xref: /openbmc/linux/tools/perf/util/machine.c (revision ba61bb17)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include "callchain.h"
7 #include "debug.h"
8 #include "event.h"
9 #include "evsel.h"
10 #include "hist.h"
11 #include "machine.h"
12 #include "map.h"
13 #include "sort.h"
14 #include "strlist.h"
15 #include "thread.h"
16 #include "vdso.h"
17 #include <stdbool.h>
18 #include <sys/types.h>
19 #include <sys/stat.h>
20 #include <unistd.h>
21 #include "unwind.h"
22 #include "linux/hash.h"
23 #include "asm/bug.h"
24 
25 #include "sane_ctype.h"
26 #include <symbol/kallsyms.h>
27 #include <linux/mman.h>
28 
29 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
30 
31 static void dsos__init(struct dsos *dsos)
32 {
33 	INIT_LIST_HEAD(&dsos->head);
34 	dsos->root = RB_ROOT;
35 	init_rwsem(&dsos->lock);
36 }
37 
38 static void machine__threads_init(struct machine *machine)
39 {
40 	int i;
41 
42 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
43 		struct threads *threads = &machine->threads[i];
44 		threads->entries = RB_ROOT;
45 		init_rwsem(&threads->lock);
46 		threads->nr = 0;
47 		INIT_LIST_HEAD(&threads->dead);
48 		threads->last_match = NULL;
49 	}
50 }
51 
52 static int machine__set_mmap_name(struct machine *machine)
53 {
54 	if (machine__is_host(machine))
55 		machine->mmap_name = strdup("[kernel.kallsyms]");
56 	else if (machine__is_default_guest(machine))
57 		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
58 	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
59 			  machine->pid) < 0)
60 		machine->mmap_name = NULL;
61 
62 	return machine->mmap_name ? 0 : -ENOMEM;
63 }
64 
65 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
66 {
67 	int err = -ENOMEM;
68 
69 	memset(machine, 0, sizeof(*machine));
70 	map_groups__init(&machine->kmaps, machine);
71 	RB_CLEAR_NODE(&machine->rb_node);
72 	dsos__init(&machine->dsos);
73 
74 	machine__threads_init(machine);
75 
76 	machine->vdso_info = NULL;
77 	machine->env = NULL;
78 
79 	machine->pid = pid;
80 
81 	machine->id_hdr_size = 0;
82 	machine->kptr_restrict_warned = false;
83 	machine->comm_exec = false;
84 	machine->kernel_start = 0;
85 	machine->vmlinux_map = NULL;
86 
87 	machine->root_dir = strdup(root_dir);
88 	if (machine->root_dir == NULL)
89 		return -ENOMEM;
90 
91 	if (machine__set_mmap_name(machine))
92 		goto out;
93 
94 	if (pid != HOST_KERNEL_ID) {
95 		struct thread *thread = machine__findnew_thread(machine, -1,
96 								pid);
97 		char comm[64];
98 
99 		if (thread == NULL)
100 			goto out;
101 
102 		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
103 		thread__set_comm(thread, comm, 0);
104 		thread__put(thread);
105 	}
106 
107 	machine->current_tid = NULL;
108 	err = 0;
109 
110 out:
111 	if (err) {
112 		zfree(&machine->root_dir);
113 		zfree(&machine->mmap_name);
114 	}
115 	return 0;
116 }
117 
118 struct machine *machine__new_host(void)
119 {
120 	struct machine *machine = malloc(sizeof(*machine));
121 
122 	if (machine != NULL) {
123 		machine__init(machine, "", HOST_KERNEL_ID);
124 
125 		if (machine__create_kernel_maps(machine) < 0)
126 			goto out_delete;
127 	}
128 
129 	return machine;
130 out_delete:
131 	free(machine);
132 	return NULL;
133 }
134 
135 struct machine *machine__new_kallsyms(void)
136 {
137 	struct machine *machine = machine__new_host();
138 	/*
139 	 * FIXME:
140 	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitely
141 	 *    ask for not using the kcore parsing code, once this one is fixed
142 	 *    to create a map per module.
143 	 */
144 	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
145 		machine__delete(machine);
146 		machine = NULL;
147 	}
148 
149 	return machine;
150 }
151 
152 static void dsos__purge(struct dsos *dsos)
153 {
154 	struct dso *pos, *n;
155 
156 	down_write(&dsos->lock);
157 
158 	list_for_each_entry_safe(pos, n, &dsos->head, node) {
159 		RB_CLEAR_NODE(&pos->rb_node);
160 		pos->root = NULL;
161 		list_del_init(&pos->node);
162 		dso__put(pos);
163 	}
164 
165 	up_write(&dsos->lock);
166 }
167 
168 static void dsos__exit(struct dsos *dsos)
169 {
170 	dsos__purge(dsos);
171 	exit_rwsem(&dsos->lock);
172 }
173 
174 void machine__delete_threads(struct machine *machine)
175 {
176 	struct rb_node *nd;
177 	int i;
178 
179 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
180 		struct threads *threads = &machine->threads[i];
181 		down_write(&threads->lock);
182 		nd = rb_first(&threads->entries);
183 		while (nd) {
184 			struct thread *t = rb_entry(nd, struct thread, rb_node);
185 
186 			nd = rb_next(nd);
187 			__machine__remove_thread(machine, t, false);
188 		}
189 		up_write(&threads->lock);
190 	}
191 }
192 
193 void machine__exit(struct machine *machine)
194 {
195 	int i;
196 
197 	if (machine == NULL)
198 		return;
199 
200 	machine__destroy_kernel_maps(machine);
201 	map_groups__exit(&machine->kmaps);
202 	dsos__exit(&machine->dsos);
203 	machine__exit_vdso(machine);
204 	zfree(&machine->root_dir);
205 	zfree(&machine->mmap_name);
206 	zfree(&machine->current_tid);
207 
208 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
209 		struct threads *threads = &machine->threads[i];
210 		exit_rwsem(&threads->lock);
211 	}
212 }
213 
214 void machine__delete(struct machine *machine)
215 {
216 	if (machine) {
217 		machine__exit(machine);
218 		free(machine);
219 	}
220 }
221 
222 void machines__init(struct machines *machines)
223 {
224 	machine__init(&machines->host, "", HOST_KERNEL_ID);
225 	machines->guests = RB_ROOT;
226 }
227 
228 void machines__exit(struct machines *machines)
229 {
230 	machine__exit(&machines->host);
231 	/* XXX exit guest */
232 }
233 
234 struct machine *machines__add(struct machines *machines, pid_t pid,
235 			      const char *root_dir)
236 {
237 	struct rb_node **p = &machines->guests.rb_node;
238 	struct rb_node *parent = NULL;
239 	struct machine *pos, *machine = malloc(sizeof(*machine));
240 
241 	if (machine == NULL)
242 		return NULL;
243 
244 	if (machine__init(machine, root_dir, pid) != 0) {
245 		free(machine);
246 		return NULL;
247 	}
248 
249 	while (*p != NULL) {
250 		parent = *p;
251 		pos = rb_entry(parent, struct machine, rb_node);
252 		if (pid < pos->pid)
253 			p = &(*p)->rb_left;
254 		else
255 			p = &(*p)->rb_right;
256 	}
257 
258 	rb_link_node(&machine->rb_node, parent, p);
259 	rb_insert_color(&machine->rb_node, &machines->guests);
260 
261 	return machine;
262 }
263 
264 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
265 {
266 	struct rb_node *nd;
267 
268 	machines->host.comm_exec = comm_exec;
269 
270 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
271 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
272 
273 		machine->comm_exec = comm_exec;
274 	}
275 }
276 
277 struct machine *machines__find(struct machines *machines, pid_t pid)
278 {
279 	struct rb_node **p = &machines->guests.rb_node;
280 	struct rb_node *parent = NULL;
281 	struct machine *machine;
282 	struct machine *default_machine = NULL;
283 
284 	if (pid == HOST_KERNEL_ID)
285 		return &machines->host;
286 
287 	while (*p != NULL) {
288 		parent = *p;
289 		machine = rb_entry(parent, struct machine, rb_node);
290 		if (pid < machine->pid)
291 			p = &(*p)->rb_left;
292 		else if (pid > machine->pid)
293 			p = &(*p)->rb_right;
294 		else
295 			return machine;
296 		if (!machine->pid)
297 			default_machine = machine;
298 	}
299 
300 	return default_machine;
301 }
302 
303 struct machine *machines__findnew(struct machines *machines, pid_t pid)
304 {
305 	char path[PATH_MAX];
306 	const char *root_dir = "";
307 	struct machine *machine = machines__find(machines, pid);
308 
309 	if (machine && (machine->pid == pid))
310 		goto out;
311 
312 	if ((pid != HOST_KERNEL_ID) &&
313 	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
314 	    (symbol_conf.guestmount)) {
315 		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
316 		if (access(path, R_OK)) {
317 			static struct strlist *seen;
318 
319 			if (!seen)
320 				seen = strlist__new(NULL, NULL);
321 
322 			if (!strlist__has_entry(seen, path)) {
323 				pr_err("Can't access file %s\n", path);
324 				strlist__add(seen, path);
325 			}
326 			machine = NULL;
327 			goto out;
328 		}
329 		root_dir = path;
330 	}
331 
332 	machine = machines__add(machines, pid, root_dir);
333 out:
334 	return machine;
335 }
336 
337 void machines__process_guests(struct machines *machines,
338 			      machine__process_t process, void *data)
339 {
340 	struct rb_node *nd;
341 
342 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
343 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
344 		process(pos, data);
345 	}
346 }
347 
348 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
349 {
350 	struct rb_node *node;
351 	struct machine *machine;
352 
353 	machines->host.id_hdr_size = id_hdr_size;
354 
355 	for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
356 		machine = rb_entry(node, struct machine, rb_node);
357 		machine->id_hdr_size = id_hdr_size;
358 	}
359 
360 	return;
361 }
362 
363 static void machine__update_thread_pid(struct machine *machine,
364 				       struct thread *th, pid_t pid)
365 {
366 	struct thread *leader;
367 
368 	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
369 		return;
370 
371 	th->pid_ = pid;
372 
373 	if (th->pid_ == th->tid)
374 		return;
375 
376 	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
377 	if (!leader)
378 		goto out_err;
379 
380 	if (!leader->mg)
381 		leader->mg = map_groups__new(machine);
382 
383 	if (!leader->mg)
384 		goto out_err;
385 
386 	if (th->mg == leader->mg)
387 		return;
388 
389 	if (th->mg) {
390 		/*
391 		 * Maps are created from MMAP events which provide the pid and
392 		 * tid.  Consequently there never should be any maps on a thread
393 		 * with an unknown pid.  Just print an error if there are.
