1 // SPDX-License-Identifier: GPL-2.0 2 #include <dirent.h> 3 #include <errno.h> 4 #include <inttypes.h> 5 #include <regex.h> 6 #include <stdlib.h> 7 #include "callchain.h" 8 #include "debug.h" 9 #include "dso.h" 10 #include "env.h" 11 #include "event.h" 12 #include "evsel.h" 13 #include "hist.h" 14 #include "machine.h" 15 #include "map.h" 16 #include "map_symbol.h" 17 #include "branch.h" 18 #include "mem-events.h" 19 #include "path.h" 20 #include "srcline.h" 21 #include "symbol.h" 22 #include "sort.h" 23 #include "strlist.h" 24 #include "target.h" 25 #include "thread.h" 26 #include "util.h" 27 #include "vdso.h" 28 #include <stdbool.h> 29 #include <sys/types.h> 30 #include <sys/stat.h> 31 #include <unistd.h> 32 #include "unwind.h" 33 #include "linux/hash.h" 34 #include "asm/bug.h" 35 #include "bpf-event.h" 36 #include <internal/lib.h> // page_size 37 #include "cgroup.h" 38 #include "arm64-frame-pointer-unwind-support.h" 39 40 #include <linux/ctype.h> 41 #include <symbol/kallsyms.h> 42 #include <linux/mman.h> 43 #include <linux/string.h> 44 #include <linux/zalloc.h> 45 46 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock); 47 48 static struct dso *machine__kernel_dso(struct machine *machine) 49 { 50 return machine->vmlinux_map->dso; 51 } 52 53 static void dsos__init(struct dsos *dsos) 54 { 55 INIT_LIST_HEAD(&dsos->head); 56 dsos->root = RB_ROOT; 57 init_rwsem(&dsos->lock); 58 } 59 60 static void machine__threads_init(struct machine *machine) 61 { 62 int i; 63 64 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 65 struct threads *threads = &machine->threads[i]; 66 threads->entries = RB_ROOT_CACHED; 67 init_rwsem(&threads->lock); 68 threads->nr = 0; 69 INIT_LIST_HEAD(&threads->dead); 70 threads->last_match = NULL; 71 } 72 } 73 74 static int machine__set_mmap_name(struct machine *machine) 75 { 76 if (machine__is_host(machine)) 77 machine->mmap_name = strdup("[kernel.kallsyms]"); 78 else if (machine__is_default_guest(machine)) 79 machine->mmap_name = strdup("[guest.kernel.kallsyms]"); 80 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]", 81 machine->pid) < 0) 82 machine->mmap_name = NULL; 83 84 return machine->mmap_name ? 0 : -ENOMEM; 85 } 86 87 int machine__init(struct machine *machine, const char *root_dir, pid_t pid) 88 { 89 int err = -ENOMEM; 90 91 memset(machine, 0, sizeof(*machine)); 92 maps__init(&machine->kmaps, machine); 93 RB_CLEAR_NODE(&machine->rb_node); 94 dsos__init(&machine->dsos); 95 96 machine__threads_init(machine); 97 98 machine->vdso_info = NULL; 99 machine->env = NULL; 100 101 machine->pid = pid; 102 103 machine->id_hdr_size = 0; 104 machine->kptr_restrict_warned = false; 105 machine->comm_exec = false; 106 machine->kernel_start = 0; 107 machine->vmlinux_map = NULL; 108 109 machine->root_dir = strdup(root_dir); 110 if (machine->root_dir == NULL) 111 return -ENOMEM; 112 113 if (machine__set_mmap_name(machine)) 114 goto out; 115 116 if (pid != HOST_KERNEL_ID) { 117 struct thread *thread = machine__findnew_thread(machine, -1, 118 pid); 119 char comm[64]; 120 121 if (thread == NULL) 122 goto out; 123 124 snprintf(comm, sizeof(comm), "[guest/%d]", pid); 125 thread__set_comm(thread, comm, 0); 126 thread__put(thread); 127 } 128 129 machine->current_tid = NULL; 130 err = 0; 131 132 out: 133 if (err) { 134 zfree(&machine->root_dir); 135 zfree(&machine->mmap_name); 136 } 137 return 0; 138 } 139 140 struct machine *machine__new_host(void) 141 { 142 struct machine *machine = malloc(sizeof(*machine)); 143 144 if (machine != NULL) { 145 machine__init(machine, "", HOST_KERNEL_ID); 146 147 if (machine__create_kernel_maps(machine) < 0) 148 goto out_delete; 149 } 150 151 return machine; 152 out_delete: 153 free(machine); 154 return NULL; 155 } 156 157 struct machine *machine__new_kallsyms(void) 158 { 159 struct machine *machine = machine__new_host(); 160 /* 161 * FIXME: 162 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly 163 * ask for not using the kcore parsing code, once this one is fixed 164 * to create a map per module. 165 */ 166 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) { 167 machine__delete(machine); 168 machine = NULL; 169 } 170 171 return machine; 172 } 173 174 static void dsos__purge(struct dsos *dsos) 175 { 176 struct dso *pos, *n; 177 178 down_write(&dsos->lock); 179 180 list_for_each_entry_safe(pos, n, &dsos->head, node) { 181 RB_CLEAR_NODE(&pos->rb_node); 182 pos->root = NULL; 183 list_del_init(&pos->node); 184 dso__put(pos); 185 } 186 187 up_write(&dsos->lock); 188 } 189 190 static void dsos__exit(struct dsos *dsos) 191 { 192 dsos__purge(dsos); 193 exit_rwsem(&dsos->lock); 194 } 195 196 void machine__delete_threads(struct machine *machine) 197 { 198 struct rb_node *nd; 199 int i; 200 201 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 202 struct threads *threads = &machine->threads[i]; 203 down_write(&threads->lock); 204 nd = rb_first_cached(&threads->entries); 205 while (nd) { 206 struct thread *t = rb_entry(nd, struct thread, rb_node); 207 208 nd = rb_next(nd); 209 __machine__remove_thread(machine, t, false); 210 } 211 up_write(&threads->lock); 212 } 213 } 214 215 void machine__exit(struct machine *machine) 216 { 217 int i; 218 219 if (machine == NULL) 220 return; 221 222 machine__destroy_kernel_maps(machine); 223 maps__exit(&machine->kmaps); 224 dsos__exit(&machine->dsos); 225 machine__exit_vdso(machine); 226 zfree(&machine->root_dir); 227 zfree(&machine->mmap_name); 228 zfree(&machine->current_tid); 229 230 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 231 struct threads *threads = &machine->threads[i]; 232 struct thread *thread, *n; 233 /* 234 * Forget about the dead, at this point whatever threads were 235 * left in the dead lists better have a reference count taken 236 * by who is using them, and then, when they drop those references 237 * and it finally hits zero, thread__put() will check and see that 238 * its not in the dead threads list and will not try to remove it 239 * from there, just calling thread__delete() straight away. 240 */ 241 list_for_each_entry_safe(thread, n, &threads->dead, node) 242 list_del_init(&thread->node); 243 244 exit_rwsem(&threads->lock); 245 } 246 } 247 248 void machine__delete(struct machine *machine) 249 { 250 if (machine) { 251 machine__exit(machine); 252 free(machine); 253 } 254 } 255 256 void machines__init(struct machines *machines) 257 { 258 machine__init(&machines->host, "", HOST_KERNEL_ID); 259 machines->guests = RB_ROOT_CACHED; 260 } 261 262 void machines__exit(struct machines *machines) 263 { 264 machine__exit(&machines->host); 265 /* XXX exit guest */ 266 } 267 268 struct machine *machines__add(struct machines *machines, pid_t pid, 269 const char *root_dir) 270 { 271 struct rb_node **p = &machines->guests.rb_root.rb_node; 272 struct rb_node *parent = NULL; 273 struct machine *pos, *machine = malloc(sizeof(*machine)); 274 bool leftmost = true; 275 276 if (machine == NULL) 277 return NULL; 278 279 if (machine__init(machine, root_dir, pid) != 0) { 280 free(machine); 281 return NULL; 282 } 283 284 while (*p != NULL) { 285 parent = *p; 286 pos = rb_entry(parent, struct machine, rb_node); 287 if (pid < pos->pid) 288 p = &(*p)->rb_left; 289 else { 290 p = &(*p)->rb_right; 291 leftmost = false; 292 } 293 } 294 295 rb_link_node(&machine->rb_node, parent, p); 296 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost); 297 298 return machine; 299 } 300 301 void machines__set_comm_exec(struct machines *machines, bool comm_exec) 302 { 303 struct rb_node *nd; 304 305 machines->host.comm_exec = comm_exec; 306 307 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 308 struct machine *machine = rb_entry(nd, struct machine, rb_node); 309 310 machine->comm_exec = comm_exec; 311 } 312 } 313 314 struct machine *machines__find(struct machines *machines, pid_t pid) 315 { 316 struct rb_node **p = &machines->guests.rb_root.rb_node; 317 struct rb_node *parent = NULL; 318 struct machine *machine; 319 struct machine *default_machine = NULL; 320 321 if (pid == HOST_KERNEL_ID) 322 return &machines->host; 323 324 while (*p != NULL) { 325 parent = *p; 326 machine = rb_entry(parent, struct machine, rb_node); 327 if (pid < machine->pid) 328 p = &(*p)->rb_left; 329 else if (pid > machine->pid) 330 p = &(*p)->rb_right; 331 else 332 return machine; 333 if (!machine->pid) 334 default_machine = machine; 335 } 336 337 return default_machine; 338 } 339 340 struct machine *machines__findnew(struct machines *machines, pid_t pid) 341 { 342 char path[PATH_MAX]; 343 const char *root_dir = ""; 344 struct machine *machine = machines__find(machines, pid); 345 346 if (machine && (machine->pid == pid)) 347 goto out; 348 349 if ((pid != HOST_KERNEL_ID) && 350 (pid != DEFAULT_GUEST_KERNEL_ID) && 351 (symbol_conf.guestmount)) { 352 sprintf(path, "%s/%d", symbol_conf.guestmount, pid); 353 if (access(path, R_OK)) { 354 static struct strlist *seen; 355 356 if (!seen) 357 seen = strlist__new(NULL, NULL); 358 359 if (!strlist__has_entry(seen, path)) { 360 pr_err("Can't access file %s\n", path); 361 strlist__add(seen, path); 362 } 363 machine = NULL; 364 goto out; 365 } 366 root_dir = path; 367 } 368 369 machine = machines__add(machines, pid, root_dir); 370 out: 371 return machine; 372 } 373 374 struct machine *machines__find_guest(struct machines *machines, pid_t pid) 375 { 376 struct machine *machine = machines__find(machines, pid); 377 378 if (!machine) 379 machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID); 380 return machine; 381 } 382 383 void machines__process_guests(struct machines *machines, 384 machine__process_t process, void *data) 385 { 386 struct rb_node *nd; 387 388 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 389 struct machine *pos = rb_entry(nd, struct machine, rb_node); 390 process(pos, data); 391 } 392 } 393 394 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size) 395 { 396 struct rb_node *node; 397 struct machine *machine; 398 399 machines->host.id_hdr_size = id_hdr_size; 400 401 for (node = rb_first_cached(&machines->guests); node; 402 node = rb_next(node)) { 403 machine = rb_entry(node, struct machine, rb_node); 404 machine->id_hdr_size = id_hdr_size; 405 } 406 407 return; 408 } 409 410 static void machine__update_thread_pid(struct machine *machine, 411 struct thread *th, pid_t pid) 412 { 413 struct thread *leader; 414 415 if (pid == th->pid_ || pid == -1 || th->pid_ != -1) 416 return; 417 418 th->pid_ = pid; 419 420 if (th->pid_ == th->tid) 421 return; 422 423 leader = __machine__findnew_thread(machine, th->pid_, th->pid_); 424 if (!leader) 425 goto out_err; 426 427 if (!leader->maps) 428 leader->maps = maps__new(machine); 429 430 if (!leader->maps) 431 goto out_err; 432 433 if (th->maps == leader->maps) 434 return; 435 436 if (th->maps) { 437 /* 438 * Maps are created from MMAP events which provide the pid and 439 * tid. Consequently there never should be any maps on a thread 440 * with an unknown pid. Just print an error if there are. 441 */ 442 if (!maps__empty(th->maps)) 443 pr_err("Discarding thread maps for %d:%d\n", 444 th->pid_, th->tid); 445 maps__put(th->maps); 446 } 447 448 th->maps = maps__get(leader->maps); 449 out_put: 450 thread__put(leader); 451 return; 452 out_err: 453 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid); 454 goto out_put; 455 } 456 457 /* 458 * Front-end cache - TID lookups come in blocks, 459 * so most of the time we dont have to look up 460 * the full rbtree: 461 */ 462 static struct thread* 463 __threads__get_last_match(struct threads *threads, struct machine *machine, 464 int pid, int tid) 465 { 466 struct thread *th; 467 468 th = threads->last_match; 469 if (th != NULL) { 470 if (th->tid == tid) { 471 machine__update_thread_pid(machine, th, pid); 472 return thread__get(th); 473 } 474 475 threads->last_match = NULL; 476 } 477 478 return NULL; 479 } 480 481 static struct thread* 482 threads__get_last_match(struct threads *threads, struct machine *machine, 483 int pid, int tid) 484 { 485 struct thread *th = NULL; 486 487 if (perf_singlethreaded) 488 th = __threads__get_last_match(threads, machine, pid, tid); 489 490 return th; 491 } 492 493 static void 494 __threads__set_last_match(struct threads *threads, struct thread *th) 495 { 496 threads->last_match = th; 497 } 498 499 static void 500 threads__set_last_match(struct threads *threads, struct thread *th) 501 { 502 if (perf_singlethreaded) 503 __threads__set_last_match(threads, th); 504 } 505 506 /* 507 * Caller must eventually drop thread->refcnt returned with a successful 508 * lookup/new thread inserted. 