1 // SPDX-License-Identifier: GPL-2.0 2 #include <dirent.h> 3 #include <errno.h> 4 #include <inttypes.h> 5 #include <regex.h> 6 #include <stdlib.h> 7 #include "callchain.h" 8 #include "debug.h" 9 #include "dso.h" 10 #include "env.h" 11 #include "event.h" 12 #include "evsel.h" 13 #include "hist.h" 14 #include "machine.h" 15 #include "map.h" 16 #include "map_symbol.h" 17 #include "branch.h" 18 #include "mem-events.h" 19 #include "srcline.h" 20 #include "symbol.h" 21 #include "sort.h" 22 #include "strlist.h" 23 #include "target.h" 24 #include "thread.h" 25 #include "util.h" 26 #include "vdso.h" 27 #include <stdbool.h> 28 #include <sys/types.h> 29 #include <sys/stat.h> 30 #include <unistd.h> 31 #include "unwind.h" 32 #include "linux/hash.h" 33 #include "asm/bug.h" 34 #include "bpf-event.h" 35 #include <internal/lib.h> // page_size 36 37 #include <linux/ctype.h> 38 #include <symbol/kallsyms.h> 39 #include <linux/mman.h> 40 #include <linux/string.h> 41 #include <linux/zalloc.h> 42 43 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock); 44 45 static void dsos__init(struct dsos *dsos) 46 { 47 INIT_LIST_HEAD(&dsos->head); 48 dsos->root = RB_ROOT; 49 init_rwsem(&dsos->lock); 50 } 51 52 static void machine__threads_init(struct machine *machine) 53 { 54 int i; 55 56 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 57 struct threads *threads = &machine->threads[i]; 58 threads->entries = RB_ROOT_CACHED; 59 init_rwsem(&threads->lock); 60 threads->nr = 0; 61 INIT_LIST_HEAD(&threads->dead); 62 threads->last_match = NULL; 63 } 64 } 65 66 static int machine__set_mmap_name(struct machine *machine) 67 { 68 if (machine__is_host(machine)) 69 machine->mmap_name = strdup("[kernel.kallsyms]"); 70 else if (machine__is_default_guest(machine)) 71 machine->mmap_name = strdup("[guest.kernel.kallsyms]"); 72 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]", 73 machine->pid) < 0) 74 machine->mmap_name = NULL; 75 76 return machine->mmap_name ? 0 : -ENOMEM; 77 } 78 79 int machine__init(struct machine *machine, const char *root_dir, pid_t pid) 80 { 81 int err = -ENOMEM; 82 83 memset(machine, 0, sizeof(*machine)); 84 map_groups__init(&machine->kmaps, machine); 85 RB_CLEAR_NODE(&machine->rb_node); 86 dsos__init(&machine->dsos); 87 88 machine__threads_init(machine); 89 90 machine->vdso_info = NULL; 91 machine->env = NULL; 92 93 machine->pid = pid; 94 95 machine->id_hdr_size = 0; 96 machine->kptr_restrict_warned = false; 97 machine->comm_exec = false; 98 machine->kernel_start = 0; 99 machine->vmlinux_map = NULL; 100 101 machine->root_dir = strdup(root_dir); 102 if (machine->root_dir == NULL) 103 return -ENOMEM; 104 105 if (machine__set_mmap_name(machine)) 106 goto out; 107 108 if (pid != HOST_KERNEL_ID) { 109 struct thread *thread = machine__findnew_thread(machine, -1, 110 pid); 111 char comm[64]; 112 113 if (thread == NULL) 114 goto out; 115 116 snprintf(comm, sizeof(comm), "[guest/%d]", pid); 117 thread__set_comm(thread, comm, 0); 118 thread__put(thread); 119 } 120 121 machine->current_tid = NULL; 122 err = 0; 123 124 out: 125 if (err) { 126 zfree(&machine->root_dir); 127 zfree(&machine->mmap_name); 128 } 129 return 0; 130 } 131 132 struct machine *machine__new_host(void) 133 { 134 struct machine *machine = malloc(sizeof(*machine)); 135 136 if (machine != NULL) { 137 machine__init(machine, "", HOST_KERNEL_ID); 138 139 if (machine__create_kernel_maps(machine) < 0) 140 goto out_delete; 141 } 142 143 return machine; 144 out_delete: 145 free(machine); 146 return NULL; 147 } 148 149 struct machine *machine__new_kallsyms(void) 150 { 151 struct machine *machine = machine__new_host(); 152 /* 153 * FIXME: 154 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly 155 * ask for not using the kcore parsing code, once this one is fixed 156 * to create a map per module. 157 */ 158 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) { 159 machine__delete(machine); 160 machine = NULL; 161 } 162 163 return machine; 164 } 165 166 static void dsos__purge(struct dsos *dsos) 167 { 168 struct dso *pos, *n; 169 170 down_write(&dsos->lock); 171 172 list_for_each_entry_safe(pos, n, &dsos->head, node) { 173 RB_CLEAR_NODE(&pos->rb_node); 174 pos->root = NULL; 175 list_del_init(&pos->node); 176 dso__put(pos); 177 } 178 179 up_write(&dsos->lock); 180 } 181 182 static void dsos__exit(struct dsos *dsos) 183 { 184 dsos__purge(dsos); 185 exit_rwsem(&dsos->lock); 186 } 187 188 void machine__delete_threads(struct machine *machine) 189 { 190 struct rb_node *nd; 191 int i; 192 193 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 194 struct threads *threads = &machine->threads[i]; 195 down_write(&threads->lock); 196 nd = rb_first_cached(&threads->entries); 197 while (nd) { 198 struct thread *t = rb_entry(nd, struct thread, rb_node); 199 200 nd = rb_next(nd); 201 __machine__remove_thread(machine, t, false); 202 } 203 up_write(&threads->lock); 204 } 205 } 206 207 void machine__exit(struct machine *machine) 208 { 209 int i; 210 211 if (machine == NULL) 212 return; 213 214 machine__destroy_kernel_maps(machine); 215 map_groups__exit(&machine->kmaps); 216 dsos__exit(&machine->dsos); 217 machine__exit_vdso(machine); 218 zfree(&machine->root_dir); 219 zfree(&machine->mmap_name); 220 zfree(&machine->current_tid); 221 222 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 223 struct threads *threads = &machine->threads[i]; 224 struct thread *thread, *n; 225 /* 226 * Forget about the dead, at this point whatever threads were 227 * left in the dead lists better have a reference count taken 228 * by who is using them, and then, when they drop those references 229 * and it finally hits zero, thread__put() will check and see that 230 * its not in the dead threads list and will not try to remove it 231 * from there, just calling thread__delete() straight away. 232 */ 233 list_for_each_entry_safe(thread, n, &threads->dead, node) 234 list_del_init(&thread->node); 235 236 exit_rwsem(&threads->lock); 237 } 238 } 239 240 void machine__delete(struct machine *machine) 241 { 242 if (machine) { 243 machine__exit(machine); 244 free(machine); 245 } 246 } 247 248 void machines__init(struct machines *machines) 249 { 250 machine__init(&machines->host, "", HOST_KERNEL_ID); 251 machines->guests = RB_ROOT_CACHED; 252 } 253 254 void machines__exit(struct machines *machines) 255 { 256 machine__exit(&machines->host); 257 /* XXX exit guest */ 258 } 259 260 struct machine *machines__add(struct machines *machines, pid_t pid, 261 const char *root_dir) 262 { 263 struct rb_node **p = &machines->guests.rb_root.rb_node; 264 struct rb_node *parent = NULL; 265 struct machine *pos, *machine = malloc(sizeof(*machine)); 266 bool leftmost = true; 267 268 if (machine == NULL) 269 return NULL; 270 271 if (machine__init(machine, root_dir, pid) != 0) { 272 free(machine); 273 return NULL; 274 } 275 276 while (*p != NULL) { 277 parent = *p; 278 pos = rb_entry(parent, struct machine, rb_node); 279 if (pid < pos->pid) 280 p = &(*p)->rb_left; 281 else { 282 p = &(*p)->rb_right; 283 leftmost = false; 284 } 285 } 286 287 rb_link_node(&machine->rb_node, parent, p); 288 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost); 289 290 return machine; 291 } 292 293 void machines__set_comm_exec(struct machines *machines, bool comm_exec) 294 { 295 struct rb_node *nd; 296 297 machines->host.comm_exec = comm_exec; 298 299 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 300 struct machine *machine = rb_entry(nd, struct machine, rb_node); 301 302 machine->comm_exec = comm_exec; 303 } 304 } 305 306 struct machine *machines__find(struct machines *machines, pid_t pid) 307 { 308 struct rb_node **p = &machines->guests.rb_root.rb_node; 309 struct rb_node *parent = NULL; 310 struct machine *machine; 311 struct machine *default_machine = NULL; 312 313 if (pid == HOST_KERNEL_ID) 314 return &machines->host; 315 316 while (*p != NULL) { 317 parent = *p; 318 machine = rb_entry(parent, struct machine, rb_node); 319 if (pid < machine->pid) 320 p = &(*p)->rb_left; 321 else if (pid > machine->pid) 322 p = &(*p)->rb_right; 323 else 324 return machine; 325 if (!machine->pid) 326 default_machine = machine; 327 } 328 329 return default_machine; 330 } 331 332 struct machine *machines__findnew(struct machines *machines, pid_t pid) 333 { 334 char path[PATH_MAX]; 335 const char *root_dir = ""; 336 struct machine *machine = machines__find(machines, pid); 337 338 if (machine && (machine->pid == pid)) 339 goto out; 340 341 if ((pid != HOST_KERNEL_ID) && 342 (pid != DEFAULT_GUEST_KERNEL_ID) && 343 (symbol_conf.guestmount)) { 344 sprintf(path, "%s/%d", symbol_conf.guestmount, pid); 345 if (access(path, R_OK)) { 346 static struct strlist *seen; 347 348 if (!seen) 349 seen = strlist__new(NULL, NULL); 350 351 if (!strlist__has_entry(seen, path)) { 352 pr_err("Can't access file %s\n", path); 353 strlist__add(seen, path); 354 } 355 machine = NULL; 356 goto out; 357 } 358 root_dir = path; 359 } 360 361 machine = machines__add(machines, pid, root_dir); 362 out: 363 return machine; 364 } 365 366 void machines__process_guests(struct machines *machines, 367 machine__process_t process, void *data) 368 { 369 struct rb_node *nd; 370 371 