394 		 */
395 		if (!map_groups__empty(th->mg))
396 			pr_err("Discarding thread maps for %d:%d\n",
397 			       th->pid_, th->tid);
398 		map_groups__put(th->mg);
399 	}
400 
401 	th->mg = map_groups__get(leader->mg);
402 out_put:
403 	thread__put(leader);
404 	return;
405 out_err:
406 	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
407 	goto out_put;
408 }
409 
410 /*
411  * Caller must eventually drop thread->refcnt returned with a successful
412  * lookup/new thread inserted.
413  */
414 static struct thread *____machine__findnew_thread(struct machine *machine,
415 						  struct threads *threads,
416 						  pid_t pid, pid_t tid,
417 						  bool create)
418 {
419 	struct rb_node **p = &threads->entries.rb_node;
420 	struct rb_node *parent = NULL;
421 	struct thread *th;
422 
423 	/*
424 	 * Front-end cache - TID lookups come in blocks,
425 	 * so most of the time we dont have to look up
426 	 * the full rbtree:
427 	 */
428 	th = threads->last_match;
429 	if (th != NULL) {
430 		if (th->tid == tid) {
431 			machine__update_thread_pid(machine, th, pid);
432 			return thread__get(th);
433 		}
434 
435 		threads->last_match = NULL;
436 	}
437 
438 	while (*p != NULL) {
439 		parent = *p;
440 		th = rb_entry(parent, struct thread, rb_node);
441 
442 		if (th->tid == tid) {
443 			threads->last_match = th;
444 			machine__update_thread_pid(machine, th, pid);
445 			return thread__get(th);
446 		}
447 
448 		if (tid < th->tid)
449 			p = &(*p)->rb_left;
450 		else
451 			p = &(*p)->rb_right;
452 	}
453 
454 	if (!create)
455 		return NULL;
456 
457 	th = thread__new(pid, tid);
458 	if (th != NULL) {
459 		rb_link_node(&th->rb_node, parent, p);
460 		rb_insert_color(&th->rb_node, &threads->entries);
461 
462 		/*
463 		 * We have to initialize map_groups separately
464 		 * after rb tree is updated.
465 		 *
466 		 * The reason is that we call machine__findnew_thread
467 		 * within thread__init_map_groups to find the thread
468 		 * leader and that would screwed the rb tree.
469 		 */
470 		if (thread__init_map_groups(th, machine)) {
471 			rb_erase_init(&th->rb_node, &threads->entries);
472 			RB_CLEAR_NODE(&th->rb_node);
473 			thread__put(th);
474 			return NULL;
475 		}
476 		/*
477 		 * It is now in the rbtree, get a ref
478 		 */
479 		thread__get(th);
480 		threads->last_match = th;
481 		++threads->nr;
482 	}
483 
484 	return th;
485 }
486 
487 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
488 {
489 	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
490 }
491 
492 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
493 				       pid_t tid)
494 {
495 	struct threads *threads = machine__threads(machine, tid);
496 	struct thread *th;
497 
498 	down_write(&threads->lock);
499 	th = __machine__findnew_thread(machine, pid, tid);
500 	up_write(&threads->lock);
501 	return th;
502 }
503 
504 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
505 				    pid_t tid)
506 {
507 	struct threads *threads = machine__threads(machine, tid);
508 	struct thread *th;
509 
510 	down_read(&threads->lock);
511 	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
512 	up_read(&threads->lock);
513 	return th;
514 }
515 
516 struct comm *machine__thread_exec_comm(struct machine *machine,
517 				       struct thread *thread)
518 {
519 	if (machine->comm_exec)
520 		return thread__exec_comm(thread);
521 	else
522 		return thread__comm(thread);
523 }
524 
525 int machine__process_comm_event(struct machine *machine, union perf_event *event,
526 				struct perf_sample *sample)
527 {
528 	struct thread *thread = machine__findnew_thread(machine,
529 							event->comm.pid,
530 							event->comm.tid);
531 	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
532 	int err = 0;
533 
534 	if (exec)
535 		machine->comm_exec = true;
536 
537 	if (dump_trace)
538 		perf_event__fprintf_comm(event, stdout);
539 
540 	if (thread == NULL ||
541 	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
542 		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
543 		err = -1;
544 	}
545 
546 	thread__put(thread);
547 
548 	return err;
549 }
550 
551 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
552 				      union perf_event *event,
553 				      struct perf_sample *sample __maybe_unused)
554 {
555 	struct thread *thread = machine__findnew_thread(machine,
556 							event->namespaces.pid,
557 							event->namespaces.tid);
558 	int err = 0;
559 
560 	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
561 		  "\nWARNING: kernel seems to support more namespaces than perf"
562 		  " tool.\nTry updating the perf tool..\n\n");
563 
564 	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
565 		  "\nWARNING: perf tool seems to support more namespaces than"
566 		  " the kernel.\nTry updating the kernel..\n\n");
567 
568 	if (dump_trace)
569 		perf_event__fprintf_namespaces(event, stdout);
570 
571 	if (thread == NULL ||
572 	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
573 		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
574 		err = -1;
575 	}
576 
577 	thread__put(thread);
578 
579 	return err;
580 }
581 
582 int machine__process_lost_event(struct machine *machine __maybe_unused,
583 				union perf_event *event, struct perf_sample *sample __maybe_unused)
584 {
585 	dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
586 		    event->lost.id, event->lost.lost);
587 	return 0;
588 }
589 
590 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
591 					union perf_event *event, struct perf_sample *sample)
592 {
593 	dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
594 		    sample->id, event->lost_samples.lost);
595 	return 0;
596 }
597 
598 static struct dso *machine__findnew_module_dso(struct machine *machine,
599 					       struct kmod_path *m,
600 					       const char *filename)
601 {
602 	struct dso *dso;
603 
604 	down_write(&machine->dsos.lock);
605 
606 	dso = __dsos__find(&machine->dsos, m->name, true);
607 	if (!dso) {
608 		dso = __dsos__addnew(&machine->dsos, m->name);
609 		if (dso == NULL)
610 			goto out_unlock;
611 
612 		dso__set_module_info(dso, m, machine);
613 		dso__set_long_name(dso, strdup(filename), true);
614 	}
615 
616 	dso__get(dso);
617 out_unlock:
618 	up_write(&machine->dsos.lock);
619 	return dso;
620 }
621 
622 int machine__process_aux_event(struct machine *machine __maybe_unused,
623 			       union perf_event *event)
624 {
625 	if (dump_trace)
626 		perf_event__fprintf_aux(event, stdout);
627 	return 0;
628 }
629 
630 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
631 					union perf_event *event)
632 {
633 	if (dump_trace)
634 		perf_event__fprintf_itrace_start(event, stdout);
635 	return 0;
636 }
637 
638 int machine__process_switch_event(struct machine *machine __maybe_unused,
639 				  union perf_event *event)
640 {
641 	if (dump_trace)
642 		perf_event__fprintf_switch(event, stdout);
643 	return 0;
644 }
645 
646 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
647 {
648 	const char *dup_filename;
649 
650 	if (!filename || !dso || !dso->long_name)
651 		return;
652 	if (dso->long_name[0] != '[')
653 		return;
654 	if (!strchr(filename, '/'))
655 		return;
656 
657 	dup_filename = strdup(filename);
658 	if (!dup_filename)
659 		return;
660 
661 	dso__set_long_name(dso, dup_filename, true);
662 }
663 
664 struct map *machine__findnew_module_map(struct machine *machine, u64 start,
665 					const char *filename)
666 {
667 	struct map *map = NULL;
668 	struct dso *dso = NULL;
669 	struct kmod_path m;
670 
671 	if (kmod_path__parse_name(&m, filename))
672 		return NULL;
673 
674 	map = map_groups__find_by_name(&machine->kmaps, m.name);
675 	if (map) {
676 		/*
677 		 * If the map's dso is an offline module, give dso__load()
678 		 * a chance to find the file path of that module by fixing
679 		 * long_name.
