1 // SPDX-License-Identifier: GPL-2.0 2 #include <dirent.h> 3 #include <errno.h> 4 #include <inttypes.h> 5 #include <regex.h> 6 #include <stdlib.h> 7 #include "callchain.h" 8 #include "debug.h" 9 #include "dso.h" 10 #include "env.h" 11 #include "event.h" 12 #include "evsel.h" 13 #include "hist.h" 14 #include "machine.h" 15 #include "map.h" 16 #include "map_symbol.h" 17 #include "branch.h" 18 #include "mem-events.h" 19 #include "path.h" 20 #include "srcline.h" 21 #include "symbol.h" 22 #include "sort.h" 23 #include "strlist.h" 24 #include "target.h" 25 #include "thread.h" 26 #include "util.h" 27 #include "vdso.h" 28 #include <stdbool.h> 29 #include <sys/types.h> 30 #include <sys/stat.h> 31 #include <unistd.h> 32 #include "unwind.h" 33 #include "linux/hash.h" 34 #include "asm/bug.h" 35 #include "bpf-event.h" 36 #include <internal/lib.h> // page_size 37 #include "cgroup.h" 38 #include "arm64-frame-pointer-unwind-support.h" 39 40 #include <linux/ctype.h> 41 #include <symbol/kallsyms.h> 42 #include <linux/mman.h> 43 #include <linux/string.h> 44 #include <linux/zalloc.h> 45 46 static void __machine__remove_thread(struct machine *machine, struct thread_rb_node *nd, 47 struct thread *th, bool lock); 48 49 static struct dso *machine__kernel_dso(struct machine *machine) 50 { 51 return map__dso(machine->vmlinux_map); 52 } 53 54 static void dsos__init(struct dsos *dsos) 55 { 56 INIT_LIST_HEAD(&dsos->head); 57 dsos->root = RB_ROOT; 58 init_rwsem(&dsos->lock); 59 } 60 61 static void machine__threads_init(struct machine *machine) 62 { 63 int i; 64 65 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 66 struct threads *threads = &machine->threads[i]; 67 threads->entries = RB_ROOT_CACHED; 68 init_rwsem(&threads->lock); 69 threads->nr = 0; 70 INIT_LIST_HEAD(&threads->dead); 71 threads->last_match = NULL; 72 } 73 } 74 75 static int thread_rb_node__cmp_tid(const void *key, const struct rb_node *nd) 76 { 77 int to_find = (int) *((pid_t *)key); 78 79 return to_find - (int)thread__tid(rb_entry(nd, struct thread_rb_node, rb_node)->thread); 80 } 81 82 static struct thread_rb_node *thread_rb_node__find(const struct thread *th, 83 struct rb_root *tree) 84 { 85 pid_t to_find = thread__tid(th); 86 struct rb_node *nd = rb_find(&to_find, tree, thread_rb_node__cmp_tid); 87 88 return rb_entry(nd, struct thread_rb_node, rb_node); 89 } 90 91 static int machine__set_mmap_name(struct machine *machine) 92 { 93 if (machine__is_host(machine)) 94 machine->mmap_name = strdup("[kernel.kallsyms]"); 95 else if (machine__is_default_guest(machine)) 96 machine->mmap_name = strdup("[guest.kernel.kallsyms]"); 97 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]", 98 machine->pid) < 0) 99 machine->mmap_name = NULL; 100 101 return machine->mmap_name ? 0 : -ENOMEM; 102 } 103 104 static void thread__set_guest_comm(struct thread *thread, pid_t pid) 105 { 106 char comm[64]; 107 108 snprintf(comm, sizeof(comm), "[guest/%d]", pid); 109 thread__set_comm(thread, comm, 0); 110 } 111 112 int machine__init(struct machine *machine, const char *root_dir, pid_t pid) 113 { 114 int err = -ENOMEM; 115 116 memset(machine, 0, sizeof(*machine)); 117 machine->kmaps = maps__new(machine); 118 if (machine->kmaps == NULL) 119 return -ENOMEM; 120 121 RB_CLEAR_NODE(&machine->rb_node); 122 dsos__init(&machine->dsos); 123 124 machine__threads_init(machine); 125 126 machine->vdso_info = NULL; 127 machine->env = NULL; 128 129 machine->pid = pid; 130 131 machine->id_hdr_size = 0; 132 machine->kptr_restrict_warned = false; 133 machine->comm_exec = false; 134 machine->kernel_start = 0; 135 machine->vmlinux_map = NULL; 136 137 machine->root_dir = strdup(root_dir); 138 if (machine->root_dir == NULL) 139 goto out; 140 141 if (machine__set_mmap_name(machine)) 142 goto out; 143 144 if (pid != HOST_KERNEL_ID) { 145 struct thread *thread = machine__findnew_thread(machine, -1, 146 pid); 147 148 if (thread == NULL) 149 goto out; 150 151 thread__set_guest_comm(thread, pid); 152 thread__put(thread); 153 } 154 155 machine->current_tid = NULL; 156 err = 0; 157 158 out: 159 if (err) { 160 zfree(&machine->kmaps); 161 zfree(&machine->root_dir); 162 zfree(&machine->mmap_name); 163 } 164 return 0; 165 } 166 167 struct machine *machine__new_host(void) 168 { 169 struct machine *machine = malloc(sizeof(*machine)); 170 171 if (machine != NULL) { 172 machine__init(machine, "", HOST_KERNEL_ID); 173 174 if (machine__create_kernel_maps(machine) < 0) 175 goto out_delete; 176 } 177 178 return machine; 179 out_delete: 180 free(machine); 181 return NULL; 182 } 183 184 struct machine *machine__new_kallsyms(void) 185 { 186 struct machine *machine = machine__new_host(); 187 /* 188 * FIXME: 189 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly 190 * ask for not using the kcore parsing code, once this one is fixed 191 * to create a map per module. 192 */ 193 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) { 194 machine__delete(machine); 195 machine = NULL; 196 } 197 198 return machine; 199 } 200 201 static void dsos__purge(struct dsos *dsos) 202 { 203 struct dso *pos, *n; 204 205 down_write(&dsos->lock); 206 207 list_for_each_entry_safe(pos, n, &dsos->head, node) { 208 RB_CLEAR_NODE(&pos->rb_node); 209 pos->root = NULL; 210 list_del_init(&pos->node); 211 dso__put(pos); 212 } 213 214 up_write(&dsos->lock); 215 } 216 217 static void dsos__exit(struct dsos *dsos) 218 { 219 dsos__purge(dsos); 220 exit_rwsem(&dsos->lock); 221 } 222 223 void machine__delete_threads(struct machine *machine) 224 { 225 struct rb_node *nd; 226 int i; 227 228 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 229 struct threads *threads = &machine->threads[i]; 230 down_write(&threads->lock); 231 nd = rb_first_cached(&threads->entries); 232 while (nd) { 233 struct thread_rb_node *trb = rb_entry(nd, struct thread_rb_node, rb_node); 234 235 nd = rb_next(nd); 236 __machine__remove_thread(machine, trb, trb->thread, false); 237 } 238 up_write(&threads->lock); 239 } 240 } 241 242 void machine__exit(struct machine *machine) 243 { 244 int i; 245 246 if (machine == NULL) 247 return; 248 249 machine__destroy_kernel_maps(machine); 250 maps__zput(machine->kmaps); 251 dsos__exit(&machine->dsos); 252 machine__exit_vdso(machine); 253 zfree(&machine->root_dir); 254 zfree(&machine->mmap_name); 255 zfree(&machine->current_tid); 256 zfree(&machine->kallsyms_filename); 257 258 machine__delete_threads(machine); 259 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 260 struct threads *threads = &machine->threads[i]; 261 262 exit_rwsem(&threads->lock); 263 } 264 } 265 266 void machine__delete(struct machine *machine) 267 { 268 if (machine) { 269 machine__exit(machine); 270 free(machine); 271 } 272 } 273 274 void machines__init(struct machines *machines) 275 { 276 machine__init(&machines->host, "", HOST_KERNEL_ID); 277 machines->guests = RB_ROOT_CACHED; 278 } 279 280 void machines__exit(struct machines *machines) 281 { 282 machine__exit(&machines->host); 283 /* XXX exit guest */ 284 } 285 286 struct machine *machines__add(struct machines *machines, pid_t pid, 287 const char *root_dir) 288 { 289 struct rb_node **p = &machines->guests.rb_root.rb_node; 290 struct rb_node *parent = NULL; 291 struct machine *pos, *machine = malloc(sizeof(*machine)); 292 bool leftmost = true; 293 294 if (machine == NULL) 295 return NULL; 296 297 if (machine__init(machine, root_dir, pid) != 0) { 298 free(machine); 299 return NULL; 300 } 301 302 while (*p != NULL) { 303 parent = *p; 304 pos = rb_entry(parent, struct machine, rb_node); 305 if (pid < pos->pid) 306 p = &(*p)->rb_left; 307 else { 308 p = &(*p)->rb_right; 309 leftmost = false; 310 } 311 } 312 313 rb_link_node(&machine->rb_node, parent, p); 314 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost); 315 316 machine->machines = machines; 317 318 return machine; 319 } 320 321 void machines__set_comm_exec(struct machines *machines, bool comm_exec) 322 { 323 struct rb_node *nd; 324 325 machines->host.comm_exec = comm_exec; 326 327 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 328 struct machine *machine = rb_entry(nd, struct machine, rb_node); 329 330 machine->comm_exec = comm_exec; 331 } 332 } 333 334 struct machine *machines__find(struct machines *machines, pid_t pid) 335 { 336 struct rb_node **p = &machines->guests.rb_root.rb_node; 337 struct rb_node *parent = NULL; 338 struct machine *machine; 339 struct machine *default_machine = NULL; 340 341 if (pid == HOST_KERNEL_ID) 342 return &machines->host; 343 344 while (*p != NULL) { 345 parent = *p; 346 machine = rb_entry(parent, struct machine, rb_node); 347 if (pid < machine->pid) 348 p = &(*p)->rb_left; 349 else if (pid > machine->pid) 350 p = &(*p)->rb_right; 351 else 352 return machine; 353 if (!machine->pid) 354 default_machine = machine; 355 } 356 357 return default_machine; 358 } 359 360 struct machine *machines__findnew(struct machines *machines, pid_t pid) 361 { 362 char path[PATH_MAX]; 363 const char *root_dir = ""; 364 struct machine *machine = machines__find(machines, pid); 365 366 if (machine && (machine->pid == pid)) 367 goto out; 368 369 if ((pid != HOST_KERNEL_ID) && 370 (pid != DEFAULT_GUEST_KERNEL_ID) && 371 (symbol_conf.guestmount)) { 372 sprintf(path, "%s/%d", symbol_conf.guestmount, pid); 373 if (access(path, R_OK)) { 374 static struct strlist *seen; 375 376 if (!seen) 377 seen = strlist__new(NULL, NULL); 378 379 if (!strlist__has_entry(seen, path)) { 380 pr_err("Can't access file %s\n", path); 381 strlist__add(seen, path); 382 } 383 machine = NULL; 384 goto out; 385 } 386 root_dir = path; 387 } 388 389 machine = machines__add(machines, pid, root_dir); 390 out: 391 return machine; 392 } 393 394 struct machine *machines__find_guest(struct machines *machines, pid_t pid) 395 { 396 struct machine *machine = machines__find(machines, pid); 397 398 if (!machine) 399 machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID); 400 return machine; 401 } 402 403 /* 404 * A common case for KVM test programs is that the test program acts as the 405 * hypervisor, creating, running and destroying the virtual machine, and 406 * providing the guest object code from its own object code. In this case, 407 * the VM is not running an OS, but only the functions loaded into it by the 408 * hypervisor test program, and conveniently, loaded at the same virtual 409 * addresses. 410 * 411 * Normally to resolve addresses, MMAP events are needed to map addresses 412 * back to the object code and debug symbols for that object code. 413 * 414 * Currently, there is no way to get such mapping information from guests 415 * but, in the scenario described above, the guest has the same mappings 416 * as the hypervisor, so support for that scenario can be achieved. 417 * 418 * To support that, copy the host thread's maps to the guest thread's maps. 419 * Note, we do not discover the guest until we encounter a guest event, 420 * which works well because it is not until then that we know that the host 421 * thread's maps have been set up. 422 * 423 * This function returns the guest thread. Apart from keeping the data 424 * structures sane, using a thread belonging to the guest machine, instead 425 * of the host thread, allows it to have its own comm (refer 426 * thread__set_guest_comm()). 