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 372 struct machine *pos = rb_entry(nd, struct machine, rb_node); 373 process(pos, data); 374 } 375 } 376 377 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size) 378 { 379 struct rb_node *node; 380 struct machine *machine; 381 382 machines->host.id_hdr_size = id_hdr_size; 383 384 for (node = rb_first_cached(&machines->guests); node; 385 node = rb_next(node)) { 386 machine = rb_entry(node, struct machine, rb_node); 387 machine->id_hdr_size = id_hdr_size; 388 } 389 390 return; 391 } 392 393 static void machine__update_thread_pid(struct machine *machine, 394 struct thread *th, pid_t pid) 395 { 396 struct thread *leader; 397 398 if (pid == th->pid_ || pid == -1 || th->pid_ != -1) 399 return; 400 401 th->pid_ = pid; 402 403 if (th->pid_ == th->tid) 404 return; 405 406 leader = __machine__findnew_thread(machine, th->pid_, th->pid_); 407 if (!leader) 408 goto out_err; 409 410 if (!leader->mg) 411 leader->mg = map_groups__new(machine); 412 413 if (!leader->mg) 414 goto out_err; 415 416 if (th->mg == leader->mg) 417 return; 418 419 if (th->mg) { 420 /* 421 * Maps are created from MMAP events which provide the pid and 422 * tid. Consequently there never should be any maps on a thread 423 * with an unknown pid. Just print an error if there are. 424 */ 425 if (!map_groups__empty(th->mg)) 426 pr_err("Discarding thread maps for %d:%d\n", 427 th->pid_, th->tid); 428 map_groups__put(th->mg); 429 } 430 431 th->mg = map_groups__get(leader->mg); 432 out_put: 433 thread__put(leader); 434 return; 435 out_err: 436 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid); 437 goto out_put; 438 } 439 440 /* 441 * Front-end cache - TID lookups come in blocks, 442 * so most of the time we dont have to look up 443 * the full rbtree: 444 */ 445 static struct thread* 446 __threads__get_last_match(struct threads *threads, struct machine *machine, 447 int pid, int tid) 448 { 449 struct thread *th; 450 451 th = threads->last_match; 452 if (th != NULL) { 453 if (th->tid == tid) { 454 machine__update_thread_pid(machine, th, pid); 455 return thread__get(th); 456 } 457 458 threads->last_match = NULL; 459 } 460 461 return NULL; 462 } 463 464 static struct thread* 465 threads__get_last_match(struct threads *threads, struct machine *machine, 466 int pid, int tid) 467 { 468 struct thread *th = NULL; 469 470 if (perf_singlethreaded) 471 th = __threads__get_last_match(threads, machine, pid, tid); 472 473 return th; 474 } 475 476 static void 477 __threads__set_last_match(struct threads *threads, struct thread *th) 478 { 479 threads->last_match = th; 480 } 481 482 static void 483 threads__set_last_match(struct threads *threads, struct thread *th) 484 { 485 if (perf_singlethreaded) 486 __threads__set_last_match(threads, th); 487 } 488 489 /* 490 * Caller must eventually drop thread->refcnt returned with a successful 491 * lookup/new thread inserted. 492 */ 493 static struct thread *____machine__findnew_thread(struct machine *machine, 494 struct threads *threads, 495 pid_t pid, pid_t tid, 496 bool create) 497 { 498 struct rb_node **p = &threads->entries.rb_root.rb_node; 499 struct rb_node *parent = NULL; 500 struct thread *th; 501 bool leftmost = true; 502 503 th = threads__get_last_match(threads, machine, pid, tid); 504 if (th) 505 return th; 506 507 while (*p != NULL) { 508 parent = *p; 509 th = rb_entry(parent, struct thread, rb_node); 510 511 if (th->tid == tid) { 512 threads__set_last_match(threads, th); 513 machine__update_thread_pid(machine, th, pid); 514 return thread__get(th); 515 } 516 517 if (tid < th->tid) 518 p = &(*p)->rb_left; 519 else { 520 p = &(*p)->rb_right; 521 leftmost = false; 522 } 523 } 524 525 if (!create) 526 return NULL; 527 528 th = thread__new(pid, tid); 529 if (th != NULL) { 530 rb_link_node(&th->rb_node, parent, p); 531 rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost); 532 533 /* 534 * We have to initialize map_groups separately 535 * after rb tree is updated. 536 * 537 * The reason is that we call machine__findnew_thread 538 * within thread__init_map_groups to find the thread 539 * leader and that would screwed the rb tree. 540 */ 541 if (thread__init_map_groups(th, machine)) { 542 rb_erase_cached(&th->rb_node, &threads->entries); 543 RB_CLEAR_NODE(&th->rb_node); 544 thread__put(th); 545 return NULL; 546 } 547 /* 548 * It is now in the rbtree, get a ref 549 */ 550 thread__get(th); 551 threads__set_last_match(threads, th); 552 ++threads->nr; 553 } 554 555 return th; 556 } 557 558 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid) 559 { 560 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true); 561 } 562 563 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, 564 pid_t tid) 565 { 566 struct threads *threads = machine__threads(machine, tid); 567 struct thread *th; 568 569 down_write(&threads->lock); 570 th = __machine__findnew_thread(machine, pid, tid); 571 up_write(&threads->lock); 572 return th; 573 } 574 575 struct thread *machine__find_thread(struct machine *machine, pid_t pid, 576 pid_t tid) 577 { 578 struct threads *threads = machine__threads(machine, tid); 579 struct thread *th; 580 581 down_read(&threads->lock); 582 th = ____machine__findnew_thread(machine, threads, pid, tid, false); 583 up_read(&threads->lock); 584 return th; 585 } 586 587 struct comm *machine__thread_exec_comm(struct machine *machine, 588 struct thread *thread) 589 { 590 if (machine->comm_exec) 591 return thread__exec_comm(thread); 592 else 593 return thread__comm(thread); 594 } 595 596 int machine__process_comm_event(struct machine *machine, union perf_event *event, 597 struct perf_sample *sample) 598 { 599 struct thread *thread = machine__findnew_thread(machine, 600 event->comm.pid, 601 event->comm.tid); 602 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC; 603 int err = 0; 604 605 if (exec) 606 machine->comm_exec = true; 607 608 if (dump_trace) 609 perf_event__fprintf_comm(event, stdout); 610 611 if (thread == NULL || 612 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) { 613 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n"); 614 err = -1; 615 } 616 617 thread__put(thread); 618 619 return err; 620 } 621 622 int machine__process_namespaces_event(struct machine *machine __maybe_unused, 623 union perf_event *event, 624 struct perf_sample *sample __maybe_unused) 625 { 626 struct thread *thread = machine__findnew_thread(machine, 627 event->namespaces.pid, 628 event->namespaces.tid); 629 int err = 0; 630 631 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES, 632 "\nWARNING: kernel seems to support more namespaces than perf" 633 " tool.\nTry updating the perf tool..\n\n"); 634 635 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES, 636 "\nWARNING: perf tool seems to support more namespaces than" 637 " the kernel.\nTry updating the kernel..\n\n"); 638 639 if (dump_trace) 640 perf_event__fprintf_namespaces(event, stdout); 641 642 if (thread == NULL || 643 thread__set_namespaces(thread, sample->time, &event->namespaces)) { 644 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n"); 645 err = -1; 646 } 647 648 thread__put(thread); 649 650 return err; 651 } 652 653 int machine__process_lost_event(struct machine *machine __maybe_unused, 654 union perf_event *event, struct perf_sample *sample __maybe_unused) 655 { 656 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n", 657 event->lost.id, event->lost.lost); 658 return 0; 659 } 660 661 int machine__process_lost_samples_event(struct machine *machine __maybe_unused, 662 union perf_event *event, struct perf_sample *sample) 663 { 664 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n", 665 sample->id, event->lost_samples.lost); 666 return 0; 667 } 668 669 static struct dso *machine__findnew_module_dso(struct machine *machine, 670 struct kmod_path *m, 671 const char *filename) 672 { 673 struct dso *dso; 674 675 down_write(&machine->dsos.lock); 676 677 dso = __dsos__find(&machine->dsos, m->name, true); 678 if (!dso) { 679 dso = __dsos__addnew(&machine->dsos, m->name); 680 if (dso == NULL) 681 goto out_unlock; 682 683 dso__set_module_info(dso, m, machine); 684 dso__set_long_name(dso, strdup(filename), true); 685 } 686 687 dso__get(dso); 688 out_unlock: 689 up_write(&machine->dsos.lock); 690 return dso; 691 } 692 693 int machine__process_aux_event(struct machine *machine __maybe_unused, 694 union perf_event *event) 695 { 696 if (dump_trace) 697 perf_event__fprintf_aux(event, stdout); 698 return 0; 699 } 700 701 int machine__process_itrace_start_event(struct machine *machine __maybe_unused, 702 union perf_event *event) 703 { 704 if (dump_trace) 705 perf_event__fprintf_itrace_start(event, stdout); 706 return 0; 707 } 708 709 int machine__process_switch_event(struct machine *machine __maybe_unused, 710 union perf_event *event) 711 { 712 if (dump_trace) 713 perf_event__fprintf_switch(event, stdout); 714 return 0; 715 } 716 717 static int machine__process_ksymbol_register(struct machine *machine, 718 union perf_event *event, 719 struct perf_sample *sample __maybe_unused) 720 { 721 struct symbol *sym; 722 struct map *map; 723 724 map = map_groups__find(&machine->kmaps, event->ksymbol.addr); 