1339 
1340 	return ret;
1341 }
1342 
1343 static char *get_kernel_version(const char *root_dir)
1344 {
1345 	char version[PATH_MAX];
1346 	FILE *file;
1347 	char *name, *tmp;
1348 	const char *prefix = "Linux version ";
1349 
1350 	sprintf(version, "%s/proc/version", root_dir);
1351 	file = fopen(version, "r");
1352 	if (!file)
1353 		return NULL;
1354 
1355 	tmp = fgets(version, sizeof(version), file);
1356 	fclose(file);
1357 	if (!tmp)
1358 		return NULL;
1359 
1360 	name = strstr(version, prefix);
1361 	if (!name)
1362 		return NULL;
1363 	name += strlen(prefix);
1364 	tmp = strchr(name, ' ');
1365 	if (tmp)
1366 		*tmp = '\0';
1367 
1368 	return strdup(name);
1369 }
1370 
1371 static bool is_kmod_dso(struct dso *dso)
1372 {
1373 	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1374 	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1375 }
1376 
1377 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1378 {
1379 	char *long_name;
1380 	struct map *map = maps__find_by_name(maps, m->name);
1381 
1382 	if (map == NULL)
1383 		return 0;
1384 
1385 	long_name = strdup(path);
1386 	if (long_name == NULL)
1387 		return -ENOMEM;
1388 
1389 	dso__set_long_name(map->dso, long_name, true);
1390 	dso__kernel_module_get_build_id(map->dso, "");
1391 
1392 	/*
1393 	 * Full name could reveal us kmod compression, so
1394 	 * we need to update the symtab_type if needed.
1395 	 */
1396 	if (m->comp && is_kmod_dso(map->dso)) {
1397 		map->dso->symtab_type++;
1398 		map->dso->comp = m->comp;
1399 	}
1400 
1401 	return 0;
1402 }
1403 
1404 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1405 {
1406 	struct dirent *dent;
1407 	DIR *dir = opendir(dir_name);
1408 	int ret = 0;
1409 
1410 	if (!dir) {
1411 		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1412 		return -1;
1413 	}
1414 
1415 	while ((dent = readdir(dir)) != NULL) {
1416 		char path[PATH_MAX];
1417 		struct stat st;
1418 
1419 		/*sshfs might return bad dent->d_type, so we have to stat*/
1420 		path__join(path, sizeof(path), dir_name, dent->d_name);
1421 		if (stat(path, &st))
1422 			continue;
1423 
1424 		if (S_ISDIR(st.st_mode)) {
1425 			if (!strcmp(dent->d_name, ".") ||
1426 			    !strcmp(dent->d_name, ".."))
1427 				continue;
1428 
1429 			/* Do not follow top-level source and build symlinks */
1430 			if (depth == 0) {
1431 				if (!strcmp(dent->d_name, "source") ||
1432 				    !strcmp(dent->d_name, "build"))
1433 					continue;
1434 			}
1435 
1436 			ret = maps__set_modules_path_dir(maps, path, depth + 1);
1437 			if (ret < 0)
1438 				goto out;
1439 		} else {
1440 			struct kmod_path m;
1441 
1442 			ret = kmod_path__parse_name(&m, dent->d_name);
1443 			if (ret)
1444 				goto out;
1445 
1446 			if (m.kmod)
1447 				ret = maps__set_module_path(maps, path, &m);
1448 
1449 			zfree(&m.name);
1450 
1451 			if (ret)
1452 				goto out;
1453 		}
1454 	}
1455 
1456 out:
1457 	closedir(dir);
1458 	return ret;
1459 }
1460 
1461 static int machine__set_modules_path(struct machine *machine)
1462 {
1463 	char *version;
1464 	char modules_path[PATH_MAX];
1465 
1466 	version = get_kernel_version(machine->root_dir);
1467 	if (!version)
1468 		return -1;
1469 
1470 	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1471 		 machine->root_dir, version);
1472 	free(version);
1473 
1474 	return maps__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1475 }
1476 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1477 				u64 *size __maybe_unused,
1478 				const char *name __maybe_unused)
1479 {
1480 	return 0;
1481 }
1482 
1483 static int machine__create_module(void *arg, const char *name, u64 start,
1484 				  u64 size)
1485 {
1486 	struct machine *machine = arg;
1487 	struct map *map;
1488 
1489 	if (arch__fix_module_text_start(&start, &size, name) < 0)
1490 		return -1;
1491 
1492 	map = machine__addnew_module_map(machine, start, name);
1493 	if (map == NULL)
1494 		return -1;
1495 	map->end = start + size;
1496 
1497 	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1498 
1499 	return 0;
1500 }
1501 
1502 static int machine__create_modules(struct machine *machine)
1503 {
1504 	const char *modules;
1505 	char path[PATH_MAX];
1506 
1507 	if (machine__is_default_guest(machine)) {
1508 		modules = symbol_conf.default_guest_modules;
1509 	} else {
1510 		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1511 		modules = path;
1512 	}
1513 
1514 	if (symbol__restricted_filename(modules, "/proc/modules"))
1515 		return -1;
1516 
1517 	if (modules__parse(modules, machine, machine__create_module))
1518 		return -1;
1519 
1520 	if (!machine__set_modules_path(machine))
1521 		return 0;
1522 
1523 	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1524 
1525 	return 0;
1526 }
1527 
1528 static void machine__set_kernel_mmap(struct machine *machine,
1529 				     u64 start, u64 end)
1530 {
1531 	machine->vmlinux_map->start = start;
1532 	machine->vmlinux_map->end   = end;
1533 	/*
1534 	 * Be a bit paranoid here, some perf.data file came with
1535 	 * a zero sized synthesized MMAP event for the kernel.