509 */ 510 static struct thread *____machine__findnew_thread(struct machine *machine, 511 struct threads *threads, 512 pid_t pid, pid_t tid, 513 bool create) 514 { 515 struct rb_node **p = &threads->entries.rb_root.rb_node; 516 struct rb_node *parent = NULL; 517 struct thread *th; 518 bool leftmost = true; 519 520 th = threads__get_last_match(threads, machine, pid, tid); 521 if (th) 522 return th; 523 524 while (*p != NULL) { 525 parent = *p; 526 th = rb_entry(parent, struct thread, rb_node); 527 528 if (th->tid == tid) { 529 threads__set_last_match(threads, th); 530 machine__update_thread_pid(machine, th, pid); 531 return thread__get(th); 532 } 533 534 if (tid < th->tid) 535 p = &(*p)->rb_left; 536 else { 537 p = &(*p)->rb_right; 538 leftmost = false; 539 } 540 } 541 542 if (!create) 543 return NULL; 544 545 th = thread__new(pid, tid); 546 if (th != NULL) { 547 rb_link_node(&th->rb_node, parent, p); 548 rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost); 549 550 /* 551 * We have to initialize maps separately after rb tree is updated. 552 * 553 * The reason is that we call machine__findnew_thread 554 * within thread__init_maps to find the thread 555 * leader and that would screwed the rb tree. 556 */ 557 if (thread__init_maps(th, machine)) { 558 rb_erase_cached(&th->rb_node, &threads->entries); 559 RB_CLEAR_NODE(&th->rb_node); 560 thread__put(th); 561 return NULL; 562 } 563 /* 564 * It is now in the rbtree, get a ref 565 */ 566 thread__get(th); 567 threads__set_last_match(threads, th); 568 ++threads->nr; 569 } 570 571 return th; 572 } 573 574 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid) 575 { 576 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true); 577 } 578 579 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, 580 pid_t tid) 581 { 582 struct threads *threads = machine__threads(machine, tid); 583 struct thread *th; 584 585 down_write(&threads->lock); 586 th = __machine__findnew_thread(machine, pid, tid); 587 up_write(&threads->lock); 588 return th; 589 } 590 591 struct thread *machine__find_thread(struct machine *machine, pid_t pid, 592 pid_t tid) 593 { 594 struct threads *threads = machine__threads(machine, tid); 595 struct thread *th; 596 597 down_read(&threads->lock); 598 th = ____machine__findnew_thread(machine, threads, pid, tid, false); 599 up_read(&threads->lock); 600 return th; 601 } 602 603 /* 604 * Threads are identified by pid and tid, and the idle task has pid == tid == 0. 605 * So here a single thread is created for that, but actually there is a separate 606 * idle task per cpu, so there should be one 'struct thread' per cpu, but there 607 * is only 1. That causes problems for some tools, requiring workarounds. For 608 * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu(). 609 */ 610 struct thread *machine__idle_thread(struct machine *machine) 611 { 612 struct thread *thread = machine__findnew_thread(machine, 0, 0); 613 614 if (!thread || thread__set_comm(thread, "swapper", 0) || 615 thread__set_namespaces(thread, 0, NULL)) 616 pr_err("problem inserting idle task for machine pid %d\n", machine->pid); 617 618 return thread; 619 } 620 621 struct comm *machine__thread_exec_comm(struct machine *machine, 622 struct thread *thread) 623 { 624 if (machine->comm_exec) 625 return thread__exec_comm(thread); 626 else 627 return thread__comm(thread); 628 } 629 630 int machine__process_comm_event(struct machine *machine, union perf_event *event, 631 struct perf_sample *sample) 632 { 633 struct thread *thread = machine__findnew_thread(machine, 634 event->comm.pid, 635 event->comm.tid); 636 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC; 637 int err = 0; 638 639 if (exec) 640 machine->comm_exec = true; 641 642 if (dump_trace) 643 perf_event__fprintf_comm(event, stdout); 644 645 if (thread == NULL || 646 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) { 647 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n"); 648 err = -1; 649 } 650 651 thread__put(thread); 652 653 return err; 654 } 655 656 int machine__process_namespaces_event(struct machine *machine __maybe_unused, 657 union perf_event *event, 658 struct perf_sample *sample __maybe_unused) 659 { 660 struct thread *thread = machine__findnew_thread(machine, 661 event->namespaces.pid, 662 event->namespaces.tid); 663 int err = 0; 664 665 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES, 666 "\nWARNING: kernel seems to support more namespaces than perf" 667 " tool.\nTry updating the perf tool..\n\n"); 668 669 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES, 670 "\nWARNING: perf tool seems to support more namespaces than" 671 " the kernel.\nTry updating the kernel..\n\n"); 672 673 if (dump_trace) 674 perf_event__fprintf_namespaces(event, stdout); 675 676 if (thread == NULL || 677 thread__set_namespaces(thread, sample->time, &event->namespaces)) { 678 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n"); 679 err = -1; 680 } 681 682 thread__put(thread); 683 684 return err; 685 } 686 687 int machine__process_cgroup_event(struct machine *machine, 688 union perf_event *event, 689 struct perf_sample *sample __maybe_unused) 690 { 691 struct cgroup *cgrp; 692 693 if (dump_trace) 694 perf_event__fprintf_cgroup(event, stdout); 695 696 cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path); 697 if (cgrp == NULL) 698 return -ENOMEM; 699 700 return 0; 701 } 702 703 int machine__process_lost_event(struct machine *machine __maybe_unused, 704 union perf_event *event, struct perf_sample *sample __maybe_unused) 705 { 706 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n", 707 event->lost.id, event->lost.lost); 708 return 0; 709 } 710 711 int machine__process_lost_samples_event(struct machine *machine __maybe_unused, 712 union perf_event *event, struct perf_sample *sample) 713 { 714 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n", 715 sample->id, event->lost_samples.lost); 716 return 0; 717 } 718 719 static struct dso *machine__findnew_module_dso(struct machine *machine, 720 struct kmod_path *m, 721 const char *filename) 722 { 723 struct dso *dso; 724 725 down_write(&machine->dsos.lock); 726 727 dso = __dsos__find(&machine->dsos, m->name, true); 728 if (!dso) { 729 dso = __dsos__addnew(&machine->dsos, m->name); 730 if (dso == NULL) 731 goto out_unlock; 732 733 dso__set_module_info(dso, m, machine); 734 dso__set_long_name(dso, strdup(filename), true); 735 dso->kernel = DSO_SPACE__KERNEL; 736 } 737 738 dso__get(dso); 739 out_unlock: 740 up_write(&machine->dsos.lock); 741 return dso; 742 } 743 744 int machine__process_aux_event(struct machine *machine __maybe_unused, 745 union perf_event *event) 746 { 747 if (dump_trace) 748 perf_event__fprintf_aux(event, stdout); 749 return 0; 750 } 751 752 int machine__process_itrace_start_event(struct machine *machine __maybe_unused, 753 union perf_event *event) 754 { 755 if (dump_trace) 756 perf_event__fprintf_itrace_start(event, stdout); 757 return 0; 758 } 759 760 int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused, 761 union perf_event *event) 762 { 763 if (dump_trace) 764 perf_event__fprintf_aux_output_hw_id(event, stdout); 765 return 0; 766 } 767 768 int machine__process_switch_event(struct machine *machine __maybe_unused, 769 union perf_event *event) 770 { 771 if (dump_trace) 772 perf_event__fprintf_switch(event, stdout); 773 return 0; 774 } 775 776 static int machine__process_ksymbol_register(struct machine *machine, 777 union perf_event *event, 778 struct perf_sample *sample __maybe_unused) 779 { 780 struct symbol *sym; 781 struct map *map = maps__find(&machine->kmaps, event->ksymbol.addr); 782 783 if (!map) { 784 struct dso *dso = dso__new(event->ksymbol.name); 785 786 if (dso) { 787 dso->kernel = DSO_SPACE__KERNEL; 788 map = map__new2(0, dso); 789 dso__put(dso); 790 } 791 792 if (!dso || !map) { 793 return -ENOMEM; 794 } 795 796 if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) { 797 map->dso->binary_type = DSO_BINARY_TYPE__OOL; 798 map->dso->data.file_size = event->ksymbol.len; 799 dso__set_loaded(map->dso); 800 } 801 802 map->start = event->ksymbol.addr; 803 map->end = map->start + event->ksymbol.len; 804 maps__insert(&machine->kmaps, map); 805 map__put(map); 806 dso__set_loaded(dso); 807 808 if (is_bpf_image(event->ksymbol.name)) { 809 dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE; 810 dso__set_long_name(dso, "", false); 811 } 812 } 813 814 sym = symbol__new(map->map_ip(map, map->start), 815 event->ksymbol.len, 816 0, 0, event->ksymbol.name); 817 if (!sym) 818 return -ENOMEM; 819 dso__insert_symbol(map->dso, sym); 820 return 0; 821 } 822 823 static int machine__process_ksymbol_unregister(struct machine *machine, 824 union perf_event *event, 825 struct perf_sample *sample __maybe_unused) 826 { 827 struct symbol *sym; 828 struct map *map; 829 830 map = maps__find(&machine->kmaps, event->ksymbol.addr); 831 if (!map) 832 return 0; 833 834 if (map != machine->vmlinux_map) 835 maps__remove(&machine->kmaps, map); 836 else { 837 sym = dso__find_symbol(map->dso, map->map_ip(map, map->start)); 838 if (sym) 839 dso__delete_symbol(map->dso, sym); 840 } 841 842 return 0; 843 } 844 845 int machine__process_ksymbol(struct machine *machine __maybe_unused, 846 union perf_event *event, 847 struct perf_sample *sample) 848 { 849 if (dump_trace) 850 perf_event__fprintf_ksymbol(event, stdout); 851 852 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER) 