427 */ 428 static struct thread *findnew_guest_code(struct machine *machine, 429 struct machine *host_machine, 430 pid_t pid) 431 { 432 struct thread *host_thread; 433 struct thread *thread; 434 int err; 435 436 if (!machine) 437 return NULL; 438 439 thread = machine__findnew_thread(machine, -1, pid); 440 if (!thread) 441 return NULL; 442 443 /* Assume maps are set up if there are any */ 444 if (maps__nr_maps(thread__maps(thread))) 445 return thread; 446 447 host_thread = machine__find_thread(host_machine, -1, pid); 448 if (!host_thread) 449 goto out_err; 450 451 thread__set_guest_comm(thread, pid); 452 453 /* 454 * Guest code can be found in hypervisor process at the same address 455 * so copy host maps. 456 */ 457 err = maps__clone(thread, thread__maps(host_thread)); 458 thread__put(host_thread); 459 if (err) 460 goto out_err; 461 462 return thread; 463 464 out_err: 465 thread__zput(thread); 466 return NULL; 467 } 468 469 struct thread *machines__findnew_guest_code(struct machines *machines, pid_t pid) 470 { 471 struct machine *host_machine = machines__find(machines, HOST_KERNEL_ID); 472 struct machine *machine = machines__findnew(machines, pid); 473 474 return findnew_guest_code(machine, host_machine, pid); 475 } 476 477 struct thread *machine__findnew_guest_code(struct machine *machine, pid_t pid) 478 { 479 struct machines *machines = machine->machines; 480 struct machine *host_machine; 481 482 if (!machines) 483 return NULL; 484 485 host_machine = machines__find(machines, HOST_KERNEL_ID); 486 487 return findnew_guest_code(machine, host_machine, pid); 488 } 489 490 void machines__process_guests(struct machines *machines, 491 machine__process_t process, void *data) 492 { 493 struct rb_node *nd; 494 495 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 496 struct machine *pos = rb_entry(nd, struct machine, rb_node); 497 process(pos, data); 498 } 499 } 500 501 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size) 502 { 503 struct rb_node *node; 504 struct machine *machine; 505 506 machines->host.id_hdr_size = id_hdr_size; 507 508 for (node = rb_first_cached(&machines->guests); node; 509 node = rb_next(node)) { 510 machine = rb_entry(node, struct machine, rb_node); 511 machine->id_hdr_size = id_hdr_size; 512 } 513 514 return; 515 } 516 517 static void machine__update_thread_pid(struct machine *machine, 518 struct thread *th, pid_t pid) 519 { 520 struct thread *leader; 521 522 if (pid == thread__pid(th) || pid == -1 || thread__pid(th) != -1) 523 return; 524 525 thread__set_pid(th, pid); 526 527 if (thread__pid(th) == thread__tid(th)) 528 return; 529 530 leader = __machine__findnew_thread(machine, thread__pid(th), thread__pid(th)); 531 if (!leader) 532 goto out_err; 533 534 if (!thread__maps(leader)) 535 thread__set_maps(leader, maps__new(machine)); 536 537 if (!thread__maps(leader)) 538 goto out_err; 539 540 if (thread__maps(th) == thread__maps(leader)) 541 goto out_put; 542 543 if (thread__maps(th)) { 544 /* 545 * Maps are created from MMAP events which provide the pid and 546 * tid. Consequently there never should be any maps on a thread 547 * with an unknown pid. Just print an error if there are. 548 */ 549 if (!maps__empty(thread__maps(th))) 550 pr_err("Discarding thread maps for %d:%d\n", 551 thread__pid(th), thread__tid(th)); 552 maps__put(thread__maps(th)); 553 } 554 555 thread__set_maps(th, maps__get(thread__maps(leader))); 556 out_put: 557 thread__put(leader); 558 return; 559 out_err: 560 pr_err("Failed to join map groups for %d:%d\n", thread__pid(th), thread__tid(th)); 561 goto out_put; 562 } 563 564 /* 565 * Front-end cache - TID lookups come in blocks, 566 * so most of the time we dont have to look up 567 * the full rbtree: 568 */ 569 static struct thread* 570 __threads__get_last_match(struct threads *threads, struct machine *machine, 571 int pid, int tid) 572 { 573 struct thread *th; 574 575 th = threads->last_match; 576 if (th != NULL) { 577 if (thread__tid(th) == tid) { 578 machine__update_thread_pid(machine, th, pid); 579 return thread__get(th); 580 } 581 thread__put(threads->last_match); 582 threads->last_match = NULL; 583 } 584 585 return NULL; 586 } 587 588 static struct thread* 589 threads__get_last_match(struct threads *threads, struct machine *machine, 590 int pid, int tid) 591 { 592 struct thread *th = NULL; 593 594 if (perf_singlethreaded) 595 th = __threads__get_last_match(threads, machine, pid, tid); 596 597 return th; 598 } 599 600 static void 601 __threads__set_last_match(struct threads *threads, struct thread *th) 602 { 603 thread__put(threads->last_match); 604 threads->last_match = thread__get(th); 605 } 606 607 static void 608 threads__set_last_match(struct threads *threads, struct thread *th) 609 { 610 if (perf_singlethreaded) 611 __threads__set_last_match(threads, th); 612 } 613 614 /* 615 * Caller must eventually drop thread->refcnt returned with a successful 616 * lookup/new thread inserted. 617 */ 618 static struct thread *____machine__findnew_thread(struct machine *machine, 619 struct threads *threads, 620 pid_t pid, pid_t tid, 621 bool create) 622 { 623 struct rb_node **p = &threads->entries.rb_root.rb_node; 624 struct rb_node *parent = NULL; 625 struct thread *th; 626 struct thread_rb_node *nd; 627 bool leftmost = true; 628 629 th = threads__get_last_match(threads, machine, pid, tid); 630 if (th) 631 return th; 632 633 while (*p != NULL) { 634 parent = *p; 635 th = rb_entry(parent, struct thread_rb_node, rb_node)->thread; 636 637 if (thread__tid(th) == tid) { 638 threads__set_last_match(threads, th); 639 machine__update_thread_pid(machine, th, pid); 640 return thread__get(th); 641 } 642 643 if (tid < thread__tid(th)) 644 p = &(*p)->rb_left; 645 else { 646 p = &(*p)->rb_right; 647 leftmost = false; 648 } 649 } 650 651 if (!create) 652 return NULL; 653 654 th = thread__new(pid, tid); 655 if (th == NULL) 656 return NULL; 657 658 nd = malloc(sizeof(*nd)); 659 if (nd == NULL) { 660 thread__put(th); 661 return NULL; 662 } 663 nd->thread = th; 664 665 rb_link_node(&nd->rb_node, parent, p); 666 rb_insert_color_cached(&nd->rb_node, &threads->entries, leftmost); 667 /* 668 * We have to initialize maps separately after rb tree is updated. 669 * 670 * The reason is that we call machine__findnew_thread within 671 * thread__init_maps to find the thread leader and that would screwed 672 * the rb tree. 673 */ 674 if (thread__init_maps(th, machine)) { 675 pr_err("Thread init failed thread %d\n", pid); 676 rb_erase_cached(&nd->rb_node, &threads->entries); 677 RB_CLEAR_NODE(&nd->rb_node); 678 free(nd); 679 thread__put(th); 680 return NULL; 681 } 682 /* 683 * It is now in the rbtree, get a ref 684 */ 685 threads__set_last_match(threads, th); 686 ++threads->nr; 687 688 return thread__get(th); 689 } 690 691 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid) 692 { 693 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true); 694 } 695 696 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, 697 pid_t tid) 698 { 699 struct threads *threads = machine__threads(machine, tid); 700 struct thread *th; 701 702 down_write(&threads->lock); 703 th = __machine__findnew_thread(machine, pid, tid); 704 up_write(&threads->lock); 705 return th; 706 } 707 708 struct thread *machine__find_thread(struct machine *machine, pid_t pid, 709 pid_t tid) 710 { 711 struct threads *threads = machine__threads(machine, tid); 712 struct thread *th; 713 714 down_read(&threads->lock); 715 th = ____machine__findnew_thread(machine, threads, pid, tid, false); 716 up_read(&threads->lock); 717 return th; 718 } 719 720 /* 721 * Threads are identified by pid and tid, and the idle task has pid == tid == 0. 722 * So here a single thread is created for that, but actually there is a separate 723 * idle task per cpu, so there should be one 'struct thread' per cpu, but there 724 * is only 1. That causes problems for some tools, requiring workarounds. For 725 * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu(). 726 */ 727 struct thread *machine__idle_thread(struct machine *machine) 728 { 729 struct thread *thread = machine__findnew_thread(machine, 0, 0); 730 731 if (!thread || thread__set_comm(thread, "swapper", 0) || 732 thread__set_namespaces(thread, 0, NULL)) 733 pr_err("problem inserting idle task for machine pid %d\n", machine->pid); 734 735 return thread; 736 } 737 738 struct comm *machine__thread_exec_comm(struct machine *machine, 739 struct thread *thread) 740 { 741 if (machine->comm_exec) 742 return thread__exec_comm(thread); 743 else 744 return thread__comm(thread); 745 } 746 747 int machine__process_comm_event(struct machine *machine, union perf_event *event, 748 struct perf_sample *sample) 749 { 750 struct thread *thread = machine__findnew_thread(machine, 751 event->comm.pid, 752 event->comm.tid); 753 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC; 754 int err = 0; 755 756 if (exec) 757 machine->comm_exec = true; 758 759 if (dump_trace) 760 perf_event__fprintf_comm(event, stdout); 761 762 if (thread == NULL || 763 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) { 764 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n"); 765 err = -1; 766 } 767 768 thread__put(thread); 769 770 return err; 771 } 772 773 int machine__process_namespaces_event(struct machine *machine __maybe_unused, 774 union perf_event *event, 775 struct perf_sample *sample __maybe_unused) 776 { 777 struct thread *thread = machine__findnew_thread(machine, 778 event->namespaces.pid, 779 event->namespaces.tid); 780 int err = 0; 781 782 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES, 783 "\nWARNING: kernel seems to support more namespaces than perf" 784 " tool.\nTry updating the perf tool..\n\n"); 785 786 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES, 787 "\nWARNING: perf tool seems to support more namespaces than" 788 " the kernel.\nTry updating the kernel..\n\n"); 789 790 if (dump_trace) 791 perf_event__fprintf_namespaces(event, stdout); 792 793 if (thread == NULL || 794 thread__set_namespaces(thread, sample->time, &event->namespaces)) { 795 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n"); 796 err = -1; 797 } 798 799 thread__put(thread); 800 801 return err; 802 } 803 804 int machine__process_cgroup_event(struct machine *machine, 805 union perf_event *event, 806 struct perf_sample *sample __maybe_unused) 807 { 808 struct cgroup *cgrp; 809 810 if (dump_trace) 811 perf_event__fprintf_cgroup(event, stdout); 812 813 cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path); 814 if (cgrp == NULL) 815 return -ENOMEM; 816 817 return 0; 818 } 819 820 int machine__process_lost_event(struct machine *machine __maybe_unused, 821 union perf_event *event, struct perf_sample *sample __maybe_unused) 822 { 823 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n", 824 event->lost.id, event->lost.lost); 825 return 0; 826 } 827 828 int machine__process_lost_samples_event(struct machine *machine __maybe_unused, 829 union perf_event *event, struct perf_sample *sample) 830 { 831 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n", 832 sample->id, event->lost_samples.lost); 833 return 0; 834 } 835 836 static struct dso *machine__findnew_module_dso(struct machine *machine, 837 struct kmod_path *m, 838 const char *filename) 839 { 840 struct dso *dso; 841 842 down_write(&machine->dsos.lock); 843 844 dso = __dsos__find(&machine->dsos, m->name, true); 845 if (!dso) { 846 dso = __dsos__addnew(&machine->dsos, m->name); 847 if (dso == NULL) 848 goto out_unlock; 849 850 dso__set_module_info(dso, m, machine); 851 dso__set_long_name(dso, strdup(filename), true); 852 dso->kernel = DSO_SPACE__KERNEL; 853 } 854 855 dso__get(dso); 856 out_unlock: 857 up_write(&machine->dsos.lock); 858 return dso; 859 } 860 861 int machine__process_aux_event(struct machine *machine __maybe_unused, 862 union perf_event *event) 863 { 864 if (dump_trace) 865 perf_event__fprintf_aux(event, stdout); 866 return 0; 867 } 868 869 int machine__process_itrace_start_event(struct machine *machine __maybe_unused, 870 union perf_event *event) 871 { 872 if (dump_trace) 873 perf_event__fprintf_itrace_start(event, stdout); 874 return 0; 875 } 876 877 int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused, 878 union perf_event *event) 879 { 880 if (dump_trace) 881 perf_event__fprintf_aux_output_hw_id(event, stdout); 882 return 0; 883 } 884 885 int machine__process_switch_event(struct machine *machine __maybe_unused, 886 union perf_event *event) 887 { 888 if (dump_trace) 889 perf_event__fprintf_switch(event, stdout); 890 return 0; 891 } 892 893 static int machine__process_ksymbol_register(struct machine *machine, 894 union