1536 	 */
1537 	if (start == 0 && end == 0)
1538 		machine->vmlinux_map->end = ~0ULL;
1539 }
1540 
1541 static void machine__update_kernel_mmap(struct machine *machine,
1542 				     u64 start, u64 end)
1543 {
1544 	struct map *map = machine__kernel_map(machine);
1545 
1546 	map__get(map);
1547 	maps__remove(&machine->kmaps, map);
1548 
1549 	machine__set_kernel_mmap(machine, start, end);
1550 
1551 	maps__insert(&machine->kmaps, map);
1552 	map__put(map);
1553 }
1554 
1555 int machine__create_kernel_maps(struct machine *machine)
1556 {
1557 	struct dso *kernel = machine__get_kernel(machine);
1558 	const char *name = NULL;
1559 	struct map *map;
1560 	u64 start = 0, end = ~0ULL;
1561 	int ret;
1562 
1563 	if (kernel == NULL)
1564 		return -1;
1565 
1566 	ret = __machine__create_kernel_maps(machine, kernel);
1567 	if (ret < 0)
1568 		goto out_put;
1569 
1570 	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1571 		if (machine__is_host(machine))
1572 			pr_debug("Problems creating module maps, "
1573 				 "continuing anyway...\n");
1574 		else
1575 			pr_debug("Problems creating module maps for guest %d, "
1576 				 "continuing anyway...\n", machine->pid);
1577 	}
1578 
1579 	if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1580 		if (name &&
1581 		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1582 			machine__destroy_kernel_maps(machine);
1583 			ret = -1;
1584 			goto out_put;
1585 		}
1586 
1587 		/*
1588 		 * we have a real start address now, so re-order the kmaps
1589 		 * assume it's the last in the kmaps
1590 		 */
1591 		machine__update_kernel_mmap(machine, start, end);
1592 	}
1593 
1594 	if (machine__create_extra_kernel_maps(machine, kernel))
1595 		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1596 
1597 	if (end == ~0ULL) {
1598 		/* update end address of the kernel map using adjacent module address */
1599 		map = map__next(machine__kernel_map(machine));
1600 		if (map)
1601 			machine__set_kernel_mmap(machine, start, map->start);
1602 	}
1603 
1604 out_put:
1605 	dso__put(kernel);
1606 	return ret;
1607 }
1608 
1609 static bool machine__uses_kcore(struct machine *machine)
1610 {
1611 	struct dso *dso;
1612 
1613 	list_for_each_entry(dso, &machine->dsos.head, node) {
1614 		if (dso__is_kcore(dso))
1615 			return true;
1616 	}
1617 
1618 	return false;
1619 }
1620 
1621 static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1622 					     struct extra_kernel_map *xm)
1623 {
1624 	return machine__is(machine, "x86_64") &&
1625 	       is_entry_trampoline(xm->name);
1626 }
1627 
1628 static int machine__process_extra_kernel_map(struct machine *machine,
1629 					     struct extra_kernel_map *xm)
1630 {
1631 	struct dso *kernel = machine__kernel_dso(machine);
1632 
1633 	if (kernel == NULL)
1634 		return -1;
1635 
1636 	return machine__create_extra_kernel_map(machine, kernel, xm);
1637 }
1638 
1639 static int machine__process_kernel_mmap_event(struct machine *machine,
1640 					      struct extra_kernel_map *xm,
1641 					      struct build_id *bid)
1642 {
1643 	struct map *map;
1644 	enum dso_space_type dso_space;
1645 	bool is_kernel_mmap;
1646 
1647 	/* If we have maps from kcore then we do not need or want any others */
1648 	if (machine__uses_kcore(machine))
1649 		return 0;
1650 
1651 	if (machine__is_host(machine))
1652 		dso_space = DSO_SPACE__KERNEL;
1653 	else
1654 		dso_space = DSO_SPACE__KERNEL_GUEST;
1655 
1656 	is_kernel_mmap = memcmp(xm->name, machine->mmap_name,
1657 				strlen(machine->mmap_name) - 1) == 0;
1658 	if (xm->name[0] == '/' ||
1659 	    (!is_kernel_mmap && xm->name[0] == '[')) {
1660 		map = machine__addnew_module_map(machine, xm->start,
1661 						 xm->name);
1662 		if (map == NULL)
1663 			goto out_problem;
1664 
1665 		map->end = map->start + xm->end - xm->start;
1666 
1667 		if (build_id__is_defined(bid))
1668 			dso__set_build_id(map->dso, bid);
1669 
1670 	} else if (is_kernel_mmap) {
1671 		const char *symbol_name = (xm->name + strlen(machine->mmap_name));
1672 		/*
1673 		 * Should be there already, from the build-id table in
1674 		 * the header.
1675 		 */
1676 		struct dso *kernel = NULL;
1677 		struct dso *dso;
1678 
1679 		down_read(&machine->dsos.lock);
1680 
1681 		list_for_each_entry(dso, &machine->dsos.head, node) {
1682 
1683 			/*
1684 			 * The cpumode passed to is_kernel_module is not the
1685 			 * cpumode of *this* event. If we insist on passing
1686 			 * correct cpumode to is_kernel_module, we should
1687 			 * record the cpumode when we adding this dso to the
1688 			 * linked list.
1689 			 *
1690 			 * However we don't really need passing correct
1691 			 * cpumode.  We know the correct cpumode must be kernel
1692 			 * mode (if not, we should not link it onto kernel_dsos
1693 			 * list).
1694 			 *
1695 			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1696 			 * is_kernel_module() treats it as a kernel cpumode.
1697 			 */
1698 
1699 			if (!dso->kernel ||
1700 			    is_kernel_module(dso->long_name,
1701 					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1702 				continue;
1703 
1704 
1705 			kernel = dso;
1706 			break;
1707 		}
1708 
1709 		up_read(&machine->dsos.lock);
1710 
1711 		if (kernel == NULL)
1712 			kernel = machine__findnew_dso(machine, machine->mmap_name);
1713 		if (kernel == NULL)
1714 			goto out_problem;
1715 
1716 		kernel->kernel = dso_space;
1717 		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1718 			dso__put(kernel);
1719 			goto out_problem;
1720 		}
1721 
1722 		if (strstr(kernel->long_name, "vmlinux"))
1723 			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1724 
1725 		machine__update_kernel_mmap(machine, xm->start, xm->end);
1726 
1727 		if (build_id__is_defined(bid))
1728 			dso__set_build_id(kernel, bid);
1729 
1730 		/*
1731 		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1732 		 * symbol. Effectively having zero here means that at record
1733 		 * time /proc/sys/kernel/kptr_restrict was non zero.
1734 		 */
1735 		if (xm->pgoff != 0) {
1736 			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1737 							symbol_name,
1738 							xm->pgoff);
1739 		}
1740 
1741 		if (machine__is_default_guest(machine)) {
1742 			/*
1743 			 * preload dso of guest kernel and modules
1744 			 */
1745 			dso__load(kernel, machine__kernel_map(machine));
1746 		}
1747 	} else if (perf_event__is_extra_kernel_mmap(machine, xm)) {
1748 		return machine__process_extra_kernel_map(machine, xm);
1749 	}
1750 	return 0;
1751 out_problem:
1752 	return -1;
1753 }
1754 
1755 int machine__process_mmap2_event(struct machine *machine,
1756 				 union perf_event *event,
1757 				 struct perf_sample *sample)
1758 {
1759 	struct thread *thread;
1760 	struct map *map;
1761 	struct dso_id dso_id = {
1762 		.maj = event->mmap2.maj,
1763 		.min = event->mmap2.min,
1764 		.ino = event->mmap2.ino,
1765 		.ino_generation = event->mmap2.ino_generation,
1766 	};
1767 	struct build_id __bid, *bid = NULL;
1768 	int ret = 0;
1769 
1770 	if (dump_trace)
1771 		perf_event__fprintf_mmap2(event, stdout);
1772 
1773 	if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) {
1774 		bid = &__bid;
1775 		build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size);
1776 	}
1777 
1778 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1779 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1780 		struct extra_kernel_map xm = {
1781 			.start = event->mmap2.start,
1782 			.end   = event->mmap2.start + event->mmap2.len,
1783 			.pgoff = event->mmap2.pgoff,
1784 		};
1785 
1786 		strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN);
1787 		ret = machine__process_kernel_mmap_event(machine, &xm, bid);
1788 		if (ret < 0)
1789 			goto out_problem;
1790 		return 0;
1791 	}
1792 
1793 	thread = machine__findnew_thread(machine, event->mmap2.pid,
1794 					event->mmap2.tid);
1795 	if (thread == NULL)
1796 		goto out_problem;
1797 
1798 	map = map__new(machine, event->mmap2.start,
1799 			event->mmap2.len, event->mmap2.pgoff,
1800 			&dso_id, event->mmap2.prot,
1801 			event->mmap2.flags, bid,
1802 			event->mmap2.filename, thread);
1803 
1804 	if (map == NULL)
1805 		goto out_problem_map;
1806 
1807 	ret = thread__insert_map(thread, map);
1808 	if (ret)
1809 		goto out_problem_insert;
1810 
1811 	thread__put(thread);
1812 	map__put(map);
1813 	return 0;
1814 
1815 out_problem_insert:
1816 	map__put(map);
1817 out_problem_map:
1818 	thread__put(thread);
1819 out_problem:
1820 	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1821 	return 0;
1822 }
1823 
1824 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1825 				struct perf_sample *sample)
1826 {
1827 	struct thread *thread;
1828 	struct map *map;
1829 	u32 prot = 0;
1830 	int ret = 0;
1831 
1832 	if (dump_trace)
1833 		perf_event__fprintf_mmap(event, stdout);
1834 
1835 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1836 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1837 		struct extra_kernel_map xm = {
1838 			.start = event->mmap.start,
1839 			.end   = event->mmap.start + event->mmap.len,
1840 			.pgoff = event->mmap.pgoff,
1841 		};
1842 
1843 		strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1844 		ret = machine__process_kernel_mmap_event(machine, &xm, NULL);
1845 		if (ret < 0)
1846 			goto out_problem;
1847 		return 0;
1848 	}
1849 
1850 	thread = machine__findnew_thread(machine, event->mmap.pid,
1851 					 event->mmap.tid);
1852 	if (thread == NULL)
1853 		goto out_problem;
1854 
1855 	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1856 		prot = PROT_EXEC;
1857 
1858 	map = map__new(machine, event->mmap.start,
1859 			event->mmap.len, event->mmap.pgoff,
1860 			NULL, prot, 0, NULL, event->mmap.filename, thread);
1861 
1862 	if (map == NULL)
1863 		goto out_problem_map;
1864 
1865 	ret = thread__insert_map(thread, map);
1866 	if (ret)
1867 		goto out_problem_insert;
1868 
1869 	thread__put(thread);
1870 	map__put(map);
1871 	return 0;
1872 
1873 out_problem_insert:
1874 	map__put(map);
1875 out_problem_map:
1876 	thread__put(thread);
1877 out_problem:
1878 	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1879 	return 0;
1880 }
1881 
1882 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1883 {
1884 	struct threads *threads = machine__threads(machine, th->tid);
1885 
1886 	if (threads->last_match == th)
1887 		threads__set_last_match(threads, NULL);
1888 
1889 	if (lock)
1890 		down_write(&threads->lock);
1891 
1892 	BUG_ON(refcount_read(&th->refcnt) == 0);
1893 
1894 	rb_erase_cached(&th->rb_node, &threads->entries);
1895 	RB_CLEAR_NODE(&th->rb_node);
1896 	--threads->nr;
1897 	/*
1898 	 * Move it first to the dead_threads list, then drop the reference,
1899 	 * if this is the last reference, then the thread__delete destructor
1900 	 * will be called and we will remove it from the dead_threads list.