853 return machine__process_ksymbol_unregister(machine, event, 854 sample); 855 return machine__process_ksymbol_register(machine, event, sample); 856 } 857 858 int machine__process_text_poke(struct machine *machine, union perf_event *event, 859 struct perf_sample *sample __maybe_unused) 860 { 861 struct map *map = maps__find(&machine->kmaps, event->text_poke.addr); 862 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 863 864 if (dump_trace) 865 perf_event__fprintf_text_poke(event, machine, stdout); 866 867 if (!event->text_poke.new_len) 868 return 0; 869 870 if (cpumode != PERF_RECORD_MISC_KERNEL) { 871 pr_debug("%s: unsupported cpumode - ignoring\n", __func__); 872 return 0; 873 } 874 875 if (map && map->dso) { 876 u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len; 877 int ret; 878 879 /* 880 * Kernel maps might be changed when loading symbols so loading 881 * must be done prior to using kernel maps. 882 */ 883 map__load(map); 884 ret = dso__data_write_cache_addr(map->dso, map, machine, 885 event->text_poke.addr, 886 new_bytes, 887 event->text_poke.new_len); 888 if (ret != event->text_poke.new_len) 889 pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n", 890 event->text_poke.addr); 891 } else { 892 pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n", 893 event->text_poke.addr); 894 } 895 896 return 0; 897 } 898 899 static struct map *machine__addnew_module_map(struct machine *machine, u64 start, 900 const char *filename) 901 { 902 struct map *map = NULL; 903 struct kmod_path m; 904 struct dso *dso; 905 906 if (kmod_path__parse_name(&m, filename)) 907 return NULL; 908 909 dso = machine__findnew_module_dso(machine, &m, filename); 910 if (dso == NULL) 911 goto out; 912 913 map = map__new2(start, dso); 914 if (map == NULL) 915 goto out; 916 917 maps__insert(&machine->kmaps, map); 918 919 /* Put the map here because maps__insert already got it */ 920 map__put(map); 921 out: 922 /* put the dso here, corresponding to machine__findnew_module_dso */ 923 dso__put(dso); 924 zfree(&m.name); 925 return map; 926 } 927 928 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp) 929 { 930 struct rb_node *nd; 931 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp); 932 933 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 934 struct machine *pos = rb_entry(nd, struct machine, rb_node); 935 ret += __dsos__fprintf(&pos->dsos.head, fp); 936 } 937 938 return ret; 939 } 940 941 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp, 942 bool (skip)(struct dso *dso, int parm), int parm) 943 { 944 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm); 945 } 946 947 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp, 948 bool (skip)(struct dso *dso, int parm), int parm) 949 { 950 struct rb_node *nd; 951 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm); 952 953 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 954 struct machine *pos = rb_entry(nd, struct machine, rb_node); 955 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm); 956 } 957 return ret; 958 } 959 960 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp) 961 { 962 int i; 963 size_t printed = 0; 964 struct dso *kdso = machine__kernel_dso(machine); 965 966 if (kdso->has_build_id) { 967 char filename[PATH_MAX]; 968 if (dso__build_id_filename(kdso, filename, sizeof(filename), 969 false)) 970 printed += fprintf(fp, "[0] %s\n", filename); 971 } 972 973 for (i = 0; i < vmlinux_path__nr_entries; ++i) 974 printed += fprintf(fp, "[%d] %s\n", 975 i + kdso->has_build_id, vmlinux_path[i]); 976 977 return printed; 978 } 979 980 size_t machine__fprintf(struct machine *machine, FILE *fp) 981 { 982 struct rb_node *nd; 983 size_t ret; 984 int i; 985 986 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 987 struct threads *threads = &machine->threads[i]; 988 989 down_read(&threads->lock); 990 991 ret = fprintf(fp, "Threads: %u\n", threads->nr); 992 993 for (nd = rb_first_cached(&threads->entries); nd; 994 nd = rb_next(nd)) { 995 struct thread *pos = rb_entry(nd, struct thread, rb_node); 996 997 ret += thread__fprintf(pos, fp); 998 } 999 1000 up_read(&threads->lock); 1001 } 1002 return ret; 1003 } 1004 1005 static struct dso *machine__get_kernel(struct machine *machine) 1006 { 1007 const char *vmlinux_name = machine->mmap_name; 1008 struct dso *kernel; 1009 1010 if (machine__is_host(machine)) { 1011 if (symbol_conf.vmlinux_name) 1012 vmlinux_name = symbol_conf.vmlinux_name; 1013 1014 kernel = machine__findnew_kernel(machine, vmlinux_name, 1015 "[kernel]", DSO_SPACE__KERNEL); 1016 } else { 1017 if (symbol_conf.default_guest_vmlinux_name) 1018 vmlinux_name = symbol_conf.default_guest_vmlinux_name; 1019 1020 kernel = machine__findnew_kernel(machine, vmlinux_name, 1021 "[guest.kernel]", 1022 DSO_SPACE__KERNEL_GUEST); 1023 } 1024 1025 if (kernel != NULL && (!kernel->has_build_id)) 1026 dso__read_running_kernel_build_id(kernel, machine); 1027 1028 return kernel; 1029 } 1030 1031 struct process_args { 1032 u64 start; 1033 }; 1034 1035 void machine__get_kallsyms_filename(struct machine *machine, char *buf, 1036 size_t bufsz) 1037 { 1038 if (machine__is_default_guest(machine)) 1039 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms); 1040 else 1041 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir); 1042 } 1043 1044 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL}; 1045 1046 /* Figure out the start address of kernel map from /proc/kallsyms. 1047 * Returns the name of the start symbol in *symbol_name. Pass in NULL as 1048 * symbol_name if it's not that important. 1049 */ 1050 static int machine__get_running_kernel_start(struct machine *machine, 1051 const char **symbol_name, 1052 u64 *start, u64 *end) 1053 { 1054 char filename[PATH_MAX]; 1055 int i, err = -1; 1056 const char *name; 1057 u64 addr = 0; 1058 1059 machine__get_kallsyms_filename(machine, filename, PATH_MAX); 1060 1061 if (symbol__restricted_filename(filename, "/proc/kallsyms")) 1062 return 0; 1063 1064 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) { 1065 err = kallsyms__get_function_start(filename, name, &addr); 1066 if (!err) 1067 break; 1068 } 1069 1070 if (err) 1071 return -1; 1072 1073 if (symbol_name) 1074 *symbol_name = name; 1075 1076 *start = addr; 1077 1078 err = kallsyms__get_function_start(filename, "_etext", &addr); 1079 if (!err) 1080 *end = addr; 1081 1082 return 0; 1083 } 1084 1085 int machine__create_extra_kernel_map(struct machine *machine, 1086 struct dso *kernel, 1087 struct extra_kernel_map *xm) 1088 { 1089 struct kmap *kmap; 1090 struct map *map; 1091 1092 map = map__new2(xm->start, kernel); 1093 if (!map) 1094 return -1; 1095 1096 map->end = xm->end; 1097 map->pgoff = xm->pgoff; 1098 1099 kmap = map__kmap(map); 1100 1101 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN); 1102 1103 maps__insert(&machine->kmaps, map); 1104 1105 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n", 1106 kmap->name, map->start, map->end); 1107 1108 map__put(map); 1109 1110 return 0; 1111 } 1112 1113 static u64 find_entry_trampoline(struct dso *dso) 1114 { 1115 /* Duplicates are removed so lookup all aliases */ 1116 const char *syms[] = { 1117 "_entry_trampoline", 1118 "__entry_trampoline_start", 1119 "entry_SYSCALL_64_trampoline", 1120 }; 1121 struct symbol *sym = dso__first_symbol(dso); 1122 unsigned int i; 1123 1124 for (; sym; sym = dso__next_symbol(sym)) { 1125 if (sym->binding != STB_GLOBAL) 1126 continue; 1127 for (i = 0; i < ARRAY_SIZE(syms); i++) { 1128 if (!strcmp(sym->name, syms[i])) 1129 return sym->start; 1130 } 1131 } 1132 1133 return 0; 1134 } 1135 1136 /* 1137 * These values can be used for kernels that do not have symbols for the entry 1138 * trampolines in kallsyms. 1139 */ 1140 #define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL 1141 #define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000 1142 #define X86_64_ENTRY_TRAMPOLINE 0x6000 1143 1144 /* Map x86_64 PTI entry trampolines */ 1145 int machine__map_x86_64_entry_trampolines(struct machine *machine, 1146 struct dso *kernel) 1147 { 1148 struct maps *kmaps = &machine->kmaps; 1149 int nr_cpus_avail, cpu; 1150 bool found = false; 1151 struct map *map; 1152 u64 pgoff; 1153 1154 /* 1155 * In the vmlinux case, pgoff is a virtual address which must now be 1156 * mapped to a vmlinux offset. 1157 */ 1158 maps__for_each_entry(kmaps, map) { 1159 struct kmap *kmap = __map__kmap(map); 1160 struct map *dest_map; 1161 1162 if (!kmap || !is_entry_trampoline(kmap->name)) 1163 continue; 1164 1165 dest_map = maps__find(kmaps, map->pgoff); 1166 if (dest_map != map) 1167 map->pgoff = dest_map->map_ip(dest_map, map->pgoff); 1168 found = true; 1169 } 1170 if (found || machine->trampolines_mapped) 1171 return 0; 1172 1173 pgoff = find_entry_trampoline(kernel); 1174 if (!pgoff) 1175 return 0; 1176 1177 nr_cpus_avail = machine__nr_cpus_avail(machine); 1178 1179 /* Add a 1 page map for each CPU's entry trampoline */ 1180 for (cpu = 0; cpu < nr_cpus_avail; cpu++) { 1181 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU + 1182 cpu * X86_64_CPU_ENTRY_AREA_SIZE + 1183 X86_64_ENTRY_TRAMPOLINE; 1184 struct extra_kernel_map xm = { 1185 .start = va, 1186 .end = va + page_size, 1187 .pgoff = pgoff, 1188 }; 1189 1190 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN); 1191 1192 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0) 1193 return -1; 1194 } 1195 1196 machine->trampolines_mapped = nr_cpus_avail; 1197 1198 return 0; 1199 } 1200 1201 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused, 1202 struct dso *kernel __maybe_unused) 1203 { 1204 return 0; 1205 } 1206 1207 static int 1208 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel) 1209 { 1210 /* In case of renewal the kernel map, destroy previous one */ 1211 machine__destroy_kernel_maps(machine); 1212 1213 machine->vmlinux_map = map__new2(0, kernel); 1214 if (machine->vmlinux_map == NULL) 1215 return -1; 1216 1217 machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip; 1218 maps__insert(&machine->kmaps, machine->vmlinux_map); 1219 return 0; 1220 } 1221 1222 void machine__destroy_kernel_maps(struct machine *machine) 1223 { 1224 struct kmap *kmap; 1225 struct map *map = machine__kernel_map(machine); 1226 1227 if (map == NULL) 1228 return; 1229 1230 kmap = map__kmap(map); 1231 maps__remove(&machine->kmaps, map); 1232 if (kmap && kmap->ref_reloc_sym) { 1233 zfree((char **)&kmap->ref_reloc_sym->name); 1234 zfree(&kmap->ref_reloc_sym); 1235 } 1236 1237 map__zput(machine->vmlinux_map); 1238 } 1239 1240 int machines__create_guest_kernel_maps(struct machines *machines) 1241 { 1242 int ret = 0; 1243 struct dirent **namelist = NULL; 1244 int i, items = 0; 1245 char path[PATH_MAX]; 1246 pid_t pid; 1247 char *endp; 1248 1249 if (symbol_conf.default_guest_vmlinux_name || 1250 symbol_conf.default_guest_modules || 1251 symbol_conf.default_guest_kallsyms) { 1252 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID); 1253 } 1254 1255 if (symbol_conf.guestmount) { 1256 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL); 1257 if (items <= 0) 1258 return -ENOENT; 1259 for (i = 0; i < items; i++) { 1260 if (!isdigit(namelist[i]->d_name[0])) { 1261 /* Filter out . and .. */ 1262 continue; 1263 } 1264 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10); 1265 if ((*endp != '\0') || 1266 (endp == namelist[i]->d_name) || 1267 (errno == ERANGE)) { 1268 pr_debug("invalid directory (%s). Skipping.