perf_event *event, 895 struct perf_sample *sample __maybe_unused) 896 { 897 struct symbol *sym; 898 struct dso *dso; 899 struct map *map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr); 900 bool put_map = false; 901 int err = 0; 902 903 if (!map) { 904 dso = dso__new(event->ksymbol.name); 905 906 if (!dso) { 907 err = -ENOMEM; 908 goto out; 909 } 910 dso->kernel = DSO_SPACE__KERNEL; 911 map = map__new2(0, dso); 912 dso__put(dso); 913 if (!map) { 914 err = -ENOMEM; 915 goto out; 916 } 917 /* 918 * The inserted map has a get on it, we need to put to release 919 * the reference count here, but do it after all accesses are 920 * done. 921 */ 922 put_map = true; 923 if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) { 924 dso->binary_type = DSO_BINARY_TYPE__OOL; 925 dso->data.file_size = event->ksymbol.len; 926 dso__set_loaded(dso); 927 } 928 929 map__set_start(map, event->ksymbol.addr); 930 map__set_end(map, map__start(map) + event->ksymbol.len); 931 err = maps__insert(machine__kernel_maps(machine), map); 932 if (err) { 933 err = -ENOMEM; 934 goto out; 935 } 936 937 dso__set_loaded(dso); 938 939 if (is_bpf_image(event->ksymbol.name)) { 940 dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE; 941 dso__set_long_name(dso, "", false); 942 } 943 } else { 944 dso = map__dso(map); 945 } 946 947 sym = symbol__new(map__map_ip(map, map__start(map)), 948 event->ksymbol.len, 949 0, 0, event->ksymbol.name); 950 if (!sym) { 951 err = -ENOMEM; 952 goto out; 953 } 954 dso__insert_symbol(dso, sym); 955 out: 956 if (put_map) 957 map__put(map); 958 return err; 959 } 960 961 static int machine__process_ksymbol_unregister(struct machine *machine, 962 union perf_event *event, 963 struct perf_sample *sample __maybe_unused) 964 { 965 struct symbol *sym; 966 struct map *map; 967 968 map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr); 969 if (!map) 970 return 0; 971 972 if (RC_CHK_ACCESS(map) != RC_CHK_ACCESS(machine->vmlinux_map)) 973 maps__remove(machine__kernel_maps(machine), map); 974 else { 975 struct dso *dso = map__dso(map); 976 977 sym = dso__find_symbol(dso, map__map_ip(map, map__start(map))); 978 if (sym) 979 dso__delete_symbol(dso, sym); 980 } 981 982 return 0; 983 } 984 985 int machine__process_ksymbol(struct machine *machine __maybe_unused, 986 union perf_event *event, 987 struct perf_sample *sample) 988 { 989 if (dump_trace) 990 perf_event__fprintf_ksymbol(event, stdout); 991 992 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER) 993 return machine__process_ksymbol_unregister(machine, event, 994 sample); 995 return machine__process_ksymbol_register(machine, event, sample); 996 } 997 998 int machine__process_text_poke(struct machine *machine, union perf_event *event, 999 struct perf_sample *sample __maybe_unused) 1000 { 1001 struct map *map = maps__find(machine__kernel_maps(machine), event->text_poke.addr); 1002 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 1003 struct dso *dso = map ? map__dso(map) : NULL; 1004 1005 if (dump_trace) 1006 perf_event__fprintf_text_poke(event, machine, stdout); 1007 1008 if (!event->text_poke.new_len) 1009 return 0; 1010 1011 if (cpumode != PERF_RECORD_MISC_KERNEL) { 1012 pr_debug("%s: unsupported cpumode - ignoring\n", __func__); 1013 return 0; 1014 } 1015 1016 if (dso) { 1017 u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len; 1018 int ret; 1019 1020 /* 1021 * Kernel maps might be changed when loading symbols so loading 1022 * must be done prior to using kernel maps. 1023 */ 1024 map__load(map); 1025 ret = dso__data_write_cache_addr(dso, map, machine, 1026 event->text_poke.addr, 1027 new_bytes, 1028 event->text_poke.new_len); 1029 if (ret != event->text_poke.new_len) 1030 pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n", 1031 event->text_poke.addr); 1032 } else { 1033 pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n", 1034 event->text_poke.addr); 1035 } 1036 1037 return 0; 1038 } 1039 1040 static struct map *machine__addnew_module_map(struct machine *machine, u64 start, 1041 const char *filename) 1042 { 1043 struct map *map = NULL; 1044 struct kmod_path m; 1045 struct dso *dso; 1046 int err; 1047 1048 if (kmod_path__parse_name(&m, filename)) 1049 return NULL; 1050 1051 dso = machine__findnew_module_dso(machine, &m, filename); 1052 if (dso == NULL) 1053 goto out; 1054 1055 map = map__new2(start, dso); 1056 if (map == NULL) 1057 goto out; 1058 1059 err = maps__insert(machine__kernel_maps(machine), map); 1060 /* If maps__insert failed, return NULL. */ 1061 if (err) { 1062 map__put(map); 1063 map = NULL; 1064 } 1065 out: 1066 /* put the dso here, corresponding to machine__findnew_module_dso */ 1067 dso__put(dso); 1068 zfree(&m.name); 1069 return map; 1070 } 1071 1072 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp) 1073 { 1074 struct rb_node *nd; 1075 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp); 1076 1077 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 1078 struct machine *pos = rb_entry(nd, struct machine, rb_node); 1079 ret += __dsos__fprintf(&pos->dsos.head, fp); 1080 } 1081 1082 return ret; 1083 } 1084 1085 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp, 1086 bool (skip)(struct dso *dso, int parm), int parm) 1087 { 1088 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm); 1089 } 1090 1091 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp, 1092 bool (skip)(struct dso *dso, int parm), int parm) 1093 { 1094 struct rb_node *nd; 1095 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm); 1096 1097 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 1098 struct machine *pos = rb_entry(nd, struct machine, rb_node); 1099 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm); 1100 } 1101 return ret; 1102 } 1103 1104 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp) 1105 { 1106 int i; 1107 size_t printed = 0; 1108 struct dso *kdso = machine__kernel_dso(machine); 1109 1110 if (kdso->has_build_id) { 1111 char filename[PATH_MAX]; 1112 if (dso__build_id_filename(kdso, filename, sizeof(filename), 1113 false)) 1114 printed += fprintf(fp, "[0] %s\n", filename); 1115 } 1116 1117 for (i = 0; i < vmlinux_path__nr_entries; ++i) 1118 printed += fprintf(fp, "[%d] %s\n", 1119 i + kdso->has_build_id, vmlinux_path[i]); 1120 1121 return printed; 1122 } 1123 1124 size_t machine__fprintf(struct machine *machine, FILE *fp) 1125 { 1126 struct rb_node *nd; 1127 size_t ret; 1128 int i; 1129 1130 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 1131 struct threads *threads = &machine->threads[i]; 1132 1133 down_read(&threads->lock); 1134 1135 ret = fprintf(fp, "Threads: %u\n", threads->nr); 1136 1137 for (nd = rb_first_cached(&threads->entries); nd; 1138 nd = rb_next(nd)) { 1139 struct thread *pos = rb_entry(nd, struct thread_rb_node, rb_node)->thread; 1140 1141 ret += thread__fprintf(pos, fp); 1142 } 1143 1144 up_read(&threads->lock); 1145 } 1146 return ret; 1147 } 1148 1149 static struct dso *machine__get_kernel(struct machine *machine) 1150 { 1151 const char *vmlinux_name = machine->mmap_name; 1152 struct dso *kernel; 1153 1154 if (machine__is_host(machine)) { 1155 if (symbol_conf.vmlinux_name) 1156 vmlinux_name = symbol_conf.vmlinux_name; 1157 1158 kernel = machine__findnew_kernel(machine, vmlinux_name, 1159 "[kernel]", DSO_SPACE__KERNEL); 1160 } else { 1161 if (symbol_conf.default_guest_vmlinux_name) 1162 vmlinux_name = symbol_conf.default_guest_vmlinux_name; 1163 1164 kernel = machine__findnew_kernel(machine, vmlinux_name, 1165 "[guest.kernel]", 1166 DSO_SPACE__KERNEL_GUEST); 1167 } 1168 1169 if (kernel != NULL && (!kernel->has_build_id)) 1170 dso__read_running_kernel_build_id(kernel, machine); 1171 1172 return kernel; 1173 } 1174 1175 void machine__get_kallsyms_filename(struct machine *machine, char *buf, 1176 size_t bufsz) 1177 { 1178 if (machine__is_default_guest(machine)) 1179 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms); 1180 else 1181 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir); 1182 } 1183 1184 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL}; 1185 1186 /* Figure out the start address of kernel map from /proc/kallsyms. 1187 * Returns the name of the start symbol in *symbol_name. Pass in NULL as 1188 * symbol_name if it's not that important. 1189 */ 1190 static int machine__get_running_kernel_start(struct machine *machine, 1191 const char **symbol_name, 1192 u64 *start, u64 *end) 1193 { 1194 char filename[PATH_MAX]; 1195 int i, err = -1; 1196 const char *name; 1197 u64 addr = 0; 1198 1199 machine__get_kallsyms_filename(machine, filename, PATH_MAX); 1200 1201 if (symbol__restricted_filename(filename, "/proc/kallsyms")) 1202 return 0; 1203 1204 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) { 1205 err = kallsyms__get_function_start(filename, name, &addr); 1206 if (!err) 1207 break; 1208 } 1209 1210 if (err) 1211 return -1; 1212 1213 if (symbol_name) 1214 *symbol_name = name; 1215 1216 *start = addr; 1217 1218 err = kallsyms__get_function_start(filename, "_etext", &addr); 1219 if (!err) 1220 *end = addr; 1221 1222 return 0; 1223 } 1224 1225 int machine__create_extra_kernel_map(struct machine *machine, 1226 struct dso *kernel, 1227 struct extra_kernel_map *xm) 1228 { 1229 struct kmap *kmap; 1230 struct map *map; 1231 int err; 1232 1233 map = map__new2(xm->start, kernel); 1234 if (!map) 1235 return -ENOMEM; 1236 1237 map__set_end(map, xm->end); 1238 map__set_pgoff(map, xm->pgoff); 1239 1240 kmap = map__kmap(map); 1241 1242 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN); 1243 1244 err = maps__insert(machine__kernel_maps(machine), map); 1245 1246 if (!err) { 1247 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n", 1248 kmap->name, map__start(map), map__end(map)); 1249 } 1250 1251 map__put(map); 1252 1253 return err; 1254 } 1255 1256 static u64 find_entry_trampoline(struct dso *dso) 1257 { 1258 /* Duplicates are removed so lookup all aliases */ 1259 const char *syms[] = { 1260 "_entry_trampoline", 1261 "__entry_trampoline_start", 1262 "entry_SYSCALL_64_trampoline", 1263 }; 1264 struct symbol *sym = dso__first_symbol(dso); 1265 unsigned int i; 1266 1267 for (; sym; sym = dso__next_symbol(sym)) { 1268 if (sym->binding != STB_GLOBAL) 1269 continue; 1270 for (i = 0; i < ARRAY_SIZE(syms); i++) { 1271 if (!strcmp(sym->name, syms[i])) 1272 return sym->start; 1273 } 1274 } 1275 1276 return 0; 1277 } 1278 1279 /* 1280 * These values can be used for kernels that do not have symbols for the entry 1281 * trampolines in kallsyms. 1282 */ 1283 #define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL 1284 #define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000 1285 #define X86_64_ENTRY_TRAMPOLINE 0x6000 1286 1287 /* Map x86_64 PTI entry trampolines */ 1288 int machine__map_x86_64_entry_trampolines(struct machine *machine, 1289 struct dso *kernel) 1290 { 1291 struct maps *kmaps = machine__kernel_maps(machine); 1292 int nr_cpus_avail, cpu; 1293 bool found = false; 1294 struct map_rb_node *rb_node; 1295 u64 pgoff; 1296 1297 /* 1298 * In the vmlinux case, pgoff is a virtual address which must now be 1299 * mapped to a vmlinux offset. 