725 if (!map) { 726 map = dso__new_map(event->ksymbol.name); 727 if (!map) 728 return -ENOMEM; 729 730 map->start = event->ksymbol.addr; 731 map->end = map->start + event->ksymbol.len; 732 map_groups__insert(&machine->kmaps, map); 733 } 734 735 sym = symbol__new(map->map_ip(map, map->start), 736 event->ksymbol.len, 737 0, 0, event->ksymbol.name); 738 if (!sym) 739 return -ENOMEM; 740 dso__insert_symbol(map->dso, sym); 741 return 0; 742 } 743 744 static int machine__process_ksymbol_unregister(struct machine *machine, 745 union perf_event *event, 746 struct perf_sample *sample __maybe_unused) 747 { 748 struct map *map; 749 750 map = map_groups__find(&machine->kmaps, event->ksymbol.addr); 751 if (map) 752 map_groups__remove(&machine->kmaps, map); 753 754 return 0; 755 } 756 757 int machine__process_ksymbol(struct machine *machine __maybe_unused, 758 union perf_event *event, 759 struct perf_sample *sample) 760 { 761 if (dump_trace) 762 perf_event__fprintf_ksymbol(event, stdout); 763 764 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER) 765 return machine__process_ksymbol_unregister(machine, event, 766 sample); 767 return machine__process_ksymbol_register(machine, event, sample); 768 } 769 770 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename) 771 { 772 const char *dup_filename; 773 774 if (!filename || !dso || !dso->long_name) 775 return; 776 if (dso->long_name[0] != '[') 777 return; 778 if (!strchr(filename, '/')) 779 return; 780 781 dup_filename = strdup(filename); 782 if (!dup_filename) 783 return; 784 785 dso__set_long_name(dso, dup_filename, true); 786 } 787 788 struct map *machine__findnew_module_map(struct machine *machine, u64 start, 789 const char *filename) 790 { 791 struct map *map = NULL; 792 struct dso *dso = NULL; 793 struct kmod_path m; 794 795 if (kmod_path__parse_name(&m, filename)) 796 return NULL; 797 798 map = map_groups__find_by_name(&machine->kmaps, m.name); 799 if (map) { 800 /* 801 * If the map's dso is an offline module, give dso__load() 802 * a chance to find the file path of that module by fixing 803 * long_name. 804 */ 805 dso__adjust_kmod_long_name(map->dso, filename); 806 goto out; 807 } 808 809 dso = machine__findnew_module_dso(machine, &m, filename); 810 if (dso == NULL) 811 goto out; 812 813 map = map__new2(start, dso); 814 if (map == NULL) 815 goto out; 816 817 map_groups__insert(&machine->kmaps, map); 818 819 /* Put the map here because map_groups__insert alread got it */ 820 map__put(map); 821 out: 822 /* put the dso here, corresponding to machine__findnew_module_dso */ 823 dso__put(dso); 824 zfree(&m.name); 825 return map; 826 } 827 828 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp) 829 { 830 struct rb_node *nd; 831 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp); 832 833 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 834 struct machine *pos = rb_entry(nd, struct machine, rb_node); 835 ret += __dsos__fprintf(&pos->dsos.head, fp); 836 } 837 838 return ret; 839 } 840 841 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp, 842 bool (skip)(struct dso *dso, int parm), int parm) 843 { 844 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm); 845 } 846 847 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp, 848 bool (skip)(struct dso *dso, int parm), int parm) 849 { 850 struct rb_node *nd; 851 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm); 852 853 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 854 struct machine *pos = rb_entry(nd, struct machine, rb_node); 855 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm); 856 } 857 return ret; 858 } 859 860 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp) 861 { 862 int i; 863 size_t printed = 0; 864 struct dso *kdso = machine__kernel_map(machine)->dso; 865 866 if (kdso->has_build_id) { 867 char filename[PATH_MAX]; 868 if (dso__build_id_filename(kdso, filename, sizeof(filename), 869 false)) 870 printed += fprintf(fp, "[0] %s\n", filename); 871 } 872 873 for (i = 0; i < vmlinux_path__nr_entries; ++i) 874 printed += fprintf(fp, "[%d] %s\n", 875 i + kdso->has_build_id, vmlinux_path[i]); 876 877 return printed; 878 } 879 880 size_t machine__fprintf(struct machine *machine, FILE *fp) 881 { 882 struct rb_node *nd; 883 size_t ret; 884 int i; 885 886 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 887 struct threads *threads = &machine->threads[i]; 888 889 down_read(&threads->lock); 890 891 ret = fprintf(fp, "Threads: %u\n", threads->nr); 892 893 for (nd = rb_first_cached(&threads->entries); nd; 894 nd = rb_next(nd)) { 895 struct thread *pos = rb_entry(nd, struct thread, rb_node); 896 897 ret += thread__fprintf(pos, fp); 898 } 899 900 up_read(&threads->lock); 901 } 902 return ret; 903 } 904 905 static struct dso *machine__get_kernel(struct machine *machine) 906 { 907 const char *vmlinux_name = machine->mmap_name; 908 struct dso *kernel; 909 910 if (machine__is_host(machine)) { 911 if (symbol_conf.vmlinux_name) 912 vmlinux_name = symbol_conf.vmlinux_name; 913 914 kernel = machine__findnew_kernel(machine, vmlinux_name, 915 "[kernel]", DSO_TYPE_KERNEL); 916 } else { 917 if (symbol_conf.default_guest_vmlinux_name) 918 vmlinux_name = symbol_conf.default_guest_vmlinux_name; 919 920 kernel = machine__findnew_kernel(machine, vmlinux_name, 921 "[guest.kernel]", 922 DSO_TYPE_GUEST_KERNEL); 923 } 924 925 if (kernel != NULL && (!kernel->has_build_id)) 926 dso__read_running_kernel_build_id(kernel, machine); 927 928 return kernel; 929 } 930 931 struct process_args { 932 u64 start; 933 }; 934 935 void machine__get_kallsyms_filename(struct machine *machine, char *buf, 936 size_t bufsz) 937 { 938 if (machine__is_default_guest(machine)) 939 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms); 940 else 941 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir); 942 } 943 944 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL}; 945 946 /* Figure out the start address of kernel map from /proc/kallsyms. 947 * Returns the name of the start symbol in *symbol_name. Pass in NULL as 948 * symbol_name if it's not that important. 949 */ 950 static int machine__get_running_kernel_start(struct machine *machine, 951 const char **symbol_name, 952 u64 *start, u64 *end) 953 { 954 char filename[PATH_MAX]; 955 int i, err = -1; 956 const char *name; 957 u64 addr = 0; 958 959 machine__get_kallsyms_filename(machine, filename, PATH_MAX); 960 961 if (symbol__restricted_filename(filename, "/proc/kallsyms")) 962 return 0; 963 964 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) { 965 err = kallsyms__get_function_start(filename, name, &addr); 966 if (!err) 967 break; 968 } 969 970 if (err) 971 return -1; 972 973 if (symbol_name) 974 *symbol_name = name; 975 976 *start = addr; 977 978 err = kallsyms__get_function_start(filename, "_etext", &addr); 979 if (!err) 980 *end = addr; 981 982 return 0; 983 } 984 985 int machine__create_extra_kernel_map(struct machine *machine, 986 struct dso *kernel, 987 struct extra_kernel_map *xm) 988 { 989 struct kmap *kmap; 990 struct map *map; 991 992 map = map__new2(xm->start, kernel); 993 if (!map) 994 return -1; 995 996 map->end = xm->end; 997 map->pgoff = xm->pgoff; 998 999 kmap = map__kmap(map); 1000 1001 kmap->kmaps = &machine->kmaps; 1002 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN); 1003 1004 map_groups__insert(&machine->kmaps, map); 1005 1006 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n", 1007 kmap->name, map->start, map->end); 1008 1009 map__put(map); 1010 1011 return 0; 1012 } 1013 1014 static u64 find_entry_trampoline(struct dso *dso) 1015 { 1016 /* Duplicates are removed so lookup all aliases */ 1017 const char *syms[] = { 1018 "_entry_trampoline", 1019 "__entry_trampoline_start", 1020 "entry_SYSCALL_64_trampoline", 1021 }; 1022 struct symbol *sym = dso__first_symbol(dso); 1023 unsigned int i; 1024 1025 for (; sym; sym = dso__next_symbol(sym)) { 1026 if (sym->binding != STB_GLOBAL) 1027 continue; 1028 for (i = 0; i < ARRAY_SIZE(syms); i++) { 1029 if (!strcmp(sym->name, syms[i])) 1030 return sym->start; 1031 } 1032 } 1033 1034 return 0; 1035 } 1036 1037 /* 1038 * These values can be used for kernels that do not have symbols for the entry 1039 * trampolines in kallsyms. 1040 */ 1041 #define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL 1042 #define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000 1043 #define X86_64_ENTRY_TRAMPOLINE 0x6000 1044 1045 /* Map x86_64 PTI entry trampolines */ 1046 int machine__map_x86_64_entry_trampolines(struct machine *machine, 1047 struct dso *kernel) 1048 { 1049 struct map_groups *kmaps = &machine->kmaps; 1050 struct maps *maps = &kmaps->maps; 1051 int nr_cpus_avail, cpu; 1052 bool found = false; 1053 struct map *map; 1054 u64 pgoff; 1055 1056 /* 1057 * In the vmlinux case, pgoff is a virtual address which must now be 1058 * mapped to a vmlinux offset. 