\n", 1269 namelist[i]->d_name); 1270 continue; 1271 } 1272 sprintf(path, "%s/%s/proc/kallsyms", 1273 symbol_conf.guestmount, 1274 namelist[i]->d_name); 1275 ret = access(path, R_OK); 1276 if (ret) { 1277 pr_debug("Can't access file %s\n", path); 1278 goto failure; 1279 } 1280 machines__create_kernel_maps(machines, pid); 1281 } 1282 failure: 1283 free(namelist); 1284 } 1285 1286 return ret; 1287 } 1288 1289 void machines__destroy_kernel_maps(struct machines *machines) 1290 { 1291 struct rb_node *next = rb_first_cached(&machines->guests); 1292 1293 machine__destroy_kernel_maps(&machines->host); 1294 1295 while (next) { 1296 struct machine *pos = rb_entry(next, struct machine, rb_node); 1297 1298 next = rb_next(&pos->rb_node); 1299 rb_erase_cached(&pos->rb_node, &machines->guests); 1300 machine__delete(pos); 1301 } 1302 } 1303 1304 int machines__create_kernel_maps(struct machines *machines, pid_t pid) 1305 { 1306 struct machine *machine = machines__findnew(machines, pid); 1307 1308 if (machine == NULL) 1309 return -1; 1310 1311 return machine__create_kernel_maps(machine); 1312 } 1313 1314 int machine__load_kallsyms(struct machine *machine, const char *filename) 1315 { 1316 struct map *map = machine__kernel_map(machine); 1317 int ret = __dso__load_kallsyms(map->dso, filename, map, true); 1318 1319 if (ret > 0) { 1320 dso__set_loaded(map->dso); 1321 /* 1322 * Since /proc/kallsyms will have multiple sessions for the 1323 * kernel, with modules between them, fixup the end of all 1324 * sections. 1325 */ 1326 maps__fixup_end(&machine->kmaps); 1327 } 1328 1329 return ret; 1330 } 1331 1332 int machine__load_vmlinux_path(struct machine *machine) 1333 { 1334 struct map *map = machine__kernel_map(machine); 1335 int ret = dso__load_vmlinux_path(map->dso, map); 1336 1337 if (ret > 0) 1338 dso__set_loaded(map->dso); 1339 1340 return ret; 1341 } 1342 1343 static char *get_kernel_version(const char *root_dir) 1344 { 1345 char version[PATH_MAX]; 1346 FILE *file; 1347 char *name, *tmp; 1348 const char *prefix = "Linux version "; 1349 1350 sprintf(version, "%s/proc/version", root_dir); 1351 file = fopen(version, "r"); 1352 if (!file) 1353 return NULL; 1354 1355 tmp = fgets(version, sizeof(version), file); 1356 fclose(file); 1357 if (!tmp) 1358 return NULL; 1359 1360 name = strstr(version, prefix); 1361 if (!name) 1362 return NULL; 1363 name += strlen(prefix); 1364 tmp = strchr(name, ' '); 1365 if (tmp) 1366 *tmp = '\0'; 1367 1368 return strdup(name); 1369 } 1370 1371 static bool is_kmod_dso(struct dso *dso) 1372 { 1373 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE || 1374 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE; 1375 } 1376 1377 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m) 1378 { 1379 char *long_name; 1380 struct map *map = maps__find_by_name(maps, m->name); 1381 1382 if (map == NULL) 1383 return 0; 1384 1385 long_name = strdup(path); 1386 if (long_name == NULL) 1387 return -ENOMEM; 1388 1389 dso__set_long_name(map->dso, long_name, true); 1390 dso__kernel_module_get_build_id(map->dso, ""); 1391 1392 /* 1393 * Full name could reveal us kmod compression, so 1394 * we need to update the symtab_type if needed. 1395 */ 1396 if (m->comp && is_kmod_dso(map->dso)) { 1397 map->dso->symtab_type++; 1398 map->dso->comp = m->comp; 1399 } 1400 1401 return 0; 1402 } 1403 1404 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth) 1405 { 1406 struct dirent *dent; 1407 DIR *dir = opendir(dir_name); 1408 int ret = 0; 1409 1410 if (!dir) { 1411 pr_debug("%s: cannot open %s dir\n", __func__, dir_name); 1412 return -1; 1413 } 1414 1415 while ((dent = readdir(dir)) != NULL) { 1416 char path[PATH_MAX]; 1417 struct stat st; 1418 1419 /*sshfs might return bad dent->d_type, so we have to stat*/ 1420 path__join(path, sizeof(path), dir_name, dent->d_name); 1421 if (stat(path, &st)) 1422 continue; 1423 1424 if (S_ISDIR(st.st_mode)) { 1425 if (!strcmp(dent->d_name, ".") || 1426 !strcmp(dent->d_name, "..")) 1427 continue; 1428 1429 /* Do not follow top-level source and build symlinks */ 1430 if (depth == 0) { 1431 if (!strcmp(dent->d_name, "source") || 1432 !strcmp(dent->d_name, "build")) 1433 continue; 1434 } 1435 1436 ret = maps__set_modules_path_dir(maps, path, depth + 1); 1437 if (ret < 0) 1438 goto out; 1439 } else { 1440 struct kmod_path m; 1441 1442 ret = kmod_path__parse_name(&m, dent->d_name); 1443 if (ret) 1444 goto out; 1445 1446 if (m.kmod) 1447 ret = maps__set_module_path(maps, path, &m); 1448 1449 zfree(&m.name); 1450 1451 if (ret) 1452 goto out; 1453 } 1454 } 1455 1456 out: 1457 closedir(dir); 1458 return ret; 1459 } 1460 1461 static int machine__set_modules_path(struct machine *machine) 1462 { 1463 char *version; 1464 char modules_path[PATH_MAX]; 1465 1466 version = get_kernel_version(machine->root_dir); 1467 if (!version) 1468 return -1; 1469 1470 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s", 1471 machine->root_dir, version); 1472 free(version); 1473 1474 return maps__set_modules_path_dir(&machine->kmaps, modules_path, 0); 1475 } 1476 int __weak arch__fix_module_text_start(u64 *start __maybe_unused, 1477 u64 *size __maybe_unused, 1478 const char *name __maybe_unused) 1479 { 1480 return 0; 1481 } 1482 1483 static int machine__create_module(void *arg, const char *name, u64 start, 1484 u64 size) 1485 { 1486 struct machine *machine = arg; 1487 struct map *map; 1488 1489 if (arch__fix_module_text_start(&start, &size, name) < 0) 1490 return -1; 1491 1492 map = machine__addnew_module_map(machine, start, name); 1493 if (map == NULL) 1494 return -1; 1495 map->end = start + size; 1496 1497 dso__kernel_module_get_build_id(map->dso, machine->root_dir); 1498 1499 return 0; 1500 } 1501 1502 static int machine__create_modules(struct machine *machine) 1503 { 1504 const char *modules; 1505 char path[PATH_MAX]; 1506 1507 if (machine__is_default_guest(machine)) { 1508 modules = symbol_conf.default_guest_modules; 1509 } else { 1510 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir); 1511 modules = path; 1512 } 1513 1514 if (symbol__restricted_filename(modules, "/proc/modules")) 1515 return -1; 1516 1517 if (modules__parse(modules, machine, machine__create_module)) 1518 return -1; 1519 1520 if (!machine__set_modules_path(machine)) 1521 return 0; 1522 1523 pr_debug("Problems setting modules path maps, continuing anyway...\n"); 1524 1525 return 0; 1526 } 1527 1528 static void machine__set_kernel_mmap(struct machine *machine, 1529 u64 start, u64 end) 1530 { 1531 machine->vmlinux_map->start = start; 1532 machine->vmlinux_map->end = end; 1533 /* 1534 * Be a bit paranoid here, some perf.data file came with 1535 * a zero sized synthesized MMAP event for the kernel. 1536 */ 1537 if (start == 0 && end == 0) 1538 machine->vmlinux_map->end = ~0ULL; 1539 } 1540 1541 static void machine__update_kernel_mmap(struct machine *machine, 1542 u64 start, u64 end) 1543 { 1544 struct map *map = machine__kernel_map(machine); 1545 1546 map__get(map); 1547 maps__remove(&machine->kmaps, map); 1548 1549 machine__set_kernel_mmap(machine, start, end); 1550 1551 maps__insert(&machine->kmaps, map); 1552 map__put(map); 1553 } 1554 1555 int machine__create_kernel_maps(struct machine *machine) 1556 { 1557 struct dso *kernel = machine__get_kernel(machine); 1558 const char *name = NULL; 1559 struct map *map; 1560 u64 start = 0, end = ~0ULL; 1561 int ret; 1562 1563 if (kernel == NULL) 1564 return -1; 1565 1566 ret = __machine__create_kernel_maps(machine, kernel); 1567 if (ret < 0) 1568 goto out_put; 1569 1570 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) { 1571 if (machine__is_host(machine)) 1572 pr_debug("Problems creating module maps, " 1573 "continuing anyway...\n"); 1574 else 1575 pr_debug("Problems creating module maps for guest %d, " 1576 "continuing anyway...\n", machine->pid); 1577 } 1578 1579 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) { 1580 if (name && 1581 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) { 1582 machine__destroy_kernel_maps(machine); 1583 ret = -1; 1584 goto out_put; 1585 } 1586 1587 /* 1588 * we have a real start address now, so re-order the kmaps 1589 * assume it's the last in the kmaps 1590 */ 1591 machine__update_kernel_mmap(machine, start, end); 1592 } 1593 1594 if (machine__create_extra_kernel_maps(machine, kernel)) 1595 pr_debug("Problems creating extra kernel maps, continuing anyway...\n"); 1596 1597 if (end == ~0ULL) { 1598 /* update end address of the kernel map using adjacent module address */ 1599 map = map__next(machine__kernel_map(machine)); 1600 if (map) 1601 machine__set_kernel_mmap(machine, start, map->start); 1602 } 1603 1604 out_put: 1605 dso__put(kernel); 1606 return ret; 1607 } 1608 1609 static bool machine__uses_kcore(struct machine *machine) 1610 { 1611 struct dso *dso; 1612 1613 list_for_each_entry(dso, &machine->dsos.head, node) { 1614 if (dso__is_kcore(dso)) 1615 return true; 1616 } 1617 1618 return false; 1619 } 1620 1621 static bool perf_event__is_extra_kernel_mmap(struct machine *machine, 1622 struct extra_kernel_map *xm) 1623 { 1624 return machine__is(machine, "x86_64") && 1625 is_entry_trampoline(xm->name); 1626 } 1627 1628 static int machine__process_extra_kernel_map(struct machine *machine, 1629 struct extra_kernel_map *xm) 1630 { 1631 struct dso *kernel = machine__kernel_dso(machine); 1632 1633 if (kernel == NULL) 1634 return -1; 1635 1636 return machine__create_extra_kernel_map(machine, kernel, xm); 1637 } 1638 1639 static int machine__process_kernel_mmap_event(struct machine *machine, 1640 struct extra_kernel_map *xm, 1641 struct build_id *bid) 1642 { 1643 struct map *map; 1644 enum dso_space_type dso_space; 1645 bool is_kernel_mmap; 1646 1647 /* If we have maps from kcore then we do not need or want any others */ 1648 if (machine__uses_kcore(machine)) 1649 return 0; 1650 1651 if (machine__is_host(machine)) 1652 dso_space = DSO_SPACE__KERNEL; 1653 else 1654 dso_space = DSO_SPACE__KERNEL_GUEST; 1655 1656 is_kernel_mmap = memcmp(xm->name, machine->mmap_name, 1657 strlen(machine->mmap_name) - 1) == 0; 1658 if (xm->name[0] == '/' || 1659 (!is_kernel_mmap && xm->name[0] == '[')) { 1660 map = machine__addnew_module_map(machine, xm->start, 1661 xm->name); 1662 if (map == NULL) 1663 goto out_problem; 1664 1665 map->end = map->start + xm->end - xm->start; 1666 1667 if (build_id__is_defined(bid)) 1668 dso__set_build_id(map->dso, bid); 1669 1670 } else if (is_kernel_mmap) { 1671 const char *symbol_name = (xm->name + strlen(machine->mmap_name)); 1672 /* 1673 * Should be there already, from the build-id table in 1674 * the header. 