1901 	 */
1902 	list_add_tail(&th->node, &threads->dead);
1903 
1904 	/*
1905 	 * We need to do the put here because if this is the last refcount,
1906 	 * then we will be touching the threads->dead head when removing the
1907 	 * thread.
1908 	 */
1909 	thread__put(th);
1910 
1911 	if (lock)
1912 		up_write(&threads->lock);
1913 }
1914 
1915 void machine__remove_thread(struct machine *machine, struct thread *th)
1916 {
1917 	return __machine__remove_thread(machine, th, true);
1918 }
1919 
1920 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1921 				struct perf_sample *sample)
1922 {
1923 	struct thread *thread = machine__find_thread(machine,
1924 						     event->fork.pid,
1925 						     event->fork.tid);
1926 	struct thread *parent = machine__findnew_thread(machine,
1927 							event->fork.ppid,
1928 							event->fork.ptid);
1929 	bool do_maps_clone = true;
1930 	int err = 0;
1931 
1932 	if (dump_trace)
1933 		perf_event__fprintf_task(event, stdout);
1934 
1935 	/*
1936 	 * There may be an existing thread that is not actually the parent,
1937 	 * either because we are processing events out of order, or because the
1938 	 * (fork) event that would have removed the thread was lost. Assume the
1939 	 * latter case and continue on as best we can.
1940 	 */
1941 	if (parent->pid_ != (pid_t)event->fork.ppid) {
1942 		dump_printf("removing erroneous parent thread %d/%d\n",
1943 			    parent->pid_, parent->tid);
1944 		machine__remove_thread(machine, parent);
1945 		thread__put(parent);
1946 		parent = machine__findnew_thread(machine, event->fork.ppid,
1947 						 event->fork.ptid);
1948 	}
1949 
1950 	/* if a thread currently exists for the thread id remove it */
1951 	if (thread != NULL) {
1952 		machine__remove_thread(machine, thread);
1953 		thread__put(thread);
1954 	}
1955 
1956 	thread = machine__findnew_thread(machine, event->fork.pid,
1957 					 event->fork.tid);
1958 	/*
1959 	 * When synthesizing FORK events, we are trying to create thread
1960 	 * objects for the already running tasks on the machine.
1961 	 *
1962 	 * Normally, for a kernel FORK event, we want to clone the parent's
1963 	 * maps because that is what the kernel just did.
1964 	 *
1965 	 * But when synthesizing, this should not be done.  If we do, we end up
1966 	 * with overlapping maps as we process the synthesized MMAP2 events that
1967 	 * get delivered shortly thereafter.
1968 	 *
1969 	 * Use the FORK event misc flags in an internal way to signal this
1970 	 * situation, so we can elide the map clone when appropriate.
1971 	 */
1972 	if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1973 		do_maps_clone = false;
1974 
1975 	if (thread == NULL || parent == NULL ||
1976 	    thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1977 		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1978 		err = -1;
1979 	}
1980 	thread__put(thread);
1981 	thread__put(parent);
1982 
1983 	return err;
1984 }
1985 
1986 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1987 				struct perf_sample *sample __maybe_unused)
1988 {
1989 	struct thread *thread = machine__find_thread(machine,
1990 						     event->fork.pid,
1991 						     event->fork.tid);
1992 
1993 	if (dump_trace)
1994 		perf_event__fprintf_task(event, stdout);
1995 
1996 	if (thread != NULL) {
1997 		thread__exited(thread);
1998 		thread__put(thread);
1999 	}
2000 
2001 	return 0;
2002 }
2003 
2004 int machine__process_event(struct machine *machine, union perf_event *event,
2005 			   struct perf_sample *sample)
2006 {
2007 	int ret;
2008 
2009 	switch (event->header.type) {
2010 	case PERF_RECORD_COMM:
2011 		ret = machine__process_comm_event(machine, event, sample); break;
2012 	case PERF_RECORD_MMAP:
2013 		ret = machine__process_mmap_event(machine, event, sample); break;
2014 	case PERF_RECORD_NAMESPACES:
2015 		ret = machine__process_namespaces_event(machine, event, sample); break;
2016 	case PERF_RECORD_CGROUP:
2017 		ret = machine__process_cgroup_event(machine, event, sample); break;
2018 	case PERF_RECORD_MMAP2:
2019 		ret = machine__process_mmap2_event(machine, event, sample); break;
2020 	case PERF_RECORD_FORK:
2021 		ret = machine__process_fork_event(machine, event, sample); break;
2022 	case PERF_RECORD_EXIT:
2023 		ret = machine__process_exit_event(machine, event, sample); break;
2024 	case PERF_RECORD_LOST:
2025 		ret = machine__process_lost_event(machine, event, sample); break;
2026 	case PERF_RECORD_AUX:
2027 		ret = machine__process_aux_event(machine, event); break;
2028 	case PERF_RECORD_ITRACE_START:
2029 		ret = machine__process_itrace_start_event(machine, event); break;
2030 	case PERF_RECORD_LOST_SAMPLES:
2031 		ret = machine__process_lost_samples_event(machine, event, sample); break;
2032 	case PERF_RECORD_SWITCH:
2033 	case PERF_RECORD_SWITCH_CPU_WIDE:
2034 		ret = machine__process_switch_event(machine, event); break;
2035 	case PERF_RECORD_KSYMBOL:
2036 		ret = machine__process_ksymbol(machine, event, sample); break;
2037 	case PERF_RECORD_BPF_EVENT:
2038 		ret = machine__process_bpf(machine, event, sample); break;
2039 	case PERF_RECORD_TEXT_POKE:
2040 		ret = machine__process_text_poke(machine, event, sample); break;
2041 	case PERF_RECORD_AUX_OUTPUT_HW_ID:
2042 		ret = machine__process_aux_output_hw_id_event(machine, event); break;
2043 	default:
2044 		ret = -1;
2045 		break;
2046 	}
2047 
2048 	return ret;
2049 }
2050 
2051 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
2052 {
2053 	if (!regexec(regex, sym->name, 0, NULL, 0))
2054 		return true;
2055 	return false;
2056 }
2057 
2058 static void ip__resolve_ams(struct thread *thread,
2059 			    struct addr_map_symbol *ams,
2060 			    u64 ip)
2061 {
2062 	struct addr_location al;
2063 
2064 	memset(&al, 0, sizeof(al));
2065 	/*
2066 	 * We cannot use the header.misc hint to determine whether a
2067 	 * branch stack address is user, kernel, guest, hypervisor.