1300 */ 1301 maps__for_each_entry(kmaps, rb_node) { 1302 struct map *dest_map, *map = rb_node->map; 1303 struct kmap *kmap = __map__kmap(map); 1304 1305 if (!kmap || !is_entry_trampoline(kmap->name)) 1306 continue; 1307 1308 dest_map = maps__find(kmaps, map__pgoff(map)); 1309 if (dest_map != map) 1310 map__set_pgoff(map, map__map_ip(dest_map, map__pgoff(map))); 1311 found = true; 1312 } 1313 if (found || machine->trampolines_mapped) 1314 return 0; 1315 1316 pgoff = find_entry_trampoline(kernel); 1317 if (!pgoff) 1318 return 0; 1319 1320 nr_cpus_avail = machine__nr_cpus_avail(machine); 1321 1322 /* Add a 1 page map for each CPU's entry trampoline */ 1323 for (cpu = 0; cpu < nr_cpus_avail; cpu++) { 1324 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU + 1325 cpu * X86_64_CPU_ENTRY_AREA_SIZE + 1326 X86_64_ENTRY_TRAMPOLINE; 1327 struct extra_kernel_map xm = { 1328 .start = va, 1329 .end = va + page_size, 1330 .pgoff = pgoff, 1331 }; 1332 1333 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN); 1334 1335 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0) 1336 return -1; 1337 } 1338 1339 machine->trampolines_mapped = nr_cpus_avail; 1340 1341 return 0; 1342 } 1343 1344 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused, 1345 struct dso *kernel __maybe_unused) 1346 { 1347 return 0; 1348 } 1349 1350 static int 1351 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel) 1352 { 1353 /* In case of renewal the kernel map, destroy previous one */ 1354 machine__destroy_kernel_maps(machine); 1355 1356 map__put(machine->vmlinux_map); 1357 machine->vmlinux_map = map__new2(0, kernel); 1358 if (machine->vmlinux_map == NULL) 1359 return -ENOMEM; 1360 1361 map__set_map_ip(machine->vmlinux_map, identity__map_ip); 1362 map__set_unmap_ip(machine->vmlinux_map, identity__map_ip); 1363 return maps__insert(machine__kernel_maps(machine), machine->vmlinux_map); 1364 } 1365 1366 void machine__destroy_kernel_maps(struct machine *machine) 1367 { 1368 struct kmap *kmap; 1369 struct map *map = machine__kernel_map(machine); 1370 1371 if (map == NULL) 1372 return; 1373 1374 kmap = map__kmap(map); 1375 maps__remove(machine__kernel_maps(machine), map); 1376 if (kmap && kmap->ref_reloc_sym) { 1377 zfree((char **)&kmap->ref_reloc_sym->name); 1378 zfree(&kmap->ref_reloc_sym); 1379 } 1380 1381 map__zput(machine->vmlinux_map); 1382 } 1383 1384 int machines__create_guest_kernel_maps(struct machines *machines) 1385 { 1386 int ret = 0; 1387 struct dirent **namelist = NULL; 1388 int i, items = 0; 1389 char path[PATH_MAX]; 1390 pid_t pid; 1391 char *endp; 1392 1393 if (symbol_conf.default_guest_vmlinux_name || 1394 symbol_conf.default_guest_modules || 1395 symbol_conf.default_guest_kallsyms) { 1396 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID); 1397 } 1398 1399 if (symbol_conf.guestmount) { 1400 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL); 1401 if (items <= 0) 1402 return -ENOENT; 1403 for (i = 0; i < items; i++) { 1404 if (!isdigit(namelist[i]->d_name[0])) { 1405 /* Filter out . and .. */ 1406 continue; 1407 } 1408 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10); 1409 if ((*endp != '\0') || 1410 (endp == namelist[i]->d_name) || 1411 (errno == ERANGE)) { 1412 pr_debug("invalid directory (%s). Skipping.\n", 1413 namelist[i]->d_name); 1414 continue; 1415 } 1416 sprintf(path, "%s/%s/proc/kallsyms", 1417 symbol_conf.guestmount, 1418 namelist[i]->d_name); 1419 ret = access(path, R_OK); 1420 if (ret) { 1421 pr_debug("Can't access file %s\n", path); 1422 goto failure; 1423 } 1424 machines__create_kernel_maps(machines, pid); 1425 } 1426 failure: 1427 free(namelist); 1428 } 1429 1430 return ret; 1431 } 1432 1433 void machines__destroy_kernel_maps(struct machines *machines) 1434 { 1435 struct rb_node *next = rb_first_cached(&machines->guests); 1436 1437 machine__destroy_kernel_maps(&machines->host); 1438 1439 while (next) { 1440 struct machine *pos = rb_entry(next, struct machine, rb_node); 1441 1442 next = rb_next(&pos->rb_node); 1443 rb_erase_cached(&pos->rb_node, &machines->guests); 1444 machine__delete(pos); 1445 } 1446 } 1447 1448 int machines__create_kernel_maps(struct machines *machines, pid_t pid) 1449 { 1450 struct machine *machine = machines__findnew(machines, pid); 1451 1452 if (machine == NULL) 1453 return -1; 1454 1455 return machine__create_kernel_maps(machine); 1456 } 1457 1458 int machine__load_kallsyms(struct machine *machine, const char *filename) 1459 { 1460 struct map *map = machine__kernel_map(machine); 1461 struct dso *dso = map__dso(map); 1462 int ret = __dso__load_kallsyms(dso, filename, map, true); 1463 1464 if (ret > 0) { 1465 dso__set_loaded(dso); 1466 /* 1467 * Since /proc/kallsyms will have multiple sessions for the 1468 * kernel, with modules between them, fixup the end of all 1469 * sections. 1470 */ 1471 maps__fixup_end(machine__kernel_maps(machine)); 1472 } 1473 1474 return ret; 1475 } 1476 1477 int machine__load_vmlinux_path(struct machine *machine) 1478 { 1479 struct map *map = machine__kernel_map(machine); 1480 struct dso *dso = map__dso(map); 1481 int ret = dso__load_vmlinux_path(dso, map); 1482 1483 if (ret > 0) 1484 dso__set_loaded(dso); 1485 1486 return ret; 1487 } 1488 1489 static char *get_kernel_version(const char *root_dir) 1490 { 1491 char version[PATH_MAX]; 1492 FILE *file; 1493 char *name, *tmp; 1494 const char *prefix = "Linux version "; 1495 1496 sprintf(version, "%s/proc/version", root_dir); 1497 file = fopen(version, "r"); 1498 if (!file) 1499 return NULL; 1500 1501 tmp = fgets(version, sizeof(version), file); 1502 fclose(file); 1503 if (!tmp) 1504 return NULL; 1505 1506 name = strstr(version, prefix); 1507 if (!name) 1508 return NULL; 1509 name += strlen(prefix); 1510 tmp = strchr(name, ' '); 1511 if (tmp) 1512 *tmp = '\0'; 1513 1514 return strdup(name); 1515 } 1516 1517 static bool is_kmod_dso(struct dso *dso) 1518 { 1519 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE || 1520 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE; 1521 } 1522 1523 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m) 1524 { 1525 char *long_name; 1526 struct dso *dso; 1527 struct map *map = maps__find_by_name(maps, m->name); 1528 1529 if (map == NULL) 1530 return 0; 1531 1532 long_name = strdup(path); 1533 if (long_name == NULL) 1534 return -ENOMEM; 1535 1536 dso = map__dso(map); 1537 dso__set_long_name(dso, long_name, true); 1538 dso__kernel_module_get_build_id(dso, ""); 1539 1540 /* 1541 * Full name could reveal us kmod compression, so 1542 * we need to update the symtab_type if needed. 1543 */ 1544 if (m->comp && is_kmod_dso(dso)) { 1545 dso->symtab_type++; 1546 dso->comp = m->comp; 1547 } 1548 1549 return 0; 1550 } 1551 1552 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth) 1553 { 1554 struct dirent *dent; 1555 DIR *dir = opendir(dir_name); 1556 int ret = 0; 1557 1558 if (!dir) { 1559 pr_debug("%s: cannot open %s dir\n", __func__, dir_name); 1560 return -1; 1561 } 1562 1563 while ((dent = readdir(dir)) != NULL) { 1564 char path[PATH_MAX]; 1565 struct stat st; 1566 1567 /*sshfs might return bad dent->d_type, so we have to stat*/ 1568 path__join(path, sizeof(path), dir_name, dent->d_name); 1569 if (stat(path, &st)) 1570 continue; 1571 1572 if (S_ISDIR(st.st_mode)) { 1573 if (!strcmp(dent->d_name, ".") || 1574 !strcmp(dent->d_name, "..")) 1575 continue; 1576 1577 /* Do not follow top-level source and build symlinks */ 1578 if (depth == 0) { 1579 if (!strcmp(dent->d_name, "source") || 1580 !strcmp(dent->d_name, "build")) 1581 continue; 1582 } 1583 1584 ret = maps__set_modules_path_dir(maps, path, depth + 1); 1585 if (ret < 0) 1586 goto out; 1587 } else { 1588 struct kmod_path m; 1589 1590 ret = kmod_path__parse_name(&m, dent->d_name); 1591 if (ret) 1592 goto out; 1593 1594 if (m.kmod) 1595 ret = maps__set_module_path(maps, path, &m); 1596 1597 zfree(&m.name); 1598 1599 if (ret) 1600 goto out; 1601 } 1602 } 1603 1604 out: 1605 closedir(dir); 1606 return ret; 1607 } 1608 1609 static int machine__set_modules_path(struct machine *machine) 1610 { 1611 char *version; 1612 char modules_path[PATH_MAX]; 1613 1614 version = get_kernel_version(machine->root_dir); 1615 if (!version) 1616 return -1; 1617 1618 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s", 1619 machine->root_dir, version); 1620 free(version); 1621 1622 return maps__set_modules_path_dir(machine__kernel_maps(machine), modules_path, 0); 1623 } 1624 int __weak arch__fix_module_text_start(u64 *start __maybe_unused, 1625 u64 *size __maybe_unused, 1626 const char *name __maybe_unused) 1627 { 1628 return 0; 1629 } 1630 1631 static int machine__create_module(void *arg, const char *name, u64 start, 1632 u64 size) 1633 { 1634 struct machine *machine = arg; 1635 struct map *map; 1636 1637 if (arch__fix_module_text_start(&start, &size, name) < 0) 1638 return -1; 1639 1640 map = machine__addnew_module_map(machine, start, name); 1641 if (map == NULL) 1642 return -1; 1643 map__set_end(map, start + size); 1644 1645 dso__kernel_module_get_build_id(map__dso(map), machine->root_dir); 1646 map__put(map); 1647 return 0; 1648 } 1649 1650 static int machine__create_modules(struct machine *machine) 1651 { 1652 const char *modules; 1653 char path[PATH_MAX]; 1654 1655 if (machine__is_default_guest(machine)) { 1656 modules = symbol_conf.default_guest_modules; 1657 } else { 1658 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir); 1659 modules = path; 1660 } 1661 1662 if (symbol__restricted_filename(modules, "/proc/modules")) 1663 return -1; 1664 1665 if (modules__parse(modules, machine, machine__create_module)) 1666 return -1; 1667 1668 if (!machine__set_modules_path(machine)) 1669 return 0; 1670 1671 pr_debug("Problems setting modules path maps, continuing anyway...\n"); 1672 1673 return 0; 1674 } 1675 1676 static void machine__set_kernel_mmap(struct machine *machine, 1677 u64 start, u64 end) 1678 { 1679 map__set_start(machine->vmlinux_map, start); 1680 map__set_end(machine->vmlinux_map, end); 1681 /* 1682 * Be a bit paranoid here, some perf.data file came with 1683 * a zero sized synthesized MMAP event for the kernel. 1684 */ 1685 if (start == 0 && end == 0) 1686 map__set_end(machine->vmlinux_map, ~0ULL); 1687 } 1688 1689 static int machine__update_kernel_mmap(struct machine *machine, 1690 u64 start, u64 end) 1691 { 1692 struct map *orig, *updated; 1693 int err; 1694 1695 orig = machine->vmlinux_map; 1696 updated = map__get(orig); 1697 1698 machine->vmlinux_map = updated; 1699 machine__set_kernel_mmap(machine, start, end); 1700 maps__remove(machine__kernel_maps(machine), orig); 1701 err = maps__insert(machine__kernel_maps(machine), updated); 1702 map__put(orig); 1703 1704 return err; 1705 } 1706 1707 int machine__create_kernel_maps(struct machine *machine) 1708 { 1709 struct dso *kernel = machine__get_kernel(machine); 1710 const char *name = NULL; 1711 u64 start = 0, end = ~0ULL; 1712 int ret; 1713 1714 if (kernel == NULL) 1715 return -1; 1716 1717 ret = __machine__create_kernel_maps(machine, kernel); 1718 if (ret < 0) 1719 goto out_put; 1720 1721 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) { 1722 if (machine__is_host(machine)) 1723 pr_debug("Problems creating module maps, " 1724 "continuing anyway...\n"); 1725 else 1726 pr_debug("Problems creating module maps for guest %d, " 1727 "continuing anyway...\n", machine->pid); 1728 } 1729 1730 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) { 1731 if (name && 1732 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) { 1733 machine__destroy_kernel_maps(machine); 1734 ret = -1; 1735 goto out_put; 1736 } 1737 1738 /* 1739 * we have a real start address now, so re-order the kmaps 1740 * assume it's the last in the kmaps 1741 */ 1742 ret = machine__update_kernel_mmap(machine, start, end); 1743 if (ret < 0) 1744 goto out_put; 1745 } 1746 1747 if (machine__create_extra_kernel_maps(machine, kernel)) 1748 pr_debug("Problems creating extra kernel maps, continuing anyway...