1675 */ 1676 struct dso *kernel = NULL; 1677 struct dso *dso; 1678 1679 down_read(&machine->dsos.lock); 1680 1681 list_for_each_entry(dso, &machine->dsos.head, node) { 1682 1683 /* 1684 * The cpumode passed to is_kernel_module is not the 1685 * cpumode of *this* event. If we insist on passing 1686 * correct cpumode to is_kernel_module, we should 1687 * record the cpumode when we adding this dso to the 1688 * linked list. 1689 * 1690 * However we don't really need passing correct 1691 * cpumode. We know the correct cpumode must be kernel 1692 * mode (if not, we should not link it onto kernel_dsos 1693 * list). 1694 * 1695 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN. 1696 * is_kernel_module() treats it as a kernel cpumode. 1697 */ 1698 1699 if (!dso->kernel || 1700 is_kernel_module(dso->long_name, 1701 PERF_RECORD_MISC_CPUMODE_UNKNOWN)) 1702 continue; 1703 1704 1705 kernel = dso; 1706 break; 1707 } 1708 1709 up_read(&machine->dsos.lock); 1710 1711 if (kernel == NULL) 1712 kernel = machine__findnew_dso(machine, machine->mmap_name); 1713 if (kernel == NULL) 1714 goto out_problem; 1715 1716 kernel->kernel = dso_space; 1717 if (__machine__create_kernel_maps(machine, kernel) < 0) { 1718 dso__put(kernel); 1719 goto out_problem; 1720 } 1721 1722 if (strstr(kernel->long_name, "vmlinux")) 1723 dso__set_short_name(kernel, "[kernel.vmlinux]", false); 1724 1725 machine__update_kernel_mmap(machine, xm->start, xm->end); 1726 1727 if (build_id__is_defined(bid)) 1728 dso__set_build_id(kernel, bid); 1729 1730 /* 1731 * Avoid using a zero address (kptr_restrict) for the ref reloc 1732 * symbol. Effectively having zero here means that at record 1733 * time /proc/sys/kernel/kptr_restrict was non zero. 1734 */ 1735 if (xm->pgoff != 0) { 1736 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, 1737 symbol_name, 1738 xm->pgoff); 1739 } 1740 1741 if (machine__is_default_guest(machine)) { 1742 /* 1743 * preload dso of guest kernel and modules 1744 */ 1745 dso__load(kernel, machine__kernel_map(machine)); 1746 } 1747 } else if (perf_event__is_extra_kernel_mmap(machine, xm)) { 1748 return machine__process_extra_kernel_map(machine, xm); 1749 } 1750 return 0; 1751 out_problem: 1752 return -1; 1753 } 1754 1755 int machine__process_mmap2_event(struct machine *machine, 1756 union perf_event *event, 1757 struct perf_sample *sample) 1758 { 1759 struct thread *thread; 1760 struct map *map; 1761 struct dso_id dso_id = { 1762 .maj = event->mmap2.maj, 1763 .min = event->mmap2.min, 1764 .ino = event->mmap2.ino, 1765 .ino_generation = event->mmap2.ino_generation, 1766 }; 1767 struct build_id __bid, *bid = NULL; 1768 int ret = 0; 1769 1770 if (dump_trace) 1771 perf_event__fprintf_mmap2(event, stdout); 1772 1773 if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) { 1774 bid = &__bid; 1775 build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size); 1776 } 1777 1778 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1779 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1780 struct extra_kernel_map xm = { 1781 .start = event->mmap2.start, 1782 .end = event->mmap2.start + event->mmap2.len, 1783 .pgoff = event->mmap2.pgoff, 1784 }; 1785 1786 strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN); 1787 ret = machine__process_kernel_mmap_event(machine, &xm, bid); 1788 if (ret < 0) 1789 goto out_problem; 1790 return 0; 1791 } 1792 1793 thread = machine__findnew_thread(machine, event->mmap2.pid, 1794 event->mmap2.tid); 1795 if (thread == NULL) 1796 goto out_problem; 1797 1798 map = map__new(machine, event->mmap2.start, 1799 event->mmap2.len, event->mmap2.pgoff, 1800 &dso_id, event->mmap2.prot, 1801 event->mmap2.flags, bid, 1802 event->mmap2.filename, thread); 1803 1804 if (map == NULL) 1805 goto out_problem_map; 1806 1807 ret = thread__insert_map(thread, map); 1808 if (ret) 1809 goto out_problem_insert; 1810 1811 thread__put(thread); 1812 map__put(map); 1813 return 0; 1814 1815 out_problem_insert: 1816 map__put(map); 1817 out_problem_map: 1818 thread__put(thread); 1819 out_problem: 1820 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n"); 1821 return 0; 1822 } 1823 1824 int machine__process_mmap_event(struct machine *machine, union perf_event *event, 1825 struct perf_sample *sample) 1826 { 1827 struct thread *thread; 1828 struct map *map; 1829 u32 prot = 0; 1830 int ret = 0; 1831 1832 if (dump_trace) 1833 perf_event__fprintf_mmap(event, stdout); 1834 1835 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1836 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1837 struct extra_kernel_map xm = { 1838 .start = event->mmap.start, 1839 .end = event->mmap.start + event->mmap.len, 1840 .pgoff = event->mmap.pgoff, 1841 }; 1842 1843 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN); 1844 ret = machine__process_kernel_mmap_event(machine, &xm, NULL); 1845 if (ret < 0) 1846 goto out_problem; 1847 return 0; 1848 } 1849 1850 thread = machine__findnew_thread(machine, event->mmap.pid, 1851 event->mmap.tid); 1852 if (thread == NULL) 1853 goto out_problem; 1854 1855 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA)) 1856 prot = PROT_EXEC; 1857 1858 map = map__new(machine, event->mmap.start, 1859 event->mmap.len, event->mmap.pgoff, 1860 NULL, prot, 0, NULL, event->mmap.filename, thread); 1861 1862 if (map == NULL) 1863 goto out_problem_map; 1864 1865 ret = thread__insert_map(thread, map); 1866 if (ret) 1867 goto out_problem_insert; 1868 1869 thread__put(thread); 1870 map__put(map); 1871 return 0; 1872 1873 out_problem_insert: 1874 map__put(map); 1875 out_problem_map: 1876 thread__put(thread); 1877 out_problem: 1878 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n"); 1879 return 0; 1880 } 1881 1882 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock) 1883 { 1884 struct threads *threads = machine__threads(machine, th->tid); 1885 1886 if (threads->last_match == th) 1887 threads__set_last_match(threads, NULL); 1888 1889 if (lock) 1890 down_write(&threads->lock); 1891 1892 BUG_ON(refcount_read(&th->refcnt) == 0); 1893 1894 rb_erase_cached(&th->rb_node, &threads->entries); 1895 RB_CLEAR_NODE(&th->rb_node); 1896 --threads->nr; 1897 /* 1898 * Move it first to the dead_threads list, then drop the reference, 1899 * if this is the last reference, then the thread__delete destructor 1900 * will be called and we will remove it from the dead_threads list. 1901 */ 1902 list_add_tail(&th->node, &threads->dead); 1903 1904 /* 1905 * We need to do the put here because if this is the last refcount, 1906 * then we will be touching the threads->dead head when removing the 1907 * thread. 1908 */ 1909 thread__put(th); 1910 1911 if (lock) 1912 up_write(&threads->lock); 1913 } 1914 1915 void machine__remove_thread(struct machine *machine, struct thread *th) 1916 { 1917 return __machine__remove_thread(machine, th, true); 1918 } 1919 1920 int machine__process_fork_event(struct machine *machine, union perf_event *event, 1921 struct perf_sample *sample) 1922 { 1923 struct thread *thread = machine__find_thread(machine, 1924 event->fork.pid, 1925 event->fork.tid); 1926 struct thread *parent = machine__findnew_thread(machine, 1927 event->fork.ppid, 1928 event->fork.ptid); 1929 bool do_maps_clone = true; 1930 int err = 0; 1931 1932 if (dump_trace) 1933 perf_event__fprintf_task(event, stdout); 1934 1935 /* 1936 * There may be an existing thread that is not actually the parent, 1937 * either because we are processing events out of order, or because the 1938 * (fork) event that would have removed the thread was lost. Assume the 1939 * latter case and continue on as best we can. 1940 */ 1941 if (parent->pid_ != (pid_t)event->fork.ppid) { 1942 dump_printf("removing erroneous parent thread %d/%d\n", 1943 parent->pid_, parent->tid); 1944 machine__remove_thread(machine, parent); 1945 thread__put(parent); 1946 parent = machine__findnew_thread(machine, event->fork.ppid, 1947 event->fork.ptid); 1948 } 1949 1950 /* if a thread currently exists for the thread id remove it */ 1951 if (thread != NULL) { 1952 machine__remove_thread(machine, thread); 1953 thread__put(thread); 1954 } 1955 1956 thread = machine__findnew_thread(machine, event->fork.pid, 1957 event->fork.tid); 1958 /* 1959 * When synthesizing FORK events, we are trying to create thread 1960 * objects for the already running tasks on the machine. 1961 * 1962 * Normally, for a kernel FORK event, we want to clone the parent's 1963 * maps because that is what the kernel just did. 1964 * 1965 * But when synthesizing, this should not be done. If we do, we end up 1966 * with overlapping maps as we process the synthesized MMAP2 events that 1967 * get delivered shortly thereafter. 1968 * 1969 * Use the FORK event misc flags in an internal way to signal this 1970 * situation, so we can elide the map clone when appropriate. 1971 */ 1972 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC) 1973 do_maps_clone = false; 1974 1975 if (thread == NULL || parent == NULL || 1976 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) { 1977 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n"); 1978 err = -1; 1979 } 1980 thread__put(thread); 1981 thread__put(parent); 1982 1983 return err; 1984 } 1985 1986 int machine__process_exit_event(struct machine *machine, union perf_event *event, 1987 struct perf_sample *sample __maybe_unused) 1988 { 1989 struct thread *thread = machine__find_thread(machine, 1990 event->fork.pid, 1991 event->fork.tid); 1992 1993 if (dump_trace) 1994 perf_event__fprintf_task(event, stdout); 1995 1996 if (thread != NULL) { 1997 thread__exited(thread); 1998 thread__put(thread); 1999 } 2000 2001 return 0; 2002 } 2003 2004 int machine__process_event(struct machine *machine, union perf_event *event, 2005 struct perf_sample *sample) 2006 { 2007 int ret; 2008 2009 switch (event->header.type) { 2010 case PERF_RECORD_COMM: 2011 ret = machine__process_comm_event(machine, event, sample); break; 2012 case PERF_RECORD_MMAP: 2013 ret = machine__process_mmap_event(machine, event, sample); break; 2014 case PERF_RECORD_NAMESPACES: 2015 ret = machine__process_namespaces_event(machine, event, sample); break; 2016 case PERF_RECORD_CGROUP: 2017 ret = machine__process_cgroup_event(machine, event, sample); break; 2018 case PERF_RECORD_MMAP2: 2019 ret = machine__process_mmap2_event(machine, event, sample); break; 2020 case PERF_RECORD_FORK: 2021 ret = machine__process_fork_event(machine, event, sample); break; 2022 case PERF_RECORD_EXIT: 2023 ret = machine__process_exit_event(machine, event, sample); break; 2024 case PERF_RECORD_LOST: 2025 ret = machine__process_lost_event(machine, event, sample); break; 2026 case PERF_RECORD_AUX: 2027 ret = machine__process_aux_event(machine, event); break; 2028 case PERF_RECORD_ITRACE_START: 2029 ret = machine__process_itrace_start_event(machine, event); break; 2030 case PERF_RECORD_LOST_SAMPLES: 2031 ret = machine__process_lost_samples_event(machine, event, sample); break; 2032 case PERF_RECORD_SWITCH: 2033 case PERF_RECORD_SWITCH_CPU_WIDE: 2034 ret = machine__process_switch_event(machine, event); break; 2035 case PERF_RECORD_KSYMBOL: 2036 ret = machine__process_ksymbol(machine, event, sample); break; 2037 case PERF_RECORD_BPF_EVENT: 2038 ret = machine__process_bpf(machine, event, sample); break; 2039 case PERF_RECORD_TEXT_POKE: 2040 ret = machine__process_text_poke(machine, event, sample); break; 2041 case PERF_RECORD_AUX_OUTPUT_HW_ID: 2042 ret = machine__process_aux_output_hw_id_event(machine, event); break; 2043 default: 2044 ret = -1; 2045 break; 2046 } 2047 2048 return ret; 2049 } 2050 2051 static bool symbol__match_regex(struct symbol *sym, regex_t *regex) 2052 { 2053 if (!regexec(regex, sym->name, 0, NULL, 0)) 2054 return true; 2055 return false; 2056 } 2057 2058 static void ip__resolve_ams(struct thread *thread, 2059 struct addr_map_symbol *ams, 2060 u64 ip) 2061 { 2062 struct addr_location al; 2063 2064 memset(&al, 0, sizeof(al)); 2065 /* 2066 * We cannot use the header.misc hint to determine whether a 2067 * branch stack address is user, kernel, guest, hypervisor. 