1059 */ 1060 for (map = maps__first(maps); map; map = map__next(map)) { 1061 struct kmap *kmap = __map__kmap(map); 1062 struct map *dest_map; 1063 1064 if (!kmap || !is_entry_trampoline(kmap->name)) 1065 continue; 1066 1067 dest_map = map_groups__find(kmaps, map->pgoff); 1068 if (dest_map != map) 1069 map->pgoff = dest_map->map_ip(dest_map, map->pgoff); 1070 found = true; 1071 } 1072 if (found || machine->trampolines_mapped) 1073 return 0; 1074 1075 pgoff = find_entry_trampoline(kernel); 1076 if (!pgoff) 1077 return 0; 1078 1079 nr_cpus_avail = machine__nr_cpus_avail(machine); 1080 1081 /* Add a 1 page map for each CPU's entry trampoline */ 1082 for (cpu = 0; cpu < nr_cpus_avail; cpu++) { 1083 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU + 1084 cpu * X86_64_CPU_ENTRY_AREA_SIZE + 1085 X86_64_ENTRY_TRAMPOLINE; 1086 struct extra_kernel_map xm = { 1087 .start = va, 1088 .end = va + page_size, 1089 .pgoff = pgoff, 1090 }; 1091 1092 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN); 1093 1094 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0) 1095 return -1; 1096 } 1097 1098 machine->trampolines_mapped = nr_cpus_avail; 1099 1100 return 0; 1101 } 1102 1103 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused, 1104 struct dso *kernel __maybe_unused) 1105 { 1106 return 0; 1107 } 1108 1109 static int 1110 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel) 1111 { 1112 struct kmap *kmap; 1113 struct map *map; 1114 1115 /* In case of renewal the kernel map, destroy previous one */ 1116 machine__destroy_kernel_maps(machine); 1117 1118 machine->vmlinux_map = map__new2(0, kernel); 1119 if (machine->vmlinux_map == NULL) 1120 return -1; 1121 1122 machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip; 1123 map = machine__kernel_map(machine); 1124 kmap = map__kmap(map); 1125 if (!kmap) 1126 return -1; 1127 1128 kmap->kmaps = &machine->kmaps; 1129 map_groups__insert(&machine->kmaps, map); 1130 1131 return 0; 1132 } 1133 1134 void machine__destroy_kernel_maps(struct machine *machine) 1135 { 1136 struct kmap *kmap; 1137 struct map *map = machine__kernel_map(machine); 1138 1139 if (map == NULL) 1140 return; 1141 1142 kmap = map__kmap(map); 1143 map_groups__remove(&machine->kmaps, map); 1144 if (kmap && kmap->ref_reloc_sym) { 1145 zfree((char **)&kmap->ref_reloc_sym->name); 1146 zfree(&kmap->ref_reloc_sym); 1147 } 1148 1149 map__zput(machine->vmlinux_map); 1150 } 1151 1152 int machines__create_guest_kernel_maps(struct machines *machines) 1153 { 1154 int ret = 0; 1155 struct dirent **namelist = NULL; 1156 int i, items = 0; 1157 char path[PATH_MAX]; 1158 pid_t pid; 1159 char *endp; 1160 1161 if (symbol_conf.default_guest_vmlinux_name || 1162 symbol_conf.default_guest_modules || 1163 symbol_conf.default_guest_kallsyms) { 1164 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID); 1165 } 1166 1167 if (symbol_conf.guestmount) { 1168 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL); 1169 if (items <= 0) 1170 return -ENOENT; 1171 for (i = 0; i < items; i++) { 1172 if (!isdigit(namelist[i]->d_name[0])) { 1173 /* Filter out . and .. */ 1174 continue; 1175 } 1176 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10); 1177 if ((*endp != '\0') || 1178 (endp == namelist[i]->d_name) || 1179 (errno == ERANGE)) { 1180 pr_debug("invalid directory (%s). Skipping.\n", 1181 namelist[i]->d_name); 1182 continue; 1183 } 1184 sprintf(path, "%s/%s/proc/kallsyms", 1185 symbol_conf.guestmount, 1186 namelist[i]->d_name); 1187 ret = access(path, R_OK); 1188 if (ret) { 1189 pr_debug("Can't access file %s\n", path); 1190 goto failure; 1191 } 1192 machines__create_kernel_maps(machines, pid); 1193 } 1194 failure: 1195 free(namelist); 1196 } 1197 1198 return ret; 1199 } 1200 1201 void machines__destroy_kernel_maps(struct machines *machines) 1202 { 1203 struct rb_node *next = rb_first_cached(&machines->guests); 1204 1205 machine__destroy_kernel_maps(&machines->host); 1206 1207 while (next) { 1208 struct machine *pos = rb_entry(next, struct machine, rb_node); 1209 1210 next = rb_next(&pos->rb_node); 1211 rb_erase_cached(&pos->rb_node, &machines->guests); 1212 machine__delete(pos); 1213 } 1214 } 1215 1216 int machines__create_kernel_maps(struct machines *machines, pid_t pid) 1217 { 1218 struct machine *machine = machines__findnew(machines, pid); 1219 1220 if (machine == NULL) 1221 return -1; 1222 1223 return machine__create_kernel_maps(machine); 1224 } 1225 1226 int machine__load_kallsyms(struct machine *machine, const char *filename) 1227 { 1228 struct map *map = machine__kernel_map(machine); 1229 int ret = __dso__load_kallsyms(map->dso, filename, map, true); 1230 1231 if (ret > 0) { 1232 dso__set_loaded(map->dso); 1233 /* 1234 * Since /proc/kallsyms will have multiple sessions for the 1235 * kernel, with modules between them, fixup the end of all 1236 * sections. 1237 */ 1238 map_groups__fixup_end(&machine->kmaps); 1239 } 1240 1241 return ret; 1242 } 1243 1244 int machine__load_vmlinux_path(struct machine *machine) 1245 { 1246 struct map *map = machine__kernel_map(machine); 1247 int ret = dso__load_vmlinux_path(map->dso, map); 1248 1249 if (ret > 0) 1250 dso__set_loaded(map->dso); 1251 1252 return ret; 1253 } 1254 1255 static char *get_kernel_version(const char *root_dir) 1256 { 1257 char version[PATH_MAX]; 1258 FILE *file; 1259 char *name, *tmp; 1260 const char *prefix = "Linux version "; 1261 1262 sprintf(version, "%s/proc/version", root_dir); 1263 file = fopen(version, "r"); 1264 if (!file) 1265 return NULL; 1266 1267 tmp = fgets(version, sizeof(version), file); 1268 fclose(file); 1269 if (!tmp) 1270 return NULL; 1271 1272 name = strstr(version, prefix); 1273 if (!name) 1274 return NULL; 1275 name += strlen(prefix); 1276 tmp = strchr(name, ' '); 1277 if (tmp) 1278 *tmp = '\0'; 1279 1280 return strdup(name); 1281 } 1282 1283 static bool is_kmod_dso(struct dso *dso) 1284 { 1285 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE || 1286 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE; 1287 } 1288 1289 static int map_groups__set_module_path(struct map_groups *mg, const char *path, 1290 struct kmod_path *m) 1291 { 1292 char *long_name; 1293 struct map *map = map_groups__find_by_name(mg, m->name); 1294 1295 if (map == NULL) 1296 return 0; 1297 1298 long_name = strdup(path); 1299 if (long_name == NULL) 1300 return -ENOMEM; 1301 1302 dso__set_long_name(map->dso, long_name, true); 1303 dso__kernel_module_get_build_id(map->dso, ""); 1304 1305 /* 1306 * Full name could reveal us kmod compression, so 1307 * we need to update the symtab_type if needed. 1308 */ 1309 if (m->comp && is_kmod_dso(map->dso)) { 1310 map->dso->symtab_type++; 1311 map->dso->comp = m->comp; 1312 } 1313 1314 return 0; 1315 } 1316 1317 static int map_groups__set_modules_path_dir(struct map_groups *mg, 1318 const char *dir_name, int depth) 1319 { 1320 struct dirent *dent; 1321 DIR *dir = opendir(dir_name); 1322 int ret = 0; 1323 1324 if (!dir) { 1325 pr_debug("%s: cannot open %s dir\n", __func__, dir_name); 1326 return -1; 1327 } 1328 1329 while ((dent = readdir(dir)) != NULL) { 1330 char path[PATH_MAX]; 1331 struct stat st; 1332 1333 /*sshfs might return bad dent->d_type, so we have to stat*/ 1334 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name); 1335 if (stat(path, &st)) 1336 continue; 1337 1338 if (S_ISDIR(st.st_mode)) { 1339 if (!strcmp(dent->d_name, ".") || 1340 !strcmp(dent->d_name, "..")) 1341 continue; 1342 1343 /* Do not follow top-level source and build symlinks */ 1344 if (depth == 0) { 1345 if (!strcmp(dent->d_name, "source") || 1346 !strcmp(dent->d_name, "build")) 1347 continue; 1348 } 1349 1350 ret = map_groups__set_modules_path_dir(mg, path, 1351 depth + 1); 1352 if (ret < 0) 1353 goto out; 1354 } else { 1355 struct kmod_path m; 1356 1357 ret = kmod_path__parse_name(&m, dent->d_name); 1358 if (ret) 1359 goto out; 1360 1361 if (m.kmod) 1362 ret = map_groups__set_module_path(mg, path, &m); 1363 1364 zfree(&m.name); 1365 1366 if (ret) 1367 goto out; 1368 } 1369 } 1370 1371 out: 1372 closedir(dir); 1373 return ret; 1374 } 1375 1376 static int machine__set_modules_path(struct machine *machine) 1377 { 1378 char *version; 1379 char modules_path[PATH_MAX]; 1380 1381 version = get_kernel_version(machine->root_dir); 1382 if (!version) 1383 return -1; 1384 1385 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s", 1386 machine->root_dir, version); 1387 free(version); 1388 1389 return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0); 1390 } 1391 int __weak arch__fix_module_text_start(u64 *start __maybe_unused, 1392 u64 *size __maybe_unused, 1393 const char *name __maybe_unused) 1394 { 1395 return 0; 1396 } 1397 1398 static int machine__create_module(void *arg, const char *name, u64 start, 1399 u64 size) 1400 { 1401 struct machine *machine = arg; 1402 struct map *map; 1403 1404 if (arch__fix_module_text_start(&start, &size, name) < 0) 1405 return -1; 1406 1407 map = machine__findnew_module_map(machine, start, name); 1408 if (map == NULL) 1409 return -1; 1410 map->end = start + size; 1411 1412 dso__kernel_module_get_build_id(map->dso, machine->root_dir); 1413 1414 return 0; 1415 } 1416 1417 static int machine__create_modules(struct machine *machine) 1418 { 1419 const char *modules; 1420 char path[PATH_MAX]; 1421 1422 if (machine__is_default_guest(machine)) { 1423 modules = symbol_conf.default_guest_modules; 1424 } else { 1425 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir); 1426 modules = path; 1427 } 1428 1429 if (symbol__restricted_filename(modules, "/proc/modules")) 1430 return -1; 1431 1432 if (modules__parse(modules, machine, machine__create_module)) 1433 return -1; 1434 1435 if (!machine__set_modules_path(machine)) 1436 return 0; 1437 1438 pr_debug("Problems setting modules path maps, continuing anyway...