\n"); 1749 1750 if (end == ~0ULL) { 1751 /* update end address of the kernel map using adjacent module address */ 1752 struct map_rb_node *rb_node = maps__find_node(machine__kernel_maps(machine), 1753 machine__kernel_map(machine)); 1754 struct map_rb_node *next = map_rb_node__next(rb_node); 1755 1756 if (next) 1757 machine__set_kernel_mmap(machine, start, map__start(next->map)); 1758 } 1759 1760 out_put: 1761 dso__put(kernel); 1762 return ret; 1763 } 1764 1765 static bool machine__uses_kcore(struct machine *machine) 1766 { 1767 struct dso *dso; 1768 1769 list_for_each_entry(dso, &machine->dsos.head, node) { 1770 if (dso__is_kcore(dso)) 1771 return true; 1772 } 1773 1774 return false; 1775 } 1776 1777 static bool perf_event__is_extra_kernel_mmap(struct machine *machine, 1778 struct extra_kernel_map *xm) 1779 { 1780 return machine__is(machine, "x86_64") && 1781 is_entry_trampoline(xm->name); 1782 } 1783 1784 static int machine__process_extra_kernel_map(struct machine *machine, 1785 struct extra_kernel_map *xm) 1786 { 1787 struct dso *kernel = machine__kernel_dso(machine); 1788 1789 if (kernel == NULL) 1790 return -1; 1791 1792 return machine__create_extra_kernel_map(machine, kernel, xm); 1793 } 1794 1795 static int machine__process_kernel_mmap_event(struct machine *machine, 1796 struct extra_kernel_map *xm, 1797 struct build_id *bid) 1798 { 1799 enum dso_space_type dso_space; 1800 bool is_kernel_mmap; 1801 const char *mmap_name = machine->mmap_name; 1802 1803 /* If we have maps from kcore then we do not need or want any others */ 1804 if (machine__uses_kcore(machine)) 1805 return 0; 1806 1807 if (machine__is_host(machine)) 1808 dso_space = DSO_SPACE__KERNEL; 1809 else 1810 dso_space = DSO_SPACE__KERNEL_GUEST; 1811 1812 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0; 1813 if (!is_kernel_mmap && !machine__is_host(machine)) { 1814 /* 1815 * If the event was recorded inside the guest and injected into 1816 * the host perf.data file, then it will match a host mmap_name, 1817 * so try that - see machine__set_mmap_name(). 1818 */ 1819 mmap_name = "[kernel.kallsyms]"; 1820 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0; 1821 } 1822 if (xm->name[0] == '/' || 1823 (!is_kernel_mmap && xm->name[0] == '[')) { 1824 struct map *map = machine__addnew_module_map(machine, xm->start, xm->name); 1825 1826 if (map == NULL) 1827 goto out_problem; 1828 1829 map__set_end(map, map__start(map) + xm->end - xm->start); 1830 1831 if (build_id__is_defined(bid)) 1832 dso__set_build_id(map__dso(map), bid); 1833 1834 map__put(map); 1835 } else if (is_kernel_mmap) { 1836 const char *symbol_name = xm->name + strlen(mmap_name); 1837 /* 1838 * Should be there already, from the build-id table in 1839 * the header. 1840 */ 1841 struct dso *kernel = NULL; 1842 struct dso *dso; 1843 1844 down_read(&machine->dsos.lock); 1845 1846 list_for_each_entry(dso, &machine->dsos.head, node) { 1847 1848 /* 1849 * The cpumode passed to is_kernel_module is not the 1850 * cpumode of *this* event. If we insist on passing 1851 * correct cpumode to is_kernel_module, we should 1852 * record the cpumode when we adding this dso to the 1853 * linked list. 1854 * 1855 * However we don't really need passing correct 1856 * cpumode. We know the correct cpumode must be kernel 1857 * mode (if not, we should not link it onto kernel_dsos 1858 * list). 1859 * 1860 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN. 1861 * is_kernel_module() treats it as a kernel cpumode. 1862 */ 1863 1864 if (!dso->kernel || 1865 is_kernel_module(dso->long_name, 1866 PERF_RECORD_MISC_CPUMODE_UNKNOWN)) 1867 continue; 1868 1869 1870 kernel = dso__get(dso); 1871 break; 1872 } 1873 1874 up_read(&machine->dsos.lock); 1875 1876 if (kernel == NULL) 1877 kernel = machine__findnew_dso(machine, machine->mmap_name); 1878 if (kernel == NULL) 1879 goto out_problem; 1880 1881 kernel->kernel = dso_space; 1882 if (__machine__create_kernel_maps(machine, kernel) < 0) { 1883 dso__put(kernel); 1884 goto out_problem; 1885 } 1886 1887 if (strstr(kernel->long_name, "vmlinux")) 1888 dso__set_short_name(kernel, "[kernel.vmlinux]", false); 1889 1890 if (machine__update_kernel_mmap(machine, xm->start, xm->end) < 0) { 1891 dso__put(kernel); 1892 goto out_problem; 1893 } 1894 1895 if (build_id__is_defined(bid)) 1896 dso__set_build_id(kernel, bid); 1897 1898 /* 1899 * Avoid using a zero address (kptr_restrict) for the ref reloc 1900 * symbol. Effectively having zero here means that at record 1901 * time /proc/sys/kernel/kptr_restrict was non zero. 1902 */ 1903 if (xm->pgoff != 0) { 1904 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, 1905 symbol_name, 1906 xm->pgoff); 1907 } 1908 1909 if (machine__is_default_guest(machine)) { 1910 /* 1911 * preload dso of guest kernel and modules 1912 */ 1913 dso__load(kernel, machine__kernel_map(machine)); 1914 } 1915 dso__put(kernel); 1916 } else if (perf_event__is_extra_kernel_mmap(machine, xm)) { 1917 return machine__process_extra_kernel_map(machine, xm); 1918 } 1919 return 0; 1920 out_problem: 1921 return -1; 1922 } 1923 1924 int machine__process_mmap2_event(struct machine *machine, 1925 union perf_event *event, 1926 struct perf_sample *sample) 1927 { 1928 struct thread *thread; 1929 struct map *map; 1930 struct dso_id dso_id = { 1931 .maj = event->mmap2.maj, 1932 .min = event->mmap2.min, 1933 .ino = event->mmap2.ino, 1934 .ino_generation = event->mmap2.ino_generation, 1935 }; 1936 struct build_id __bid, *bid = NULL; 1937 int ret = 0; 1938 1939 if (dump_trace) 1940 perf_event__fprintf_mmap2(event, stdout); 1941 1942 if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) { 1943 bid = &__bid; 1944 build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size); 1945 } 1946 1947 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1948 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1949 struct extra_kernel_map xm = { 1950 .start = event->mmap2.start, 1951 .end = event->mmap2.start + event->mmap2.len, 1952 .pgoff = event->mmap2.pgoff, 1953 }; 1954 1955 strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN); 1956 ret = machine__process_kernel_mmap_event(machine, &xm, bid); 1957 if (ret < 0) 1958 goto out_problem; 1959 return 0; 1960 } 1961 1962 thread = machine__findnew_thread(machine, event->mmap2.pid, 1963 event->mmap2.tid); 1964 if (thread == NULL) 1965 goto out_problem; 1966 1967 map = map__new(machine, event->mmap2.start, 1968 event->mmap2.len, event->mmap2.pgoff, 1969 &dso_id, event->mmap2.prot, 1970 event->mmap2.flags, bid, 1971 event->mmap2.filename, thread); 1972 1973 if (map == NULL) 1974 goto out_problem_map; 1975 1976 ret = thread__insert_map(thread, map); 1977 if (ret) 1978 goto out_problem_insert; 1979 1980 thread__put(thread); 1981 map__put(map); 1982 return 0; 1983 1984 out_problem_insert: 1985 map__put(map); 1986 out_problem_map: 1987 thread__put(thread); 1988 out_problem: 1989 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n"); 1990 return 0; 1991 } 1992 1993 int machine__process_mmap_event(struct machine *machine, union perf_event *event, 1994 struct perf_sample *sample) 1995 { 1996 struct thread *thread; 1997 struct map *map; 1998 u32 prot = 0; 1999 int ret = 0; 2000 2001 if (dump_trace) 2002 perf_event__fprintf_mmap(event, stdout); 2003 2004 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 2005 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 2006 struct extra_kernel_map xm = { 2007 .start = event->mmap.start, 2008 .end = event->mmap.start + event->mmap.len, 2009 .pgoff = event->mmap.pgoff, 2010 }; 2011 2012 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN); 2013 ret = machine__process_kernel_mmap_event(machine, &xm, NULL); 2014 if (ret < 0) 2015 goto out_problem; 2016 return 0; 2017 } 2018 2019 thread = machine__findnew_thread(machine, event->mmap.pid, 2020 event->mmap.tid); 2021 if (thread == NULL) 2022 goto out_problem; 2023 2024 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA)) 2025 prot = PROT_EXEC; 2026 2027 map = map__new(machine, event->mmap.start, 2028 event->mmap.len, event->mmap.pgoff, 2029 NULL, prot, 0, NULL, event->mmap.filename, thread); 2030 2031 if (map == NULL) 2032 goto out_problem_map; 2033 2034 ret = thread__insert_map(thread, map); 2035 if (ret) 2036 goto out_problem_insert; 2037 2038 thread__put(thread); 2039 map__put(map); 2040 return 0; 2041 2042 out_problem_insert: 2043 map__put(map); 2044 out_problem_map: 2045 thread__put(thread); 2046 out_problem: 2047 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n"); 2048 return 0; 2049 } 2050 2051 static void __machine__remove_thread(struct machine *machine, struct thread_rb_node *nd, 2052 struct thread *th, bool lock) 2053 { 2054 struct threads *threads = machine__threads(machine, thread__tid(th)); 2055 2056 if (!nd) 2057 nd = thread_rb_node__find(th, &threads->entries.rb_root); 2058 2059 if (threads->last_match && RC_CHK_ACCESS(threads->last_match) == RC_CHK_ACCESS(th)) 2060 threads__set_last_match(threads, NULL); 2061 2062 if (lock) 2063 down_write(&threads->lock); 2064 2065 BUG_ON(refcount_read(thread__refcnt(th)) == 0); 2066 2067 thread__put(nd->thread); 2068 rb_erase_cached(&nd->rb_node, &threads->entries); 2069 RB_CLEAR_NODE(&nd->rb_node); 2070 --threads->nr; 2071 2072 free(nd); 2073 2074 if (lock) 2075 up_write(&threads->lock); 2076 } 2077 2078 void machine__remove_thread(struct machine *machine, struct thread *th) 2079 { 2080 return __machine__remove_thread(machine, NULL, th, true); 2081 } 2082 2083 int machine__process_fork_event(struct machine *machine, union perf_event *event, 2084 struct perf_sample *sample) 2085 { 2086 struct thread *thread = machine__find_thread(machine, 2087 event->fork.pid, 2088 event->fork.tid); 2089 struct thread *parent = machine__findnew_thread(machine, 2090 event->fork.ppid, 2091 event->fork.ptid); 2092 bool do_maps_clone = true; 2093 int err = 0; 2094 2095 if (dump_trace) 2096 perf_event__fprintf_task(event, stdout); 2097 2098 /* 2099 * There may be an existing thread that is not actually the parent, 2100 * either because we are processing events out of order, or because the 2101 * (fork) event that would have removed the thread was lost. Assume the 2102 * latter case and continue on as best we can. 2103 */ 2104 if (thread__pid(parent) != (pid_t)event->fork.ppid) { 2105 dump_printf("removing erroneous parent thread %d/%d\n", 2106 thread__pid(parent), thread__tid(parent)); 2107 machine__remove_thread(machine, parent); 2108 thread__put(parent); 2109 parent = machine__findnew_thread(machine, event->fork.ppid, 2110 event->fork.ptid); 2111 } 2112 2113 /* if a thread currently exists for the thread id remove it */ 2114 if (thread != NULL) { 2115 machine__remove_thread(machine, thread); 2116 thread__put(thread); 2117 } 2118 2119 thread = machine__findnew_thread(machine, event->fork.pid, 2120 event->fork.tid); 2121 /* 2122 * When synthesizing FORK events, we are trying to create thread 2123 * objects for the already running tasks on the machine. 2124 * 2125 * Normally, for a kernel FORK event, we want to clone the parent's 2126 * maps because that is what the kernel just did. 2127 * 2128 * But when synthesizing, this should not be done. If we do, we end up 2129 * with overlapping maps as we process the synthesized MMAP2 events that 2130 * get delivered shortly thereafter. 2131 * 2132 * Use the FORK event misc flags in an internal way to signal this 2133 * situation, so we can elide the map clone when appropriate. 