2068 	 * Branches may straddle the kernel/user/hypervisor boundaries.
2069 	 * Thus, we have to try consecutively until we find a match
2070 	 * or else, the symbol is unknown
2071 	 */
2072 	thread__find_cpumode_addr_location(thread, ip, &al);
2073 
2074 	ams->addr = ip;
2075 	ams->al_addr = al.addr;
2076 	ams->al_level = al.level;
2077 	ams->ms.maps = al.maps;
2078 	ams->ms.sym = al.sym;
2079 	ams->ms.map = al.map;
2080 	ams->phys_addr = 0;
2081 	ams->data_page_size = 0;
2082 }
2083 
2084 static void ip__resolve_data(struct thread *thread,
2085 			     u8 m, struct addr_map_symbol *ams,
2086 			     u64 addr, u64 phys_addr, u64 daddr_page_size)
2087 {
2088 	struct addr_location al;
2089 
2090 	memset(&al, 0, sizeof(al));
2091 
2092 	thread__find_symbol(thread, m, addr, &al);
2093 
2094 	ams->addr = addr;
2095 	ams->al_addr = al.addr;
2096 	ams->al_level = al.level;
2097 	ams->ms.maps = al.maps;
2098 	ams->ms.sym = al.sym;
2099 	ams->ms.map = al.map;
2100 	ams->phys_addr = phys_addr;
2101 	ams->data_page_size = daddr_page_size;
2102 }
2103 
2104 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2105 				     struct addr_location *al)
2106 {
2107 	struct mem_info *mi = mem_info__new();
2108 
2109 	if (!mi)
2110 		return NULL;
2111 
2112 	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
2113 	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
2114 			 sample->addr, sample->phys_addr,
2115 			 sample->data_page_size);
2116 	mi->data_src.val = sample->data_src;
2117 
2118 	return mi;
2119 }
2120 
2121 static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2122 {
2123 	struct map *map = ms->map;
2124 	char *srcline = NULL;
2125 
2126 	if (!map || callchain_param.key == CCKEY_FUNCTION)
2127 		return srcline;
2128 
2129 	srcline = srcline__tree_find(&map->dso->srclines, ip);
2130 	if (!srcline) {
2131 		bool show_sym = false;
2132 		bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2133 
2134 		srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
2135 				      ms->sym, show_sym, show_addr, ip);
2136 		srcline__tree_insert(&map->dso->srclines, ip, srcline);
2137 	}
2138 
2139 	return srcline;
2140 }
2141 
2142 struct iterations {
2143 	int nr_loop_iter;
2144 	u64 cycles;
2145 };
2146 
2147 static int add_callchain_ip(struct thread *thread,
2148 			    struct callchain_cursor *cursor,
2149 			    struct symbol **parent,
2150 			    struct addr_location *root_al,
2151 			    u8 *cpumode,
2152 			    u64 ip,
2153 			    bool branch,
2154 			    struct branch_flags *flags,
2155 			    struct iterations *iter,
2156 			    u64 branch_from)
2157 {
2158 	struct map_symbol ms;
2159 	struct addr_location al;
2160 	int nr_loop_iter = 0;
2161 	u64 iter_cycles = 0;
2162 	const char *srcline = NULL;
2163 
2164 	al.filtered = 0;
2165 	al.sym = NULL;
2166 	al.srcline = NULL;
2167 	if (!cpumode) {
2168 		thread__find_cpumode_addr_location(thread, ip, &al);
2169 	} else {
2170 		if (ip >= PERF_CONTEXT_MAX) {
2171 			switch (ip) {
2172 			case PERF_CONTEXT_HV:
2173 				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
2174 				break;
2175 			case PERF_CONTEXT_KERNEL:
2176 				*cpumode = PERF_RECORD_MISC_KERNEL;
2177 				break;
2178 			case PERF_CONTEXT_USER:
2179 				*cpumode = PERF_RECORD_MISC_USER;
2180 				break;
2181 			default:
2182 				pr_debug("invalid callchain context: "
2183 					 "%"PRId64"\n", (s64) ip);
2184 				/*
2185 				 * It seems the callchain is corrupted.
2186 				 * Discard all.
2187 				 */
2188 				callchain_cursor_reset(cursor);
2189 				return 1;
2190 			}
2191 			return 0;
2192 		}
2193 		thread__find_symbol(thread, *cpumode, ip, &al);
2194 	}
2195 
2196 	if (al.sym != NULL) {
2197 		if (perf_hpp_list.parent && !*parent &&
2198 		    symbol__match_regex(al.sym, &parent_regex))
2199 			*parent = al.sym;
2200 		else if (have_ignore_callees && root_al &&
2201 		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
2202 			/* Treat this symbol as the root,
2203 			   forgetting its callees. */
2204 			*root_al = al;
2205 			callchain_cursor_reset(cursor);
2206 		}
2207 	}
2208 
2209 	if (symbol_conf.hide_unresolved && al.sym == NULL)
2210 		return 0;
2211 
2212 	if (iter) {
2213 		nr_loop_iter = iter->nr_loop_iter;
2214 		iter_cycles = iter->cycles;
2215 	}
2216 
2217 	ms.maps = al.maps;
2218 	ms.map = al.map;
2219 	ms.sym = al.sym;
2220 	srcline = callchain_srcline(&ms, al.addr);
2221 	return callchain_cursor_append(cursor, ip, &ms,
2222 				       branch, flags, nr_loop_iter,
2223 				       iter_cycles, branch_from, srcline);
2224 }
2225 
2226 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2227 					   struct addr_location *al)
2228 {
2229 	unsigned int i;
2230 	const struct branch_stack *bs = sample->branch_stack;
2231 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2232 	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2233 
2234 	if (!bi)
2235 		return NULL;
2236 
2237 	for (i = 0; i < bs->nr; i++) {
2238 		ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2239 		ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2240 		bi[i].flags = entries[i].flags;
2241 	}
2242 	return bi;
2243 }
2244 
2245 static void save_iterations(struct iterations *iter,
2246 			    struct branch_entry *be, int nr)
2247 {
2248 	int i;
2249 
2250 	iter->nr_loop_iter++;
2251 	iter->cycles = 0;
2252 
2253 	for (i = 0; i < nr; i++)
2254 		iter->cycles += be[i].flags.cycles;
2255 }
2256 
2257 #define CHASHSZ 127
2258 #define CHASHBITS 7
2259 #define NO_ENTRY 0xff
2260 
2261 #define PERF_MAX_BRANCH_DEPTH 127
2262 
2263 /* Remove loops. */
2264 static int remove_loops(struct branch_entry *l, int nr,
2265 			struct iterations *iter)
2266 {
2267 	int i, j, off;
2268 	unsigned char chash[CHASHSZ];
2269 
2270 	memset(chash, NO_ENTRY, sizeof(chash));
2271 
2272 	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2273 
2274 	for (i = 0; i < nr; i++) {
2275 		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2276 
2277 		/* no collision handling for now */
2278 		if (chash[h] == NO_ENTRY) {
2279 			chash[h] = i;
2280 		} else if (l[chash[h]].from == l[i].from) {
2281 			bool is_loop = true;
2282 			/* check if it is a real loop */
2283 			off = 0;
2284 			for (j = chash[h]; j < i && i + off < nr; j++, off++)
2285 				if (l[j].from != l[i + off].from) {
2286 					is_loop = false;
2287 					break;
2288 				}
2289 			if (is_loop) {
2290 				j = nr - (i + off);
2291 				if (j > 0) {
2292 					save_iterations(iter + i + off,
2293 						l + i, off);
2294 
2295 					memmove(iter + i, iter + i + off,
2296 						j * sizeof(*iter));
2297 
2298 					memmove(l + i, l + i + off,
2299 						j * sizeof(*l));
2300 				}
2301 
2302 				nr -= off;
2303 			}
2304 		}
2305 	}
2306 	return nr;
2307 }
2308 
2309 static int lbr_callchain_add_kernel_ip(struct thread *thread,
2310 				       struct callchain_cursor *cursor,
2311 				       struct perf_sample *sample,
2312 				       struct symbol **parent,
2313 				       struct addr_location *root_al,