\n"); 1439 1440 return 0; 1441 } 1442 1443 static void machine__set_kernel_mmap(struct machine *machine, 1444 u64 start, u64 end) 1445 { 1446 machine->vmlinux_map->start = start; 1447 machine->vmlinux_map->end = end; 1448 /* 1449 * Be a bit paranoid here, some perf.data file came with 1450 * a zero sized synthesized MMAP event for the kernel. 1451 */ 1452 if (start == 0 && end == 0) 1453 machine->vmlinux_map->end = ~0ULL; 1454 } 1455 1456 static void machine__update_kernel_mmap(struct machine *machine, 1457 u64 start, u64 end) 1458 { 1459 struct map *map = machine__kernel_map(machine); 1460 1461 map__get(map); 1462 map_groups__remove(&machine->kmaps, map); 1463 1464 machine__set_kernel_mmap(machine, start, end); 1465 1466 map_groups__insert(&machine->kmaps, map); 1467 map__put(map); 1468 } 1469 1470 int machine__create_kernel_maps(struct machine *machine) 1471 { 1472 struct dso *kernel = machine__get_kernel(machine); 1473 const char *name = NULL; 1474 struct map *map; 1475 u64 start = 0, end = ~0ULL; 1476 int ret; 1477 1478 if (kernel == NULL) 1479 return -1; 1480 1481 ret = __machine__create_kernel_maps(machine, kernel); 1482 if (ret < 0) 1483 goto out_put; 1484 1485 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) { 1486 if (machine__is_host(machine)) 1487 pr_debug("Problems creating module maps, " 1488 "continuing anyway...\n"); 1489 else 1490 pr_debug("Problems creating module maps for guest %d, " 1491 "continuing anyway...\n", machine->pid); 1492 } 1493 1494 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) { 1495 if (name && 1496 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) { 1497 machine__destroy_kernel_maps(machine); 1498 ret = -1; 1499 goto out_put; 1500 } 1501 1502 /* 1503 * we have a real start address now, so re-order the kmaps 1504 * assume it's the last in the kmaps 1505 */ 1506 machine__update_kernel_mmap(machine, start, end); 1507 } 1508 1509 if (machine__create_extra_kernel_maps(machine, kernel)) 1510 pr_debug("Problems creating extra kernel maps, continuing anyway...\n"); 1511 1512 if (end == ~0ULL) { 1513 /* update end address of the kernel map using adjacent module address */ 1514 map = map__next(machine__kernel_map(machine)); 1515 if (map) 1516 machine__set_kernel_mmap(machine, start, map->start); 1517 } 1518 1519 out_put: 1520 dso__put(kernel); 1521 return ret; 1522 } 1523 1524 static bool machine__uses_kcore(struct machine *machine) 1525 { 1526 struct dso *dso; 1527 1528 list_for_each_entry(dso, &machine->dsos.head, node) { 1529 if (dso__is_kcore(dso)) 1530 return true; 1531 } 1532 1533 return false; 1534 } 1535 1536 static bool perf_event__is_extra_kernel_mmap(struct machine *machine, 1537 union perf_event *event) 1538 { 1539 return machine__is(machine, "x86_64") && 1540 is_entry_trampoline(event->mmap.filename); 1541 } 1542 1543 static int machine__process_extra_kernel_map(struct machine *machine, 1544 union perf_event *event) 1545 { 1546 struct map *kernel_map = machine__kernel_map(machine); 1547 struct dso *kernel = kernel_map ? kernel_map->dso : NULL; 1548 struct extra_kernel_map xm = { 1549 .start = event->mmap.start, 1550 .end = event->mmap.start + event->mmap.len, 1551 .pgoff = event->mmap.pgoff, 1552 }; 1553 1554 if (kernel == NULL) 1555 return -1; 1556 1557 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN); 1558 1559 return machine__create_extra_kernel_map(machine, kernel, &xm); 1560 } 1561 1562 static int machine__process_kernel_mmap_event(struct machine *machine, 1563 union perf_event *event) 1564 { 1565 struct map *map; 1566 enum dso_kernel_type kernel_type; 1567 bool is_kernel_mmap; 1568 1569 /* If we have maps from kcore then we do not need or want any others */ 1570 if (machine__uses_kcore(machine)) 1571 return 0; 1572 1573 if (machine__is_host(machine)) 1574 kernel_type = DSO_TYPE_KERNEL; 1575 else 1576 kernel_type = DSO_TYPE_GUEST_KERNEL; 1577 1578 is_kernel_mmap = memcmp(event->mmap.filename, 1579 machine->mmap_name, 1580 strlen(machine->mmap_name) - 1) == 0; 1581 if (event->mmap.filename[0] == '/' || 1582 (!is_kernel_mmap && event->mmap.filename[0] == '[')) { 1583 map = machine__findnew_module_map(machine, event->mmap.start, 1584 event->mmap.filename); 1585 if (map == NULL) 1586 goto out_problem; 1587 1588 map->end = map->start + event->mmap.len; 1589 } else if (is_kernel_mmap) { 1590 const char *symbol_name = (event->mmap.filename + 1591 strlen(machine->mmap_name)); 1592 /* 1593 * Should be there already, from the build-id table in 1594 * the header. 1595 */ 1596 struct dso *kernel = NULL; 1597 struct dso *dso; 1598 1599 down_read(&machine->dsos.lock); 1600 1601 list_for_each_entry(dso, &machine->dsos.head, node) { 1602 1603 /* 1604 * The cpumode passed to is_kernel_module is not the 1605 * cpumode of *this* event. If we insist on passing 1606 * correct cpumode to is_kernel_module, we should 1607 * record the cpumode when we adding this dso to the 1608 * linked list. 1609 * 1610 * However we don't really need passing correct 1611 * cpumode. We know the correct cpumode must be kernel 1612 * mode (if not, we should not link it onto kernel_dsos 1613 * list). 1614 * 1615 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN. 1616 * is_kernel_module() treats it as a kernel cpumode. 1617 */ 1618 1619 if (!dso->kernel || 1620 is_kernel_module(dso->long_name, 1621 PERF_RECORD_MISC_CPUMODE_UNKNOWN)) 1622 continue; 1623 1624 1625 kernel = dso; 1626 break; 1627 } 1628 1629 up_read(&machine->dsos.lock); 1630 1631 if (kernel == NULL) 1632 kernel = machine__findnew_dso(machine, machine->mmap_name); 1633 if (kernel == NULL) 1634 goto out_problem; 1635 1636 kernel->kernel = kernel_type; 1637 if (__machine__create_kernel_maps(machine, kernel) < 0) { 1638 dso__put(kernel); 1639 goto out_problem; 1640 } 1641 1642 if (strstr(kernel->long_name, "vmlinux")) 1643 dso__set_short_name(kernel, "[kernel.vmlinux]", false); 1644 1645 machine__update_kernel_mmap(machine, event->mmap.start, 1646 event->mmap.start + event->mmap.len); 1647 1648 /* 1649 * Avoid using a zero address (kptr_restrict) for the ref reloc 1650 * symbol. Effectively having zero here means that at record 1651 * time /proc/sys/kernel/kptr_restrict was non zero. 1652 */ 1653 if (event->mmap.pgoff != 0) { 1654 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, 1655 symbol_name, 1656 event->mmap.pgoff); 1657 } 1658 1659 if (machine__is_default_guest(machine)) { 1660 /* 1661 * preload dso of guest kernel and modules 1662 */ 1663 dso__load(kernel, machine__kernel_map(machine)); 1664 } 1665 } else if (perf_event__is_extra_kernel_mmap(machine, event)) { 1666 return machine__process_extra_kernel_map(machine, event); 1667 } 1668 return 0; 1669 out_problem: 1670 return -1; 1671 } 1672 1673 int machine__process_mmap2_event(struct machine *machine, 1674 union perf_event *event, 1675 struct perf_sample *sample) 1676 { 1677 struct thread *thread; 1678 struct map *map; 1679 int ret = 0; 1680 1681 if (dump_trace) 1682 perf_event__fprintf_mmap2(event, stdout); 1683 1684 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1685 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1686 ret = machine__process_kernel_mmap_event(machine, event); 1687 if (ret < 0) 1688 goto out_problem; 1689 return 0; 1690 } 1691 1692 thread = machine__findnew_thread(machine, event->mmap2.pid, 1693 event->mmap2.tid); 1694 if (thread == NULL) 1695 goto out_problem; 1696 1697 map = map__new(machine, event->mmap2.start, 1698 event->mmap2.len, event->mmap2.pgoff, 1699 event->mmap2.maj, 1700 event->mmap2.min, event->mmap2.ino, 1701 event->mmap2.ino_generation, 1702 event->mmap2.prot, 1703 event->mmap2.flags, 1704 event->mmap2.filename, thread); 1705 1706 if (map == NULL) 1707 goto out_problem_map; 1708 1709 ret = thread__insert_map(thread, map); 1710 if (ret) 1711 goto out_problem_insert; 1712 1713 thread__put(thread); 1714 map__put(map); 1715 return 0; 1716 1717 out_problem_insert: 1718 map__put(map); 1719 out_problem_map: 1720 thread__put(thread); 1721 out_problem: 1722 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n"); 1723 return 0; 1724 } 1725 1726 int machine__process_mmap_event(struct machine *machine, union perf_event *event, 1727 struct perf_sample *sample) 1728 { 1729 struct thread *thread; 1730 struct map *map; 1731 u32 prot = 0; 1732 int ret = 0; 1733 1734 if (dump_trace) 1735 perf_event__fprintf_mmap(event, stdout); 1736 1737 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1738 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1739 ret = machine__process_kernel_mmap_event(machine, event); 1740 if (ret < 0) 1741 goto out_problem; 1742 return 0; 1743 } 1744 1745 thread = machine__findnew_thread(machine, event->mmap.pid, 1746 event->mmap.tid); 1747 if (thread == NULL) 1748 goto out_problem; 1749 1750 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA)) 1751 prot = PROT_EXEC; 1752 1753 map = map__new(machine, event->mmap.start, 1754 event->mmap.len, event->mmap.pgoff, 1755 0, 0, 0, 0, prot, 0, 1756 event->mmap.filename, 1757 thread); 1758 1759 if (map == NULL) 1760 goto out_problem_map; 1761 1762 ret = thread__insert_map(thread, map); 1763 if (ret) 1764 goto out_problem_insert; 1765 1766 thread__put(thread); 1767 map__put(map); 1768 return 0; 1769 1770 out_problem_insert: 1771 map__put(map); 1772 out_problem_map: 1773 thread__put(thread); 1774 out_problem: 1775 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n"); 1776 return 0; 1777 } 1778 1779 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock) 1780 { 1781 struct threads *threads = machine__threads(machine, th->tid); 1782 1783 if (threads->last_match == th) 1784 threads__set_last_match(threads, NULL); 1785 1786 if (lock) 1787 down_write(&threads->lock); 1788 1789 BUG_ON(refcount_read(&th->refcnt) == 0); 1790 1791 rb_erase_cached(&th->rb_node, &threads->entries); 1792 RB_CLEAR_NODE(&th->rb_node); 1793 --threads->nr; 1794 /* 1795 * Move it first to the dead_threads list, then drop the reference, 1796 * if this is the last reference, then the thread__delete destructor 1797 * will be called and we will remove it from the dead_threads list. 1798 */ 1799 list_add_tail(&th->node, &threads->dead); 1800 1801 /* 1802 * We need to do the put here because if this is the last refcount, 1803 * then we will be touching the threads->dead head when removing the 1804 * thread. 1805 */ 1806 thread__put(th); 1807 1808 if (lock) 1809 up_write(&threads->lock); 1810 } 1811 1812 void machine__remove_thread(struct machine *machine, struct thread *th) 1813 { 1814 return __machine__remove_thread(machine, th, true); 1815 } 1816 1817 int machine__process_fork_event(struct machine *machine, union perf_event *event, 1818 struct perf_sample *sample) 1819 { 1820 struct thread *thread = machine__find_thread(machine, 1821 event->fork.pid, 1822 event->fork.tid); 1823 struct thread *parent = machine__findnew_thread(machine, 1824 event->fork.ppid, 1825 event->fork.ptid); 1826 bool do_maps_clone = true; 1827 int err = 0; 1828 1829 if (dump_trace) 1830 perf_event__fprintf_task(event, stdout); 1831 1832 /* 1833 * There may be an existing thread that is not actually the parent, 1834 * either because we are processing events out of order, or because the 1835 * (fork) event that would have removed the thread was lost. Assume the 1836 * latter case and continue on as best we can. 1837 */ 1838 if (parent->pid_ != (pid_t)event->fork.ppid) { 1839 dump_printf("removing erroneous parent thread %d/%d\n", 1840 parent->pid_, parent->tid); 1841 machine__remove_thread(machine, parent); 1842 thread__put(parent); 1843 parent = machine__findnew_thread(machine, event->fork.ppid, 1844 event->fork.ptid); 1845 } 1846 1847 /* if a thread currently exists for the thread id remove it */ 1848 if (thread != NULL) { 1849 machine__remove_thread(machine, thread); 1850 thread__put(thread); 1851 } 1852 1853 thread = machine__findnew_thread(machine, event->fork.pid, 1854 event->fork.tid); 1855 /* 1856 * When synthesizing FORK events, we are trying to create thread 1857 * objects for the already running tasks on the machine. 1858 * 1859 * Normally, for a kernel FORK event, we want to clone the parent's 1860 * maps because that is what the kernel just did. 1861 * 1862 * But when synthesizing, this should not be done. If we do, we end up 1863 * with overlapping maps as we process the sythesized MMAP2 events that 1864 * get delivered shortly thereafter. 1865 * 1866 * Use the FORK event misc flags in an internal way to signal this 1867 * situation, so we can elide the map clone when appropriate. 1868 */ 1869 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC) 1870 do_maps_clone = false; 1871 1872 if (thread == NULL || parent == NULL || 1873 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) { 1874 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n"); 1875 err = -1; 1876 } 1877 thread__put(thread); 1878 thread__put(parent); 1879 1880 return err; 1881 } 1882 1883 int machine__process_exit_event(struct machine *machine, union perf_event *event, 1884 struct perf_sample *sample __maybe_unused) 1885 { 1886 struct thread *thread = machine__find_thread(machine, 1887 event->fork.pid, 1888 event->fork.tid); 1889 1890 if (dump_trace) 1891 perf_event__fprintf_task(event, stdout); 1892 1893 if (thread != NULL) { 1894 thread__exited(thread); 1895 thread__put(thread); 1896 } 1897 1898 return 0; 1899 } 1900 1901 int machine__process_event(struct machine *machine, union perf_event *event, 1902 struct perf_sample *sample) 1903 { 1904 int ret; 1905 1906 switch (event->header.type) { 1907 case PERF_RECORD_COMM: 1908 ret = machine__process_comm_event(machine, event, sample); break; 1909 case PERF_RECORD_MMAP: 1910 ret = machine__process_mmap_event(machine, event, sample); break; 1911 case PERF_RECORD_NAMESPACES: 1912 ret = machine__process_namespaces_event(machine, event, sample); break; 1913 case PERF_RECORD_MMAP2: 1914 ret = machine__process_mmap2_event(machine, event, sample); break; 1915 case PERF_RECORD_FORK: 1916 ret = machine__process_fork_event(machine, event, sample); break; 1917 case PERF_RECORD_EXIT: 1918 ret = machine__process_exit_event(machine, event, sample); break; 1919 case PERF_RECORD_LOST: 1920 ret = machine__process_lost_event(machine, event, sample); break; 1921 case PERF_RECORD_AUX: 1922 ret = machine__process_aux_event(machine, event); break; 1923 case PERF_RECORD_ITRACE_START: 1924 ret = machine__process_itrace_start_event(machine, event); break; 1925 case PERF_RECORD_LOST_SAMPLES: 1926 ret = machine__process_lost_samples_event(machine, event, sample); break; 1927 case PERF_RECORD_SWITCH: 1928 case PERF_RECORD_SWITCH_CPU_WIDE: 1929 ret = machine__process_switch_event(machine, event); break; 1930 case PERF_RECORD_KSYMBOL: 1931 ret = machine__process_ksymbol(machine, event, sample); break; 1932 case PERF_RECORD_BPF_EVENT: 1933 ret = machine__process_bpf(machine, event, sample); break; 1934 default: 1935 ret = -1; 1936 break; 1937 } 1938 1939 return ret; 1940 } 1941 1942 static bool symbol__match_regex(struct symbol *sym, regex_t *regex) 1943 { 1944 if (!regexec(regex, sym->name, 0, NULL, 0)) 1945 return 1; 1946 return 0; 1947 } 1948 1949 static void ip__resolve_ams(struct thread *thread, 1950 struct addr_map_symbol *ams, 1951 u64 ip) 1952 { 1953 struct addr_location al; 1954 1955 memset(&al, 0, sizeof(al)); 1956 /* 1957 * We cannot use the header.misc hint to determine whether a 1958 * branch stack address is user, kernel, guest, hypervisor. 1959 * Branches may straddle the kernel/user/hypervisor boundaries. 1960 * Thus, we have to try consecutively until we find a match 1961 * or else, the symbol is unknown 1962 */ 1963 thread__find_cpumode_addr_location(thread, ip, &al); 1964 1965 ams->addr = ip; 1966 ams->al_addr = al.addr; 1967 ams->sym = al.sym; 1968 ams->map = al.map; 1969 ams->phys_addr = 0; 1970 } 1971 1972 static void ip__resolve_data(struct thread *thread, 1973 u8 m, struct addr_map_symbol *ams, 1974 u64 addr, u64 phys_addr) 1975 { 1976 struct addr_location al; 1977 1978 memset(&al, 0, sizeof(al)); 1979 1980 thread__find_symbol(thread, m, addr, &al); 1981 1982 ams->addr = addr; 1983 ams->al_addr = al.addr; 1984 ams->sym = al.sym; 1985 ams->map = al.map; 1986 ams->phys_addr = phys_addr; 1987 } 1988 1989 struct mem_info *sample__resolve_mem(struct perf_sample *sample, 1990 struct addr_location *al) 1991 { 1992 struct mem_info *mi = mem_info__new(); 1993 1994 if (!mi) 1995 return NULL; 1996 1997 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip); 1998 ip__resolve_data(al->thread, al->cpumode, &mi->daddr, 1999 sample->addr, sample->phys_addr); 2000 mi->data_src.val = sample->data_src; 2001 2002 return mi; 2003 } 2004 2005 static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip) 2006 { 2007 char *srcline = NULL; 2008 2009 if (!map || callchain_param.key == CCKEY_FUNCTION) 2010 return srcline; 2011 2012 srcline = srcline__tree_find(&map->dso->srclines, ip); 2013 if (!srcline) { 2014 bool show_sym = false; 2015 bool show_addr = callchain_param.key == CCKEY_ADDRESS; 2016 2017 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip), 2018 sym, show_sym, show_addr, ip); 2019 srcline__tree_insert(&map->dso->srclines, ip, srcline); 2020 } 2021 2022 return srcline; 2023 } 2024 2025 struct iterations { 2026 int nr_loop_iter; 2027 u64 cycles; 2028 }; 2029 2030 static int add_callchain_ip(struct thread *thread, 2031 struct callchain_cursor *cursor, 2032 struct symbol **parent, 2033 struct addr_location *root_al, 2034 u8 *cpumode, 2035 u64 ip, 2036 bool branch, 2037 struct branch_flags *flags, 2038 struct iterations *iter, 2039 u64 branch_from) 2040 { 2041 struct addr_location al; 2042 int nr_loop_iter = 0; 2043 u64 iter_cycles = 0; 2044 const char *srcline = NULL; 2045 2046 al.filtered = 0; 2047 al.sym = NULL; 2048 if (!cpumode) { 2049 thread__find_cpumode_addr_location(thread, ip, &al); 2050 } else { 2051 if (ip >= PERF_CONTEXT_MAX) { 2052 switch (ip) { 2053 case PERF_CONTEXT_HV: 2054 *cpumode = PERF_RECORD_MISC_HYPERVISOR; 2055 break; 2056 case PERF_CONTEXT_KERNEL: 2057 *cpumode = PERF_RECORD_MISC_KERNEL; 2058 break; 2059 case PERF_CONTEXT_USER: 2060 *cpumode = PERF_RECORD_MISC_USER; 2061 break; 2062 default: 2063 pr_debug("invalid callchain context: " 2064 "%"PRId64"\n", (s64) ip); 2065 /* 2066 * It seems the callchain is corrupted. 