2134 */ 2135 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC) 2136 do_maps_clone = false; 2137 2138 if (thread == NULL || parent == NULL || 2139 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) { 2140 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n"); 2141 err = -1; 2142 } 2143 thread__put(thread); 2144 thread__put(parent); 2145 2146 return err; 2147 } 2148 2149 int machine__process_exit_event(struct machine *machine, union perf_event *event, 2150 struct perf_sample *sample __maybe_unused) 2151 { 2152 struct thread *thread = machine__find_thread(machine, 2153 event->fork.pid, 2154 event->fork.tid); 2155 2156 if (dump_trace) 2157 perf_event__fprintf_task(event, stdout); 2158 2159 if (thread != NULL) 2160 thread__put(thread); 2161 2162 return 0; 2163 } 2164 2165 int machine__process_event(struct machine *machine, union perf_event *event, 2166 struct perf_sample *sample) 2167 { 2168 int ret; 2169 2170 switch (event->header.type) { 2171 case PERF_RECORD_COMM: 2172 ret = machine__process_comm_event(machine, event, sample); break; 2173 case PERF_RECORD_MMAP: 2174 ret = machine__process_mmap_event(machine, event, sample); break; 2175 case PERF_RECORD_NAMESPACES: 2176 ret = machine__process_namespaces_event(machine, event, sample); break; 2177 case PERF_RECORD_CGROUP: 2178 ret = machine__process_cgroup_event(machine, event, sample); break; 2179 case PERF_RECORD_MMAP2: 2180 ret = machine__process_mmap2_event(machine, event, sample); break; 2181 case PERF_RECORD_FORK: 2182 ret = machine__process_fork_event(machine, event, sample); break; 2183 case PERF_RECORD_EXIT: 2184 ret = machine__process_exit_event(machine, event, sample); break; 2185 case PERF_RECORD_LOST: 2186 ret = machine__process_lost_event(machine, event, sample); break; 2187 case PERF_RECORD_AUX: 2188 ret = machine__process_aux_event(machine, event); break; 2189 case PERF_RECORD_ITRACE_START: 2190 ret = machine__process_itrace_start_event(machine, event); break; 2191 case PERF_RECORD_LOST_SAMPLES: 2192 ret = machine__process_lost_samples_event(machine, event, sample); break; 2193 case PERF_RECORD_SWITCH: 2194 case PERF_RECORD_SWITCH_CPU_WIDE: 2195 ret = machine__process_switch_event(machine, event); break; 2196 case PERF_RECORD_KSYMBOL: 2197 ret = machine__process_ksymbol(machine, event, sample); break; 2198 case PERF_RECORD_BPF_EVENT: 2199 ret = machine__process_bpf(machine, event, sample); break; 2200 case PERF_RECORD_TEXT_POKE: 2201 ret = machine__process_text_poke(machine, event, sample); break; 2202 case PERF_RECORD_AUX_OUTPUT_HW_ID: 2203 ret = machine__process_aux_output_hw_id_event(machine, event); break; 2204 default: 2205 ret = -1; 2206 break; 2207 } 2208 2209 return ret; 2210 } 2211 2212 static bool symbol__match_regex(struct symbol *sym, regex_t *regex) 2213 { 2214 if (!regexec(regex, sym->name, 0, NULL, 0)) 2215 return true; 2216 return false; 2217 } 2218 2219 static void ip__resolve_ams(struct thread *thread, 2220 struct addr_map_symbol *ams, 2221 u64 ip) 2222 { 2223 struct addr_location al; 2224 2225 addr_location__init(&al); 2226 /* 2227 * We cannot use the header.misc hint to determine whether a 2228 * branch stack address is user, kernel, guest, hypervisor. 2229 * Branches may straddle the kernel/user/hypervisor boundaries. 2230 * Thus, we have to try consecutively until we find a match 2231 * or else, the symbol is unknown 2232 */ 2233 thread__find_cpumode_addr_location(thread, ip, &al); 2234 2235 ams->addr = ip; 2236 ams->al_addr = al.addr; 2237 ams->al_level = al.level; 2238 ams->ms.maps = maps__get(al.maps); 2239 ams->ms.sym = al.sym; 2240 ams->ms.map = map__get(al.map); 2241 ams->phys_addr = 0; 2242 ams->data_page_size = 0; 2243 addr_location__exit(&al); 2244 } 2245 2246 static void ip__resolve_data(struct thread *thread, 2247 u8 m, struct addr_map_symbol *ams, 2248 u64 addr, u64 phys_addr, u64 daddr_page_size) 2249 { 2250 struct addr_location al; 2251 2252 addr_location__init(&al); 2253 2254 thread__find_symbol(thread, m, addr, &al); 2255 2256 ams->addr = addr; 2257 ams->al_addr = al.addr; 2258 ams->al_level = al.level; 2259 ams->ms.maps = maps__get(al.maps); 2260 ams->ms.sym = al.sym; 2261 ams->ms.map = map__get(al.map); 2262 ams->phys_addr = phys_addr; 2263 ams->data_page_size = daddr_page_size; 2264 addr_location__exit(&al); 2265 } 2266 2267 struct mem_info *sample__resolve_mem(struct perf_sample *sample, 2268 struct addr_location *al) 2269 { 2270 struct mem_info *mi = mem_info__new(); 2271 2272 if (!mi) 2273 return NULL; 2274 2275 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip); 2276 ip__resolve_data(al->thread, al->cpumode, &mi->daddr, 2277 sample->addr, sample->phys_addr, 2278 sample->data_page_size); 2279 mi->data_src.val = sample->data_src; 2280 2281 return mi; 2282 } 2283 2284 static char *callchain_srcline(struct map_symbol *ms, u64 ip) 2285 { 2286 struct map *map = ms->map; 2287 char *srcline = NULL; 2288 struct dso *dso; 2289 2290 if (!map || callchain_param.key == CCKEY_FUNCTION) 2291 return srcline; 2292 2293 dso = map__dso(map); 2294 srcline = srcline__tree_find(&dso->srclines, ip); 2295 if (!srcline) { 2296 bool show_sym = false; 2297 bool show_addr = callchain_param.key == CCKEY_ADDRESS; 2298 2299 srcline = get_srcline(dso, map__rip_2objdump(map, ip), 2300 ms->sym, show_sym, show_addr, ip); 2301 srcline__tree_insert(&dso->srclines, ip, srcline); 2302 } 2303 2304 return srcline; 2305 } 2306 2307 struct iterations { 2308 int nr_loop_iter; 2309 u64 cycles; 2310 }; 2311 2312 static int add_callchain_ip(struct thread *thread, 2313 struct callchain_cursor *cursor, 2314 struct symbol **parent, 2315 struct addr_location *root_al, 2316 u8 *cpumode, 2317 u64 ip, 2318 bool branch, 2319 struct branch_flags *flags, 2320 struct iterations *iter, 2321 u64 branch_from) 2322 { 2323 struct map_symbol ms = {}; 2324 struct addr_location al; 2325 int nr_loop_iter = 0, err = 0; 2326 u64 iter_cycles = 0; 2327 const char *srcline = NULL; 2328 2329 addr_location__init(&al); 2330 al.filtered = 0; 2331 al.sym = NULL; 2332 al.srcline = NULL; 2333 if (!cpumode) { 2334 thread__find_cpumode_addr_location(thread, ip, &al); 2335 } else { 2336 if (ip >= PERF_CONTEXT_MAX) { 2337 switch (ip) { 2338 case PERF_CONTEXT_HV: 2339 *cpumode = PERF_RECORD_MISC_HYPERVISOR; 2340 break; 2341 case PERF_CONTEXT_KERNEL: 2342 *cpumode = PERF_RECORD_MISC_KERNEL; 2343 break; 2344 case PERF_CONTEXT_USER: 2345 *cpumode = PERF_RECORD_MISC_USER; 2346 break; 2347 default: 2348 pr_debug("invalid callchain context: " 2349 "%"PRId64"\n", (s64) ip); 2350 /* 2351 * It seems the callchain is corrupted. 2352 * Discard all. 2353 */ 2354 callchain_cursor_reset(cursor); 2355 err = 1; 2356 goto out; 2357 } 2358 goto out; 2359 } 2360 thread__find_symbol(thread, *cpumode, ip, &al); 2361 } 2362 2363 if (al.sym != NULL) { 2364 if (perf_hpp_list.parent && !*parent && 2365 symbol__match_regex(al.sym, &parent_regex)) 2366 *parent = al.sym; 2367 else if (have_ignore_callees && root_al && 2368 symbol__match_regex(al.sym, &ignore_callees_regex)) { 2369 /* Treat this symbol as the root, 2370 forgetting its callees. */ 2371 addr_location__copy(root_al, &al); 2372 callchain_cursor_reset(cursor); 2373 } 2374 } 2375 2376 if (symbol_conf.hide_unresolved && al.sym == NULL) 2377 goto out; 2378 2379 if (iter) { 2380 nr_loop_iter = iter->nr_loop_iter; 2381 iter_cycles = iter->cycles; 2382 } 2383 2384 ms.maps = maps__get(al.maps); 2385 ms.map = map__get(al.map); 2386 ms.sym = al.sym; 2387 srcline = callchain_srcline(&ms, al.addr); 2388 err = callchain_cursor_append(cursor, ip, &ms, 2389 branch, flags, nr_loop_iter, 2390 iter_cycles, branch_from, srcline); 2391 out: 2392 addr_location__exit(&al); 2393 maps__put(ms.maps); 2394 map__put(ms.map); 2395 return err; 2396 } 2397 2398 struct branch_info *sample__resolve_bstack(struct perf_sample *sample, 2399 struct addr_location *al) 2400 { 2401 unsigned int i; 2402 const struct branch_stack *bs = sample->branch_stack; 2403 struct branch_entry *entries = perf_sample__branch_entries(sample); 2404 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info)); 2405 2406 if (!bi) 2407 return NULL; 2408 2409 for (i = 0; i < bs->nr; i++) { 2410 ip__resolve_ams(al->thread, &bi[i].to, entries[i].to); 2411 ip__resolve_ams(al->thread, &bi[i].from, entries[i].from); 2412 bi[i].flags = entries[i].flags; 2413 } 2414 return bi; 2415 } 2416 2417 static void save_iterations(struct iterations *iter, 2418 struct branch_entry *be, int nr) 2419 { 2420 int i; 2421 2422 iter->nr_loop_iter++; 2423 iter->cycles = 0; 2424 2425 for (i = 0; i < nr; i++) 2426 iter->cycles += be[i].flags.cycles; 2427 } 2428 2429 #define CHASHSZ 127 2430 #define CHASHBITS 7 2431 #define NO_ENTRY 0xff 2432 2433 #define PERF_MAX_BRANCH_DEPTH 127 2434 2435 /* Remove loops. */ 2436 static int remove_loops(struct branch_entry *l, int nr, 2437 struct iterations *iter) 2438 { 2439 int i, j, off; 2440 unsigned char chash[CHASHSZ]; 2441 2442 memset(chash, NO_ENTRY, sizeof(chash)); 2443 2444 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255); 2445 2446 for (i = 0; i < nr; i++) { 2447 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ; 2448 2449 /* no collision handling for now */ 2450 if (chash[h] == NO_ENTRY) { 2451 chash[h] = i; 2452 } else if (l[chash[h]].from == l[i].from) { 2453 bool is_loop = true; 2454 /* check if it is a real loop */ 2455 off = 0; 2456 for (j = chash[h]; j < i && i + off < nr; j++, off++) 2457 if (l[j].from != l[i + off].from) { 2458 is_loop = false; 2459 break; 2460 } 2461 if (is_loop) { 2462 j = nr - (i + off); 2463 if (j > 0) { 2464 save_iterations(iter + i + off, 2465 l + i, off); 2466 2467 memmove(iter + i, iter + i + off, 2468 j * sizeof(*iter)); 2469 2470 memmove(l + i, l + i + off, 2471 j * sizeof(*l)); 2472 } 2473 2474 nr -= off; 2475 } 2476 } 2477 } 2478 return nr; 2479 } 2480 2481 static int lbr_callchain_add_kernel_ip(struct thread *thread, 2482 struct callchain_cursor *cursor, 2483 struct perf_sample *sample, 2484 struct symbol **parent, 2485 struct addr_location *root_al, 2486 u64 branch_from, 2487 bool callee, int end) 2488 { 2489 struct ip_callchain *chain = sample->callchain; 2490 u8 cpumode = PERF_RECORD_MISC_USER; 2491 int err, i; 2492 2493 if (callee) { 2494 for (i = 0; i < end + 1; i++) { 2495 err = add_callchain_ip(thread, cursor, parent, 2496 root_al, &cpumode, chain->ips[i], 2497 false, NULL, NULL, branch_from); 2498 if (err) 2499 return err; 2500 } 2501 return 0; 2502 } 2503 2504 for (i = end; i >= 0; i--) { 2505 err = add_callchain_ip(thread, cursor, parent, 2506 root_al, &cpumode, chain->ips[i], 2507 false, NULL, NULL, branch_from); 2508 if (err) 2509 return err; 2510 } 2511 2512 return 0; 2513 } 2514 2515 static void save_lbr_cursor_node(struct thread *thread, 2516 struct callchain_cursor *cursor, 2517 int idx) 2518 { 2519 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread); 2520 2521 if (!lbr_stitch) 2522 return; 2523 2524 if (cursor->pos == cursor->nr) { 2525 lbr_stitch->prev_lbr_cursor[idx].valid = false; 2526 return; 2527 } 2528 2529 if (!cursor->curr) 2530 cursor->curr = cursor->first; 2531 else 2532 cursor->curr = cursor->curr->next; 2533 memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr, 2534 sizeof(struct callchain_cursor_node)); 2535 2536 lbr_stitch->prev_lbr_cursor[idx].valid = true; 2537 cursor->pos++; 2538 } 2539 2540 static int lbr_callchain_add_lbr_ip(struct thread *thread, 2541 struct callchain_cursor *cursor, 2542 struct perf_sample *sample, 2543 struct symbol **parent, 2544 struct addr_location *root_al, 2545 u64 *branch_from, 2546 bool callee) 2547 { 2548 struct branch_stack *lbr_stack = sample->branch_stack; 2549 struct branch_entry *entries = perf_sample__branch_entries(sample); 2550 u8 cpumode = PERF_RECORD_MISC_USER; 2551 int lbr_nr = lbr_stack->nr; 2552 struct branch_flags *flags; 2553 int err, i; 2554 u64 ip; 2555 2556 /* 2557 * The curr and pos are not used in writing session. They are cleared 2558 * in callchain_cursor_commit() when the writing session is closed. 2559 * Using curr and pos to track the current cursor node. 2560 */ 2561 if (thread__lbr_stitch(thread)) { 2562 cursor->curr = NULL; 2563 cursor->pos = cursor->nr; 2564 if (cursor->nr) { 2565 cursor->curr = cursor->first; 2566 for (i = 0; i < (int)(cursor->nr - 1); i++) 2567 cursor->curr = cursor->curr->next; 2568 } 2569 } 2570 2571 if (callee) { 2572 /* Add LBR ip from first entries.to */ 2573 ip = entries[0].to; 2574 flags = &entries[0].flags; 2575 *branch_from = entries[0].from; 2576 err = add_callchain_ip(thread, cursor, parent, 2577 root_al, &cpumode, ip, 2578 true, flags, NULL, 2579 *branch_from); 2580 if (err) 2581 return err; 2582 2583 /* 2584 * The number of cursor node increases. 2585 * Move the current cursor node. 2586 * But does not need to save current cursor node for entry 0. 2587 * It's impossible to stitch the whole LBRs of previous sample. 