2314 				       u64 branch_from,
2315 				       bool callee, int end)
2316 {
2317 	struct ip_callchain *chain = sample->callchain;
2318 	u8 cpumode = PERF_RECORD_MISC_USER;
2319 	int err, i;
2320 
2321 	if (callee) {
2322 		for (i = 0; i < end + 1; i++) {
2323 			err = add_callchain_ip(thread, cursor, parent,
2324 					       root_al, &cpumode, chain->ips[i],
2325 					       false, NULL, NULL, branch_from);
2326 			if (err)
2327 				return err;
2328 		}
2329 		return 0;
2330 	}
2331 
2332 	for (i = end; i >= 0; i--) {
2333 		err = add_callchain_ip(thread, cursor, parent,
2334 				       root_al, &cpumode, chain->ips[i],
2335 				       false, NULL, NULL, branch_from);
2336 		if (err)
2337 			return err;
2338 	}
2339 
2340 	return 0;
2341 }
2342 
2343 static void save_lbr_cursor_node(struct thread *thread,
2344 				 struct callchain_cursor *cursor,
2345 				 int idx)
2346 {
2347 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2348 
2349 	if (!lbr_stitch)
2350 		return;
2351 
2352 	if (cursor->pos == cursor->nr) {
2353 		lbr_stitch->prev_lbr_cursor[idx].valid = false;
2354 		return;
2355 	}
2356 
2357 	if (!cursor->curr)
2358 		cursor->curr = cursor->first;
2359 	else
2360 		cursor->curr = cursor->curr->next;
2361 	memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2362 	       sizeof(struct callchain_cursor_node));
2363 
2364 	lbr_stitch->prev_lbr_cursor[idx].valid = true;
2365 	cursor->pos++;
2366 }
2367 
2368 static int lbr_callchain_add_lbr_ip(struct thread *thread,
2369 				    struct callchain_cursor *cursor,
2370 				    struct perf_sample *sample,
2371 				    struct symbol **parent,
2372 				    struct addr_location *root_al,
2373 				    u64 *branch_from,
2374 				    bool callee)
2375 {
2376 	struct branch_stack *lbr_stack = sample->branch_stack;
2377 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2378 	u8 cpumode = PERF_RECORD_MISC_USER;
2379 	int lbr_nr = lbr_stack->nr;
2380 	struct branch_flags *flags;
2381 	int err, i;
2382 	u64 ip;
2383 
2384 	/*
2385 	 * The curr and pos are not used in writing session. They are cleared
2386 	 * in callchain_cursor_commit() when the writing session is closed.
2387 	 * Using curr and pos to track the current cursor node.
2388 	 */
2389 	if (thread->lbr_stitch) {
2390 		cursor->curr = NULL;
2391 		cursor->pos = cursor->nr;
2392 		if (cursor->nr) {
2393 			cursor->curr = cursor->first;
2394 			for (i = 0; i < (int)(cursor->nr - 1); i++)
2395 				cursor->curr = cursor->curr->next;
2396 		}
2397 	}
2398 
2399 	if (callee) {
2400 		/* Add LBR ip from first entries.to */
2401 		ip = entries[0].to;
2402 		flags = &entries[0].flags;
2403 		*branch_from = entries[0].from;
2404 		err = add_callchain_ip(thread, cursor, parent,
2405 				       root_al, &cpumode, ip,
2406 				       true, flags, NULL,
2407 				       *branch_from);
2408 		if (err)
2409 			return err;
2410 
2411 		/*
2412 		 * The number of cursor node increases.
2413 		 * Move the current cursor node.
2414 		 * But does not need to save current cursor node for entry 0.
2415 		 * It's impossible to stitch the whole LBRs of previous sample.
2416 		 */
2417 		if (thread->lbr_stitch && (cursor->pos != cursor->nr)) {
2418 			if (!cursor->curr)
2419 				cursor->curr = cursor->first;
2420 			else
2421 				cursor->curr = cursor->curr->next;
2422 			cursor->pos++;
2423 		}
2424 
2425 		/* Add LBR ip from entries.from one by one. */
2426 		for (i = 0; i < lbr_nr; i++) {
2427 			ip = entries[i].from;
2428 			flags = &entries[i].flags;
2429 			err = add_callchain_ip(thread, cursor, parent,
2430 					       root_al, &cpumode, ip,
2431 					       true, flags, NULL,
2432 					       *branch_from);
2433 			if (err)
2434 				return err;
2435 			save_lbr_cursor_node(thread, cursor, i);
2436 		}
2437 		return 0;
2438 	}
2439 
2440 	/* Add LBR ip from entries.from one by one. */
2441 	for (i = lbr_nr - 1; i >= 0; i--) {
2442 		ip = entries[i].from;
2443 		flags = &entries[i].flags;
2444 		err = add_callchain_ip(thread, cursor, parent,
2445 				       root_al, &cpumode, ip,
2446 				       true, flags, NULL,
2447 				       *branch_from);
2448 		if (err)
2449 			return err;
2450 		save_lbr_cursor_node(thread, cursor, i);
2451 	}
2452 
2453 	/* Add LBR ip from first entries.to */
2454 	ip = entries[0].to;
2455 	flags = &entries[0].flags;
2456 	*branch_from = entries[0].from;
2457 	err = add_callchain_ip(thread, cursor, parent,
2458 			       root_al, &cpumode, ip,
2459 			       true, flags, NULL,
2460 			       *branch_from);
2461 	if (err)
2462 		return err;
2463 
2464 	return 0;
2465 }
2466 
2467 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2468 					     struct callchain_cursor *cursor)
2469 {
2470 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2471 	struct callchain_cursor_node *cnode;
2472 	struct stitch_list *stitch_node;
2473 	int err;
2474 
2475 	list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2476 		cnode = &stitch_node->cursor;
2477 
2478 		err = callchain_cursor_append(cursor, cnode->ip,
2479 					      &cnode->ms,
2480 					      cnode->branch,
2481 					      &cnode->branch_flags,
2482 					      cnode->nr_loop_iter,
2483 					      cnode->iter_cycles,
2484 					      cnode->branch_from,
2485 					      cnode->srcline);
2486 		if (err)
2487 			return err;
2488 	}
2489 	return 0;
2490 }
2491 
2492 static struct stitch_list *get_stitch_node(struct thread *thread)
2493 {
2494 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2495 	struct stitch_list *stitch_node;
2496 
2497 	if (!list_empty(&lbr_stitch->free_lists)) {
2498 		stitch_node = list_first_entry(&lbr_stitch->free_lists,
2499 					       struct stitch_list, node);
2500 		list_del(&stitch_node->node);
2501 
2502 		return stitch_node;
2503 	}
2504 
2505 	return malloc(sizeof(struct stitch_list));
2506 }
2507 
2508 static bool has_stitched_lbr(struct thread *thread,
2509 			     struct perf_sample *cur,
2510 			     struct perf_sample *prev,
2511 			     unsigned int max_lbr,
2512 			     bool callee)
2513 {
2514 	struct branch_stack *cur_stack = cur->branch_stack;
2515 	struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2516 	struct branch_stack *prev_stack = prev->branch_stack;
2517 	struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2518 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2519 	int i, j, nr_identical_branches = 0;
2520 	struct stitch_list *stitch_node;
2521 	u64 cur_base, distance;
2522 
2523 	if (!cur_stack || !prev_stack)
2524 		return false;
2525 
2526 	/* Find the physical index of the base-of-stack for current sample. */
2527 	cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2528 
2529 	distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2530 						     (max_lbr + prev_stack->hw_idx - cur_base);
2531 	/* Previous sample has shorter stack. Nothing can be stitched. */
2532 	if (distance + 1 > prev_stack->nr)
2533 		return false;
2534 
2535 	/*
2536 	 * Check if there are identical LBRs between two samples.
