1 // SPDX-License-Identifier: GPL-2.0 2 #include <dirent.h> 3 #include <errno.h> 4 #include <inttypes.h> 5 #include <regex.h> 6 #include <stdlib.h> 7 #include "callchain.h" 8 #include "debug.h" 9 #include "dso.h" 10 #include "env.h" 11 #include "event.h" 12 #include "evsel.h" 13 #include "hist.h" 14 #include "machine.h" 15 #include "map.h" 16 #include "map_symbol.h" 17 #include "branch.h" 18 #include "mem-events.h" 19 #include "srcline.h" 20 #include "symbol.h" 21 #include "sort.h" 22 #include "strlist.h" 23 #include "target.h" 24 #include "thread.h" 25 #include "util.h" 26 #include "vdso.h" 27 #include <stdbool.h> 28 #include <sys/types.h> 29 #include <sys/stat.h> 30 #include <unistd.h> 31 #include "unwind.h" 32 #include "linux/hash.h" 33 #include "asm/bug.h" 34 #include "bpf-event.h" 35 #include <internal/lib.h> // page_size 36 #include "cgroup.h" 37 38 #include <linux/ctype.h> 39 #include <symbol/kallsyms.h> 40 #include <linux/mman.h> 41 #include <linux/string.h> 42 #include <linux/zalloc.h> 43 44 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock); 45 46 static struct dso *machine__kernel_dso(struct machine *machine) 47 { 48 return machine->vmlinux_map->dso; 49 } 50 51 static void dsos__init(struct dsos *dsos) 52 { 53 INIT_LIST_HEAD(&dsos->head); 54 dsos->root = RB_ROOT; 55 init_rwsem(&dsos->lock); 56 } 57 58 static void machine__threads_init(struct machine *machine) 59 { 60 int i; 61 62 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 63 struct threads *threads = &machine->threads[i]; 64 threads->entries = RB_ROOT_CACHED; 65 init_rwsem(&threads->lock); 66 threads->nr = 0; 67 INIT_LIST_HEAD(&threads->dead); 68 threads->last_match = NULL; 69 } 70 } 71 72 static int machine__set_mmap_name(struct machine *machine) 73 { 74 if (machine__is_host(machine)) 75 machine->mmap_name = strdup("[kernel.kallsyms]"); 76 else if (machine__is_default_guest(machine)) 77 machine->mmap_name = strdup("[guest.kernel.kallsyms]"); 78 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]", 79 machine->pid) < 0) 80 machine->mmap_name = NULL; 81 82 return machine->mmap_name ? 0 : -ENOMEM; 83 } 84 85 int machine__init(struct machine *machine, const char *root_dir, pid_t pid) 86 { 87 int err = -ENOMEM; 88 89 memset(machine, 0, sizeof(*machine)); 90 maps__init(&machine->kmaps, machine); 91 RB_CLEAR_NODE(&machine->rb_node); 92 dsos__init(&machine->dsos); 93 94 machine__threads_init(machine); 95 96 machine->vdso_info = NULL; 97 machine->env = NULL; 98 99 machine->pid = pid; 100 101 machine->id_hdr_size = 0; 102 machine->kptr_restrict_warned = false; 103 machine->comm_exec = false; 104 machine->kernel_start = 0; 105 machine->vmlinux_map = NULL; 106 107 machine->root_dir = strdup(root_dir); 108 if (machine->root_dir == NULL) 109 return -ENOMEM; 110 111 if (machine__set_mmap_name(machine)) 112 goto out; 113 114 if (pid != HOST_KERNEL_ID) { 115 struct thread *thread = machine__findnew_thread(machine, -1, 116 pid); 117 char comm[64]; 118 119 if (thread == NULL) 120 goto out; 121 122 snprintf(comm, sizeof(comm), "[guest/%d]", pid); 123 thread__set_comm(thread, comm, 0); 124 thread__put(thread); 125 } 126 127 machine->current_tid = NULL; 128 err = 0; 129 130 out: 131 if (err) { 132 zfree(&machine->root_dir); 133 zfree(&machine->mmap_name); 134 } 135 return 0; 136 } 137 138 struct machine *machine__new_host(void) 139 { 140 struct machine *machine = malloc(sizeof(*machine)); 141 142 if (machine != NULL) { 143 machine__init(machine, "", HOST_KERNEL_ID); 144 145 if (machine__create_kernel_maps(machine) < 0) 146 goto out_delete; 147 } 148 149 return machine; 150 out_delete: 151 free(machine); 152 return NULL; 153 } 154 155 struct machine *machine__new_kallsyms(void) 156 { 157 struct machine *machine = machine__new_host(); 158 /* 159 * FIXME: 160 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly 161 * ask for not using the kcore parsing code, once this one is fixed 162 * to create a map per module. 163 */ 164 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) { 165 machine__delete(machine); 166 machine = NULL; 167 } 168 169 return machine; 170 } 171 172 static void dsos__purge(struct dsos *dsos) 173 { 174 struct dso *pos, *n; 175 176 down_write(&dsos->lock); 177 178 list_for_each_entry_safe(pos, n, &dsos->head, node) { 179 RB_CLEAR_NODE(&pos->rb_node); 180 pos->root = NULL; 181 list_del_init(&pos->node); 182 dso__put(pos); 183 } 184 185 up_write(&dsos->lock); 186 } 187 188 static void dsos__exit(struct dsos *dsos) 189 { 190 dsos__purge(dsos); 191 exit_rwsem(&dsos->lock); 192 } 193 194 void machine__delete_threads(struct machine *machine) 195 { 196 struct rb_node *nd; 197 int i; 198 199 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 200 struct threads *threads = &machine->threads[i]; 201 down_write(&threads->lock); 202 nd = rb_first_cached(&threads->entries); 203 while (nd) { 204 struct thread *t = rb_entry(nd, struct thread, rb_node); 205 206 nd = rb_next(nd); 207 __machine__remove_thread(machine, t, false); 208 } 209 up_write(&threads->lock); 210 } 211 } 212 213 void machine__exit(struct machine *machine) 214 { 215 int i; 216 217 if (machine == NULL) 218 return; 219 220 machine__destroy_kernel_maps(machine); 221 maps__exit(&machine->kmaps); 222 dsos__exit(&machine->dsos); 