2067 * Discard all. 2068 */ 2069 callchain_cursor_reset(cursor); 2070 return 1; 2071 } 2072 return 0; 2073 } 2074 thread__find_symbol(thread, *cpumode, ip, &al); 2075 } 2076 2077 if (al.sym != NULL) { 2078 if (perf_hpp_list.parent && !*parent && 2079 symbol__match_regex(al.sym, &parent_regex)) 2080 *parent = al.sym; 2081 else if (have_ignore_callees && root_al && 2082 symbol__match_regex(al.sym, &ignore_callees_regex)) { 2083 /* Treat this symbol as the root, 2084 forgetting its callees. */ 2085 *root_al = al; 2086 callchain_cursor_reset(cursor); 2087 } 2088 } 2089 2090 if (symbol_conf.hide_unresolved && al.sym == NULL) 2091 return 0; 2092 2093 if (iter) { 2094 nr_loop_iter = iter->nr_loop_iter; 2095 iter_cycles = iter->cycles; 2096 } 2097 2098 srcline = callchain_srcline(al.map, al.sym, al.addr); 2099 return callchain_cursor_append(cursor, ip, al.map, al.sym, 2100 branch, flags, nr_loop_iter, 2101 iter_cycles, branch_from, srcline); 2102 } 2103 2104 struct branch_info *sample__resolve_bstack(struct perf_sample *sample, 2105 struct addr_location *al) 2106 { 2107 unsigned int i; 2108 const struct branch_stack *bs = sample->branch_stack; 2109 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info)); 2110 2111 if (!bi) 2112 return NULL; 2113 2114 for (i = 0; i < bs->nr; i++) { 2115 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to); 2116 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from); 2117 bi[i].flags = bs->entries[i].flags; 2118 } 2119 return bi; 2120 } 2121 2122 static void save_iterations(struct iterations *iter, 2123 struct branch_entry *be, int nr) 2124 { 2125 int i; 2126 2127 iter->nr_loop_iter++; 2128 iter->cycles = 0; 2129 2130 for (i = 0; i < nr; i++) 2131 iter->cycles += be[i].flags.cycles; 2132 } 2133 2134 #define CHASHSZ 127 2135 #define CHASHBITS 7 2136 #define NO_ENTRY 0xff 2137 2138 #define PERF_MAX_BRANCH_DEPTH 127 2139 2140 /* Remove loops. */ 2141 static int remove_loops(struct branch_entry *l, int nr, 2142 struct iterations *iter) 2143 { 2144 int i, j, off; 2145 unsigned char chash[CHASHSZ]; 2146 2147 memset(chash, NO_ENTRY, sizeof(chash)); 2148 2149 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255); 2150 2151 for (i = 0; i < nr; i++) { 2152 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ; 2153 2154 /* no collision handling for now */ 2155 if (chash[h] == NO_ENTRY) { 2156 chash[h] = i; 2157 } else if (l[chash[h]].from == l[i].from) { 2158 bool is_loop = true; 2159 /* check if it is a real loop */ 2160 off = 0; 2161 for (j = chash[h]; j < i && i + off < nr; j++, off++) 2162 if (l[j].from != l[i + off].from) { 2163 is_loop = false; 2164 break; 2165 } 2166 if (is_loop) { 2167 j = nr - (i + off); 2168 if (j > 0) { 2169 save_iterations(iter + i + off, 2170 l + i, off); 2171 2172 memmove(iter + i, iter + i + off, 2173 j * sizeof(*iter)); 2174 2175 memmove(l + i, l + i + off, 2176 j * sizeof(*l)); 2177 } 2178 2179 nr -= off; 2180 } 2181 } 2182 } 2183 return nr; 2184 } 2185 2186 /* 2187 * Recolve LBR callstack chain sample 2188 * Return: 2189 * 1 on success get LBR callchain information 2190 * 0 no available LBR callchain information, should try fp 2191 * negative error code on other errors. 2192 */ 2193 static int resolve_lbr_callchain_sample(struct thread *thread, 2194 struct callchain_cursor *cursor, 2195 struct perf_sample *sample, 2196 struct symbol **parent, 2197 struct addr_location *root_al, 2198 int max_stack) 2199 { 2200 struct ip_callchain *chain = sample->callchain; 2201 int chain_nr = min(max_stack, (int)chain->nr), i; 2202 u8 cpumode = PERF_RECORD_MISC_USER; 2203 u64 ip, branch_from = 0; 2204 2205 for (i = 0; i < chain_nr; i++) { 2206 if (chain->ips[i] == PERF_CONTEXT_USER) 2207 break; 2208 } 2209 2210 /* LBR only affects the user callchain */ 2211 if (i != chain_nr) { 2212 struct branch_stack *lbr_stack = sample->branch_stack; 2213 int lbr_nr = lbr_stack->nr, j, k; 2214 bool branch; 2215 struct branch_flags *flags; 2216 /* 2217 * LBR callstack can only get user call chain. 2218 * The mix_chain_nr is kernel call chain 2219 * number plus LBR user call chain number. 2220 * i is kernel call chain number, 2221 * 1 is PERF_CONTEXT_USER, 2222 * lbr_nr + 1 is the user call chain number. 2223 * For details, please refer to the comments 2224 * in callchain__printf 2225 */ 2226 int mix_chain_nr = i + 1 + lbr_nr + 1; 2227 2228 for (j = 0; j < mix_chain_nr; j++) { 2229 int err; 2230 branch = false; 2231 flags = NULL; 2232 2233 if (callchain_param.order == ORDER_CALLEE) { 2234 if (j < i + 1) 2235 ip = chain->ips[j]; 2236 else if (j > i + 1) { 2237 k = j - i - 2; 2238 ip = lbr_stack->entries[k].from; 2239 branch = true; 2240 flags = &lbr_stack->entries[k].flags; 2241 } else { 2242 ip = lbr_stack->entries[0].to; 2243 branch = true; 2244 flags = &lbr_stack->entries[0].flags; 2245 branch_from = 2246 lbr_stack->entries[0].from; 2247 } 2248 } else { 2249 if (j < lbr_nr) { 2250 k = lbr_nr - j - 1; 2251 ip = lbr_stack->entries[k].from; 2252 branch = true; 2253 flags = &lbr_stack->entries[k].flags; 2254 } 2255 else if (j > lbr_nr) 2256 ip = chain->ips[i + 1 - (j - lbr_nr)]; 2257 else { 2258 ip = lbr_stack->entries[0].to; 2259 branch = true; 2260 flags = &lbr_stack->entries[0].flags; 2261 branch_from = 2262 lbr_stack->entries[0].from; 2263 } 2264 } 2265 2266 err = add_callchain_ip(thread, cursor, parent, 2267 root_al, &cpumode, ip, 2268 branch, flags, NULL, 2269 branch_from); 2270 if (err) 2271 return (err < 0) ? err : 0; 2272 } 2273 return 1; 2274 } 2275 2276 return 0; 2277 } 2278 2279 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread, 2280 struct callchain_cursor *cursor, 2281 struct symbol **parent, 2282 struct addr_location *root_al, 2283 u8 *cpumode, int ent) 2284 { 2285 int err = 0; 2286 2287 while (--ent >= 0) { 2288 u64 ip = chain->ips[ent]; 2289 2290 if (ip >= PERF_CONTEXT_MAX) { 2291 err = add_callchain_ip(thread, cursor, parent, 2292 root_al, cpumode, ip, 2293 false, NULL, NULL, 0); 2294 break; 2295 } 2296 } 2297 return err; 2298 } 2299 2300 static int thread__resolve_callchain_sample(struct thread *thread, 2301 struct callchain_cursor *cursor, 2302 struct evsel *evsel, 2303 struct perf_sample *sample, 2304 struct symbol **parent, 2305 struct addr_location *root_al, 2306 int max_stack) 2307 { 2308 struct branch_stack *branch = sample->branch_stack; 2309 struct ip_callchain *chain = sample->callchain; 2310 int chain_nr = 0; 2311 u8 cpumode = PERF_RECORD_MISC_USER; 2312 int i, j, err, nr_entries; 2313 int skip_idx = -1; 2314 int first_call = 0; 2315 2316 if (chain) 2317 chain_nr = chain->nr; 2318 2319 if (perf_evsel__has_branch_callstack(evsel)) { 2320 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent, 2321 root_al, max_stack); 2322 if (err) 2323 return (err < 0) ? err : 0; 2324 } 2325 2326 /* 2327 * Based on DWARF debug information, some architectures skip 2328 * a callchain entry saved by the kernel. 2329 */ 2330 skip_idx = arch_skip_callchain_idx(thread, chain); 2331 2332 /* 2333 * Add branches to call stack for easier browsing. This gives 2334 * more context for a sample than just the callers. 2335 * 2336 * This uses individual histograms of paths compared to the 2337 * aggregated histograms the normal LBR mode uses. 2338 * 2339 * Limitations for now: 2340 * - No extra filters 2341 * - No annotations (should annotate somehow) 2342 */ 2343 2344 if (branch && callchain_param.branch_callstack) { 2345 int nr = min(max_stack, (int)branch->nr); 2346 struct branch_entry be[nr]; 2347 struct iterations iter[nr]; 2348 2349 if (branch->nr > PERF_MAX_BRANCH_DEPTH) { 2350 pr_warning("corrupted branch chain. skipping...\n"); 2351 goto check_calls; 2352 } 2353 2354 for (i = 0; i < nr; i++) { 2355 if (callchain_param.order == ORDER_CALLEE) { 2356 be[i] = branch->entries[i]; 2357 2358 if (chain == NULL) 2359 continue; 2360 2361 /* 2362 * Check for overlap into the callchain. 2363 * The return address is one off compared to 2364 * the branch entry. To adjust for this 2365 * assume the calling instruction is not longer 2366 * than 8 bytes. 