2588 */ 2589 if (thread__lbr_stitch(thread) && (cursor->pos != cursor->nr)) { 2590 if (!cursor->curr) 2591 cursor->curr = cursor->first; 2592 else 2593 cursor->curr = cursor->curr->next; 2594 cursor->pos++; 2595 } 2596 2597 /* Add LBR ip from entries.from one by one. */ 2598 for (i = 0; i < lbr_nr; i++) { 2599 ip = entries[i].from; 2600 flags = &entries[i].flags; 2601 err = add_callchain_ip(thread, cursor, parent, 2602 root_al, &cpumode, ip, 2603 true, flags, NULL, 2604 *branch_from); 2605 if (err) 2606 return err; 2607 save_lbr_cursor_node(thread, cursor, i); 2608 } 2609 return 0; 2610 } 2611 2612 /* Add LBR ip from entries.from one by one. */ 2613 for (i = lbr_nr - 1; i >= 0; i--) { 2614 ip = entries[i].from; 2615 flags = &entries[i].flags; 2616 err = add_callchain_ip(thread, cursor, parent, 2617 root_al, &cpumode, ip, 2618 true, flags, NULL, 2619 *branch_from); 2620 if (err) 2621 return err; 2622 save_lbr_cursor_node(thread, cursor, i); 2623 } 2624 2625 /* Add LBR ip from first entries.to */ 2626 ip = entries[0].to; 2627 flags = &entries[0].flags; 2628 *branch_from = entries[0].from; 2629 err = add_callchain_ip(thread, cursor, parent, 2630 root_al, &cpumode, ip, 2631 true, flags, NULL, 2632 *branch_from); 2633 if (err) 2634 return err; 2635 2636 return 0; 2637 } 2638 2639 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread, 2640 struct callchain_cursor *cursor) 2641 { 2642 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread); 2643 struct callchain_cursor_node *cnode; 2644 struct stitch_list *stitch_node; 2645 int err; 2646 2647 list_for_each_entry(stitch_node, &lbr_stitch->lists, node) { 2648 cnode = &stitch_node->cursor; 2649 2650 err = callchain_cursor_append(cursor, cnode->ip, 2651 &cnode->ms, 2652 cnode->branch, 2653 &cnode->branch_flags, 2654 cnode->nr_loop_iter, 2655 cnode->iter_cycles, 2656 cnode->branch_from, 2657 cnode->srcline); 2658 if (err) 2659 return err; 2660 } 2661 return 0; 2662 } 2663 2664 static struct stitch_list *get_stitch_node(struct thread *thread) 2665 { 2666 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread); 2667 struct stitch_list *stitch_node; 2668 2669 if (!list_empty(&lbr_stitch->free_lists)) { 2670 stitch_node = list_first_entry(&lbr_stitch->free_lists, 2671 struct stitch_list, node); 2672 list_del(&stitch_node->node); 2673 2674 return stitch_node; 2675 } 2676 2677 return malloc(sizeof(struct stitch_list)); 2678 } 2679 2680 static bool has_stitched_lbr(struct thread *thread, 2681 struct perf_sample *cur, 2682 struct perf_sample *prev, 2683 unsigned int max_lbr, 2684 bool callee) 2685 { 2686 struct branch_stack *cur_stack = cur->branch_stack; 2687 struct branch_entry *cur_entries = perf_sample__branch_entries(cur); 2688 struct branch_stack *prev_stack = prev->branch_stack; 2689 struct branch_entry *prev_entries = perf_sample__branch_entries(prev); 2690 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread); 2691 int i, j, nr_identical_branches = 0; 2692 struct stitch_list *stitch_node; 2693 u64 cur_base, distance; 2694 2695 if (!cur_stack || !prev_stack) 2696 return false; 2697 2698 /* Find the physical index of the base-of-stack for current sample. */ 2699 cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1; 2700 2701 distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) : 2702 (max_lbr + prev_stack->hw_idx - cur_base); 2703 /* Previous sample has shorter stack. Nothing can be stitched. */ 2704 if (distance + 1 > prev_stack->nr) 2705 return false; 2706 2707 /* 2708 * Check if there are identical LBRs between two samples. 2709 * Identical LBRs must have same from, to and flags values. Also, 2710 * they have to be saved in the same LBR registers (same physical 2711 * index). 2712 * 2713 * Starts from the base-of-stack of current sample. 2714 */ 2715 for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) { 2716 if ((prev_entries[i].from != cur_entries[j].from) || 2717 (prev_entries[i].to != cur_entries[j].to) || 2718 (prev_entries[i].flags.value != cur_entries[j].flags.value)) 2719 break; 2720 nr_identical_branches++; 2721 } 2722 2723 if (!nr_identical_branches) 2724 return false; 2725 2726 /* 2727 * Save the LBRs between the base-of-stack of previous sample 2728 * and the base-of-stack of current sample into lbr_stitch->lists. 2729 * These LBRs will be stitched later. 2730 */ 2731 for (i = prev_stack->nr - 1; i > (int)distance; i--) { 2732 2733 if (!lbr_stitch->prev_lbr_cursor[i].valid) 2734 continue; 2735 2736 stitch_node = get_stitch_node(thread); 2737 if (!stitch_node) 2738 return false; 2739 2740 memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i], 2741 sizeof(struct callchain_cursor_node)); 2742 2743 if (callee) 2744 list_add(&stitch_node->node, &lbr_stitch->lists); 2745 else 2746 list_add_tail(&stitch_node->node, &lbr_stitch->lists); 2747 } 2748 2749 return true; 2750 } 2751 2752 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr) 2753 { 2754 if (thread__lbr_stitch(thread)) 2755 return true; 2756 2757 thread__set_lbr_stitch(thread, zalloc(sizeof(struct lbr_stitch))); 2758 if (!thread__lbr_stitch(thread)) 2759 goto err; 2760 2761 thread__lbr_stitch(thread)->prev_lbr_cursor = 2762 calloc(max_lbr + 1, sizeof(struct callchain_cursor_node)); 2763 if (!thread__lbr_stitch(thread)->prev_lbr_cursor) 2764 goto free_lbr_stitch; 2765 2766 INIT_LIST_HEAD(&thread__lbr_stitch(thread)->lists); 2767 INIT_LIST_HEAD(&thread__lbr_stitch(thread)->free_lists); 2768 2769 return true; 2770 2771 free_lbr_stitch: 2772 free(thread__lbr_stitch(thread)); 2773 thread__set_lbr_stitch(thread, NULL); 2774 err: 2775 pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n"); 2776 thread__set_lbr_stitch_enable(thread, false); 2777 return false; 2778 } 2779 2780 /* 2781 * Resolve LBR callstack chain sample 2782 * Return: 2783 * 1 on success get LBR callchain information 2784 * 0 no available LBR callchain information, should try fp 2785 * negative error code on other errors. 2786 */ 2787 static int resolve_lbr_callchain_sample(struct thread *thread, 2788 struct callchain_cursor *cursor, 2789 struct perf_sample *sample, 2790 struct symbol **parent, 2791 struct addr_location *root_al, 2792 int max_stack, 2793 unsigned int max_lbr) 2794 { 2795 bool callee = (callchain_param.order == ORDER_CALLEE); 2796 struct ip_callchain *chain = sample->callchain; 2797 int chain_nr = min(max_stack, (int)chain->nr), i; 2798 struct lbr_stitch *lbr_stitch; 2799 bool stitched_lbr = false; 2800 u64 branch_from = 0; 2801 int err; 2802 2803 for (i = 0; i < chain_nr; i++) { 2804 if (chain->ips[i] == PERF_CONTEXT_USER) 2805 break; 2806 } 2807 2808 /* LBR only affects the user callchain */ 2809 if (i == chain_nr) 2810 return 0; 2811 2812 if (thread__lbr_stitch_enable(thread) && !sample->no_hw_idx && 2813 (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) { 2814 lbr_stitch = thread__lbr_stitch(thread); 2815 2816 stitched_lbr = has_stitched_lbr(thread, sample, 2817 &lbr_stitch->prev_sample, 2818 max_lbr, callee); 2819 2820 if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) { 2821 list_replace_init(&lbr_stitch->lists, 2822 &lbr_stitch->free_lists); 2823 } 2824 memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample)); 2825 } 2826 2827 if (callee) { 2828 /* Add kernel ip */ 2829 err = lbr_callchain_add_kernel_ip(thread, cursor, sample, 2830 parent, root_al, branch_from, 2831 true, i); 2832 if (err) 2833 goto error; 2834 2835 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent, 2836 root_al, &branch_from, true); 2837 if (err) 2838 goto error; 2839 2840 if (stitched_lbr) { 2841 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor); 2842 if (err) 2843 goto error; 2844 } 2845 2846 } else { 2847 if (stitched_lbr) { 2848 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor); 2849 if (err) 2850 goto error; 2851 } 2852 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent, 2853 root_al, &branch_from, false); 2854 if (err) 2855 goto error; 2856 2857 /* Add kernel ip */ 2858 err = lbr_callchain_add_kernel_ip(thread, cursor, sample, 2859 parent, root_al, branch_from, 2860 false, i); 2861 if (err) 2862 goto error; 2863 } 2864 return 1; 2865 2866 error: 2867 return (err < 0) ? err : 0; 2868 } 2869 2870 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread, 2871 struct callchain_cursor *cursor, 2872 struct symbol **parent, 2873 struct addr_location *root_al, 2874 u8 *cpumode, int ent) 2875 { 2876 int err = 0; 2877 2878 while (--ent >= 0) { 2879 u64 ip = chain->ips[ent]; 2880 2881 if (ip >= PERF_CONTEXT_MAX) { 2882 err = add_callchain_ip(thread, cursor, parent, 2883 root_al, cpumode, ip, 2884 false, NULL, NULL, 0); 2885 break; 2886 } 2887 } 2888 return err; 2889 } 2890 2891 static u64 get_leaf_frame_caller(struct perf_sample *sample, 2892 struct thread *thread, int usr_idx) 2893 { 2894 if (machine__normalized_is(maps__machine(thread__maps(thread)), "arm64")) 2895 return get_leaf_frame_caller_aarch64(sample, thread, usr_idx); 2896 else 2897 return 0; 2898 } 2899 2900 static int thread__resolve_callchain_sample(struct thread *thread, 2901 struct callchain_cursor *cursor, 2902 struct evsel *evsel, 2903 struct perf_sample *sample, 2904 struct symbol **parent, 2905 struct addr_location *root_al, 2906 int max_stack) 2907 { 2908 struct branch_stack *branch = sample->branch_stack; 2909 struct branch_entry *entries = perf_sample__branch_entries(sample); 2910 struct ip_callchain *chain = sample->callchain; 2911 int chain_nr = 0; 2912 u8 cpumode = PERF_RECORD_MISC_USER; 2913 int i, j, err, nr_entries, usr_idx; 2914 int skip_idx = -1; 2915 int first_call = 0; 2916 u64 leaf_frame_caller; 2917 2918 if (chain) 2919 chain_nr = chain->nr; 2920 2921 if (evsel__has_branch_callstack(evsel)) { 2922 struct perf_env *env = evsel__env(evsel); 2923 2924 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent, 2925 root_al, max_stack, 2926 !env ? 0 : env->max_branches); 2927 if (err) 2928 return (err < 0) ? err : 0; 2929 } 2930 2931 /* 2932 * Based on DWARF debug information, some architectures skip 2933 * a callchain entry saved by the kernel. 2934 */ 2935 skip_idx = arch_skip_callchain_idx(thread, chain); 2936 2937 /* 2938 * Add branches to call stack for easier browsing. This gives 2939 * more context for a sample than just the callers. 2940 * 2941 * This uses individual histograms of paths compared to the 2942 * aggregated histograms the normal LBR mode uses. 2943 * 2944 * Limitations for now: 2945 * - No extra filters 2946 * - No annotations (should annotate somehow) 2947 */ 2948 2949 if (branch && callchain_param.branch_callstack) { 2950 int nr = min(max_stack, (int)branch->nr); 2951 struct branch_entry be[nr]; 2952 struct iterations iter[nr]; 2953 2954 if (branch->nr > PERF_MAX_BRANCH_DEPTH) { 2955 pr_warning("corrupted branch chain. skipping...\n"); 2956 goto check_calls; 2957 } 2958 2959 for (i = 0; i < nr; i++) { 2960 if (callchain_param.order == ORDER_CALLEE) { 2961 be[i] = entries[i]; 2962 2963 if (chain == NULL) 2964 continue; 2965 2966 /* 2967 * Check for overlap into the callchain. 2968 * The return address is one off compared to 2969 * the branch entry. To adjust for this 2970 * assume the calling instruction is not longer 2971 * than 8 bytes. 2972 */ 2973 if (i == skip_idx || 2974 chain->ips[first_call] >= PERF_CONTEXT_MAX) 2975 first_call++; 2976 else if (be[i].from < chain->ips[first_call] && 2977 be[i].from >= chain->ips[first_call] - 8) 2978 first_call++; 2979 } else 2980 be[i] = entries[branch->nr - i - 1]; 2981 } 2982 2983 memset(iter, 0, sizeof(struct iterations) * nr); 2984 nr = remove_loops(be, nr, iter); 2985 2986 for (i = 0; i < nr; i++) { 2987 err = add_callchain_ip(thread, cursor, parent, 2988 root_al, 2989 NULL, be[i].to, 2990 true, &be[i].flags, 2991 NULL, be[i].from); 2992 2993 if (!err) 2994 err = add_callchain_ip(thread, cursor, parent, root_al, 2995 NULL, be[i].from, 2996 true, &be[i].flags, 2997 &iter[i], 0); 2998 if (err == -EINVAL) 2999 break; 3000 if (err) 3001 return err; 3002 } 3003 3004 if (chain_nr == 0) 3005 return 0; 3006 3007 chain_nr -= nr; 3008 } 3009 3010 check_calls: 3011 if (chain && callchain_param.order != ORDER_CALLEE) { 3012 err = find_prev_cpumode(chain, thread, cursor, parent, root_al, 3013 &cpumode, chain->nr - first_call); 3014 if (err) 3015 return (err < 0) ? err : 0; 3016 } 3017 for (i = first_call, nr_entries = 0; 3018 i < chain_nr && nr_entries < max_stack; i++) { 3019 u64 ip; 3020 3021 if (callchain_param.order == ORDER_CALLEE) 3022 j = i; 3023 else 3024 j = chain->nr - i - 1; 3025 3026 #ifdef HAVE_SKIP_CALLCHAIN_IDX 3027 if (j == skip_idx) 3028 continue; 3029 #endif 3030 ip = chain->ips[j]; 3031 if (ip < PERF_CONTEXT_MAX) 3032 ++nr_entries; 3033 else if (callchain_param.order != ORDER_CALLEE) { 3034 err = find_prev_cpumode(chain, thread, cursor, parent, 3035 root_al, &cpumode, j); 3036 if (err) 3037 return (err < 0) ? err : 0; 3038 continue; 3039 } 3040 3041 /* 3042 * PERF_CONTEXT_USER allows us to locate where the user stack ends. 3043 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER, 3044 * the index will be different in order to add the missing frame 3045 * at the right place. 