223 machine__exit_vdso(machine); 224 zfree(&machine->root_dir); 225 zfree(&machine->mmap_name); 226 zfree(&machine->current_tid); 227 228 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 229 struct threads *threads = &machine->threads[i]; 230 struct thread *thread, *n; 231 /* 232 * Forget about the dead, at this point whatever threads were 233 * left in the dead lists better have a reference count taken 234 * by who is using them, and then, when they drop those references 235 * and it finally hits zero, thread__put() will check and see that 236 * its not in the dead threads list and will not try to remove it 237 * from there, just calling thread__delete() straight away. 238 */ 239 list_for_each_entry_safe(thread, n, &threads->dead, node) 240 list_del_init(&thread->node); 241 242 exit_rwsem(&threads->lock); 243 } 244 } 245 246 void machine__delete(struct machine *machine) 247 { 248 if (machine) { 249 machine__exit(machine); 250 free(machine); 251 } 252 } 253 254 void machines__init(struct machines *machines) 255 { 256 machine__init(&machines->host, "", HOST_KERNEL_ID); 257 machines->guests = RB_ROOT_CACHED; 258 } 259 260 void machines__exit(struct machines *machines) 261 { 262 machine__exit(&machines->host); 263 /* XXX exit guest */ 264 } 265 266 struct machine *machines__add(struct machines *machines, pid_t pid, 267 const char *root_dir) 268 { 269 struct rb_node **p = &machines->guests.rb_root.rb_node; 270 struct rb_node *parent = NULL; 271 struct machine *pos, *machine = malloc(sizeof(*machine)); 272 bool leftmost = true; 273 274 if (machine == NULL) 275 return NULL; 276 277 if (machine__init(machine, root_dir, pid) != 0) { 278 free(machine); 279 return NULL; 280 } 281 282 while (*p != NULL) { 283 parent = *p; 284 pos = rb_entry(parent, struct machine, rb_node); 285 if (pid < pos->pid) 286 p = &(*p)->rb_left; 287 else { 288 p = &(*p)->rb_right; 289 leftmost = false; 290 } 291 } 292 293 rb_link_node(&machine->rb_node, parent, p); 294 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost); 295 296 return machine; 297 } 298 299 void machines__set_comm_exec(struct machines *machines, bool comm_exec) 300 { 301 struct rb_node *nd; 302 303 machines->host.comm_exec = comm_exec; 304 305 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 306 struct machine *machine = rb_entry(nd, struct machine, rb_node); 307 308 machine->comm_exec = comm_exec; 309 } 310 } 311 312 struct machine *machines__find(struct machines *machines, pid_t pid) 313 { 314 struct rb_node **p = &machines->guests.rb_root.rb_node; 315 struct rb_node *parent = NULL; 316 struct machine *machine; 317 struct machine *default_machine = NULL; 318 319 if (pid == HOST_KERNEL_ID) 320 return &machines->host; 321 322 while (*p != NULL) { 323 parent = *p; 324 machine = rb_entry(parent, struct machine, rb_node); 325 if (pid < machine->pid) 326 p = &(*p)->rb_left; 327 else if (pid > machine->pid) 328 p = &(*p)->rb_right; 329 else 330 return machine; 331 if (!machine->pid) 332 default_machine = machine; 333 } 334 335 return default_machine; 336 } 337 338 struct machine *machines__findnew(struct machines *machines, pid_t pid) 339 { 340 char path[PATH_MAX]; 341 const char *root_dir = ""; 342 struct machine *machine = machines__find(machines, pid); 343 344 if (machine && (machine->pid == pid)) 345 goto out; 346 347 if ((pid != HOST_KERNEL_ID) && 348 (pid != DEFAULT_GUEST_KERNEL_ID) && 349 (symbol_conf.guestmount)) { 350 sprintf(path, "%s/%d", symbol_conf.guestmount, pid); 351 if (access(path, R_OK)) { 352 static struct strlist *seen; 353 354 if (!seen) 355 seen = strlist__new(NULL, NULL); 356 357 if (!strlist__has_entry(seen, path)) { 358 pr_err("Can't access file %s\n", path); 359 strlist__add(seen, path); 360 } 361 machine = NULL; 362 goto out; 363 } 364 root_dir = path; 365 } 366 367 machine = machines__add(machines, pid, root_dir); 368 out: 369 return machine; 370 } 371 372 void machines__process_guests(struct machines *machines, 373 machine__process_t process, void *data) 374 { 375 struct rb_node *nd; 376 377 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 378 struct machine *pos = rb_entry(nd, struct machine, rb_node); 379 process(pos, data); 380 } 381 } 382 383 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size) 384 { 385 struct rb_node *node; 386 struct machine *machine; 387 388 machines->host.id_hdr_size = id_hdr_size; 389 390 for (node = rb_first_cached(&machines->guests); node; 391 node = rb_next(node)) { 392 machine = rb_entry(node, struct machine, rb_node); 393 machine->id_hdr_size = id_hdr_size; 394 } 395 396 return; 397 } 398 399 static void machine__update_thread_pid(struct machine *machine, 400 struct thread *th, pid_t pid) 401 { 402 struct thread *leader; 403 404 if (pid == th->pid_ || pid == -1 || th->pid_ != -1) 405 return; 406 407 th->pid_ = pid; 408 409 if (th->pid_ == th->tid) 410 return; 411 412 leader = __machine__findnew_thread(machine, th->pid_, th->pid_); 413 if (!leader) 414 goto out_err; 415 416 if (!leader->maps) 417 leader->maps = maps__new(machine); 418 419 if (!leader->maps) 420 goto out_err; 421 422 if (th->maps == leader->maps) 423 return; 424 425 if (th->maps) { 426 /* 427 * Maps are created from MMAP events which provide the pid and 428 * tid. Consequently there never should be any maps on a thread 429 * with an unknown pid. Just print an error if there are. 430 */ 431 if (!maps__empty(th->maps)) 432 pr_err("Discarding thread maps for %d:%d\n", 433 th->pid_, th->tid); 434 maps__put(th->maps); 435 } 436 437 th->maps = maps__get(leader->maps); 438 out_put: 439 thread__put(leader); 440 return; 441 out_err: 442 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid); 443 goto out_put; 444 } 445 446 /* 447 * Front-end cache - TID lookups come in blocks, 448 * so most of the time we dont have to look up 449 * the full rbtree: 450 */ 451 static struct thread* 452 __threads__get_last_match(struct threads *threads, struct machine *machine, 453 int pid, int tid) 454 { 455 struct thread *th; 456 457 th = threads->last_match; 458 if (th != NULL) { 459 if (th->tid == tid) { 460 machine__update_thread_pid(machine, th, pid); 461 return thread__get(th); 462 } 463 464 threads->last_match = NULL; 465 } 466 467 return NULL; 468 } 469 470 static struct thread* 471 threads__get_last_match(struct threads *threads, struct machine *machine, 472 int pid, int tid) 473 { 474 struct thread *th = NULL; 475 476 if (perf_singlethreaded) 477 th = __threads__get_last_match(threads, machine, pid, tid); 478 479 return th; 480 } 481 482 static void 483 __threads__set_last_match(struct threads *threads, struct thread *th) 484 { 485 threads->last_match = th; 486 } 487 488 static void 489 threads__set_last_match(struct threads *threads, struct thread *th) 490 { 491 if (perf_singlethreaded) 492 __threads__set_last_match(threads, th); 493 } 494 495 /* 496 * Caller must eventually drop thread->refcnt returned with a successful 497 * lookup/new thread inserted. 498 */ 499 static struct thread *____machine__findnew_thread(struct machine *machine, 500 struct threads *threads, 501 pid_t pid, pid_t tid, 502 bool create) 503 { 504 struct rb_node **p = &threads->entries.rb_root.rb_node; 505 struct rb_node *parent = NULL; 506 struct thread *th; 507 bool leftmost = true; 508 509 th = threads__get_last_match(threads, machine, pid, tid); 510 if (th) 511 return th; 512 513 while (*p != NULL) { 514 parent = *p; 515 th = rb_entry(parent, struct thread, rb_node); 516 517 if (th->tid == tid) { 518 threads__set_last_match(threads, th); 519 machine__update_thread_pid(machine, th, pid); 520 return thread__get(th); 521 } 522 523 if (tid < th->tid) 524 p = &(*p)->rb_left; 525 else { 526 p = &(*p)->rb_right; 527 leftmost = false; 528 } 529 } 530 531 if (!create) 532 return NULL; 533 534 th = thread__new(pid, tid); 535 if (th != NULL) { 536 rb_link_node(&th->rb_node, parent, p); 537 rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost); 538 539 /* 540 * We have to initialize maps separately after rb tree is updated. 541 * 542 * The reason is that we call machine__findnew_thread 543 * within thread__init_maps to find the thread 544 * leader and that would screwed the rb tree. 545 */ 546 if (thread__init_maps(th, machine)) { 547 rb_erase_cached(&th->rb_node, &threads->entries); 548 RB_CLEAR_NODE(&th->rb_node); 549 thread__put(th); 550 return NULL; 551 } 552 /* 553 * It is now in the rbtree, get a ref 554 */ 555 thread__get(th); 556 threads__set_last_match(threads, th); 557 ++threads->nr; 558 } 559 560 return th; 561 } 562 563 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid) 564 { 565 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true); 566 } 567 568 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, 569 pid_t tid) 570 { 571 struct threads *threads = machine__threads(machine, tid); 572 struct thread *th; 573 574 down_write(&threads->lock); 575 th = __machine__findnew_thread(machine, pid, tid); 576 up_write(&threads->lock); 577 return th; 578 } 579 580 struct thread *machine__find_thread(struct machine *machine, pid_t pid, 581 pid_t tid) 582 { 583 struct threads *threads = machine__threads(machine, tid); 584 struct thread *th; 585 586 down_read(&threads->lock); 587 th = ____machine__findnew_thread(machine, threads, pid, tid, false); 588 up_read(&threads->lock); 589 return th; 590 } 591 592 struct comm *machine__thread_exec_comm(struct machine *machine, 593 struct thread *thread) 594 { 595 if (machine->comm_exec) 596 return thread__exec_comm(thread); 597 else 598 return thread__comm(thread); 599 } 600 601 int machine__process_comm_event(struct machine *machine, union perf_event *event, 602 struct perf_sample *sample) 603 { 604 struct thread *thread = machine__findnew_thread(machine, 605 event->comm.pid, 606 event->comm.tid); 607 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC; 608 int err = 0; 609 610 if (exec) 611 machine->comm_exec = true; 612 613 if (dump_trace) 614 perf_event__fprintf_comm(event, stdout); 615 616 if (thread == NULL || 617 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) { 618 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n"); 619 err = -1; 620 } 621 622 thread__put(thread); 623 624 return err; 625 } 626 627 int machine__process_namespaces_event(struct machine *machine __maybe_unused, 628 union perf_event *event, 629 struct perf_sample *sample __maybe_unused) 630 { 631 struct thread *thread = machine__findnew_thread(machine, 632 event->namespaces.pid, 633 event->namespaces.tid); 634 int err = 0; 635 636 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES, 637 "\nWARNING: kernel seems to support more namespaces than perf" 638 " tool.