2068 * Branches may straddle the kernel/user/hypervisor boundaries. 2069 * Thus, we have to try consecutively until we find a match 2070 * or else, the symbol is unknown 2071 */ 2072 thread__find_cpumode_addr_location(thread, ip, &al); 2073 2074 ams->addr = ip; 2075 ams->al_addr = al.addr; 2076 ams->ms.maps = al.maps; 2077 ams->ms.sym = al.sym; 2078 ams->ms.map = al.map; 2079 ams->phys_addr = 0; 2080 ams->data_page_size = 0; 2081 } 2082 2083 static void ip__resolve_data(struct thread *thread, 2084 u8 m, struct addr_map_symbol *ams, 2085 u64 addr, u64 phys_addr, u64 daddr_page_size) 2086 { 2087 struct addr_location al; 2088 2089 memset(&al, 0, sizeof(al)); 2090 2091 thread__find_symbol(thread, m, addr, &al); 2092 2093 ams->addr = addr; 2094 ams->al_addr = al.addr; 2095 ams->ms.maps = al.maps; 2096 ams->ms.sym = al.sym; 2097 ams->ms.map = al.map; 2098 ams->phys_addr = phys_addr; 2099 ams->data_page_size = daddr_page_size; 2100 } 2101 2102 struct mem_info *sample__resolve_mem(struct perf_sample *sample, 2103 struct addr_location *al) 2104 { 2105 struct mem_info *mi = mem_info__new(); 2106 2107 if (!mi) 2108 return NULL; 2109 2110 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip); 2111 ip__resolve_data(al->thread, al->cpumode, &mi->daddr, 2112 sample->addr, sample->phys_addr, 2113 sample->data_page_size); 2114 mi->data_src.val = sample->data_src; 2115 2116 return mi; 2117 } 2118 2119 static char *callchain_srcline(struct map_symbol *ms, u64 ip) 2120 { 2121 struct map *map = ms->map; 2122 char *srcline = NULL; 2123 2124 if (!map || callchain_param.key == CCKEY_FUNCTION) 2125 return srcline; 2126 2127 srcline = srcline__tree_find(&map->dso->srclines, ip); 2128 if (!srcline) { 2129 bool show_sym = false; 2130 bool show_addr = callchain_param.key == CCKEY_ADDRESS; 2131 2132 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip), 2133 ms->sym, show_sym, show_addr, ip); 2134 srcline__tree_insert(&map->dso->srclines, ip, srcline); 2135 } 2136 2137 return srcline; 2138 } 2139 2140 struct iterations { 2141 int nr_loop_iter; 2142 u64 cycles; 2143 }; 2144 2145 static int add_callchain_ip(struct thread *thread, 2146 struct callchain_cursor *cursor, 2147 struct symbol **parent, 2148 struct addr_location *root_al, 2149 u8 *cpumode, 2150 u64 ip, 2151 bool branch, 2152 struct branch_flags *flags, 2153 struct iterations *iter, 2154 u64 branch_from) 2155 { 2156 struct map_symbol ms; 2157 struct addr_location al; 2158 int nr_loop_iter = 0; 2159 u64 iter_cycles = 0; 2160 const char *srcline = NULL; 2161 2162 al.filtered = 0; 2163 al.sym = NULL; 2164 al.srcline = NULL; 2165 if (!cpumode) { 2166 thread__find_cpumode_addr_location(thread, ip, &al); 2167 } else { 2168 if (ip >= PERF_CONTEXT_MAX) { 2169 switch (ip) { 2170 case PERF_CONTEXT_HV: 2171 *cpumode = PERF_RECORD_MISC_HYPERVISOR; 2172 break; 2173 case PERF_CONTEXT_KERNEL: 2174 *cpumode = PERF_RECORD_MISC_KERNEL; 2175 break; 2176 case PERF_CONTEXT_USER: 2177 *cpumode = PERF_RECORD_MISC_USER; 2178 break; 2179 default: 2180 pr_debug("invalid callchain context: " 2181 "%"PRId64"\n", (s64) ip); 2182 /* 2183 * It seems the callchain is corrupted. 2184 * Discard all. 2185 */ 2186 callchain_cursor_reset(cursor); 2187 return 1; 2188 } 2189 return 0; 2190 } 2191 thread__find_symbol(thread, *cpumode, ip, &al); 2192 } 2193 2194 if (al.sym != NULL) { 2195 if (perf_hpp_list.parent && !*parent && 2196 symbol__match_regex(al.sym, &parent_regex)) 2197 *parent = al.sym; 2198 else if (have_ignore_callees && root_al && 2199 symbol__match_regex(al.sym, &ignore_callees_regex)) { 2200 /* Treat this symbol as the root, 2201 forgetting its callees. */ 2202 *root_al = al; 2203 callchain_cursor_reset(cursor); 2204 } 2205 } 2206 2207 if (symbol_conf.hide_unresolved && al.sym == NULL) 2208 return 0; 2209 2210 if (iter) { 2211 nr_loop_iter = iter->nr_loop_iter; 2212 iter_cycles = iter->cycles; 2213 } 2214 2215 ms.maps = al.maps; 2216 ms.map = al.map; 2217 ms.sym = al.sym; 2218 srcline = callchain_srcline(&ms, al.addr); 2219 return callchain_cursor_append(cursor, ip, &ms, 2220 branch, flags, nr_loop_iter, 2221 iter_cycles, branch_from, srcline); 2222 } 2223 2224 struct branch_info *sample__resolve_bstack(struct perf_sample *sample, 2225 struct addr_location *al) 2226 { 2227 unsigned int i; 2228 const struct branch_stack *bs = sample->branch_stack; 2229 struct branch_entry *entries = perf_sample__branch_entries(sample); 2230 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info)); 2231 2232 if (!bi) 2233 return NULL; 2234 2235 for (i = 0; i < bs->nr; i++) { 2236 ip__resolve_ams(al->thread, &bi[i].to, entries[i].to); 2237 ip__resolve_ams(al->thread, &bi[i].from, entries[i].from); 2238 bi[i].flags = entries[i].flags; 2239 } 2240 return bi; 2241 } 2242 2243 static void save_iterations(struct iterations *iter, 2244 struct branch_entry *be, int nr) 2245 { 2246 int i; 2247 2248 iter->nr_loop_iter++; 2249 iter->cycles = 0; 2250 2251 for (i = 0; i < nr; i++) 2252 iter->cycles += be[i].flags.cycles; 2253 } 2254 2255 #define CHASHSZ 127 2256 #define CHASHBITS 7 2257 #define NO_ENTRY 0xff 2258 2259 #define PERF_MAX_BRANCH_DEPTH 127 2260 2261 /* Remove loops. */ 2262 static int remove_loops(struct branch_entry *l, int nr, 2263 struct iterations *iter) 2264 { 2265 int i, j, off; 2266 unsigned char chash[CHASHSZ]; 2267 2268 memset(chash, NO_ENTRY, sizeof(chash)); 2269 2270 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255); 2271 2272 for (i = 0; i < nr; i++) { 2273 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ; 2274 2275 /* no collision handling for now */ 2276 if (chash[h] == NO_ENTRY) { 2277 chash[h] = i; 2278 } else if (l[chash[h]].from == l[i].from) { 2279 bool is_loop = true; 2280 /* check if it is a real loop */ 2281 off = 0; 2282 for (j = chash[h]; j < i && i + off < nr; j++, off++) 2283 if (l[j].from != l[i + off].from) { 2284 is_loop = false; 2285 break; 2286 } 2287 if (is_loop) { 2288 j = nr - (i + off); 2289 if (j > 0) { 2290 save_iterations(iter + i + off, 2291 l + i, off); 2292 2293 memmove(iter + i, iter + i + off, 2294 j * sizeof(*iter)); 2295 2296 memmove(l + i, l + i + off, 2297 j * sizeof(*l)); 2298 } 2299 2300 nr -= off; 2301 } 2302 } 2303 } 2304 return nr; 2305 } 2306 2307 static int lbr_callchain_add_kernel_ip(struct thread *thread, 2308 struct callchain_cursor *cursor, 2309 struct perf_sample *sample, 2310 struct symbol **parent, 2311 struct addr_location *root_al, 2312 u64 branch_from, 2313 bool callee, int end) 2314 { 2315 struct ip_callchain *chain = sample->callchain; 2316 u8 cpumode = PERF_RECORD_MISC_USER; 2317 int err, i; 2318 2319 if (callee) { 2320 for (i = 0; i < end + 1; i++) { 2321 err = add_callchain_ip(thread, cursor, parent, 2322 root_al, &cpumode, chain->ips[i], 2323 false, NULL, NULL, branch_from); 2324 if (err) 2325 return err; 2326 } 2327 return 0; 2328 } 2329 2330 for (i = end; i >= 0; i--) { 2331 err = add_callchain_ip(thread, cursor, parent, 2332 root_al, &cpumode, chain->ips[i], 2333 false, NULL, NULL, branch_from); 2334 if (err) 2335 return err; 2336 } 2337 2338 return 0; 2339 } 2340 2341 static void save_lbr_cursor_node(struct thread *thread, 2342 struct callchain_cursor *cursor, 2343 int idx) 2344 { 2345 struct lbr_stitch *lbr_stitch = thread->lbr_stitch; 2346 2347 if (!lbr_stitch) 2348 return; 2349 2350 if (cursor->pos == cursor->nr) { 2351 lbr_stitch->prev_lbr_cursor[idx].valid = false; 2352 return; 2353 } 2354 2355 if (!cursor->curr) 2356 cursor->curr = cursor->first; 2357 else 2358 cursor->curr = cursor->curr->next; 2359 memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr, 2360 sizeof(struct callchain_cursor_node)); 2361 2362 lbr_stitch->prev_lbr_cursor[idx].valid = true; 2363 cursor->pos++; 2364 } 2365 2366 static int lbr_callchain_add_lbr_ip(struct thread *thread, 2367 struct callchain_cursor *cursor, 2368 struct perf_sample *sample, 2369 struct symbol **parent, 2370 struct addr_location *root_al, 2371 u64 *branch_from, 2372 bool callee) 2373 { 2374 struct branch_stack *lbr_stack = sample->branch_stack; 2375 struct branch_entry *entries = perf_sample__branch_entries(sample); 2376 u8 cpumode = PERF_RECORD_MISC_USER; 2377 int lbr_nr = lbr_stack->nr; 2378 struct branch_flags *flags; 2379 int err, i; 2380 u64 ip; 2381 2382 /* 2383 * The curr and pos are not used in writing session. They are cleared 2384 * in callchain_cursor_commit() when the writing session is closed. 2385 * Using curr and pos to track the current cursor node. 2386 */ 2387 if (thread->lbr_stitch) { 2388 cursor->curr = NULL; 2389 cursor->pos = cursor->nr; 2390 if (cursor->nr) { 2391 cursor->curr = cursor->first; 2392 for (i = 0; i < (int)(cursor->nr - 1); i++) 2393 cursor->curr = cursor->curr->next; 2394 } 2395 } 2396 2397 if (callee) { 2398 /* Add LBR ip from first entries.to */ 2399 ip = entries[0].to; 2400 flags = &entries[0].flags; 2401 *branch_from = entries[0].from; 2402 err = add_callchain_ip(thread, cursor, parent, 2403 root_al, &cpumode, ip, 2404 true, flags, NULL, 2405 *branch_from); 2406 if (err) 2407 return err; 2408 2409 /* 2410 * The number of cursor node increases. 2411 * Move the current cursor node. 2412 * But does not need to save current cursor node for entry 0. 2413 * It's impossible to stitch the whole LBRs of previous sample. 