680 		 */
681 		dso__adjust_kmod_long_name(map->dso, filename);
682 		goto out;
683 	}
684 
685 	dso = machine__findnew_module_dso(machine, &m, filename);
686 	if (dso == NULL)
687 		goto out;
688 
689 	map = map__new2(start, dso);
690 	if (map == NULL)
691 		goto out;
692 
693 	map_groups__insert(&machine->kmaps, map);
694 
695 	/* Put the map here because map_groups__insert alread got it */
696 	map__put(map);
697 out:
698 	/* put the dso here, corresponding to  machine__findnew_module_dso */
699 	dso__put(dso);
700 	free(m.name);
701 	return map;
702 }
703 
704 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
705 {
706 	struct rb_node *nd;
707 	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
708 
709 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
710 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
711 		ret += __dsos__fprintf(&pos->dsos.head, fp);
712 	}
713 
714 	return ret;
715 }
716 
717 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
718 				     bool (skip)(struct dso *dso, int parm), int parm)
719 {
720 	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
721 }
722 
723 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
724 				     bool (skip)(struct dso *dso, int parm), int parm)
725 {
726 	struct rb_node *nd;
727 	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
728 
729 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
730 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
731 		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
732 	}
733 	return ret;
734 }
735 
736 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
737 {
738 	int i;
739 	size_t printed = 0;
740 	struct dso *kdso = machine__kernel_map(machine)->dso;
741 
742 	if (kdso->has_build_id) {
743 		char filename[PATH_MAX];
744 		if (dso__build_id_filename(kdso, filename, sizeof(filename),
745 					   false))
746 			printed += fprintf(fp, "[0] %s\n", filename);
747 	}
748 
749 	for (i = 0; i < vmlinux_path__nr_entries; ++i)
750 		printed += fprintf(fp, "[%d] %s\n",
751 				   i + kdso->has_build_id, vmlinux_path[i]);
752 
753 	return printed;
754 }
755 
756 size_t machine__fprintf(struct machine *machine, FILE *fp)
757 {
758 	struct rb_node *nd;
759 	size_t ret;
760 	int i;
761 
762 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
763 		struct threads *threads = &machine->threads[i];
764 
765 		down_read(&threads->lock);
766 
767 		ret = fprintf(fp, "Threads: %u\n", threads->nr);
768 
769 		for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
770 			struct thread *pos = rb_entry(nd, struct thread, rb_node);
771 
772 			ret += thread__fprintf(pos, fp);
773 		}
774 
775 		up_read(&threads->lock);
776 	}
777 	return ret;
778 }
779 
780 static struct dso *machine__get_kernel(struct machine *machine)
781 {
782 	const char *vmlinux_name = machine->mmap_name;
783 	struct dso *kernel;
784 
785 	if (machine__is_host(machine)) {
786 		if (symbol_conf.vmlinux_name)
787 			vmlinux_name = symbol_conf.vmlinux_name;
788 
789 		kernel = machine__findnew_kernel(machine, vmlinux_name,
790 						 "[kernel]", DSO_TYPE_KERNEL);
791 	} else {
792 		if (symbol_conf.default_guest_vmlinux_name)
793 			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
794 
795 		kernel = machine__findnew_kernel(machine, vmlinux_name,
796 						 "[guest.kernel]",
797 						 DSO_TYPE_GUEST_KERNEL);
798 	}
799 
800 	if (kernel != NULL && (!kernel->has_build_id))
801 		dso__read_running_kernel_build_id(kernel, machine);
802 
803 	return kernel;
804 }
805 
806 struct process_args {
807 	u64 start;
808 };
809 
810 void machine__get_kallsyms_filename(struct machine *machine, char *buf,
811 				    size_t bufsz)
812 {
813 	if (machine__is_default_guest(machine))
814 		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
815 	else
816 		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
817 }
818 
819 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
820 
821 /* Figure out the start address of kernel map from /proc/kallsyms.
822  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
823  * symbol_name if it's not that important.
824  */
825 static int machine__get_running_kernel_start(struct machine *machine,
826 					     const char **symbol_name, u64 *start)
827 {
828 	char filename[PATH_MAX];
829 	int i, err = -1;
830 	const char *name;
831 	u64 addr = 0;
832 
833 	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
834 
835 	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
836 		return 0;
837 
838 	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
839 		err = kallsyms__get_function_start(filename, name, &addr);
840 		if (!err)
841 			break;
842 	}
843 
844 	if (err)
845 		return -1;
846 
847 	if (symbol_name)
848 		*symbol_name = name;
849 
850 	*start = addr;
851 	return 0;
852 }
853 
854 int machine__create_extra_kernel_map(struct machine *machine,
855 				     struct dso *kernel,
856 				     struct extra_kernel_map *xm)
857 {
858 	struct kmap *kmap;
859 	struct map *map;
860 
861 	map = map__new2(xm->start, kernel);
862 	if (!map)
863 		return -1;
864 
865 	map->end   = xm->end;
866 	map->pgoff = xm->pgoff;
867 
868 	kmap = map__kmap(map);
869 
870 	kmap->kmaps = &machine->kmaps;
871 	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
872 
873 	map_groups__insert(&machine->kmaps, map);
874 
875 	pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
876 		  kmap->name, map->start, map->end);
877 
878 	map__put(map);
879 
880 	return 0;
881 }
882 
883 static u64 find_entry_trampoline(struct dso *dso)
884 {
885 	/* Duplicates are removed so lookup all aliases */
886 	const char *syms[] = {
887 		"_entry_trampoline",
888 		"__entry_trampoline_start",
889 		"entry_SYSCALL_64_trampoline",
890 	};
891 	struct symbol *sym = dso__first_symbol(dso);
892 	unsigned int i;
893 
894 	for (; sym; sym = dso__next_symbol(sym)) {
895 		if (sym->binding != STB_GLOBAL)
896 			continue;
897 		for (i = 0; i < ARRAY_SIZE(syms); i++) {
898 			if (!strcmp(sym->name, syms[i]))
899 				return sym->start;
900 		}
901 	}
902 
903 	return 0;
904 }
905 
906 /*
907  * These values can be used for kernels that do not have symbols for the entry
908  * trampolines in kallsyms.
909  */
910 #define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
911 #define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
912 #define X86_64_ENTRY_TRAMPOLINE		0x6000
913 
914 /* Map x86_64 PTI entry trampolines */
915 int machine__map_x86_64_entry_trampolines(struct machine *machine,
916 					  struct dso *kernel)
917 {
918 	struct map_groups *kmaps = &machine->kmaps;
919 	struct maps *maps = &kmaps->maps;
920 	int nr_cpus_avail, cpu;
921 	bool found = false;
922 	struct map *map;
923 	u64 pgoff;
924 
925 	/*
926 	 * In the vmlinux case, pgoff is a virtual address which must now be
927 	 * mapped to a vmlinux offset.
928 	 */
929 	for (map = maps__first(maps); map; map = map__next(map)) {
930 		struct kmap *kmap = __map__kmap(map);
931 		struct map *dest_map;
932 
933 		if (!kmap || !is_entry_trampoline(kmap->name))
934 			continue;
935 
936 		dest_map = map_groups__find(kmaps, map->pgoff);
937 		if (dest_map != map)
938 			map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
939 		found = true;
940 	}
941 	if (found || machine->trampolines_mapped)
942 		return 0;
943 
944 	pgoff = find_entry_trampoline(kernel);
945 	if (!pgoff)
946 		return 0;
947 
948 	nr_cpus_avail = machine__nr_cpus_avail(machine);
949 
950 	/* Add a 1 page map for each CPU's entry trampoline */
951 	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
952 		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
953 			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
954 			 X86_64_ENTRY_TRAMPOLINE;
955 		struct extra_kernel_map xm = {
956 			.start = va,
957 			.end   = va + page_size,
958 			.pgoff = pgoff,
959 		};
960 
961 		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
962 
963 		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
964 			return -1;
965 	}
966 
967 	machine->trampolines_mapped = nr_cpus_avail;
968 
969 	return 0;
970 }
971 
972 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
973 					     struct dso *kernel __maybe_unused)
974 {
975 	return 0;
976 }
977 
978 static int
979 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
980 {
981 	struct kmap *kmap;
982 	struct map *map;
983 
984 	/* In case of renewal the kernel map, destroy previous one */
985 	machine__destroy_kernel_maps(machine);
986 
987 	machine->vmlinux_map = map__new2(0, kernel);
988 	if (machine->vmlinux_map == NULL)
989 		return -1;
990 
991 	machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
992 	map = machine__kernel_map(machine);
993 	kmap = map__kmap(map);
994 	if (!kmap)
995 		return -1;
996 
997 	kmap->kmaps = &machine->kmaps;
998 	map_groups__insert(&machine->kmaps, map);
999 
1000 	return 0;
1001 }
1002 
1003 void machine__destroy_kernel_maps(struct machine *machine)
1004 {
1005 	struct kmap *kmap;
1006 	struct map *map = machine__kernel_map(machine);
1007 
1008 	if (map == NULL)
1009 		return;
1010 
1011 	kmap = map__kmap(map);
1012 	map_groups__remove(&machine->kmaps, map);
1013 	if (kmap && kmap->ref_reloc_sym) {
1014 		zfree((char **)&kmap->ref_reloc_sym->name);
1015 		zfree(&kmap->ref_reloc_sym);
1016 	}
1017 
1018 	map__zput(machine->vmlinux_map);
1019 }
1020 
1021 int machines__create_guest_kernel_maps(struct machines *machines)
1022 {
1023 	int ret = 0;
1024 	struct dirent **namelist = NULL;
1025 	int i, items = 0;
1026 	char path[PATH_MAX];
1027 	pid_t pid;
1028 	char *endp;
1029 
1030 	if (symbol_conf.default_guest_vmlinux_name ||
1031 	    symbol_conf.default_guest_modules ||
1032 	    symbol_conf.default_guest_kallsyms) {
1033 		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1034 	}
1035 
1036 	if (symbol_conf.guestmount) {
1037 		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1038 		if (items <= 0)
1039 			return -ENOENT;
1040 		for (i = 0; i < items; i++) {
1041 			if (!isdigit(namelist[i]->d_name[0])) {
1042 				/* Filter out . and .. */
1043 				continue;
1044 			}
1045 			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1046 			if ((*endp != '\0') ||
1047 			    (endp == namelist[i]->d_name) ||
1048 			    (errno == ERANGE)) {
1049 				pr_debug("invalid directory (%s). Skipping.\n",
1050 					 namelist[i]->d_name);
1051 				continue;
1052 			}
1053 			sprintf(path, "%s/%s/proc/kallsyms",
1054 				symbol_conf.guestmount,
1055 				namelist[i]->d_name);
1056 			ret = access(path, R_OK);
1057 			if (ret) {
1058 				pr_debug("Can't access file %s\n", path);
1059 				goto failure;
1060 			}
1061 			machines__create_kernel_maps(machines, pid);
1062 		}
1063 failure:
1064 		free(namelist);
1065 	}
1066 
1067 	return ret;
1068 }
1069 
1070 void machines__destroy_kernel_maps(struct machines *machines)
1071 {
1072 	struct rb_node *next = rb_first(&machines->guests);
1073 
1074 	machine__destroy_kernel_maps(&machines->host);
1075 
1076 	while (next) {
1077 		struct machine *pos = rb_entry(next, struct machine, rb_node);
1078 
1079 		next = rb_next(&pos->rb_node);
1080 		rb_erase(&pos->rb_node, &machines->guests);
1081 		machine__delete(pos);
1082 	}
1083 }
1084 
1085 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1086 {
1087 	struct machine *machine = machines__findnew(machines, pid);
1088 
1089 	if (machine == NULL)
1090 		return -1;
1091 
1092 	return machine__create_kernel_maps(machine);
1093 }
1094 
1095 int machine__load_kallsyms(struct machine *machine, const char *filename)
1096 {
1097 	struct map *map = machine__kernel_map(machine);
1098 	int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1099 
1100 	if (ret > 0) {
1101 		dso__set_loaded(map->dso);
1102 		/*
1103 		 * Since /proc/kallsyms will have multiple sessions for the
1104 		 * kernel, with modules between them, fixup the end of all
1105 		 * sections.