\nTry updating the perf tool..\n\n"); 639 640 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES, 641 "\nWARNING: perf tool seems to support more namespaces than" 642 " the kernel.\nTry updating the kernel..\n\n"); 643 644 if (dump_trace) 645 perf_event__fprintf_namespaces(event, stdout); 646 647 if (thread == NULL || 648 thread__set_namespaces(thread, sample->time, &event->namespaces)) { 649 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n"); 650 err = -1; 651 } 652 653 thread__put(thread); 654 655 return err; 656 } 657 658 int machine__process_cgroup_event(struct machine *machine, 659 union perf_event *event, 660 struct perf_sample *sample __maybe_unused) 661 { 662 struct cgroup *cgrp; 663 664 if (dump_trace) 665 perf_event__fprintf_cgroup(event, stdout); 666 667 cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path); 668 if (cgrp == NULL) 669 return -ENOMEM; 670 671 return 0; 672 } 673 674 int machine__process_lost_event(struct machine *machine __maybe_unused, 675 union perf_event *event, struct perf_sample *sample __maybe_unused) 676 { 677 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n", 678 event->lost.id, event->lost.lost); 679 return 0; 680 } 681 682 int machine__process_lost_samples_event(struct machine *machine __maybe_unused, 683 union perf_event *event, struct perf_sample *sample) 684 { 685 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n", 686 sample->id, event->lost_samples.lost); 687 return 0; 688 } 689 690 static struct dso *machine__findnew_module_dso(struct machine *machine, 691 struct kmod_path *m, 692 const char *filename) 693 { 694 struct dso *dso; 695 696 down_write(&machine->dsos.lock); 697 698 dso = __dsos__find(&machine->dsos, m->name, true); 699 if (!dso) { 700 dso = __dsos__addnew(&machine->dsos, m->name); 701 if (dso == NULL) 702 goto out_unlock; 703 704 dso__set_module_info(dso, m, machine); 705 dso__set_long_name(dso, strdup(filename), true); 706 dso->kernel = DSO_SPACE__KERNEL; 707 } 708 709 dso__get(dso); 710 out_unlock: 711 up_write(&machine->dsos.lock); 712 return dso; 713 } 714 715 int machine__process_aux_event(struct machine *machine __maybe_unused, 716 union perf_event *event) 717 { 718 if (dump_trace) 719 perf_event__fprintf_aux(event, stdout); 720 return 0; 721 } 722 723 int machine__process_itrace_start_event(struct machine *machine __maybe_unused, 724 union perf_event *event) 725 { 726 if (dump_trace) 727 perf_event__fprintf_itrace_start(event, stdout); 728 return 0; 729 } 730 731 int machine__process_switch_event(struct machine *machine __maybe_unused, 732 union perf_event *event) 733 { 734 if (dump_trace) 735 perf_event__fprintf_switch(event, stdout); 736 return 0; 737 } 738 739 static int machine__process_ksymbol_register(struct machine *machine, 740 union perf_event *event, 741 struct perf_sample *sample __maybe_unused) 742 { 743 struct symbol *sym; 744 struct map *map = maps__find(&machine->kmaps, event->ksymbol.addr); 745 746 if (!map) { 747 struct dso *dso = dso__new(event->ksymbol.name); 748 749 if (dso) { 750 dso->kernel = DSO_SPACE__KERNEL; 751 map = map__new2(0, dso); 752 } 753 754 if (!dso || !map) { 755 dso__put(dso); 756 return -ENOMEM; 757 } 758 759 if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) { 760 map->dso->binary_type = DSO_BINARY_TYPE__OOL; 761 map->dso->data.file_size = event->ksymbol.len; 762 dso__set_loaded(map->dso); 763 } 764 765 map->start = event->ksymbol.addr; 766 map->end = map->start + event->ksymbol.len; 767 maps__insert(&machine->kmaps, map); 768 dso__set_loaded(dso); 769 770 if (is_bpf_image(event->ksymbol.name)) { 771 dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE; 772 dso__set_long_name(dso, "", false); 773 } 774 } 775 776 sym = symbol__new(map->map_ip(map, map->start), 777 event->ksymbol.len, 778 0, 0, event->ksymbol.name); 779 if (!sym) 780 return -ENOMEM; 781 dso__insert_symbol(map->dso, sym); 782 return 0; 783 } 784 785 static int machine__process_ksymbol_unregister(struct machine *machine, 786 union perf_event *event, 787 struct perf_sample *sample __maybe_unused) 788 { 789 struct symbol *sym; 790 struct map *map; 791 792 map = maps__find(&machine->kmaps, event->ksymbol.addr); 793 if (!map) 794 return 0; 795 796 if (map != machine->vmlinux_map) 797 maps__remove(&machine->kmaps, map); 798 else { 799 sym = dso__find_symbol(map->dso, map->map_ip(map, map->start)); 800 if (sym) 801 dso__delete_symbol(map->dso, sym); 802 } 803 804 return 0; 805 } 806 807 int machine__process_ksymbol(struct machine *machine __maybe_unused, 808 union perf_event *event, 809 struct perf_sample *sample) 810 { 811 if (dump_trace) 812 perf_event__fprintf_ksymbol(event, stdout); 813 814 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER) 815 return machine__process_ksymbol_unregister(machine, event, 816 sample); 817 return machine__process_ksymbol_register(machine, event, sample); 818 } 819 820 int machine__process_text_poke(struct machine *machine, union perf_event *event, 821 struct perf_sample *sample __maybe_unused) 822 { 823 struct map *map = maps__find(&machine->kmaps, event->text_poke.addr); 