2414 */ 2415 if (thread->lbr_stitch && (cursor->pos != cursor->nr)) { 2416 if (!cursor->curr) 2417 cursor->curr = cursor->first; 2418 else 2419 cursor->curr = cursor->curr->next; 2420 cursor->pos++; 2421 } 2422 2423 /* Add LBR ip from entries.from one by one. */ 2424 for (i = 0; i < lbr_nr; i++) { 2425 ip = entries[i].from; 2426 flags = &entries[i].flags; 2427 err = add_callchain_ip(thread, cursor, parent, 2428 root_al, &cpumode, ip, 2429 true, flags, NULL, 2430 *branch_from); 2431 if (err) 2432 return err; 2433 save_lbr_cursor_node(thread, cursor, i); 2434 } 2435 return 0; 2436 } 2437 2438 /* Add LBR ip from entries.from one by one. */ 2439 for (i = lbr_nr - 1; i >= 0; i--) { 2440 ip = entries[i].from; 2441 flags = &entries[i].flags; 2442 err = add_callchain_ip(thread, cursor, parent, 2443 root_al, &cpumode, ip, 2444 true, flags, NULL, 2445 *branch_from); 2446 if (err) 2447 return err; 2448 save_lbr_cursor_node(thread, cursor, i); 2449 } 2450 2451 /* Add LBR ip from first entries.to */ 2452 ip = entries[0].to; 2453 flags = &entries[0].flags; 2454 *branch_from = entries[0].from; 2455 err = add_callchain_ip(thread, cursor, parent, 2456 root_al, &cpumode, ip, 2457 true, flags, NULL, 2458 *branch_from); 2459 if (err) 2460 return err; 2461 2462 return 0; 2463 } 2464 2465 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread, 2466 struct callchain_cursor *cursor) 2467 { 2468 struct lbr_stitch *lbr_stitch = thread->lbr_stitch; 2469 struct callchain_cursor_node *cnode; 2470 struct stitch_list *stitch_node; 2471 int err; 2472 2473 list_for_each_entry(stitch_node, &lbr_stitch->lists, node) { 2474 cnode = &stitch_node->cursor; 2475 2476 err = callchain_cursor_append(cursor, cnode->ip, 2477 &cnode->ms, 2478 cnode->branch, 2479 &cnode->branch_flags, 2480 cnode->nr_loop_iter, 2481 cnode->iter_cycles, 2482 cnode->branch_from, 2483 cnode->srcline); 2484 if (err) 2485 return err; 2486 } 2487 return 0; 2488 } 2489 2490 static struct stitch_list *get_stitch_node(struct thread *thread) 2491 { 2492 struct lbr_stitch *lbr_stitch = thread->lbr_stitch; 2493 struct stitch_list *stitch_node; 2494 2495 if (!list_empty(&lbr_stitch->free_lists)) { 2496 stitch_node = list_first_entry(&lbr_stitch->free_lists, 2497 struct stitch_list, node); 2498 list_del(&stitch_node->node); 2499 2500 return stitch_node; 2501 } 2502 2503 return malloc(sizeof(struct stitch_list)); 2504 } 2505 2506 static bool has_stitched_lbr(struct thread *thread, 2507 struct perf_sample *cur, 2508 struct perf_sample *prev, 2509 unsigned int max_lbr, 2510 bool callee) 2511 { 2512 struct branch_stack *cur_stack = cur->branch_stack; 2513 struct branch_entry *cur_entries = perf_sample__branch_entries(cur); 2514 struct branch_stack *prev_stack = prev->branch_stack; 2515 struct branch_entry *prev_entries = perf_sample__branch_entries(prev); 2516 struct lbr_stitch *lbr_stitch = thread->lbr_stitch; 2517 int i, j, nr_identical_branches = 0; 2518 struct stitch_list *stitch_node; 2519 u64 cur_base, distance; 2520 2521 if (!cur_stack || !prev_stack) 2522 return false; 2523 2524 /* Find the physical index of the base-of-stack for current sample. */ 2525 cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1; 2526 2527 distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) : 2528 (max_lbr + prev_stack->hw_idx - cur_base); 2529 /* Previous sample has shorter stack. Nothing can be stitched. */ 2530 if (distance + 1 > prev_stack->nr) 2531 return false; 2532 2533 /* 2534 * Check if there are identical LBRs between two samples. 2535 * Identical LBRs must have same from, to and flags values. Also, 2536 * they have to be saved in the same LBR registers (same physical 2537 * index). 2538 * 2539 * Starts from the base-of-stack of current sample. 2540 */ 2541 for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) { 2542 if ((prev_entries[i].from != cur_entries[j].from) || 2543 (prev_entries[i].to != cur_entries[j].to) || 2544 (prev_entries[i].flags.value != cur_entries[j].flags.value)) 2545 break; 2546 nr_identical_branches++; 2547 } 2548 2549 if (!nr_identical_branches) 2550 return false; 2551 2552 /* 2553 * Save the LBRs between the base-of-stack of previous sample 2554 * and the base-of-stack of current sample into lbr_stitch->lists. 2555 * These LBRs will be stitched later. 2556 */ 2557 for (i = prev_stack->nr - 1; i > (int)distance; i--) { 2558 2559 if (!lbr_stitch->prev_lbr_cursor[i].valid) 2560 continue; 2561 2562 stitch_node = get_stitch_node(thread); 2563 if (!stitch_node) 2564 return false; 2565 2566 memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i], 2567 sizeof(struct callchain_cursor_node)); 2568 2569 if (callee) 2570 list_add(&stitch_node->node, &lbr_stitch->lists); 2571 else 2572 list_add_tail(&stitch_node->node, &lbr_stitch->lists); 2573 } 2574 2575 return true; 2576 } 2577 2578 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr) 2579 { 2580 if (thread->lbr_stitch) 2581 return true; 2582 2583 thread->lbr_stitch = zalloc(sizeof(*thread->lbr_stitch)); 2584 if (!thread->lbr_stitch) 2585 goto err; 2586 2587 thread->lbr_stitch->prev_lbr_cursor = calloc(max_lbr + 1, sizeof(struct callchain_cursor_node)); 2588 if (!thread->lbr_stitch->prev_lbr_cursor) 2589 goto free_lbr_stitch; 2590 2591 INIT_LIST_HEAD(&thread->lbr_stitch->lists); 2592 INIT_LIST_HEAD(&thread->lbr_stitch->free_lists); 2593 2594 return true; 2595 2596 free_lbr_stitch: 2597 zfree(&thread->lbr_stitch); 2598 err: 2599 pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n"); 2600 thread->lbr_stitch_enable = false; 2601 return false; 2602 } 2603 2604 /* 2605 * Resolve LBR callstack chain sample 2606 * Return: 2607 * 1 on success get LBR callchain information 2608 * 0 no available LBR callchain information, should try fp 2609 * negative error code on other errors. 2610 */ 2611 static int resolve_lbr_callchain_sample(struct thread *thread, 2612 struct callchain_cursor *cursor, 2613 struct perf_sample *sample, 2614 struct symbol **parent, 2615 struct addr_location *root_al, 2616 int max_stack, 2617 unsigned int max_lbr) 2618 { 2619 bool callee = (callchain_param.order == ORDER_CALLEE); 2620 struct ip_callchain *chain = sample->callchain; 2621 int chain_nr = min(max_stack, (int)chain->nr), i; 2622 struct lbr_stitch *lbr_stitch; 2623 bool stitched_lbr = false; 2624 u64 branch_from = 0; 2625 int err; 2626 2627 for (i = 0; i < chain_nr; i++) { 2628 if (chain->ips[i] == PERF_CONTEXT_USER) 2629 break; 2630 } 2631 2632 /* LBR only affects the user callchain */ 2633 if (i == chain_nr) 2634 return 0; 2635 2636 if (thread->lbr_stitch_enable && !sample->no_hw_idx && 2637 (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) { 2638 lbr_stitch = thread->lbr_stitch; 2639 2640 stitched_lbr = has_stitched_lbr(thread, sample, 2641 &lbr_stitch->prev_sample, 2642 max_lbr, callee); 2643 2644 if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) { 2645 list_replace_init(&lbr_stitch->lists, 2646 &lbr_stitch->free_lists); 2647 } 2648 memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample)); 2649 } 2650 2651 if (callee) { 2652 /* Add kernel ip */ 2653 err = lbr_callchain_add_kernel_ip(thread, cursor, sample, 2654 parent, root_al, branch_from, 2655 true, i); 2656 if (err) 2657 goto error; 2658 2659 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent, 2660 root_al, &branch_from, true); 2661 if (err) 2662 goto error; 2663 2664 if (stitched_lbr) { 2665 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor); 2666 if (err) 2667 goto error; 2668 } 2669 2670 } else { 2671 if (stitched_lbr) { 2672 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor); 2673 if (err) 2674 goto error; 2675 } 2676 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent, 2677 root_al, &branch_from, false); 2678 if (err) 2679 goto error; 2680 2681 /* Add kernel ip */ 2682 err = lbr_callchain_add_kernel_ip(thread, cursor, sample, 2683 parent, root_al, branch_from, 2684 false, i); 2685 if (err) 2686 goto error; 2687 } 2688 return 1; 2689 2690 error: 2691 return (err < 0) ? err : 0; 2692 } 2693 2694 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread, 2695 struct callchain_cursor *cursor, 2696 struct symbol **parent, 2697 struct addr_location *root_al, 2698 u8 *cpumode, int ent) 2699 { 2700 int err = 0; 2701 2702 while (--ent >= 0) { 2703 u64 ip = chain->ips[ent]; 2704 2705 if (ip >= PERF_CONTEXT_MAX) { 2706 err = add_callchain_ip(thread, cursor, parent, 2707 root_al, cpumode, ip, 2708 false, NULL, NULL, 0); 2709 break; 2710 } 2711 } 2712 return err; 2713 } 2714 2715 static u64 get_leaf_frame_caller(struct perf_sample *sample, 2716 struct thread *thread, int usr_idx) 2717 { 2718 if (machine__normalized_is(thread->maps->machine, "arm64")) 2719 return get_leaf_frame_caller_aarch64(sample, thread, usr_idx); 2720 else 2721 return 0; 2722 } 2723 2724 static int thread__resolve_callchain_sample(struct thread *thread, 2725 struct callchain_cursor *cursor, 2726 struct evsel *evsel, 2727 struct perf_sample *sample, 2728 struct symbol **parent, 2729 struct addr_location *root_al, 2730 int max_stack) 2731 { 2732 struct branch_stack *branch = sample->branch_stack; 2733 struct branch_entry *entries = perf_sample__branch_entries(sample); 2734 struct ip_callchain *chain = sample->callchain; 2735 int chain_nr = 0; 2736 u8 cpumode = PERF_RECORD_MISC_USER; 2737 int i, j, err, nr_entries, usr_idx; 2738 int skip_idx = -1; 2739 int first_call = 0; 2740 u64 leaf_frame_caller; 2741 2742 if (chain) 2743 chain_nr = chain->nr; 2744 2745 if (evsel__has_branch_callstack(evsel)) { 2746 struct perf_env *env = evsel__env(evsel); 2747 2748 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent, 2749 root_al, max_stack, 2750 !env ? 0 : env->max_branches); 2751 if (err) 2752 return (err < 0) ? err : 0; 2753 } 2754 2755 /* 2756 * Based on DWARF debug information, some architectures skip 2757 * a callchain entry saved by the kernel. 2758 */ 2759 skip_idx = arch_skip_callchain_idx(thread, chain); 2760 2761 /* 2762 * Add branches to call stack for easier browsing. This gives 2763 * more context for a sample than just the callers. 2764 * 2765 * This uses individual histograms of paths compared to the 2766 * aggregated histograms the normal LBR mode uses. 2767 * 2768 * Limitations for now: 2769 * - No extra filters 2770 * - No annotations (should annotate somehow) 2771 */ 2772 2773 if (branch && callchain_param.branch_callstack) { 2774 int nr = min(max_stack, (int)branch->nr); 2775 struct branch_entry be[nr]; 2776 struct iterations iter[nr]; 2777 2778 if (branch->nr > PERF_MAX_BRANCH_DEPTH) { 2779 pr_warning("corrupted branch chain. skipping...\n"); 2780 goto check_calls; 2781 } 2782 2783 for (i = 0; i < nr; i++) { 2784 if (callchain_param.order == ORDER_CALLEE) { 2785 be[i] = entries[i]; 2786 2787 if (chain == NULL) 2788 continue; 2789 2790 /* 2791 * Check for overlap into the callchain. 2792 * The return address is one off compared to 2793 * the branch entry. To adjust for this 2794 * assume the calling instruction is not longer 2795 * than 8 bytes. 