1106 		 */
1107 		map_groups__fixup_end(&machine->kmaps);
1108 	}
1109 
1110 	return ret;
1111 }
1112 
1113 int machine__load_vmlinux_path(struct machine *machine)
1114 {
1115 	struct map *map = machine__kernel_map(machine);
1116 	int ret = dso__load_vmlinux_path(map->dso, map);
1117 
1118 	if (ret > 0)
1119 		dso__set_loaded(map->dso);
1120 
1121 	return ret;
1122 }
1123 
1124 static char *get_kernel_version(const char *root_dir)
1125 {
1126 	char version[PATH_MAX];
1127 	FILE *file;
1128 	char *name, *tmp;
1129 	const char *prefix = "Linux version ";
1130 
1131 	sprintf(version, "%s/proc/version", root_dir);
1132 	file = fopen(version, "r");
1133 	if (!file)
1134 		return NULL;
1135 
1136 	version[0] = '\0';
1137 	tmp = fgets(version, sizeof(version), file);
1138 	fclose(file);
1139 
1140 	name = strstr(version, prefix);
1141 	if (!name)
1142 		return NULL;
1143 	name += strlen(prefix);
1144 	tmp = strchr(name, ' ');
1145 	if (tmp)
1146 		*tmp = '\0';
1147 
1148 	return strdup(name);
1149 }
1150 
1151 static bool is_kmod_dso(struct dso *dso)
1152 {
1153 	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1154 	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1155 }
1156 
1157 static int map_groups__set_module_path(struct map_groups *mg, const char *path,
1158 				       struct kmod_path *m)
1159 {
1160 	char *long_name;
1161 	struct map *map = map_groups__find_by_name(mg, m->name);
1162 
1163 	if (map == NULL)
1164 		return 0;
1165 
1166 	long_name = strdup(path);
1167 	if (long_name == NULL)
1168 		return -ENOMEM;
1169 
1170 	dso__set_long_name(map->dso, long_name, true);
1171 	dso__kernel_module_get_build_id(map->dso, "");
1172 
1173 	/*
1174 	 * Full name could reveal us kmod compression, so
1175 	 * we need to update the symtab_type if needed.
1176 	 */
1177 	if (m->comp && is_kmod_dso(map->dso))
1178 		map->dso->symtab_type++;
1179 
1180 	return 0;
1181 }
1182 
1183 static int map_groups__set_modules_path_dir(struct map_groups *mg,
1184 				const char *dir_name, int depth)
1185 {
1186 	struct dirent *dent;
1187 	DIR *dir = opendir(dir_name);
1188 	int ret = 0;
1189 
1190 	if (!dir) {
1191 		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1192 		return -1;
1193 	}
1194 
1195 	while ((dent = readdir(dir)) != NULL) {
1196 		char path[PATH_MAX];
1197 		struct stat st;
1198 
1199 		/*sshfs might return bad dent->d_type, so we have to stat*/
1200 		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1201 		if (stat(path, &st))
1202 			continue;
1203 
1204 		if (S_ISDIR(st.st_mode)) {
1205 			if (!strcmp(dent->d_name, ".") ||
1206 			    !strcmp(dent->d_name, ".."))
1207 				continue;
1208 
1209 			/* Do not follow top-level source and build symlinks */
1210 			if (depth == 0) {
1211 				if (!strcmp(dent->d_name, "source") ||
1212 				    !strcmp(dent->d_name, "build"))
1213 					continue;
1214 			}
1215 
1216 			ret = map_groups__set_modules_path_dir(mg, path,
1217 							       depth + 1);
1218 			if (ret < 0)
1219 				goto out;
1220 		} else {
1221 			struct kmod_path m;
1222 
1223 			ret = kmod_path__parse_name(&m, dent->d_name);
1224 			if (ret)
1225 				goto out;
1226 
1227 			if (m.kmod)
1228 				ret = map_groups__set_module_path(mg, path, &m);
1229 
1230 			free(m.name);
1231 
1232 			if (ret)
1233 				goto out;
1234 		}
1235 	}
1236 
1237 out:
1238 	closedir(dir);
1239 	return ret;
1240 }
1241 
1242 static int machine__set_modules_path(struct machine *machine)
1243 {
1244 	char *version;
1245 	char modules_path[PATH_MAX];
1246 
1247 	version = get_kernel_version(machine->root_dir);
1248 	if (!version)
1249 		return -1;
1250 
1251 	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1252 		 machine->root_dir, version);
1253 	free(version);
1254 
1255 	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1256 }
1257 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1258 				const char *name __maybe_unused)
1259 {
1260 	return 0;
1261 }
1262 
1263 static int machine__create_module(void *arg, const char *name, u64 start,
1264 				  u64 size)
1265 {
1266 	struct machine *machine = arg;
1267 	struct map *map;
1268 
1269 	if (arch__fix_module_text_start(&start, name) < 0)
1270 		return -1;
1271 
1272 	map = machine__findnew_module_map(machine, start, name);
1273 	if (map == NULL)
1274 		return -1;
1275 	map->end = start + size;
1276 
1277 	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1278 
1279 	return 0;
1280 }
1281 
1282 static int machine__create_modules(struct machine *machine)
1283 {
1284 	const char *modules;
1285 	char path[PATH_MAX];
1286 
1287 	if (machine__is_default_guest(machine)) {
1288 		modules = symbol_conf.default_guest_modules;
1289 	} else {
1290 		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1291 		modules = path;
1292 	}
1293 
1294 	if (symbol__restricted_filename(modules, "/proc/modules"))
1295 		return -1;
1296 
1297 	if (modules__parse(modules, machine, machine__create_module))
1298 		return -1;
1299 
1300 	if (!machine__set_modules_path(machine))
1301 		return 0;
1302 
1303 	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1304 
1305 	return 0;
1306 }
1307 
1308 static void machine__set_kernel_mmap(struct machine *machine,
1309 				     u64 start, u64 end)
1310 {
1311 	machine->vmlinux_map->start = start;
1312 	machine->vmlinux_map->end   = end;
1313 	/*
1314 	 * Be a bit paranoid here, some perf.data file came with
1315 	 * a zero sized synthesized MMAP event for the kernel.