824 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 825 826 if (dump_trace) 827 perf_event__fprintf_text_poke(event, machine, stdout); 828 829 if (!event->text_poke.new_len) 830 return 0; 831 832 if (cpumode != PERF_RECORD_MISC_KERNEL) { 833 pr_debug("%s: unsupported cpumode - ignoring\n", __func__); 834 return 0; 835 } 836 837 if (map && map->dso) { 838 u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len; 839 int ret; 840 841 /* 842 * Kernel maps might be changed when loading symbols so loading 843 * must be done prior to using kernel maps. 844 */ 845 map__load(map); 846 ret = dso__data_write_cache_addr(map->dso, map, machine, 847 event->text_poke.addr, 848 new_bytes, 849 event->text_poke.new_len); 850 if (ret != event->text_poke.new_len) 851 pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n", 852 event->text_poke.addr); 853 } else { 854 pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n", 855 event->text_poke.addr); 856 } 857 858 return 0; 859 } 860 861 static struct map *machine__addnew_module_map(struct machine *machine, u64 start, 862 const char *filename) 863 { 864 struct map *map = NULL; 865 struct kmod_path m; 866 struct dso *dso; 867 868 if (kmod_path__parse_name(&m, filename)) 869 return NULL; 870 871 dso = machine__findnew_module_dso(machine, &m, filename); 872 if (dso == NULL) 873 goto out; 874 875 map = map__new2(start, dso); 876 if (map == NULL) 877 goto out; 878 879 maps__insert(&machine->kmaps, map); 880 881 /* Put the map here because maps__insert alread got it */ 882 map__put(map); 883 out: 884 /* put the dso here, corresponding to machine__findnew_module_dso */ 885 dso__put(dso); 886 zfree(&m.name); 887 return map; 888 } 889 890 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp) 891 { 892 struct rb_node *nd; 893 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp); 894 895 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 896 struct machine *pos = rb_entry(nd, struct machine, rb_node); 897 ret += __dsos__fprintf(&pos->dsos.head, fp); 898 } 899 900 return ret; 901 } 902 903 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp, 904 bool (skip)(struct dso *dso, int parm), int parm) 905 { 906 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm); 907 } 908 909 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp, 910 bool (skip)(struct dso *dso, int parm), int parm) 911 { 912 struct rb_node *nd; 913 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm); 914 915 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 916 struct machine *pos = rb_entry(nd, struct machine, rb_node); 917 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm); 918 } 919 return ret; 920 } 921 922 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp) 923 { 924 int i; 925 size_t printed = 0; 926 struct dso *kdso = machine__kernel_dso(machine); 927 928 if (kdso->has_build_id) { 929 char filename[PATH_MAX]; 930 if (dso__build_id_filename(kdso, filename, sizeof(filename), 931 false)) 932 printed += fprintf(fp, "[0] %s\n", filename); 933 } 934 935 for (i = 0; i < vmlinux_path__nr_entries; ++i) 936 printed += fprintf(fp, "[%d] %s\n", 937 i + kdso->has_build_id, vmlinux_path[i]); 938 939 return printed; 940 } 941 942 size_t machine__fprintf(struct machine *machine, FILE *fp) 943 { 944 struct rb_node *nd; 945 size_t ret; 946 int i; 947 948 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 949 struct threads *threads = &machine->threads[i]; 950 951 down_read(&threads->lock); 952 953 ret = fprintf(fp, "Threads: %u\n", threads->nr); 954 955 for (nd = rb_first_cached(&threads->entries); nd; 956 nd = rb_next(nd)) { 957 struct thread *pos = rb_entry(nd, struct thread, rb_node); 958 959 ret += thread__fprintf(pos, fp); 960 } 961 962 up_read(&threads->lock); 963 } 964 return ret; 965 } 966 967 static struct dso *machine__get_kernel(struct machine *machine) 968 { 969 const char *vmlinux_name = machine->mmap_name; 970 struct dso *kernel; 971 972 if (machine__is_host(machine)) { 973 if (symbol_conf.vmlinux_name) 974 vmlinux_name = symbol_conf.vmlinux_name; 975 976 kernel = machine__findnew_kernel(machine, vmlinux_name, 977 "[kernel]", DSO_SPACE__KERNEL); 978 } else { 979 if (symbol_conf.default_guest_vmlinux_name) 980 vmlinux_name = symbol_conf.default_guest_vmlinux_name; 981 982 kernel = machine__findnew_kernel(machine, vmlinux_name, 983 "[guest.kernel]", 984 DSO_SPACE__KERNEL_GUEST); 985 } 986 987 if (kernel != NULL && (!kernel->has_build_id)) 988 dso__read_running_kernel_build_id(kernel, machine); 989 990 return kernel; 991 } 992 993 struct process_args { 994 u64 start; 995 }; 996 997 void machine__get_kallsyms_filename(struct machine *machine, char *buf, 998 size_t bufsz) 999 { 1000 if (machine__is_default_guest(machine)) 1001 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms); 1002 else 1003 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir); 1004 } 1005 1006 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL}; 1007 1008 /* Figure out the start address of kernel map from /proc/kallsyms. 1009 * Returns the name of the start symbol in *symbol_name. Pass in NULL as 1010 * symbol_name if it's not that important. 