2537 	 * Identical LBRs must have same from, to and flags values. Also,
2538 	 * they have to be saved in the same LBR registers (same physical
2539 	 * index).
2540 	 *
2541 	 * Starts from the base-of-stack of current sample.
2542 	 */
2543 	for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2544 		if ((prev_entries[i].from != cur_entries[j].from) ||
2545 		    (prev_entries[i].to != cur_entries[j].to) ||
2546 		    (prev_entries[i].flags.value != cur_entries[j].flags.value))
2547 			break;
2548 		nr_identical_branches++;
2549 	}
2550 
2551 	if (!nr_identical_branches)
2552 		return false;
2553 
2554 	/*
2555 	 * Save the LBRs between the base-of-stack of previous sample
2556 	 * and the base-of-stack of current sample into lbr_stitch->lists.
2557 	 * These LBRs will be stitched later.
2558 	 */
2559 	for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2560 
2561 		if (!lbr_stitch->prev_lbr_cursor[i].valid)
2562 			continue;
2563 
2564 		stitch_node = get_stitch_node(thread);
2565 		if (!stitch_node)
2566 			return false;
2567 
2568 		memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2569 		       sizeof(struct callchain_cursor_node));
2570 
2571 		if (callee)
2572 			list_add(&stitch_node->node, &lbr_stitch->lists);
2573 		else
2574 			list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2575 	}
2576 
2577 	return true;
2578 }
2579 
2580 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2581 {
2582 	if (thread->lbr_stitch)
2583 		return true;
2584 
2585 	thread->lbr_stitch = zalloc(sizeof(*thread->lbr_stitch));
2586 	if (!thread->lbr_stitch)
2587 		goto err;
2588 
2589 	thread->lbr_stitch->prev_lbr_cursor = calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2590 	if (!thread->lbr_stitch->prev_lbr_cursor)
2591 		goto free_lbr_stitch;
2592 
2593 	INIT_LIST_HEAD(&thread->lbr_stitch->lists);
2594 	INIT_LIST_HEAD(&thread->lbr_stitch->free_lists);
2595 
2596 	return true;
2597 
2598 free_lbr_stitch:
2599 	zfree(&thread->lbr_stitch);
2600 err:
2601 	pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2602 	thread->lbr_stitch_enable = false;
2603 	return false;
2604 }
2605 
2606 /*
2607  * Resolve LBR callstack chain sample
2608  * Return:
2609  * 1 on success get LBR callchain information
2610  * 0 no available LBR callchain information, should try fp
2611  * negative error code on other errors.
2612  */
2613 static int resolve_lbr_callchain_sample(struct thread *thread,
2614 					struct callchain_cursor *cursor,
2615 					struct perf_sample *sample,
2616 					struct symbol **parent,
2617 					struct addr_location *root_al,
2618 					int max_stack,
2619 					unsigned int max_lbr)
2620 {
2621 	bool callee = (callchain_param.order == ORDER_CALLEE);
2622 	struct ip_callchain *chain = sample->callchain;
2623 	int chain_nr = min(max_stack, (int)chain->nr), i;
2624 	struct lbr_stitch *lbr_stitch;
2625 	bool stitched_lbr = false;
2626 	u64 branch_from = 0;
2627 	int err;
2628 
2629 	for (i = 0; i < chain_nr; i++) {
2630 		if (chain->ips[i] == PERF_CONTEXT_USER)
2631 			break;
2632 	}
2633 
2634 	/* LBR only affects the user callchain */
2635 	if (i == chain_nr)
2636 		return 0;
2637 
2638 	if (thread->lbr_stitch_enable && !sample->no_hw_idx &&
2639 	    (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2640 		lbr_stitch = thread->lbr_stitch;
2641 
2642 		stitched_lbr = has_stitched_lbr(thread, sample,
2643 						&lbr_stitch->prev_sample,
2644 						max_lbr, callee);
2645 
2646 		if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2647 			list_replace_init(&lbr_stitch->lists,
2648 					  &lbr_stitch->free_lists);
2649 		}
2650 		memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2651 	}
2652 
2653 	if (callee) {
2654 		/* Add kernel ip */
2655 		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2656 						  parent, root_al, branch_from,
2657 						  true, i);
2658 		if (err)
2659 			goto error;
2660 
2661 		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2662 					       root_al, &branch_from, true);
2663 		if (err)
2664 			goto error;
2665 
2666 		if (stitched_lbr) {
2667 			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2668 			if (err)
2669 				goto error;
2670 		}
2671 
2672 	} else {
2673 		if (stitched_lbr) {
2674 			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2675 			if (err)
2676 				goto error;
2677 		}
2678 		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2679 					       root_al, &branch_from, false);
2680 		if (err)
2681 			goto error;
2682 
2683 		/* Add kernel ip */
2684 		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2685 						  parent, root_al, branch_from,
2686 						  false, i);
2687 		if (err)
2688 			goto error;
2689 	}
2690 	return 1;
2691 
2692 error:
2693 	return (err < 0) ? err : 0;
2694 }
2695 
2696 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2697 			     struct callchain_cursor *cursor,
2698 			     struct symbol **parent,
2699 			     struct addr_location *root_al,
2700 			     u8 *cpumode, int ent)
2701 {
2702 	int err = 0;
2703 
2704 	while (--ent >= 0) {
2705 		u64 ip = chain->ips[ent];
2706 
2707 		if (ip >= PERF_CONTEXT_MAX) {
2708 			err = add_callchain_ip(thread, cursor, parent,
2709 					       root_al, cpumode, ip,
2710 					       false, NULL, NULL, 0);
2711 			break;
2712 		}
2713 	}
2714 	return err;
2715 }
2716 
2717 static u64 get_leaf_frame_caller(struct perf_sample *sample,
2718 		struct thread *thread, int usr_idx)
2719 {
2720 	if (machine__normalized_is(thread->maps->machine, "arm64"))
2721 		return get_leaf_frame_caller_aarch64(sample, thread, usr_idx);
2722 	else
2723 		return 0;
2724 }
2725 
2726 static int thread__resolve_callchain_sample(struct thread *thread,
2727 					    struct callchain_cursor *cursor,
2728 					    struct evsel *evsel,
2729 					    struct perf_sample *sample,
2730 					    struct symbol **parent,
2731 					    struct addr_location *root_al,
2732 					    int max_stack)
2733 {
2734 	struct branch_stack *branch = sample->branch_stack;
2735 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2736 	struct ip_callchain *chain = sample->callchain;
2737 	int chain_nr = 0;
2738 	u8 cpumode = PERF_RECORD_MISC_USER;
2739 	int i, j, err, nr_entries, usr_idx;
2740 	int skip_idx = -1;
2741 	int first_call = 0;
2742 	u64 leaf_frame_caller;
2743 
2744 	if (chain)
2745 		chain_nr = chain->nr;
2746 
2747 	if (evsel__has_branch_callstack(evsel)) {
2748 		struct perf_env *env = evsel__env(evsel);
2749 
2750 		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2751 						   root_al, max_stack,
2752 						   !env ? 0 : env->max_branches);
2753 		if (err)
2754 			return (err < 0) ? err : 0;
2755 	}
2756 
2757 	/*
2758 	 * Based on DWARF debug information, some architectures skip
2759 	 * a callchain entry saved by the kernel.