3046 */ 3047 3048 usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1; 3049 3050 if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) { 3051 3052 leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx); 3053 3054 /* 3055 * check if leaf_frame_Caller != ip to not add the same 3056 * value twice. 3057 */ 3058 3059 if (leaf_frame_caller && leaf_frame_caller != ip) { 3060 3061 err = add_callchain_ip(thread, cursor, parent, 3062 root_al, &cpumode, leaf_frame_caller, 3063 false, NULL, NULL, 0); 3064 if (err) 3065 return (err < 0) ? err : 0; 3066 } 3067 } 3068 3069 err = add_callchain_ip(thread, cursor, parent, 3070 root_al, &cpumode, ip, 3071 false, NULL, NULL, 0); 3072 3073 if (err) 3074 return (err < 0) ? err : 0; 3075 } 3076 3077 return 0; 3078 } 3079 3080 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip) 3081 { 3082 struct symbol *sym = ms->sym; 3083 struct map *map = ms->map; 3084 struct inline_node *inline_node; 3085 struct inline_list *ilist; 3086 struct dso *dso; 3087 u64 addr; 3088 int ret = 1; 3089 struct map_symbol ilist_ms; 3090 3091 if (!symbol_conf.inline_name || !map || !sym) 3092 return ret; 3093 3094 addr = map__dso_map_ip(map, ip); 3095 addr = map__rip_2objdump(map, addr); 3096 dso = map__dso(map); 3097 3098 inline_node = inlines__tree_find(&dso->inlined_nodes, addr); 3099 if (!inline_node) { 3100 inline_node = dso__parse_addr_inlines(dso, addr, sym); 3101 if (!inline_node) 3102 return ret; 3103 inlines__tree_insert(&dso->inlined_nodes, inline_node); 3104 } 3105 3106 ilist_ms = (struct map_symbol) { 3107 .maps = maps__get(ms->maps), 3108 .map = map__get(map), 3109 }; 3110 list_for_each_entry(ilist, &inline_node->val, list) { 3111 ilist_ms.sym = ilist->symbol; 3112 ret = callchain_cursor_append(cursor, ip, &ilist_ms, false, 3113 NULL, 0, 0, 0, ilist->srcline); 3114 3115 if (ret != 0) 3116 return ret; 3117 } 3118 map__put(ilist_ms.map); 3119 maps__put(ilist_ms.maps); 3120 3121 return ret; 3122 } 3123 3124 static int unwind_entry(struct unwind_entry *entry, void *arg) 3125 { 3126 struct callchain_cursor *cursor = arg; 3127 const char *srcline = NULL; 3128 u64 addr = entry->ip; 3129 3130 if (symbol_conf.hide_unresolved && entry->ms.sym == NULL) 3131 return 0; 3132 3133 if (append_inlines(cursor, &entry->ms, entry->ip) == 0) 3134 return 0; 3135 3136 /* 3137 * Convert entry->ip from a virtual address to an offset in 3138 * its corresponding binary. 3139 */ 3140 if (entry->ms.map) 3141 addr = map__dso_map_ip(entry->ms.map, entry->ip); 3142 3143 srcline = callchain_srcline(&entry->ms, addr); 3144 return callchain_cursor_append(cursor, entry->ip, &entry->ms, 3145 false, NULL, 0, 0, 0, srcline); 3146 } 3147 3148 static int thread__resolve_callchain_unwind(struct thread *thread, 3149 struct callchain_cursor *cursor, 3150 struct evsel *evsel, 3151 struct perf_sample *sample, 3152 int max_stack) 3153 { 3154 /* Can we do dwarf post unwind? */ 3155 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) && 3156 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER))) 3157 return 0; 3158 3159 /* Bail out if nothing was captured. */ 3160 if ((!sample->user_regs.regs) || 3161 (!sample->user_stack.size)) 3162 return 0; 3163 3164 return unwind__get_entries(unwind_entry, cursor, 3165 thread, sample, max_stack, false); 3166 } 3167 3168 int thread__resolve_callchain(struct thread *thread, 3169 struct callchain_cursor *cursor, 3170 struct evsel *evsel, 3171 struct perf_sample *sample, 3172 struct symbol **parent, 3173 struct addr_location *root_al, 3174 int max_stack) 3175 { 3176 int ret = 0; 3177 3178 if (cursor == NULL) 3179 return -ENOMEM; 3180 3181 callchain_cursor_reset(cursor); 3182 3183 if (callchain_param.order == ORDER_CALLEE) { 3184 ret = thread__resolve_callchain_sample(thread, cursor, 3185 evsel, sample, 3186 parent, root_al, 3187 max_stack); 3188 if (ret) 3189 return ret; 3190 ret = thread__resolve_callchain_unwind(thread, cursor, 3191 evsel, sample, 3192 max_stack); 3193 } else { 3194 ret = thread__resolve_callchain_unwind(thread, cursor, 3195 evsel, sample, 3196 max_stack); 3197 if (ret) 3198 return ret; 3199 ret = thread__resolve_callchain_sample(thread, cursor, 3200 evsel, sample, 3201 parent, root_al, 3202 max_stack); 3203 } 3204 3205 return ret; 3206 } 3207 3208 int machine__for_each_thread(struct machine *machine, 3209 int (*fn)(struct thread *thread, void *p), 3210 void *priv) 3211 { 3212 struct threads *threads; 3213 struct rb_node *nd; 3214 int rc = 0; 3215 int i; 3216 3217 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 3218 threads = &machine->threads[i]; 3219 for (nd = rb_first_cached(&threads->entries); nd; 3220 nd = rb_next(nd)) { 3221 struct thread_rb_node *trb = rb_entry(nd, struct thread_rb_node, rb_node); 3222 3223 rc = fn(trb->thread, priv); 3224 if (rc != 0) 3225 return rc; 3226 } 3227 } 3228 return rc; 3229 } 3230 3231 int machines__for_each_thread(struct machines *machines, 3232 int (*fn)(struct thread *thread, void *p), 3233 void *priv) 3234 { 3235 struct rb_node *nd; 3236 int rc = 0; 3237 3238 rc = machine__for_each_thread(&machines->host, fn, priv); 3239 if (rc != 0) 3240 return rc; 3241 3242 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 3243 struct machine *machine = rb_entry(nd, struct machine, rb_node); 3244 3245 rc = machine__for_each_thread(machine, fn, priv); 3246 if (rc != 0) 3247 return rc; 3248 } 3249 return rc; 3250 } 3251 3252 pid_t machine__get_current_tid(struct machine *machine, int cpu) 3253 { 3254 if (cpu < 0 || (size_t)cpu >= machine->current_tid_sz) 3255 return -1; 3256 3257 return machine->current_tid[cpu]; 3258 } 3259 3260 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid, 3261 pid_t tid) 3262 { 3263 struct thread *thread; 3264 const pid_t init_val = -1; 3265 3266 if (cpu < 0) 3267 return -EINVAL; 3268 3269 if (realloc_array_as_needed(machine->current_tid, 3270 machine->current_tid_sz, 3271 (unsigned int)cpu, 3272 &init_val)) 3273 return -ENOMEM; 3274 3275 machine->current_tid[cpu] = tid; 3276 3277 thread = machine__findnew_thread(machine, pid, tid); 3278 if (!thread) 3279 return -ENOMEM; 3280 3281 thread__set_cpu(thread, cpu); 3282 thread__put(thread); 3283 3284 return 0; 3285 } 3286 3287 /* 3288 * Compares the raw arch string. N.B. see instead perf_env__arch() or 3289 * machine__normalized_is() if a normalized arch is needed. 3290 */ 3291 bool machine__is(struct machine *machine, const char *arch) 3292 { 3293 return machine && !strcmp(perf_env__raw_arch(machine->env), arch); 3294 } 3295 3296 bool machine__normalized_is(struct machine *machine, const char *arch) 3297 { 3298 return machine && !strcmp(perf_env__arch(machine->env), arch); 3299 } 3300 3301 int machine__nr_cpus_avail(struct machine *machine) 3302 { 3303 return machine ? perf_env__nr_cpus_avail(machine->env) : 0; 3304 } 3305 3306 int machine__get_kernel_start(struct machine *machine) 3307 { 3308 struct map *map = machine__kernel_map(machine); 3309 int err = 0; 3310 3311 /* 3312 * The only addresses above 2^63 are kernel addresses of a 64-bit 3313 * kernel. Note that addresses are unsigned so that on a 32-bit system 3314 * all addresses including kernel addresses are less than 2^32. In 3315 * that case (32-bit system), if the kernel mapping is unknown, all 3316 * addresses will be assumed to be in user space - see 3317 * machine__kernel_ip(). 3318 */ 3319 machine->kernel_start = 1ULL << 63; 3320 if (map) { 3321 err = map__load(map); 3322 /* 3323 * On x86_64, PTI entry trampolines are less than the 3324 * start of kernel text, but still above 2^63. So leave 3325 * kernel_start = 1ULL << 63 for x86_64. 3326 */ 3327 if (!err && !machine__is(machine, "x86_64")) 3328 machine->kernel_start = map__start(map); 3329 } 3330 return err; 3331 } 3332 3333 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr) 3334 { 3335 u8 addr_cpumode = cpumode; 3336 bool kernel_ip; 3337 3338 if (!machine->single_address_space) 3339 goto out; 3340 3341 kernel_ip = machine__kernel_ip(machine, addr); 3342 switch (cpumode) { 3343 case PERF_RECORD_MISC_KERNEL: 3344 case PERF_RECORD_MISC_USER: 3345 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL : 3346 PERF_RECORD_MISC_USER; 3347 break; 3348 case PERF_RECORD_MISC_GUEST_KERNEL: 3349 case PERF_RECORD_MISC_GUEST_USER: 3350 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL : 3351 PERF_RECORD_MISC_GUEST_USER; 3352 break; 3353 default: 3354 break; 3355 } 3356 out: 3357 return addr_cpumode; 3358 } 3359 3360 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id) 3361 { 3362 return dsos__findnew_id(&machine->dsos, filename, id); 3363 } 3364 3365 struct dso *machine__findnew_dso(struct machine *machine, const char *filename) 3366 { 3367 return machine__findnew_dso_id(machine, filename, NULL); 3368 } 3369 3370 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp) 3371 { 3372 struct machine *machine = vmachine; 3373 struct map *map; 3374 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map); 3375 3376 if (sym == NULL) 3377 return NULL; 3378 3379 *modp = __map__is_kmodule(map) ? (char *)map__dso(map)->short_name : NULL; 3380 *addrp = map__unmap_ip(map, sym->start); 3381 return sym->name; 3382 } 3383 3384 int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv) 3385 { 3386 struct dso *pos; 3387 int err = 0; 3388 3389 list_for_each_entry(pos, &machine->dsos.head, node) { 3390 if (fn(pos, machine, priv)) 3391 err = -1; 3392 } 3393 return err; 3394 } 3395 3396 int machine__for_each_kernel_map(struct machine *machine, machine__map_t fn, void *priv) 3397 { 3398 struct maps *maps = machine__kernel_maps(machine); 3399 struct map_rb_node *pos; 3400 int err = 0; 3401 3402 maps__for_each_entry(maps, pos) { 3403 err = fn(pos->map, priv); 3404 if (err != 0) { 3405 break; 3406 } 3407 } 3408 return err; 3409 } 3410 3411 bool machine__is_lock_function(struct machine *machine, u64 addr) 3412 { 3413 if (!machine->sched.text_start) { 3414 struct map *kmap; 3415 struct symbol *sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_start", &kmap); 3416 3417 if (!sym) { 3418 /* to avoid retry */ 3419 machine->sched.text_start = 1; 3420 return false; 3421 } 3422 3423 machine->sched.text_start = map__unmap_ip(kmap, sym->start); 3424 3425 /* should not fail from here */ 3426 sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_end", &kmap); 3427 machine->sched.text_end = map__unmap_ip(kmap, sym->start); 3428 3429 sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_start", &kmap); 3430 machine->lock.text_start = map__unmap_ip(kmap, sym->start); 3431 3432 sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_end", &kmap); 3433 machine->lock.text_end = map__unmap_ip(kmap, sym->start); 3434 } 3435 3436 /* failed to get kernel symbols */ 3437 if (machine->sched.text_start == 1) 3438 return false; 3439 3440 /* mutex and rwsem functions are in sched text section */ 3441 if (machine->sched.text_start <= addr && addr < machine->sched.text_end) 3442 return true; 3443 3444 /* spinlock functions are in lock text section */ 3445 if (machine->lock.text_start <= addr && addr < machine->lock.text_end) 3446 return true; 3447 3448 return false; 3449 } 3450