1011 */ 1012 static int machine__get_running_kernel_start(struct machine *machine, 1013 const char **symbol_name, 1014 u64 *start, u64 *end) 1015 { 1016 char filename[PATH_MAX]; 1017 int i, err = -1; 1018 const char *name; 1019 u64 addr = 0; 1020 1021 machine__get_kallsyms_filename(machine, filename, PATH_MAX); 1022 1023 if (symbol__restricted_filename(filename, "/proc/kallsyms")) 1024 return 0; 1025 1026 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) { 1027 err = kallsyms__get_function_start(filename, name, &addr); 1028 if (!err) 1029 break; 1030 } 1031 1032 if (err) 1033 return -1; 1034 1035 if (symbol_name) 1036 *symbol_name = name; 1037 1038 *start = addr; 1039 1040 err = kallsyms__get_function_start(filename, "_etext", &addr); 1041 if (!err) 1042 *end = addr; 1043 1044 return 0; 1045 } 1046 1047 int machine__create_extra_kernel_map(struct machine *machine, 1048 struct dso *kernel, 1049 struct extra_kernel_map *xm) 1050 { 1051 struct kmap *kmap; 1052 struct map *map; 1053 1054 map = map__new2(xm->start, kernel); 1055 if (!map) 1056 return -1; 1057 1058 map->end = xm->end; 1059 map->pgoff = xm->pgoff; 1060 1061 kmap = map__kmap(map); 1062 1063 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN); 1064 1065 maps__insert(&machine->kmaps, map); 1066 1067 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n", 1068 kmap->name, map->start, map->end); 1069 1070 map__put(map); 1071 1072 return 0; 1073 } 1074 1075 static u64 find_entry_trampoline(struct dso *dso) 1076 { 1077 /* Duplicates are removed so lookup all aliases */ 1078 const char *syms[] = { 1079 "_entry_trampoline", 1080 "__entry_trampoline_start", 1081 "entry_SYSCALL_64_trampoline", 1082 }; 1083 struct symbol *sym = dso__first_symbol(dso); 1084 unsigned int i; 1085 1086 for (; sym; sym = dso__next_symbol(sym)) { 1087 if (sym->binding != STB_GLOBAL) 1088 continue; 1089 for (i = 0; i < ARRAY_SIZE(syms); i++) { 1090 if (!strcmp(sym->name, syms[i])) 1091 return sym->start; 1092 } 1093 } 1094 1095 return 0; 1096 } 1097 1098 /* 1099 * These values can be used for kernels that do not have symbols for the entry 1100 * trampolines in kallsyms. 1101 */ 1102 #define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL 1103 #define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000 1104 #define X86_64_ENTRY_TRAMPOLINE 0x6000 1105 1106 /* Map x86_64 PTI entry trampolines */ 1107 int machine__map_x86_64_entry_trampolines(struct machine *machine, 1108 struct dso *kernel) 1109 { 1110 struct maps *kmaps = &machine->kmaps; 1111 int nr_cpus_avail, cpu; 1112 bool found = false; 1113 struct map *map; 1114 u64 pgoff; 1115 1116 /* 1117 * In the vmlinux case, pgoff is a virtual address which must now be 1118 * mapped to a vmlinux offset. 1119 */ 1120 maps__for_each_entry(kmaps, map) { 1121 struct kmap *kmap = __map__kmap(map); 1122 struct map *dest_map; 1123 1124 if (!kmap || !is_entry_trampoline(kmap->name)) 1125 continue; 1126 1127 dest_map = maps__find(kmaps, map->pgoff); 1128 if (dest_map != map) 1129 map->pgoff = dest_map->map_ip(dest_map, map->pgoff); 1130 found = true; 1131 } 1132 if (found || machine->trampolines_mapped) 1133 return 0; 1134 1135 pgoff = find_entry_trampoline(kernel); 1136 if (!pgoff) 1137 return 0; 1138 1139 nr_cpus_avail = machine__nr_cpus_avail(machine); 1140 1141 /* Add a 1 page map for each CPU's entry trampoline */ 1142 for (cpu = 0; cpu < nr_cpus_avail; cpu++) { 1143 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU + 1144 cpu * X86_64_CPU_ENTRY_AREA_SIZE + 1145 X86_64_ENTRY_TRAMPOLINE; 1146 struct extra_kernel_map xm = { 1147 .start = va, 1148 .end = va + page_size, 1149 .pgoff = pgoff, 1150 }; 1151 1152 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN); 1153 1154 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0) 1155 return -1; 1156 } 1157 1158 machine->trampolines_mapped = nr_cpus_avail; 1159 1160 return 0; 1161 } 1162 1163 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused, 1164 struct dso *kernel __maybe_unused) 1165 { 1166 return 0; 1167 } 1168 1169 static int 1170 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel) 1171 { 1172 /* In case of renewal the kernel map, destroy previous one */ 1173 machine__destroy_kernel_maps(machine); 1174 1175 machine->vmlinux_map = map__new2(0, kernel); 1176 if (machine->vmlinux_map == NULL) 1177 return -1; 1178 1179 machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip; 1180 maps__insert(&machine->kmaps, machine->vmlinux_map); 1181 return 0; 1182 } 1183 1184 void machine__destroy_kernel_maps(struct machine *machine) 1185 { 1186 struct kmap *kmap; 1187 struct map *map = machine__kernel_map(machine); 1188 1189 if (map == NULL) 1190 return; 1191 1192 kmap = map__kmap(map); 1193 maps__remove(&machine->kmaps, map); 1194 if (kmap && kmap->ref_reloc_sym) { 1195 zfree((char **)&kmap->ref_reloc_sym->name); 1196 zfree(&kmap->ref_reloc_sym); 1197 } 1198 1199 map__zput(machine->vmlinux_map); 1200 } 1201 1202 int machines__create_guest_kernel_maps(struct machines *machines) 1203 { 1204 int ret = 0; 1205 struct dirent **namelist = NULL; 1206 int i, items = 0; 1207 char path[PATH_MAX]; 1208 pid_t pid; 1209 char *endp; 1210 1211 if (symbol_conf.default_guest_vmlinux_name || 1212 symbol_conf.default_guest_modules || 1213 symbol_conf.default_guest_kallsyms) { 1214 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID); 1215 } 1216 1217 if (symbol_conf.guestmount) { 1218 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL); 1219 if (items <= 0) 1220 return -ENOENT; 1221 for (i = 0; i < items; i++) { 1222 if (!isdigit(namelist[i]->d_name[0])) { 1223 /* Filter out . and .. */ 1224 continue; 1225 } 1226 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10); 1227 if ((*endp != '\0') || 1228 (endp == namelist[i]->d_name) || 1229 (errno == ERANGE)) { 1230 pr_debug("invalid directory (%s). Skipping.