2796 */ 2797 if (i == skip_idx || 2798 chain->ips[first_call] >= PERF_CONTEXT_MAX) 2799 first_call++; 2800 else if (be[i].from < chain->ips[first_call] && 2801 be[i].from >= chain->ips[first_call] - 8) 2802 first_call++; 2803 } else 2804 be[i] = entries[branch->nr - i - 1]; 2805 } 2806 2807 memset(iter, 0, sizeof(struct iterations) * nr); 2808 nr = remove_loops(be, nr, iter); 2809 2810 for (i = 0; i < nr; i++) { 2811 err = add_callchain_ip(thread, cursor, parent, 2812 root_al, 2813 NULL, be[i].to, 2814 true, &be[i].flags, 2815 NULL, be[i].from); 2816 2817 if (!err) 2818 err = add_callchain_ip(thread, cursor, parent, root_al, 2819 NULL, be[i].from, 2820 true, &be[i].flags, 2821 &iter[i], 0); 2822 if (err == -EINVAL) 2823 break; 2824 if (err) 2825 return err; 2826 } 2827 2828 if (chain_nr == 0) 2829 return 0; 2830 2831 chain_nr -= nr; 2832 } 2833 2834 check_calls: 2835 if (chain && callchain_param.order != ORDER_CALLEE) { 2836 err = find_prev_cpumode(chain, thread, cursor, parent, root_al, 2837 &cpumode, chain->nr - first_call); 2838 if (err) 2839 return (err < 0) ? err : 0; 2840 } 2841 for (i = first_call, nr_entries = 0; 2842 i < chain_nr && nr_entries < max_stack; i++) { 2843 u64 ip; 2844 2845 if (callchain_param.order == ORDER_CALLEE) 2846 j = i; 2847 else 2848 j = chain->nr - i - 1; 2849 2850 #ifdef HAVE_SKIP_CALLCHAIN_IDX 2851 if (j == skip_idx) 2852 continue; 2853 #endif 2854 ip = chain->ips[j]; 2855 if (ip < PERF_CONTEXT_MAX) 2856 ++nr_entries; 2857 else if (callchain_param.order != ORDER_CALLEE) { 2858 err = find_prev_cpumode(chain, thread, cursor, parent, 2859 root_al, &cpumode, j); 2860 if (err) 2861 return (err < 0) ? err : 0; 2862 continue; 2863 } 2864 2865 /* 2866 * PERF_CONTEXT_USER allows us to locate where the user stack ends. 2867 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER, 2868 * the index will be different in order to add the missing frame 2869 * at the right place. 2870 */ 2871 2872 usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1; 2873 2874 if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) { 2875 2876 leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx); 2877 2878 /* 2879 * check if leaf_frame_Caller != ip to not add the same 2880 * value twice. 2881 */ 2882 2883 if (leaf_frame_caller && leaf_frame_caller != ip) { 2884 2885 err = add_callchain_ip(thread, cursor, parent, 2886 root_al, &cpumode, leaf_frame_caller, 2887 false, NULL, NULL, 0); 2888 if (err) 2889 return (err < 0) ? err : 0; 2890 } 2891 } 2892 2893 err = add_callchain_ip(thread, cursor, parent, 2894 root_al, &cpumode, ip, 2895 false, NULL, NULL, 0); 2896 2897 if (err) 2898 return (err < 0) ? err : 0; 2899 } 2900 2901 return 0; 2902 } 2903 2904 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip) 2905 { 2906 struct symbol *sym = ms->sym; 2907 struct map *map = ms->map; 2908 struct inline_node *inline_node; 2909 struct inline_list *ilist; 2910 u64 addr; 2911 int ret = 1; 2912 2913 if (!symbol_conf.inline_name || !map || !sym) 2914 return ret; 2915 2916 addr = map__map_ip(map, ip); 2917 addr = map__rip_2objdump(map, addr); 2918 2919 inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr); 2920 if (!inline_node) { 2921 inline_node = dso__parse_addr_inlines(map->dso, addr, sym); 2922 if (!inline_node) 2923 return ret; 2924 inlines__tree_insert(&map->dso->inlined_nodes, inline_node); 2925 } 2926 2927 list_for_each_entry(ilist, &inline_node->val, list) { 2928 struct map_symbol ilist_ms = { 2929 .maps = ms->maps, 2930 .map = map, 2931 .sym = ilist->symbol, 2932 }; 2933 ret = callchain_cursor_append(cursor, ip, &ilist_ms, false, 2934 NULL, 0, 0, 0, ilist->srcline); 2935 2936 if (ret != 0) 2937 return ret; 2938 } 2939 2940 return ret; 2941 } 2942 2943 static int unwind_entry(struct unwind_entry *entry, void *arg) 2944 { 2945 struct callchain_cursor *cursor = arg; 2946 const char *srcline = NULL; 2947 u64 addr = entry->ip; 2948 2949 if (symbol_conf.hide_unresolved && entry->ms.sym == NULL) 2950 return 0; 2951 2952 if (append_inlines(cursor, &entry->ms, entry->ip) == 0) 2953 return 0; 2954 2955 /* 2956 * Convert entry->ip from a virtual address to an offset in 2957 * its corresponding binary. 2958 */ 2959 if (entry->ms.map) 2960 addr = map__map_ip(entry->ms.map, entry->ip); 2961 2962 srcline = callchain_srcline(&entry->ms, addr); 2963 return callchain_cursor_append(cursor, entry->ip, &entry->ms, 2964 false, NULL, 0, 0, 0, srcline); 2965 } 2966 2967 static int thread__resolve_callchain_unwind(struct thread *thread, 2968 struct callchain_cursor *cursor, 2969 struct evsel *evsel, 2970 struct perf_sample *sample, 2971 int max_stack) 2972 { 2973 /* Can we do dwarf post unwind? */ 2974 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) && 2975 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER))) 2976 return 0; 2977 2978 /* Bail out if nothing was captured. */ 2979 if ((!sample->user_regs.regs) || 2980 (!sample->user_stack.size)) 2981 return 0; 2982 2983 return unwind__get_entries(unwind_entry, cursor, 2984 thread, sample, max_stack); 2985 } 2986 2987 int thread__resolve_callchain(struct thread *thread, 2988 struct callchain_cursor *cursor, 2989 struct evsel *evsel, 2990 struct perf_sample *sample, 2991 struct symbol **parent, 2992 struct addr_location *root_al, 2993 int max_stack) 2994 { 2995 int ret = 0; 2996 2997 callchain_cursor_reset(cursor); 2998 2999 if (callchain_param.order == ORDER_CALLEE) { 3000 ret = thread__resolve_callchain_sample(thread, cursor, 3001 evsel, sample, 3002 parent, root_al, 3003 max_stack); 3004 if (ret) 3005 return ret; 3006 ret = thread__resolve_callchain_unwind(thread, cursor, 3007 evsel, sample, 3008 max_stack); 3009 } else { 3010 ret = thread__resolve_callchain_unwind(thread, cursor, 3011 evsel, sample, 3012 max_stack); 3013 if (ret) 3014 return ret; 3015 ret = thread__resolve_callchain_sample(thread, cursor, 3016 evsel, sample, 3017 parent, root_al, 3018 max_stack); 3019 } 3020 3021 return ret; 3022 } 3023 3024 int machine__for_each_thread(struct machine *machine, 3025 int (*fn)(struct thread *thread, void *p), 3026 void *priv) 3027 { 3028 struct threads *threads; 3029 struct rb_node *nd; 3030 struct thread *thread; 3031 int rc = 0; 3032 int i; 3033 3034 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 3035 threads = &machine->threads[i]; 3036 for (nd = rb_first_cached(&threads->entries); nd; 3037 nd = rb_next(nd)) { 3038 thread = rb_entry(nd, struct thread, rb_node); 3039 rc = fn(thread, priv); 3040 if (rc != 0) 3041 return rc; 3042 } 3043 3044 list_for_each_entry(thread, &threads->dead, node) { 3045 rc = fn(thread, priv); 3046 if (rc != 0) 3047 return rc; 3048 } 3049 } 3050 return rc; 3051 } 3052 3053 int machines__for_each_thread(struct machines *machines, 3054 int (*fn)(struct thread *thread, void *p), 3055 void *priv) 3056 { 3057 struct rb_node *nd; 3058 int rc = 0; 3059 3060 rc = machine__for_each_thread(&machines->host, fn, priv); 3061 if (rc != 0) 3062 return rc; 3063 3064 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 3065 struct machine *machine = rb_entry(nd, struct machine, rb_node); 3066 3067 rc = machine__for_each_thread(machine, fn, priv); 3068 if (rc != 0) 3069 return rc; 3070 } 3071 return rc; 3072 } 3073 3074 pid_t machine__get_current_tid(struct machine *machine, int cpu) 3075 { 3076 int nr_cpus = min(machine->env->nr_cpus_avail, MAX_NR_CPUS); 3077 3078 if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid) 3079 return -1; 3080 3081 return machine->current_tid[cpu]; 3082 } 3083 3084 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid, 3085 pid_t tid) 3086 { 3087 struct thread *thread; 3088 int nr_cpus = min(machine->env->nr_cpus_avail, MAX_NR_CPUS); 3089 3090 if (cpu < 0) 3091 return -EINVAL; 3092 3093 if (!machine->current_tid) { 3094 int i; 3095 3096 machine->current_tid = calloc(nr_cpus, sizeof(pid_t)); 3097 if (!machine->current_tid) 3098 return -ENOMEM; 3099 for (i = 0; i < nr_cpus; i++) 3100 machine->current_tid[i] = -1; 3101 } 3102 3103 if (cpu >= nr_cpus) { 3104 pr_err("Requested CPU %d too large. ", cpu); 3105 pr_err("Consider raising MAX_NR_CPUS\n"); 3106 return -EINVAL; 3107 } 3108 3109 machine->current_tid[cpu] = tid; 3110 3111 thread = machine__findnew_thread(machine, pid, tid); 3112 if (!thread) 3113 return -ENOMEM; 3114 3115 thread->cpu = cpu; 3116 thread__put(thread); 3117 3118 return 0; 3119 } 3120 3121 /* 3122 * Compares the raw arch string. N.B. see instead perf_env__arch() or 3123 * machine__normalized_is() if a normalized arch is needed. 3124 */ 3125 bool machine__is(struct machine *machine, const char *arch) 3126 { 3127 return machine && !strcmp(perf_env__raw_arch(machine->env), arch); 3128 } 3129 3130 bool machine__normalized_is(struct machine *machine, const char *arch) 3131 { 3132 return machine && !strcmp(perf_env__arch(machine->env), arch); 3133 } 3134 3135 int machine__nr_cpus_avail(struct machine *machine) 3136 { 3137 return machine ? perf_env__nr_cpus_avail(machine->env) : 0; 3138 } 3139 3140 int machine__get_kernel_start(struct machine *machine) 3141 { 3142 struct map *map = machine__kernel_map(machine); 3143 int err = 0; 3144 3145 /* 3146 * The only addresses above 2^63 are kernel addresses of a 64-bit 3147 * kernel. Note that addresses are unsigned so that on a 32-bit system 3148 * all addresses including kernel addresses are less than 2^32. In 3149 * that case (32-bit system), if the kernel mapping is unknown, all 3150 * addresses will be assumed to be in user space - see 3151 * machine__kernel_ip(). 3152 */ 3153 machine->kernel_start = 1ULL << 63; 3154 if (map) { 3155 err = map__load(map); 3156 /* 3157 * On x86_64, PTI entry trampolines are less than the 3158 * start of kernel text, but still above 2^63. So leave 3159 * kernel_start = 1ULL << 63 for x86_64. 3160 */ 3161 if (!err && !machine__is(machine, "x86_64")) 3162 machine->kernel_start = map->start; 3163 } 3164 return err; 3165 } 3166 3167 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr) 3168 { 3169 u8 addr_cpumode = cpumode; 3170 bool kernel_ip; 3171 3172 if (!machine->single_address_space) 3173 goto out; 3174 3175 kernel_ip = machine__kernel_ip(machine, addr); 3176 switch (cpumode) { 3177 case PERF_RECORD_MISC_KERNEL: 3178 case PERF_RECORD_MISC_USER: 3179 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL : 3180 PERF_RECORD_MISC_USER; 3181 break; 3182 case PERF_RECORD_MISC_GUEST_KERNEL: 3183 case PERF_RECORD_MISC_GUEST_USER: 3184 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL : 3185 PERF_RECORD_MISC_GUEST_USER; 3186 break; 3187 default: 3188 break; 3189 } 3190 out: 3191 return addr_cpumode; 3192 } 3193 3194 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id) 3195 { 3196 return dsos__findnew_id(&machine->dsos, filename, id); 3197 } 3198 3199 struct dso *machine__findnew_dso(struct machine *machine, const char *filename) 3200 { 3201 return machine__findnew_dso_id(machine, filename, NULL); 3202 } 3203 3204 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp) 3205 { 3206 struct machine *machine = vmachine; 3207 struct map *map; 3208 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map); 3209 3210 if (sym == NULL) 3211 return NULL; 3212 3213 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL; 3214 *addrp = map->unmap_ip(map, sym->start); 3215 return sym->name; 3216 } 3217 3218 int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv) 3219 { 3220 struct dso *pos; 3221 int err = 0; 3222 3223 list_for_each_entry(pos, &machine->dsos.head, node) { 3224 if (fn(pos, machine, priv)) 3225 err = -1; 3226 } 3227 return err; 3228 } 3229