2760 	 */
2761 	skip_idx = arch_skip_callchain_idx(thread, chain);
2762 
2763 	/*
2764 	 * Add branches to call stack for easier browsing. This gives
2765 	 * more context for a sample than just the callers.
2766 	 *
2767 	 * This uses individual histograms of paths compared to the
2768 	 * aggregated histograms the normal LBR mode uses.
2769 	 *
2770 	 * Limitations for now:
2771 	 * - No extra filters
2772 	 * - No annotations (should annotate somehow)
2773 	 */
2774 
2775 	if (branch && callchain_param.branch_callstack) {
2776 		int nr = min(max_stack, (int)branch->nr);
2777 		struct branch_entry be[nr];
2778 		struct iterations iter[nr];
2779 
2780 		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2781 			pr_warning("corrupted branch chain. skipping...\n");
2782 			goto check_calls;
2783 		}
2784 
2785 		for (i = 0; i < nr; i++) {
2786 			if (callchain_param.order == ORDER_CALLEE) {
2787 				be[i] = entries[i];
2788 
2789 				if (chain == NULL)
2790 					continue;
2791 
2792 				/*
2793 				 * Check for overlap into the callchain.
2794 				 * The return address is one off compared to
2795 				 * the branch entry. To adjust for this
2796 				 * assume the calling instruction is not longer
2797 				 * than 8 bytes.
2798 				 */
2799 				if (i == skip_idx ||
2800 				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2801 					first_call++;
2802 				else if (be[i].from < chain->ips[first_call] &&
2803 				    be[i].from >= chain->ips[first_call] - 8)
2804 					first_call++;
2805 			} else
2806 				be[i] = entries[branch->nr - i - 1];
2807 		}
2808 
2809 		memset(iter, 0, sizeof(struct iterations) * nr);
2810 		nr = remove_loops(be, nr, iter);
2811 
2812 		for (i = 0; i < nr; i++) {
2813 			err = add_callchain_ip(thread, cursor, parent,
2814 					       root_al,
2815 					       NULL, be[i].to,
2816 					       true, &be[i].flags,
2817 					       NULL, be[i].from);
2818 
2819 			if (!err)
2820 				err = add_callchain_ip(thread, cursor, parent, root_al,
2821 						       NULL, be[i].from,
2822 						       true, &be[i].flags,
2823 						       &iter[i], 0);
2824 			if (err == -EINVAL)
2825 				break;
2826 			if (err)
2827 				return err;
2828 		}
2829 
2830 		if (chain_nr == 0)
2831 			return 0;
2832 
2833 		chain_nr -= nr;
2834 	}
2835 
2836 check_calls:
2837 	if (chain && callchain_param.order != ORDER_CALLEE) {
2838 		err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2839 					&cpumode, chain->nr - first_call);
2840 		if (err)
2841 			return (err < 0) ? err : 0;
2842 	}
2843 	for (i = first_call, nr_entries = 0;
2844 	     i < chain_nr && nr_entries < max_stack; i++) {
2845 		u64 ip;
2846 
2847 		if (callchain_param.order == ORDER_CALLEE)
2848 			j = i;
2849 		else
2850 			j = chain->nr - i - 1;
2851 
2852 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2853 		if (j == skip_idx)
2854 			continue;
2855 #endif
2856 		ip = chain->ips[j];
2857 		if (ip < PERF_CONTEXT_MAX)
2858                        ++nr_entries;
2859 		else if (callchain_param.order != ORDER_CALLEE) {
2860 			err = find_prev_cpumode(chain, thread, cursor, parent,
2861 						root_al, &cpumode, j);
2862 			if (err)
2863 				return (err < 0) ? err : 0;
2864 			continue;
2865 		}
2866 
2867 		/*
2868 		 * PERF_CONTEXT_USER allows us to locate where the user stack ends.
2869 		 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER,
2870 		 * the index will be different in order to add the missing frame
2871 		 * at the right place.
2872 		 */
2873 
2874 		usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1;
2875 
2876 		if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) {
2877 
2878 			leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx);
2879 
2880 			/*
2881 			 * check if leaf_frame_Caller != ip to not add the same
2882 			 * value twice.
2883 			 */
2884 
2885 			if (leaf_frame_caller && leaf_frame_caller != ip) {
2886 
2887 				err = add_callchain_ip(thread, cursor, parent,
2888 					       root_al, &cpumode, leaf_frame_caller,
2889 					       false, NULL, NULL, 0);
2890 				if (err)
2891 					return (err < 0) ? err : 0;
2892 			}
2893 		}
2894 
2895 		err = add_callchain_ip(thread, cursor, parent,
2896 				       root_al, &cpumode, ip,
2897 				       false, NULL, NULL, 0);
2898 
2899 		if (err)
2900 			return (err < 0) ? err : 0;
2901 	}
2902 
2903 	return 0;
2904 }
2905 
2906 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
2907 {
2908 	struct symbol *sym = ms->sym;
2909 	struct map *map = ms->map;
2910 	struct inline_node *inline_node;
2911 	struct inline_list *ilist;
2912 	u64 addr;
2913 	int ret = 1;
2914 
2915 	if (!symbol_conf.inline_name || !map || !sym)
2916 		return ret;
2917 
2918 	addr = map__map_ip(map, ip);
2919 	addr = map__rip_2objdump(map, addr);
2920 
2921 	inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2922 	if (!inline_node) {
2923 		inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2924 		if (!inline_node)
2925 			return ret;
2926 		inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2927 	}
2928 
2929 	list_for_each_entry(ilist, &inline_node->val, list) {
2930 		struct map_symbol ilist_ms = {
2931 			.maps = ms->maps,
2932 			.map = map,
2933 			.sym = ilist->symbol,
2934 		};
2935 		ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
2936 					      NULL, 0, 0, 0, ilist->srcline);
2937 
2938 		if (ret != 0)
2939 			return ret;
2940 	}
2941 
2942 	return ret;
2943 }
2944 
2945 static int unwind_entry(struct unwind_entry *entry, void *arg)
2946 {
2947 	struct callchain_cursor *cursor = arg;
2948 	const char *srcline = NULL;
2949 	u64 addr = entry->ip;
2950 
2951 	if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
2952 		return 0;
2953 
2954 	if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
2955 		return 0;
2956 
2957 	/*
2958 	 * Convert entry->ip from a virtual address to an offset in
2959 	 * its corresponding binary.