\n", 1231 namelist[i]->d_name); 1232 continue; 1233 } 1234 sprintf(path, "%s/%s/proc/kallsyms", 1235 symbol_conf.guestmount, 1236 namelist[i]->d_name); 1237 ret = access(path, R_OK); 1238 if (ret) { 1239 pr_debug("Can't access file %s\n", path); 1240 goto failure; 1241 } 1242 machines__create_kernel_maps(machines, pid); 1243 } 1244 failure: 1245 free(namelist); 1246 } 1247 1248 return ret; 1249 } 1250 1251 void machines__destroy_kernel_maps(struct machines *machines) 1252 { 1253 struct rb_node *next = rb_first_cached(&machines->guests); 1254 1255 machine__destroy_kernel_maps(&machines->host); 1256 1257 while (next) { 1258 struct machine *pos = rb_entry(next, struct machine, rb_node); 1259 1260 next = rb_next(&pos->rb_node); 1261 rb_erase_cached(&pos->rb_node, &machines->guests); 1262 machine__delete(pos); 1263 } 1264 } 1265 1266 int machines__create_kernel_maps(struct machines *machines, pid_t pid) 1267 { 1268 struct machine *machine = machines__findnew(machines, pid); 1269 1270 if (machine == NULL) 1271 return -1; 1272 1273 return machine__create_kernel_maps(machine); 1274 } 1275 1276 int machine__load_kallsyms(struct machine *machine, const char *filename) 1277 { 1278 struct map *map = machine__kernel_map(machine); 1279 int ret = __dso__load_kallsyms(map->dso, filename, map, true); 1280 1281 if (ret > 0) { 1282 dso__set_loaded(map->dso); 1283 /* 1284 * Since /proc/kallsyms will have multiple sessions for the 1285 * kernel, with modules between them, fixup the end of all 1286 * sections. 1287 */ 1288 maps__fixup_end(&machine->kmaps); 1289 } 1290 1291 return ret; 1292 } 1293 1294 int machine__load_vmlinux_path(struct machine *machine) 1295 { 1296 struct map *map = machine__kernel_map(machine); 1297 int ret = dso__load_vmlinux_path(map->dso, map); 1298 1299 if (ret > 0) 1300 dso__set_loaded(map->dso); 1301 1302 return ret; 1303 } 1304 1305 static char *get_kernel_version(const char *root_dir) 1306 { 1307 char version[PATH_MAX]; 1308 FILE *file; 1309 char *name, *tmp; 1310 const char *prefix = "Linux version "; 1311 1312 sprintf(version, "%s/proc/version", root_dir); 1313 file = fopen(version, "r"); 1314 if (!file) 1315 return NULL; 1316 1317 tmp = fgets(version, sizeof(version), file); 1318 fclose(file); 1319 if (!tmp) 1320 return NULL; 1321 1322 name = strstr(version, prefix); 1323 if (!name) 1324 return NULL; 1325 name += strlen(prefix); 1326 tmp = strchr(name, ' '); 1327 if (tmp) 1328 *tmp = '\0'; 1329 1330 return strdup(name); 1331 } 1332 1333 static bool is_kmod_dso(struct dso *dso) 1334 { 1335 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE || 1336 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE; 1337 } 1338 1339 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m) 1340 { 1341 char *long_name; 1342 struct map *map = maps__find_by_name(maps, m->name); 1343 1344 if (map == NULL) 1345 return 0; 1346 1347 long_name = strdup(path); 1348 if (long_name == NULL) 1349 return -ENOMEM; 1350 1351 dso__set_long_name(map->dso, long_name, true); 1352 dso__kernel_module_get_build_id(map->dso, ""); 1353 1354 /* 1355 * Full name could reveal us kmod compression, so 1356 * we need to update the symtab_type if needed. 1357 */ 1358 if (m->comp && is_kmod_dso(map->dso)) { 1359 map->dso->symtab_type++; 1360 map->dso->comp = m->comp; 1361 } 1362 1363 return 0; 1364 } 1365 1366 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth) 1367 { 1368 struct dirent *dent; 1369 DIR *dir = opendir(dir_name); 1370 int ret = 0; 1371 1372 if (!dir) { 1373 pr_debug("%s: cannot open %s dir\n", __func__, dir_name); 1374 return -1; 1375 } 1376 1377 while ((dent = readdir(dir)) != NULL) { 1378 char path[PATH_MAX]; 1379 struct stat st; 1380 1381 /*sshfs might return bad dent->d_type, so we have to stat*/ 1382 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name); 1383 if (stat(path, &st)) 1384 continue; 1385 1386 if (S_ISDIR(st.st_mode)) { 1387 if (!strcmp(dent->d_name, ".") || 1388 !strcmp(dent->d_name, "..")) 