1316 	 */
1317 	if (start == 0 && end == 0)
1318 		machine->vmlinux_map->end = ~0ULL;
1319 }
1320 
1321 int machine__create_kernel_maps(struct machine *machine)
1322 {
1323 	struct dso *kernel = machine__get_kernel(machine);
1324 	const char *name = NULL;
1325 	struct map *map;
1326 	u64 addr = 0;
1327 	int ret;
1328 
1329 	if (kernel == NULL)
1330 		return -1;
1331 
1332 	ret = __machine__create_kernel_maps(machine, kernel);
1333 	if (ret < 0)
1334 		goto out_put;
1335 
1336 	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1337 		if (machine__is_host(machine))
1338 			pr_debug("Problems creating module maps, "
1339 				 "continuing anyway...\n");
1340 		else
1341 			pr_debug("Problems creating module maps for guest %d, "
1342 				 "continuing anyway...\n", machine->pid);
1343 	}
1344 
1345 	if (!machine__get_running_kernel_start(machine, &name, &addr)) {
1346 		if (name &&
1347 		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, addr)) {
1348 			machine__destroy_kernel_maps(machine);
1349 			ret = -1;
1350 			goto out_put;
1351 		}
1352 
1353 		/* we have a real start address now, so re-order the kmaps */
1354 		map = machine__kernel_map(machine);
1355 
1356 		map__get(map);
1357 		map_groups__remove(&machine->kmaps, map);
1358 
1359 		/* assume it's the last in the kmaps */
1360 		machine__set_kernel_mmap(machine, addr, ~0ULL);
1361 
1362 		map_groups__insert(&machine->kmaps, map);
1363 		map__put(map);
1364 	}
1365 
1366 	if (machine__create_extra_kernel_maps(machine, kernel))
1367 		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1368 
1369 	/* update end address of the kernel map using adjacent module address */
1370 	map = map__next(machine__kernel_map(machine));
1371 	if (map)
1372 		machine__set_kernel_mmap(machine, addr, map->start);
1373 out_put:
1374 	dso__put(kernel);
1375 	return ret;
1376 }
1377 
1378 static bool machine__uses_kcore(struct machine *machine)
1379 {
1380 	struct dso *dso;
1381 
1382 	list_for_each_entry(dso, &machine->dsos.head, node) {
1383 		if (dso__is_kcore(dso))
1384 			return true;
1385 	}
1386 
1387 	return false;
1388 }
1389 
1390 static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1391 					     union perf_event *event)
1392 {
1393 	return machine__is(machine, "x86_64") &&
1394 	       is_entry_trampoline(event->mmap.filename);
1395 }
1396 
1397 static int machine__process_extra_kernel_map(struct machine *machine,
1398 					     union perf_event *event)
1399 {
1400 	struct map *kernel_map = machine__kernel_map(machine);
1401 	struct dso *kernel = kernel_map ? kernel_map->dso : NULL;
1402 	struct extra_kernel_map xm = {
1403 		.start = event->mmap.start,
1404 		.end   = event->mmap.start + event->mmap.len,
1405 		.pgoff = event->mmap.pgoff,
1406 	};
1407 
1408 	if (kernel == NULL)
1409 		return -1;
1410 
1411 	strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1412 
1413 	return machine__create_extra_kernel_map(machine, kernel, &xm);
1414 }
1415 
1416 static int machine__process_kernel_mmap_event(struct machine *machine,
1417 					      union perf_event *event)
1418 {
1419 	struct map *map;
1420 	enum dso_kernel_type kernel_type;
1421 	bool is_kernel_mmap;
1422 
1423 	/* If we have maps from kcore then we do not need or want any others */
1424 	if (machine__uses_kcore(machine))
1425 		return 0;
1426 
1427 	if (machine__is_host(machine))
1428 		kernel_type = DSO_TYPE_KERNEL;
1429 	else
1430 		kernel_type = DSO_TYPE_GUEST_KERNEL;
1431 
1432 	is_kernel_mmap = memcmp(event->mmap.filename,
1433 				machine->mmap_name,
1434 				strlen(machine->mmap_name) - 1) == 0;
1435 	if (event->mmap.filename[0] == '/' ||
1436 	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1437 		map = machine__findnew_module_map(machine, event->mmap.start,
1438 						  event->mmap.filename);
1439 		if (map == NULL)
1440 			goto out_problem;
1441 
1442 		map->end = map->start + event->mmap.len;
1443 	} else if (is_kernel_mmap) {
1444 		const char *symbol_name = (event->mmap.filename +
1445 				strlen(machine->mmap_name));
1446 		/*
1447 		 * Should be there already, from the build-id table in
1448 		 * the header.
1449 		 */
1450 		struct dso *kernel = NULL;
1451 		struct dso *dso;
1452 
1453 		down_read(&machine->dsos.lock);
1454 
1455 		list_for_each_entry(dso, &machine->dsos.head, node) {
1456 
1457 			/*
1458 			 * The cpumode passed to is_kernel_module is not the
1459 			 * cpumode of *this* event. If we insist on passing
1460 			 * correct cpumode to is_kernel_module, we should
1461 			 * record the cpumode when we adding this dso to the
1462 			 * linked list.
1463 			 *
1464 			 * However we don't really need passing correct
1465 			 * cpumode.  We know the correct cpumode must be kernel
1466 			 * mode (if not, we should not link it onto kernel_dsos
1467 			 * list).
1468 			 *
1469 			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1470 			 * is_kernel_module() treats it as a kernel cpumode.
1471 			 */
1472 
1473 			if (!dso->kernel ||
1474 			    is_kernel_module(dso->long_name,
1475 					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1476 				continue;
1477 
1478 
1479 			kernel = dso;
1480 			break;
1481 		}
1482 
1483 		up_read(&machine->dsos.lock);
1484 
1485 		if (kernel == NULL)
1486 			kernel = machine__findnew_dso(machine, machine->mmap_name);
1487 		if (kernel == NULL)
1488 			goto out_problem;
1489 
1490 		kernel->kernel = kernel_type;
1491 		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1492 			dso__put(kernel);
1493 			goto out_problem;
1494 		}
1495 
1496 		if (strstr(kernel->long_name, "vmlinux"))
1497 			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1498 
1499 		machine__set_kernel_mmap(machine, event->mmap.start,
1500 					 event->mmap.start + event->mmap.len);
1501 
1502 		/*
1503 		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1504 		 * symbol. Effectively having zero here means that at record
1505 		 * time /proc/sys/kernel/kptr_restrict was non zero.
1506 		 */
1507 		if (event->mmap.pgoff != 0) {
1508 			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1509 							symbol_name,
1510 							event->mmap.pgoff);
1511 		}
1512 
1513 		if (machine__is_default_guest(machine)) {
1514 			/*
1515 			 * preload dso of guest kernel and modules
1516 			 */
1517 			dso__load(kernel, machine__kernel_map(machine));
1518 		}
1519 	} else if (perf_event__is_extra_kernel_mmap(machine, event)) {
1520 		return machine__process_extra_kernel_map(machine, event);
1521 	}
1522 	return 0;
1523 out_problem:
1524 	return -1;
1525 }
1526 
1527 int machine__process_mmap2_event(struct machine *machine,
1528 				 union perf_event *event,
1529 				 struct perf_sample *sample)
1530 {
1531 	struct thread *thread;
1532 	struct map *map;
1533 	int ret = 0;
1534 
1535 	if (dump_trace)
1536 		perf_event__fprintf_mmap2(event, stdout);
1537 
1538 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1539 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1540 		ret = machine__process_kernel_mmap_event(machine, event);
1541 		if (ret < 0)
1542 			goto out_problem;
1543 		return 0;
1544 	}
1545 
1546 	thread = machine__findnew_thread(machine, event->mmap2.pid,
1547 					event->mmap2.tid);
1548 	if (thread == NULL)
1549 		goto out_problem;
1550 
1551 	map = map__new(machine, event->mmap2.start,
1552 			event->mmap2.len, event->mmap2.pgoff,
1553 			event->mmap2.maj,
1554 			event->mmap2.min, event->mmap2.ino,
1555 			event->mmap2.ino_generation,
1556 			event->mmap2.prot,
1557 			event->mmap2.flags,
1558 			event->mmap2.filename, thread);
1559 
1560 	if (map == NULL)
1561 		goto out_problem_map;
1562 
1563 	ret = thread__insert_map(thread, map);
1564 	if (ret)
1565 		goto out_problem_insert;
1566 
1567 	thread__put(thread);
1568 	map__put(map);
1569 	return 0;
1570 
1571 out_problem_insert:
1572 	map__put(map);
1573 out_problem_map:
1574 	thread__put(thread);
1575 out_problem:
1576 	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1577 	return 0;
1578 }
1579 
1580 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1581 				struct perf_sample *sample)
1582 {
1583 	struct thread *thread;
1584 	struct map *map;
1585 	u32 prot = 0;
1586 	int ret = 0;
1587 
1588 	if (dump_trace)
1589 		perf_event__fprintf_mmap(event, stdout);
1590 
1591 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1592 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1593 		ret = machine__process_kernel_mmap_event(machine, event);
1594 		if (ret < 0)
1595 			goto out_problem;
1596 		return 0;
1597 	}
1598 
1599 	thread = machine__findnew_thread(machine, event->mmap.pid,
1600 					 event->mmap.tid);
1601 	if (thread == NULL)
1602 		goto out_problem;
1603 
1604 	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1605 		prot = PROT_EXEC;
1606 
1607 	map = map__new(machine, event->mmap.start,
1608 			event->mmap.len, event->mmap.pgoff,
1609 			0, 0, 0, 0, prot, 0,
1610 			event->mmap.filename,
1611 			thread);
1612 
1613 	if (map == NULL)
1614 		goto out_problem_map;
1615 
1616 	ret = thread__insert_map(thread, map);
1617 	if (ret)
1618 		goto out_problem_insert;
1619 
1620 	thread__put(thread);
1621 	map__put(map);
1622 	return 0;
1623 
1624 out_problem_insert:
1625 	map__put(map);
1626 out_problem_map:
1627 	thread__put(thread);
1628 out_problem:
1629 	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1630 	return 0;
1631 }
1632 
1633 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1634 {
1635 	struct threads *threads = machine__threads(machine, th->tid);
1636 
1637 	if (threads->last_match == th)
1638 		threads->last_match = NULL;
1639 
1640 	BUG_ON(refcount_read(&th->refcnt) == 0);
1641 	if (lock)
1642 		down_write(&threads->lock);
1643 	rb_erase_init(&th->rb_node, &threads->entries);
1644 	RB_CLEAR_NODE(&th->rb_node);
1645 	--threads->nr;
1646 	/*
1647 	 * Move it first to the dead_threads list, then drop the reference,
1648 	 * if this is the last reference, then the thread__delete destructor
1649 	 * will be called and we will remove it from the dead_threads list.