2960 	 */
2961 	if (entry->ms.map)
2962 		addr = map__map_ip(entry->ms.map, entry->ip);
2963 
2964 	srcline = callchain_srcline(&entry->ms, addr);
2965 	return callchain_cursor_append(cursor, entry->ip, &entry->ms,
2966 				       false, NULL, 0, 0, 0, srcline);
2967 }
2968 
2969 static int thread__resolve_callchain_unwind(struct thread *thread,
2970 					    struct callchain_cursor *cursor,
2971 					    struct evsel *evsel,
2972 					    struct perf_sample *sample,
2973 					    int max_stack)
2974 {
2975 	/* Can we do dwarf post unwind? */
2976 	if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2977 	      (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2978 		return 0;
2979 
2980 	/* Bail out if nothing was captured. */
2981 	if ((!sample->user_regs.regs) ||
2982 	    (!sample->user_stack.size))
2983 		return 0;
2984 
2985 	return unwind__get_entries(unwind_entry, cursor,
2986 				   thread, sample, max_stack);
2987 }
2988 
2989 int thread__resolve_callchain(struct thread *thread,
2990 			      struct callchain_cursor *cursor,
2991 			      struct evsel *evsel,
2992 			      struct perf_sample *sample,
2993 			      struct symbol **parent,
2994 			      struct addr_location *root_al,
2995 			      int max_stack)
2996 {
2997 	int ret = 0;
2998 
2999 	callchain_cursor_reset(cursor);
3000 
3001 	if (callchain_param.order == ORDER_CALLEE) {
3002 		ret = thread__resolve_callchain_sample(thread, cursor,
3003 						       evsel, sample,
3004 						       parent, root_al,
3005 						       max_stack);
3006 		if (ret)
3007 			return ret;
3008 		ret = thread__resolve_callchain_unwind(thread, cursor,
3009 						       evsel, sample,
3010 						       max_stack);
3011 	} else {
3012 		ret = thread__resolve_callchain_unwind(thread, cursor,
3013 						       evsel, sample,
3014 						       max_stack);
3015 		if (ret)
3016 			return ret;
3017 		ret = thread__resolve_callchain_sample(thread, cursor,
3018 						       evsel, sample,
3019 						       parent, root_al,
3020 						       max_stack);
3021 	}
3022 
3023 	return ret;
3024 }
3025 
3026 int machine__for_each_thread(struct machine *machine,
3027 			     int (*fn)(struct thread *thread, void *p),
3028 			     void *priv)
3029 {
3030 	struct threads *threads;
3031 	struct rb_node *nd;
3032 	struct thread *thread;
3033 	int rc = 0;
3034 	int i;
3035 
3036 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
3037 		threads = &machine->threads[i];
3038 		for (nd = rb_first_cached(&threads->entries); nd;
3039 		     nd = rb_next(nd)) {
3040 			thread = rb_entry(nd, struct thread, rb_node);
3041 			rc = fn(thread, priv);
3042 			if (rc != 0)
3043 				return rc;
3044 		}
3045 
3046 		list_for_each_entry(thread, &threads->dead, node) {
3047 			rc = fn(thread, priv);
3048 			if (rc != 0)
3049 				return rc;
3050 		}
3051 	}
3052 	return rc;
3053 }
3054 
3055 int machines__for_each_thread(struct machines *machines,
3056 			      int (*fn)(struct thread *thread, void *p),
3057 			      void *priv)
3058 {
3059 	struct rb_node *nd;
3060 	int rc = 0;
3061 
3062 	rc = machine__for_each_thread(&machines->host, fn, priv);
3063 	if (rc != 0)
3064 		return rc;
3065 
3066 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
3067 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
3068 
3069 		rc = machine__for_each_thread(machine, fn, priv);
3070 		if (rc != 0)
3071 			return rc;
3072 	}
3073 	return rc;
3074 }
3075 
3076 pid_t machine__get_current_tid(struct machine *machine, int cpu)
3077 {
3078 	int nr_cpus = min(machine->env->nr_cpus_avail, MAX_NR_CPUS);
3079 
3080 	if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid)
3081 		return -1;
3082 
3083 	return machine->current_tid[cpu];
3084 }
3085 
3086 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
3087 			     pid_t tid)
3088 {
3089 	struct thread *thread;
3090 	int nr_cpus = min(machine->env->nr_cpus_avail, MAX_NR_CPUS);
3091 
3092 	if (cpu < 0)
3093 		return -EINVAL;
3094 
3095 	if (!machine->current_tid) {
3096 		int i;
3097 
3098 		machine->current_tid = calloc(nr_cpus, sizeof(pid_t));
3099 		if (!machine->current_tid)
3100 			return -ENOMEM;
3101 		for (i = 0; i < nr_cpus; i++)
3102 			machine->current_tid[i] = -1;
3103 	}
3104 
3105 	if (cpu >= nr_cpus) {
3106 		pr_err("Requested CPU %d too large. ", cpu);
3107 		pr_err("Consider raising MAX_NR_CPUS\n");
3108 		return -EINVAL;
3109 	}
3110 
3111 	machine->current_tid[cpu] = tid;
3112 
3113 	thread = machine__findnew_thread(machine, pid, tid);
3114 	if (!thread)
3115 		return -ENOMEM;
3116 
3117 	thread->cpu = cpu;
3118 	thread__put(thread);
3119 
3120 	return 0;
3121 }
3122 
3123 /*
3124  * Compares the raw arch string. N.B. see instead perf_env__arch() or
3125  * machine__normalized_is() if a normalized arch is needed.
3126  */
3127 bool machine__is(struct machine *machine, const char *arch)
3128 {
3129 	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3130 }
3131 
3132 bool machine__normalized_is(struct machine *machine, const char *arch)
3133 {
3134 	return machine && !strcmp(perf_env__arch(machine->env), arch);
3135 }
3136 
3137 int machine__nr_cpus_avail(struct machine *machine)
3138 {
3139 	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3140 }
3141 
3142 int machine__get_kernel_start(struct machine *machine)
3143 {
3144 	struct map *map = machine__kernel_map(machine);
3145 	int err = 0;
3146 
3147 	/*
3148 	 * The only addresses above 2^63 are kernel addresses of a 64-bit
3149 	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
3150 	 * all addresses including kernel addresses are less than 2^32.  In
3151 	 * that case (32-bit system), if the kernel mapping is unknown, all
3152 	 * addresses will be assumed to be in user space - see
3153 	 * machine__kernel_ip().
3154 	 */
3155 	machine->kernel_start = 1ULL << 63;
3156 	if (map) {
3157 		err = map__load(map);
3158 		/*
3159 		 * On x86_64, PTI entry trampolines are less than the
3160 		 * start of kernel text, but still above 2^63. So leave
3161 		 * kernel_start = 1ULL << 63 for x86_64.
3162 		 */
3163 		if (!err && !machine__is(machine, "x86_64"))
3164 			machine->kernel_start = map->start;
3165 	}
3166 	return err;
3167 }
3168 
3169 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3170 {
3171 	u8 addr_cpumode = cpumode;
3172 	bool kernel_ip;
3173 
3174 	if (!machine->single_address_space)
3175 		goto out;
3176 
3177 	kernel_ip = machine__kernel_ip(machine, addr);
3178 	switch (cpumode) {
3179 	case PERF_RECORD_MISC_KERNEL:
3180 	case PERF_RECORD_MISC_USER:
3181 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3182 					   PERF_RECORD_MISC_USER;
3183 		break;
3184 	case PERF_RECORD_MISC_GUEST_KERNEL:
3185 	case PERF_RECORD_MISC_GUEST_USER:
3186 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3187 					   PERF_RECORD_MISC_GUEST_USER;
3188 		break;
3189 	default:
3190 		break;
3191 	}
3192 out:
3193 	return addr_cpumode;
3194 }
3195 
3196 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
3197 {
3198 	return dsos__findnew_id(&machine->dsos, filename, id);
3199 }
3200 
3201 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3202 {
3203 	return machine__findnew_dso_id(machine, filename, NULL);
3204 }
3205 
3206 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3207 {
3208 	struct machine *machine = vmachine;
3209 	struct map *map;
3210 	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3211 
3212 	if (sym == NULL)
3213 		return NULL;
3214 
3215 	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
3216 	*addrp = map->unmap_ip(map, sym->start);
3217 	return sym->name;
3218 }
3219 
3220 int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv)
3221 {
3222 	struct dso *pos;
3223 	int err = 0;
3224 
3225 	list_for_each_entry(pos, &machine->dsos.head, node) {
3226 		if (fn(pos, machine, priv))
3227 			err = -1;
3228 	}
3229 	return err;
3230 }
3231