2367 */ 2368 if (i == skip_idx || 2369 chain->ips[first_call] >= PERF_CONTEXT_MAX) 2370 first_call++; 2371 else if (be[i].from < chain->ips[first_call] && 2372 be[i].from >= chain->ips[first_call] - 8) 2373 first_call++; 2374 } else 2375 be[i] = branch->entries[branch->nr - i - 1]; 2376 } 2377 2378 memset(iter, 0, sizeof(struct iterations) * nr); 2379 nr = remove_loops(be, nr, iter); 2380 2381 for (i = 0; i < nr; i++) { 2382 err = add_callchain_ip(thread, cursor, parent, 2383 root_al, 2384 NULL, be[i].to, 2385 true, &be[i].flags, 2386 NULL, be[i].from); 2387 2388 if (!err) 2389 err = add_callchain_ip(thread, cursor, parent, root_al, 2390 NULL, be[i].from, 2391 true, &be[i].flags, 2392 &iter[i], 0); 2393 if (err == -EINVAL) 2394 break; 2395 if (err) 2396 return err; 2397 } 2398 2399 if (chain_nr == 0) 2400 return 0; 2401 2402 chain_nr -= nr; 2403 } 2404 2405 check_calls: 2406 if (callchain_param.order != ORDER_CALLEE) { 2407 err = find_prev_cpumode(chain, thread, cursor, parent, root_al, 2408 &cpumode, chain->nr - first_call); 2409 if (err) 2410 return (err < 0) ? err : 0; 2411 } 2412 for (i = first_call, nr_entries = 0; 2413 i < chain_nr && nr_entries < max_stack; i++) { 2414 u64 ip; 2415 2416 if (callchain_param.order == ORDER_CALLEE) 2417 j = i; 2418 else 2419 j = chain->nr - i - 1; 2420 2421 #ifdef HAVE_SKIP_CALLCHAIN_IDX 2422 if (j == skip_idx) 2423 continue; 2424 #endif 2425 ip = chain->ips[j]; 2426 if (ip < PERF_CONTEXT_MAX) 2427 ++nr_entries; 2428 else if (callchain_param.order != ORDER_CALLEE) { 2429 err = find_prev_cpumode(chain, thread, cursor, parent, 2430 root_al, &cpumode, j); 2431 if (err) 2432 return (err < 0) ? err : 0; 2433 continue; 2434 } 2435 2436 err = add_callchain_ip(thread, cursor, parent, 2437 root_al, &cpumode, ip, 2438 false, NULL, NULL, 0); 2439 2440 if (err) 2441 return (err < 0) ? err : 0; 2442 } 2443 2444 return 0; 2445 } 2446 2447 static int append_inlines(struct callchain_cursor *cursor, 2448 struct map *map, struct symbol *sym, u64 ip) 2449 { 2450 struct inline_node *inline_node; 2451 struct inline_list *ilist; 2452 u64 addr; 2453 int ret = 1; 2454 2455 if (!symbol_conf.inline_name || !map || !sym) 2456 return ret; 2457 2458 addr = map__map_ip(map, ip); 2459 addr = map__rip_2objdump(map, addr); 2460 2461 inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr); 2462 if (!inline_node) { 2463 inline_node = dso__parse_addr_inlines(map->dso, addr, sym); 2464 if (!inline_node) 2465 return ret; 2466 inlines__tree_insert(&map->dso->inlined_nodes, inline_node); 2467 } 2468 2469 list_for_each_entry(ilist, &inline_node->val, list) { 2470 ret = callchain_cursor_append(cursor, ip, map, 2471 ilist->symbol, false, 2472 NULL, 0, 0, 0, ilist->srcline); 2473 2474 if (ret != 0) 2475 return ret; 2476 } 2477 2478 return ret; 2479 } 2480 2481 static int unwind_entry(struct unwind_entry *entry, void *arg) 2482 { 2483 struct callchain_cursor *cursor = arg; 2484 const char *srcline = NULL; 2485 u64 addr = entry->ip; 2486 2487 if (symbol_conf.hide_unresolved && entry->sym == NULL) 2488 return 0; 2489 2490 if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0) 2491 return 0; 2492 2493 /* 2494 * Convert entry->ip from a virtual address to an offset in 2495 * its corresponding binary. 2496 */ 2497 if (entry->map) 2498 addr = map__map_ip(entry->map, entry->ip); 2499 2500 srcline = callchain_srcline(entry->map, entry->sym, addr); 2501 return callchain_cursor_append(cursor, entry->ip, 2502 entry->map, entry->sym, 2503 false, NULL, 0, 0, 0, srcline); 2504 } 2505 2506 static int thread__resolve_callchain_unwind(struct thread *thread, 2507 struct callchain_cursor *cursor, 2508 struct evsel *evsel, 2509 struct perf_sample *sample, 2510 int max_stack) 2511 { 2512 /* Can we do dwarf post unwind? */ 2513 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) && 2514 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER))) 2515 return 0; 2516 2517 /* Bail out if nothing was captured. */ 2518 if ((!sample->user_regs.regs) || 2519 (!sample->user_stack.size)) 2520 return 0; 2521 2522 return unwind__get_entries(unwind_entry, cursor, 2523 thread, sample, max_stack); 2524 } 2525 2526 int thread__resolve_callchain(struct thread *thread, 2527 struct callchain_cursor *cursor, 2528 struct evsel *evsel, 2529 struct perf_sample *sample, 2530 struct symbol **parent, 2531 struct addr_location *root_al, 2532 int max_stack) 2533 { 2534 int ret = 0; 2535 2536 callchain_cursor_reset(cursor); 2537 2538 if (callchain_param.order == ORDER_CALLEE) { 2539 ret = thread__resolve_callchain_sample(thread, cursor, 2540 evsel, sample, 2541 parent, root_al, 2542 max_stack); 2543 if (ret) 2544 return ret; 2545 ret = thread__resolve_callchain_unwind(thread, cursor, 2546 evsel, sample, 2547 max_stack); 2548 } else { 2549 ret = thread__resolve_callchain_unwind(thread, cursor, 2550 evsel, sample, 2551 max_stack); 2552 if (ret) 2553 return ret; 2554 ret = thread__resolve_callchain_sample(thread, cursor, 2555 evsel, sample, 2556 parent, root_al, 2557 max_stack); 2558 } 2559 2560 return ret; 2561 } 2562 2563 int machine__for_each_thread(struct machine *machine, 2564 int (*fn)(struct thread *thread, void *p), 2565 void *priv) 2566 { 2567 struct threads *threads; 2568 struct rb_node *nd; 2569 struct thread *thread; 2570 int rc = 0; 2571 int i; 2572 2573 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 2574 threads = &machine->threads[i]; 2575 for (nd = rb_first_cached(&threads->entries); nd; 2576 nd = rb_next(nd)) { 2577 thread = rb_entry(nd, struct thread, rb_node); 2578 rc = fn(thread, priv); 2579 if (rc != 0) 2580 return rc; 2581 } 2582 2583 list_for_each_entry(thread, &threads->dead, node) { 2584 rc = fn(thread, priv); 2585 if (rc != 0) 2586 return rc; 2587 } 2588 } 2589 return rc; 2590 } 2591 2592 int machines__for_each_thread(struct machines *machines, 2593 int (*fn)(struct thread *thread, void *p), 2594 void *priv) 2595 { 2596 struct rb_node *nd; 2597 int rc = 0; 2598 2599 rc = machine__for_each_thread(&machines->host, fn, priv); 2600 if (rc != 0) 2601 return rc; 2602 2603 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 2604 struct machine *machine = rb_entry(nd, struct machine, rb_node); 2605 2606 rc = machine__for_each_thread(machine, fn, priv); 2607 if (rc != 0) 2608 return rc; 2609 } 2610 return rc; 2611 } 2612 2613 pid_t machine__get_current_tid(struct machine *machine, int cpu) 2614 { 2615 int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS); 2616 2617 if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid) 2618 return -1; 2619 2620 return machine->current_tid[cpu]; 2621 } 2622 2623 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid, 2624 pid_t tid) 2625 { 2626 struct thread *thread; 2627 int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS); 2628 2629 if (cpu < 0) 2630 return -EINVAL; 2631 2632 if (!machine->current_tid) { 2633 int i; 2634 2635 machine->current_tid = calloc(nr_cpus, sizeof(pid_t)); 2636 if (!machine->current_tid) 2637 return -ENOMEM; 2638 for (i = 0; i < nr_cpus; i++) 2639 machine->current_tid[i] = -1; 2640 } 2641 2642 if (cpu >= nr_cpus) { 2643 pr_err("Requested CPU %d too large. ", cpu); 2644 pr_err("Consider raising MAX_NR_CPUS\n"); 2645 return -EINVAL; 2646 } 2647 2648 machine->current_tid[cpu] = tid; 2649 2650 thread = machine__findnew_thread(machine, pid, tid); 2651 if (!thread) 2652 return -ENOMEM; 2653 2654 thread->cpu = cpu; 2655 thread__put(thread); 2656 2657 return 0; 2658 } 2659 2660 /* 2661 * Compares the raw arch string. N.B. see instead perf_env__arch() if a 2662 * normalized arch is needed. 2663 */ 2664 bool machine__is(struct machine *machine, const char *arch) 2665 { 2666 return machine && !strcmp(perf_env__raw_arch(machine->env), arch); 2667 } 2668 2669 int machine__nr_cpus_avail(struct machine *machine) 2670 { 2671 return machine ? perf_env__nr_cpus_avail(machine->env) : 0; 2672 } 2673 2674 int machine__get_kernel_start(struct machine *machine) 2675 { 2676 struct map *map = machine__kernel_map(machine); 2677 int err = 0; 2678 2679 /* 2680 * The only addresses above 2^63 are kernel addresses of a 64-bit 2681 * kernel. Note that addresses are unsigned so that on a 32-bit system 2682 * all addresses including kernel addresses are less than 2^32. In 2683 * that case (32-bit system), if the kernel mapping is unknown, all 2684 * addresses will be assumed to be in user space - see 2685 * machine__kernel_ip(). 2686 */ 2687 machine->kernel_start = 1ULL << 63; 2688 if (map) { 2689 err = map__load(map); 2690 /* 2691 * On x86_64, PTI entry trampolines are less than the 2692 * start of kernel text, but still above 2^63. So leave 2693 * kernel_start = 1ULL << 63 for x86_64. 2694 */ 2695 if (!err && !machine__is(machine, "x86_64")) 2696 machine->kernel_start = map->start; 2697 } 2698 return err; 2699 } 2700 2701 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr) 2702 { 2703 u8 addr_cpumode = cpumode; 2704 bool kernel_ip; 2705 2706 if (!machine->single_address_space) 2707 goto out; 2708 2709 kernel_ip = machine__kernel_ip(machine, addr); 2710 switch (cpumode) { 2711 case PERF_RECORD_MISC_KERNEL: 2712 case PERF_RECORD_MISC_USER: 2713 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL : 2714 PERF_RECORD_MISC_USER; 2715 break; 2716 case PERF_RECORD_MISC_GUEST_KERNEL: 2717 case PERF_RECORD_MISC_GUEST_USER: 2718 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL : 2719 PERF_RECORD_MISC_GUEST_USER; 2720 break; 2721 default: 2722 break; 2723 } 2724 out: 2725 return addr_cpumode; 2726 } 2727 2728 struct dso *machine__findnew_dso(struct machine *machine, const char *filename) 2729 { 2730 return dsos__findnew(&machine->dsos, filename); 2731 } 2732 2733 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp) 2734 { 2735 struct machine *machine = vmachine; 2736 struct map *map; 2737 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map); 2738 2739 if (sym == NULL) 2740 return NULL; 2741 2742 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL; 2743 *addrp = map->unmap_ip(map, sym->start); 2744 return sym->name; 2745 } 2746