1650 	 */
1651 	list_add_tail(&th->node, &threads->dead);
1652 	if (lock)
1653 		up_write(&threads->lock);
1654 	thread__put(th);
1655 }
1656 
1657 void machine__remove_thread(struct machine *machine, struct thread *th)
1658 {
1659 	return __machine__remove_thread(machine, th, true);
1660 }
1661 
1662 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1663 				struct perf_sample *sample)
1664 {
1665 	struct thread *thread = machine__find_thread(machine,
1666 						     event->fork.pid,
1667 						     event->fork.tid);
1668 	struct thread *parent = machine__findnew_thread(machine,
1669 							event->fork.ppid,
1670 							event->fork.ptid);
1671 	int err = 0;
1672 
1673 	if (dump_trace)
1674 		perf_event__fprintf_task(event, stdout);
1675 
1676 	/*
1677 	 * There may be an existing thread that is not actually the parent,
1678 	 * either because we are processing events out of order, or because the
1679 	 * (fork) event that would have removed the thread was lost. Assume the
1680 	 * latter case and continue on as best we can.
1681 	 */
1682 	if (parent->pid_ != (pid_t)event->fork.ppid) {
1683 		dump_printf("removing erroneous parent thread %d/%d\n",
1684 			    parent->pid_, parent->tid);
1685 		machine__remove_thread(machine, parent);
1686 		thread__put(parent);
1687 		parent = machine__findnew_thread(machine, event->fork.ppid,
1688 						 event->fork.ptid);
1689 	}
1690 
1691 	/* if a thread currently exists for the thread id remove it */
1692 	if (thread != NULL) {
1693 		machine__remove_thread(machine, thread);
1694 		thread__put(thread);
1695 	}
1696 
1697 	thread = machine__findnew_thread(machine, event->fork.pid,
1698 					 event->fork.tid);
1699 
1700 	if (thread == NULL || parent == NULL ||
1701 	    thread__fork(thread, parent, sample->time) < 0) {
1702 		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1703 		err = -1;
1704 	}
1705 	thread__put(thread);
1706 	thread__put(parent);
1707 
1708 	return err;
1709 }
1710 
1711 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1712 				struct perf_sample *sample __maybe_unused)
1713 {
1714 	struct thread *thread = machine__find_thread(machine,
1715 						     event->fork.pid,
1716 						     event->fork.tid);
1717 
1718 	if (dump_trace)
1719 		perf_event__fprintf_task(event, stdout);
1720 
1721 	if (thread != NULL) {
1722 		thread__exited(thread);
1723 		thread__put(thread);
1724 	}
1725 
1726 	return 0;
1727 }
1728 
1729 int machine__process_event(struct machine *machine, union perf_event *event,
1730 			   struct perf_sample *sample)
1731 {
1732 	int ret;
1733 
1734 	switch (event->header.type) {
1735 	case PERF_RECORD_COMM:
1736 		ret = machine__process_comm_event(machine, event, sample); break;
1737 	case PERF_RECORD_MMAP:
1738 		ret = machine__process_mmap_event(machine, event, sample); break;
1739 	case PERF_RECORD_NAMESPACES:
1740 		ret = machine__process_namespaces_event(machine, event, sample); break;
1741 	case PERF_RECORD_MMAP2:
1742 		ret = machine__process_mmap2_event(machine, event, sample); break;
1743 	case PERF_RECORD_FORK:
1744 		ret = machine__process_fork_event(machine, event, sample); break;
1745 	case PERF_RECORD_EXIT:
1746 		ret = machine__process_exit_event(machine, event, sample); break;
1747 	case PERF_RECORD_LOST:
1748 		ret = machine__process_lost_event(machine, event, sample); break;
1749 	case PERF_RECORD_AUX:
1750 		ret = machine__process_aux_event(machine, event); break;
1751 	case PERF_RECORD_ITRACE_START:
1752 		ret = machine__process_itrace_start_event(machine, event); break;
1753 	case PERF_RECORD_LOST_SAMPLES:
1754 		ret = machine__process_lost_samples_event(machine, event, sample); break;
1755 	case PERF_RECORD_SWITCH:
1756 	case PERF_RECORD_SWITCH_CPU_WIDE:
1757 		ret = machine__process_switch_event(machine, event); break;
1758 	default:
1759 		ret = -1;
1760 		break;
1761 	}
1762 
1763 	return ret;
1764 }
1765 
1766 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1767 {
1768 	if (!regexec(regex, sym->name, 0, NULL, 0))
1769 		return 1;
1770 	return 0;
1771 }
1772 
1773 static void ip__resolve_ams(struct thread *thread,
1774 			    struct addr_map_symbol *ams,
1775 			    u64 ip)
1776 {
1777 	struct addr_location al;
1778 
1779 	memset(&al, 0, sizeof(al));
1780 	/*
1781 	 * We cannot use the header.misc hint to determine whether a
1782 	 * branch stack address is user, kernel, guest, hypervisor.
1783 	 * Branches may straddle the kernel/user/hypervisor boundaries.
1784 	 * Thus, we have to try consecutively until we find a match
1785 	 * or else, the symbol is unknown
1786 	 */
1787 	thread__find_cpumode_addr_location(thread, ip, &al);
1788 
1789 	ams->addr = ip;
1790 	ams->al_addr = al.addr;
1791 	ams->sym = al.sym;
1792 	ams->map = al.map;
1793 	ams->phys_addr = 0;
1794 }
1795 
1796 static void ip__resolve_data(struct thread *thread,
1797 			     u8 m, struct addr_map_symbol *ams,
1798 			     u64 addr, u64 phys_addr)
1799 {
1800 	struct addr_location al;
1801 
1802 	memset(&al, 0, sizeof(al));
1803 
1804 	thread__find_symbol(thread, m, addr, &al);
1805 
1806 	ams->addr = addr;
1807 	ams->al_addr = al.addr;
1808 	ams->sym = al.sym;
1809 	ams->map = al.map;
1810 	ams->phys_addr = phys_addr;
1811 }
1812 
1813 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1814 				     struct addr_location *al)
1815 {
1816 	struct mem_info *mi = mem_info__new();
1817 
1818 	if (!mi)
1819 		return NULL;
1820 
1821 	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1822 	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
1823 			 sample->addr, sample->phys_addr);
1824 	mi->data_src.val = sample->data_src;
1825 
1826 	return mi;
1827 }
1828 
1829 static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
1830 {
1831 	char *srcline = NULL;
1832 
1833 	if (!map || callchain_param.key == CCKEY_FUNCTION)
1834 		return srcline;
1835 
1836 	srcline = srcline__tree_find(&map->dso->srclines, ip);
1837 	if (!srcline) {
1838 		bool show_sym = false;
1839 		bool show_addr = callchain_param.key == CCKEY_ADDRESS;
1840 
1841 		srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
1842 				      sym, show_sym, show_addr, ip);
1843 		srcline__tree_insert(&map->dso->srclines, ip, srcline);
1844 	}
1845 
1846 	return srcline;
1847 }
1848 
1849 struct iterations {
1850 	int nr_loop_iter;
1851 	u64 cycles;
1852 };
1853 
1854 static int add_callchain_ip(struct thread *thread,
1855 			    struct callchain_cursor *cursor,
1856 			    struct symbol **parent,
1857 			    struct addr_location *root_al,
1858 			    u8 *cpumode,
1859 			    u64 ip,
1860 			    bool branch,
1861 			    struct branch_flags *flags,
1862 			    struct iterations *iter,
1863 			    u64 branch_from)
1864 {
1865 	struct addr_location al;
1866 	int nr_loop_iter = 0;
1867 	u64 iter_cycles = 0;
1868 	const char *srcline = NULL;
1869 
1870 	al.filtered = 0;
1871 	al.sym = NULL;
1872 	if (!cpumode) {
1873 		thread__find_cpumode_addr_location(thread, ip, &al);
1874 	} else {
1875 		if (ip >= PERF_CONTEXT_MAX) {
1876 			switch (ip) {
1877 			case PERF_CONTEXT_HV:
1878 				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
1879 				break;
1880 			case PERF_CONTEXT_KERNEL:
1881 				*cpumode = PERF_RECORD_MISC_KERNEL;
1882 				break;
1883 			case PERF_CONTEXT_USER:
1884 				*cpumode = PERF_RECORD_MISC_USER;
1885 				break;
1886 			default:
1887 				pr_debug("invalid callchain context: "
1888 					 "%"PRId64"\n", (s64) ip);
1889 				/*
1890 				 * It seems the callchain is corrupted.
1891 				 * Discard all.
1892 				 */
1893 				callchain_cursor_reset(cursor);
1894 				return 1;
1895 			}
1896 			return 0;
1897 		}
1898 		thread__find_symbol(thread, *cpumode, ip, &al);
1899 	}
1900 
1901 	if (al.sym != NULL) {
1902 		if (perf_hpp_list.parent && !*parent &&
1903 		    symbol__match_regex(al.sym, &parent_regex))
1904 			*parent = al.sym;
1905 		else if (have_ignore_callees && root_al &&
1906 		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
1907 			/* Treat this symbol as the root,
1908 			   forgetting its callees. */
1909 			*root_al = al;
1910 			callchain_cursor_reset(cursor);
1911 		}
1912 	}
1913 
1914 	if (symbol_conf.hide_unresolved && al.sym == NULL)
1915 		return 0;
1916 
1917 	if (iter) {
1918 		nr_loop_iter = iter->nr_loop_iter;
1919 		iter_cycles = iter->cycles;
1920 	}
1921 
1922 	srcline = callchain_srcline(al.map, al.sym, al.addr);
1923 	return callchain_cursor_append(cursor, ip, al.map, al.sym,
1924 				       branch, flags, nr_loop_iter,
1925 				       iter_cycles, branch_from, srcline);
1926 }
1927 
1928 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1929 					   struct addr_location *al)
1930 {
1931 	unsigned int i;
1932 	const struct branch_stack *bs = sample->branch_stack;
1933 	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1934 
1935 	if (!bi)
1936 		return NULL;
1937 
1938 	for (i = 0; i < bs->nr; i++) {
1939 		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1940 		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1941 		bi[i].flags = bs->entries[i].flags;
1942 	}
1943 	return bi;
1944 }
1945 
1946 static void save_iterations(struct iterations *iter,
1947 			    struct branch_entry *be, int nr)
1948 {
1949 	int i;
1950 
1951 	iter->nr_loop_iter = nr;
1952 	iter->cycles = 0;
1953 
1954 	for (i = 0; i < nr; i++)
1955 		iter->cycles += be[i].flags.cycles;
1956 }
1957 
1958 #define CHASHSZ 127
1959 #define CHASHBITS 7
1960 #define NO_ENTRY 0xff
1961 
1962 #define PERF_MAX_BRANCH_DEPTH 127
1963 
1964 /* Remove loops. */
1965 static int remove_loops(struct branch_entry *l, int nr,
1966 			struct iterations *iter)
1967 {
1968 	int i, j, off;
1969 	unsigned char chash[CHASHSZ];
1970 
1971 	memset(chash, NO_ENTRY, sizeof(chash));
1972 
1973 	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
1974 
1975 	for (i = 0; i < nr; i++) {
1976 		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
1977 
1978 		/* no collision handling for now */
1979 		if (chash[h] == NO_ENTRY) {
1980 			chash[h] = i;
1981 		} else if (l[chash[h]].from == l[i].from) {
1982 			bool is_loop = true;
1983 			/* check if it is a real loop */
1984 			off = 0;
1985 			for (j = chash[h]; j < i && i + off < nr; j++, off++)
1986 				if (l[j].from != l[i + off].from) {
1987 					is_loop = false;
1988 					break;
1989 				}
1990 			if (is_loop) {
1991 				j = nr - (i + off);
1992 				if (j > 0) {
1993 					save_iterations(iter + i + off,
1994 						l + i, off);
1995 
1996 					memmove(iter + i, iter + i + off,
1997 						j * sizeof(*iter));
1998 
1999 					memmove(l + i, l + i + off,
2000 						j * sizeof(*l));
2001 				}
2002 
2003 				nr -= off;
2004 			}
2005 		}
2006 	}
2007 	return nr;
2008 }
2009 
2010 /*
2011  * Recolve LBR callstack chain sample
2012  * Return:
2013  * 1 on success get LBR callchain information
2014  * 0 no available LBR callchain information, should try fp
2015  * negative error code on other errors.
2016  */
2017 static int resolve_lbr_callchain_sample(struct thread *thread,
2018 					struct callchain_cursor *cursor,
2019 					struct perf_sample *sample,
2020 					struct symbol **parent,
2021 					struct addr_location *root_al,
2022 					int max_stack)
2023 {
2024 	struct ip_callchain *chain = sample->callchain;
2025 	int chain_nr = min(max_stack, (int)chain->nr), i;
2026 	u8 cpumode = PERF_RECORD_MISC_USER;
2027 	u64 ip, branch_from = 0;
2028 
2029 	for (i = 0; i < chain_nr; i++) {
2030 		if (chain->ips[i] == PERF_CONTEXT_USER)
2031 			break;
2032 	}
2033 
2034 	/* LBR only affects the user callchain */
2035 	if (i != chain_nr) {
2036 		struct branch_stack *lbr_stack = sample->branch_stack;
2037 		int lbr_nr = lbr_stack->nr, j, k;
2038 		bool branch;
2039 		struct branch_flags *flags;
2040 		/*
2041 		 * LBR callstack can only get user call chain.
2042 		 * The mix_chain_nr is kernel call chain
2043 		 * number plus LBR user call chain number.
2044 		 * i is kernel call chain number,
2045 		 * 1 is PERF_CONTEXT_USER,
2046 		 * lbr_nr + 1 is the user call chain number.
2047 		 * For details, please refer to the comments
2048 		 * in callchain__printf
2049 		 */
2050 		int mix_chain_nr = i + 1 + lbr_nr + 1;
2051 
2052 		for (j = 0; j < mix_chain_nr; j++) {
2053 			int err;
2054 			branch = false;
2055 			flags = NULL;
2056 
2057 			if (callchain_param.order == ORDER_CALLEE) {
2058 				if (j < i + 1)
2059 					ip = chain->ips[j];
2060 				else if (j > i + 1) {
2061 					k = j - i - 2;
2062 					ip = lbr_stack->entries[k].from;
2063 					branch = true;
2064 					flags = &lbr_stack->entries[k].flags;
2065 				} else {
2066 					ip = lbr_stack->entries[0].to;
2067 					branch = true;
2068 					flags = &lbr_stack->entries[0].flags;
2069 					branch_from =
2070 						lbr_stack->entries[0].from;
2071 				}
2072 			} else {
2073 				if (j < lbr_nr) {
2074 					k = lbr_nr - j - 1;
2075 					ip = lbr_stack->entries[k].from;
2076 					branch = true;
2077 					flags = &lbr_stack->entries[k].flags;
2078 				}
2079 				else if (j > lbr_nr)
2080 					ip = chain->ips[i + 1 - (j - lbr_nr)];
2081 				else {
2082 					ip = lbr_stack->entries[0].to;
2083 					branch = true;
2084 					flags = &lbr_stack->entries[0].flags;
2085 					branch_from =
2086 						lbr_stack->entries[0].from;
2087 				}
2088 			}
2089 
2090 			err = add_callchain_ip(thread, cursor, parent,
2091 					       root_al, &cpumode, ip,
2092 					       branch, flags, NULL,
2093 					       branch_from);
2094 			if (err)
2095 				return (err < 0) ? err : 0;
2096 		}
2097 		return 1;
2098 	}
2099 
2100 	return 0;
2101 }
2102 
2103 static int thread__resolve_callchain_sample(struct thread *thread,
2104 					    struct callchain_cursor *cursor,
2105 					    struct perf_evsel *evsel,
2106 					    struct perf_sample *sample,
2107 					    struct symbol **parent,
2108 					    struct addr_location *root_al,
2109 					    int max_stack)
2110 {
2111 	struct branch_stack *branch = sample->branch_stack;
2112 	struct ip_callchain *chain = sample->callchain;
2113 	int chain_nr = 0;
2114 	u8 cpumode = PERF_RECORD_MISC_USER;
2115 	int i, j, err, nr_entries;
2116 	int skip_idx = -1;
2117 	int first_call = 0;
2118 
2119 	if (chain)
2120 		chain_nr = chain->nr;
2121 
2122 	if (perf_evsel__has_branch_callstack(evsel)) {
2123 		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2124 						   root_al, max_stack);
2125 		if (err)
2126 			return (err < 0) ? err : 0;
2127 	}
2128 
2129 	/*
2130 	 * Based on DWARF debug information, some architectures skip
2131 	 * a callchain entry saved by the kernel.
2132 	 */
2133 	skip_idx = arch_skip_callchain_idx(thread, chain);
2134 
2135 	/*
2136 	 * Add branches to call stack for easier browsing. This gives
2137 	 * more context for a sample than just the callers.
2138 	 *
2139 	 * This uses individual histograms of paths compared to the
2140 	 * aggregated histograms the normal LBR mode uses.
2141 	 *
2142 	 * Limitations for now:
2143 	 * - No extra filters
2144 	 * - No annotations (should annotate somehow)
2145 	 */
2146 
2147 	if (branch && callchain_param.branch_callstack) {
2148 		int nr = min(max_stack, (int)branch->nr);
2149 		struct branch_entry be[nr];
2150 		struct iterations iter[nr];
2151 
2152 		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2153 			pr_warning("corrupted branch chain. skipping...\n");
2154 			goto check_calls;
2155 		}
2156 
2157 		for (i = 0; i < nr; i++) {
2158 			if (callchain_param.order == ORDER_CALLEE) {
2159 				be[i] = branch->entries[i];
2160 
2161 				if (chain == NULL)
2162 					continue;
2163 
2164 				/*
2165 				 * Check for overlap into the callchain.
2166 				 * The return address is one off compared to
2167 				 * the branch entry. To adjust for this
2168 				 * assume the calling instruction is not longer
2169 				 * than 8 bytes.
2170 				 */
2171 				if (i == skip_idx ||
2172 				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2173 					first_call++;
2174 				else if (be[i].from < chain->ips[first_call] &&
2175 				    be[i].from >= chain->ips[first_call] - 8)
2176 					first_call++;
2177 			} else
2178 				be[i] = branch->entries[branch->nr - i - 1];
2179 		}
2180 
2181 		memset(iter, 0, sizeof(struct iterations) * nr);
2182 		nr = remove_loops(be, nr, iter);
2183 
2184 		for (i = 0; i < nr; i++) {
2185 			err = add_callchain_ip(thread, cursor, parent,
2186 					       root_al,
2187 					       NULL, be[i].to,
2188 					       true, &be[i].flags,
2189 					       NULL, be[i].from);
2190 
2191 			if (!err)
2192 				err = add_callchain_ip(thread, cursor, parent, root_al,
2193 						       NULL, be[i].from,
2194 						       true, &be[i].flags,
2195 						       &iter[i], 0);
2196 			if (err == -EINVAL)
2197 				break;
2198 			if (err)
2199 				return err;
2200 		}
2201 
2202 		if (chain_nr == 0)
2203 			return 0;
2204 
2205 		chain_nr -= nr;
2206 	}
2207 
2208 check_calls:
2209 	for (i = first_call, nr_entries = 0;
2210 	     i < chain_nr && nr_entries < max_stack; i++) {
2211 		u64 ip;
2212 
2213 		if (callchain_param.order == ORDER_CALLEE)
2214 			j = i;
2215 		else
2216 			j = chain->nr - i - 1;
2217 
2218 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2219 		if (j == skip_idx)
2220 			continue;
2221 #endif
2222 		ip = chain->ips[j];
2223 
2224 		if (ip < PERF_CONTEXT_MAX)
2225                        ++nr_entries;
2226 
2227 		err = add_callchain_ip(thread, cursor, parent,
2228 				       root_al, &cpumode, ip,
2229 				       false, NULL, NULL, 0);
2230 
2231 		if (err)
2232 			return (err < 0) ? err : 0;
2233 	}
2234 
2235 	return 0;
2236 }
2237 
2238 static int append_inlines(struct callchain_cursor *cursor,
2239 			  struct map *map, struct symbol *sym, u64 ip)
2240 {
2241 	struct inline_node *inline_node;
2242 	struct inline_list *ilist;
2243 	u64 addr;
2244 	int ret = 1;
2245 
2246 	if (!symbol_conf.inline_name || !map || !sym)
2247 		return ret;
2248 
2249 	addr = map__rip_2objdump(map, ip);
2250 
2251 	inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2252 	if (!inline_node) {
2253 		inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2254 		if (!inline_node)
2255 			return ret;
2256 		inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2257 	}
2258 
2259 	list_for_each_entry(ilist, &inline_node->val, list) {
2260 		ret = callchain_cursor_append(cursor, ip, map,
2261 					      ilist->symbol, false,
2262 					      NULL, 0, 0, 0, ilist->srcline);
2263 
2264 		if (ret != 0)
2265 			return ret;
2266 	}
2267 
2268 	return ret;
2269 }
2270 
2271 static int unwind_entry(struct unwind_entry *entry, void *arg)
2272 {
2273 	struct callchain_cursor *cursor = arg;
2274 	const char *srcline = NULL;
2275 
2276 	if (symbol_conf.hide_unresolved && entry->sym == NULL)
2277 		return 0;
2278 
2279 	if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
2280 		return 0;
2281 
2282 	srcline = callchain_srcline(entry->map, entry->sym, entry->ip);
2283 	return callchain_cursor_append(cursor, entry->ip,
2284 				       entry->map, entry->sym,
2285 				       false, NULL, 0, 0, 0, srcline);
2286 }
2287 
2288 static int thread__resolve_callchain_unwind(struct thread *thread,
2289 					    struct callchain_cursor *cursor,
2290 					    struct perf_evsel *evsel,
2291 					    struct perf_sample *sample,
2292 					    int max_stack)
2293 {
2294 	/* Can we do dwarf post unwind? */
2295 	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2296 	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
2297 		return 0;
2298 
2299 	/* Bail out if nothing was captured. */
2300 	if ((!sample->user_regs.regs) ||
2301 	    (!sample->user_stack.size))
2302 		return 0;
2303 
2304 	return unwind__get_entries(unwind_entry, cursor,
2305 				   thread, sample, max_stack);
2306 }
2307 
2308 int thread__resolve_callchain(struct thread *thread,
2309 			      struct callchain_cursor *cursor,
2310 			      struct perf_evsel *evsel,
2311 			      struct perf_sample *sample,
2312 			      struct symbol **parent,
2313 			      struct addr_location *root_al,
2314 			      int max_stack)
2315 {
2316 	int ret = 0;
2317 
2318 	callchain_cursor_reset(cursor);
2319 
2320 	if (callchain_param.order == ORDER_CALLEE) {
2321 		ret = thread__resolve_callchain_sample(thread, cursor,
2322 						       evsel, sample,
2323 						       parent, root_al,
2324 						       max_stack);
2325 		if (ret)
2326 			return ret;
2327 		ret = thread__resolve_callchain_unwind(thread, cursor,
2328 						       evsel, sample,
2329 						       max_stack);
2330 	} else {
2331 		ret = thread__resolve_callchain_unwind(thread, cursor,
2332 						       evsel, sample,
2333 						       max_stack);
2334 		if (ret)
2335 			return ret;
2336 		ret = thread__resolve_callchain_sample(thread, cursor,
2337 						       evsel, sample,
2338 						       parent, root_al,
2339 						       max_stack);
2340 	}
2341 
2342 	return ret;
2343 }
2344 
2345 int machine__for_each_thread(struct machine *machine,
2346 			     int (*fn)(struct thread *thread, void *p),
2347 			     void *priv)
2348 {
2349 	struct threads *threads;
2350 	struct rb_node *nd;
2351 	struct thread *thread;
2352 	int rc = 0;
2353 	int i;
2354 
2355 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2356 		threads = &machine->threads[i];
2357 		for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
2358 			thread = rb_entry(nd, struct thread, rb_node);
2359 			rc = fn(thread, priv);
2360 			if (rc != 0)
2361 				return rc;
2362 		}
2363 
2364 		list_for_each_entry(thread, &threads->dead, node) {
2365 			rc = fn(thread, priv);
2366 			if (rc != 0)
2367 				return rc;
2368 		}
2369 	}
2370 	return rc;
2371 }
2372 
2373 int machines__for_each_thread(struct machines *machines,
2374 			      int (*fn)(struct thread *thread, void *p),
2375 			      void *priv)
2376 {
2377 	struct rb_node *nd;
2378 	int rc = 0;
2379 
2380 	rc = machine__for_each_thread(&machines->host, fn, priv);
2381 	if (rc != 0)
2382 		return rc;
2383 
2384 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
2385 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
2386 
2387 		rc = machine__for_each_thread(machine, fn, priv);
2388 		if (rc != 0)
2389 			return rc;
2390 	}
2391 	return rc;
2392 }
2393 
2394 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2395 				  struct target *target, struct thread_map *threads,
2396 				  perf_event__handler_t process, bool data_mmap,
2397 				  unsigned int proc_map_timeout,
2398 				  unsigned int nr_threads_synthesize)
2399 {
2400 	if (target__has_task(target))
2401 		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
2402 	else if (target__has_cpu(target))
2403 		return perf_event__synthesize_threads(tool, process,
2404 						      machine, data_mmap,
2405 						      proc_map_timeout,
2406 						      nr_threads_synthesize);
2407 	/* command specified */
2408 	return 0;
2409 }
2410 
2411 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2412 {
2413 	if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
2414 		return -1;
2415 
2416 	return machine->current_tid[cpu];
2417 }
2418 
2419 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2420 			     pid_t tid)
2421 {
2422 	struct thread *thread;
2423 
2424 	if (cpu < 0)
2425 		return -EINVAL;
2426 
2427 	if (!machine->current_tid) {
2428 		int i;
2429 
2430 		machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
2431 		if (!machine->current_tid)
2432 			return -ENOMEM;
2433 		for (i = 0; i < MAX_NR_CPUS; i++)
2434 			machine->current_tid[i] = -1;
2435 	}
2436 
2437 	if (cpu >= MAX_NR_CPUS) {
2438 		pr_err("Requested CPU %d too large. ", cpu);
2439 		pr_err("Consider raising MAX_NR_CPUS\n");
2440 		return -EINVAL;
2441 	}
2442 
2443 	machine->current_tid[cpu] = tid;
2444 
2445 	thread = machine__findnew_thread(machine, pid, tid);
2446 	if (!thread)
2447 		return -ENOMEM;
2448 
2449 	thread->cpu = cpu;
2450 	thread__put(thread);
2451 
2452 	return 0;
2453 }
2454 
2455 /*
2456  * Compares the raw arch string. N.B. see instead perf_env__arch() if a
2457  * normalized arch is needed.
2458  */
2459 bool machine__is(struct machine *machine, const char *arch)
2460 {
2461 	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
2462 }
2463 
2464 int machine__nr_cpus_avail(struct machine *machine)
2465 {
2466 	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
2467 }
2468 
2469 int machine__get_kernel_start(struct machine *machine)
2470 {
2471 	struct map *map = machine__kernel_map(machine);
2472 	int err = 0;
2473 
2474 	/*
2475 	 * The only addresses above 2^63 are kernel addresses of a 64-bit
2476 	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
2477 	 * all addresses including kernel addresses are less than 2^32.  In
2478 	 * that case (32-bit system), if the kernel mapping is unknown, all
2479 	 * addresses will be assumed to be in user space - see
2480 	 * machine__kernel_ip().
2481 	 */
2482 	machine->kernel_start = 1ULL << 63;
2483 	if (map) {
2484 		err = map__load(map);
2485 		/*
2486 		 * On x86_64, PTI entry trampolines are less than the
2487 		 * start of kernel text, but still above 2^63. So leave
2488 		 * kernel_start = 1ULL << 63 for x86_64.
2489 		 */
2490 		if (!err && !machine__is(machine, "x86_64"))
2491 			machine->kernel_start = map->start;
2492 	}
2493 	return err;
2494 }
2495 
2496 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2497 {
2498 	return dsos__findnew(&machine->dsos, filename);
2499 }
2500 
2501 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2502 {
2503 	struct machine *machine = vmachine;
2504 	struct map *map;
2505 	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
2506 
2507 	if (sym == NULL)
2508 		return NULL;
2509 
2510 	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2511 	*addrp = map->unmap_ip(map, sym->start);
2512 	return sym->name;
2513 }
2514