1389 continue; 1390 1391 /* Do not follow top-level source and build symlinks */ 1392 if (depth == 0) { 1393 if (!strcmp(dent->d_name, "source") || 1394 !strcmp(dent->d_name, "build")) 1395 continue; 1396 } 1397 1398 ret = maps__set_modules_path_dir(maps, path, depth + 1); 1399 if (ret < 0) 1400 goto out; 1401 } else { 1402 struct kmod_path m; 1403 1404 ret = kmod_path__parse_name(&m, dent->d_name); 1405 if (ret) 1406 goto out; 1407 1408 if (m.kmod) 1409 ret = maps__set_module_path(maps, path, &m); 1410 1411 zfree(&m.name); 1412 1413 if (ret) 1414 goto out; 1415 } 1416 } 1417 1418 out: 1419 closedir(dir); 1420 return ret; 1421 } 1422 1423 static int machine__set_modules_path(struct machine *machine) 1424 { 1425 char *version; 1426 char modules_path[PATH_MAX]; 1427 1428 version = get_kernel_version(machine->root_dir); 1429 if (!version) 1430 return -1; 1431 1432 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s", 1433 machine->root_dir, version); 1434 free(version); 1435 1436 return maps__set_modules_path_dir(&machine->kmaps, modules_path, 0); 1437 } 1438 int __weak arch__fix_module_text_start(u64 *start __maybe_unused, 1439 u64 *size __maybe_unused, 1440 const char *name __maybe_unused) 1441 { 1442 return 0; 1443 } 1444 1445 static int machine__create_module(void *arg, const char *name, u64 start, 1446 u64 size) 1447 { 1448 struct machine *machine = arg; 1449 struct map *map; 1450 1451 if (arch__fix_module_text_start(&start, &size, name) < 0) 1452 return -1; 1453 1454 map = machine__addnew_module_map(machine, start, name); 1455 if (map == NULL) 1456 return -1; 1457 map->end = start + size; 1458 1459 dso__kernel_module_get_build_id(map->dso, machine->root_dir); 1460 1461 return 0; 1462 } 1463 1464 static int machine__create_modules(struct machine *machine) 1465 { 1466 const char *modules; 1467 char path[PATH_MAX]; 1468 1469 if (machine__is_default_guest(machine)) { 1470 modules = symbol_conf.default_guest_modules; 1471 } else { 1472 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir); 1473 modules = path; 1474 } 1475 1476 if (symbol__restricted_filename(modules, "/proc/modules")) 1477 return -1; 1478 1479 if (modules__parse(modules, machine, machine__create_module)) 1480 return -1; 1481 1482 if (!machine__set_modules_path(machine)) 1483 return 0; 1484 1485 pr_debug("Problems setting modules path maps, continuing anyway...\n"); 1486 1487 return 0; 1488 } 1489 1490 static void machine__set_kernel_mmap(struct machine *machine, 1491 u64 start, u64 end) 1492 { 1493 machine->vmlinux_map->start = start; 1494 machine->vmlinux_map->end = end; 1495 /* 1496 * Be a bit paranoid here, some perf.data file came with 1497 * a zero sized synthesized MMAP event for the kernel. 1498 */ 1499 if (start == 0 && end == 0) 1500 machine->vmlinux_map->end = ~0ULL; 1501 } 1502 1503 static void machine__update_kernel_mmap(struct machine *machine, 1504 u64 start, u64 end) 1505 { 1506 struct map *map = machine__kernel_map(machine); 1507 1508 map__get(map); 1509 maps__remove(&machine->kmaps, map); 1510 1511 machine__set_kernel_mmap(machine, start, end); 1512 1513 maps__insert(&machine->kmaps, map); 1514 map__put(map); 1515 } 1516 1517 int machine__create_kernel_maps(struct machine *machine) 1518 { 1519 struct dso *kernel = machine__get_kernel(machine); 1520 const char *name = NULL; 1521 struct map *map; 1522 u64 start = 0, end = ~0ULL; 1523 int ret; 1524 1525 if (kernel == NULL) 1526 return -1; 1527 1528 ret = __machine__create_kernel_maps(machine, kernel); 1529 if (ret < 0) 1530 goto out_put; 1531 1532 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) { 1533 if (machine__is_host(machine)) 1534 pr_debug("Problems creating module maps, " 1535 "continuing anyway...\n"); 1536 else 1537 pr_debug("Problems creating module maps for guest %d, " 1538 "continuing anyway...\n", machine->pid); 1539 } 1540 1541 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) { 1542 if (name && 1543 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) { 1544 machine__destroy_kernel_maps(machine); 1545 ret = -1; 1546 goto out_put; 1547 } 1548 1549 /* 1550 * we have a real start address now, so re-order the kmaps 1551 * assume it's the last in the kmaps 1552 */ 1553 machine__update_kernel_mmap(machine, start, end); 1554 } 1555 1556 if (machine__create_extra_kernel_maps(machine, kernel)) 1557 pr_debug("Problems creating extra kernel maps, continuing anyway...\n"); 1558 1559 if (end == ~0ULL) { 1560 /* update end address of the kernel map using adjacent module address */ 1561 map = map__next(machine__kernel_map(machine)); 1562 if (map) 1563 machine__set_kernel_mmap(machine, start, map->start); 1564 } 1565 1566 out_put: 1567 dso__put(kernel); 1568 return ret; 1569 } 1570 1571 static bool machine__uses_kcore(struct machine *machine) 1572 { 1573 struct dso *dso; 1574 1575 list_for_each_entry(dso, &machine->dsos.head, node) { 1576 if (dso__is_kcore(dso)) 1577 return true; 1578 } 1579 1580 return false; 1581 } 1582 1583 static bool perf_event__is_extra_kernel_mmap(struct machine *machine, 1584 struct extra_kernel_map *xm) 1585 { 1586 return machine__is(machine, "x86_64") && 1587 is_entry_trampoline(xm->name); 1588 } 1589 1590 static int machine__process_extra_kernel_map(struct machine *machine, 1591 struct extra_kernel_map *xm) 1592 { 1593 struct dso *kernel = machine__kernel_dso(machine); 1594 1595 if (kernel == NULL) 1596 return -1; 1597 1598 return machine__create_extra_kernel_map(machine, kernel, xm); 1599 } 1600 1601 static int machine__process_kernel_mmap_event(struct machine *machine, 1602 struct extra_kernel_map *xm) 1603 { 1604 struct map *map; 1605 enum dso_space_type dso_space; 1606 bool is_kernel_mmap; 1607 1608 /* If we have maps from kcore then we do not need or want any others */ 1609 if (machine__uses_kcore(machine)) 1610 return 0; 1611 1612 if (machine__is_host(machine)) 1613 dso_space = DSO_SPACE__KERNEL; 1614 else 1615 dso_space = DSO_SPACE__KERNEL_GUEST; 1616 1617 is_kernel_mmap = memcmp(xm->name, machine->mmap_name, 1618 strlen(machine->mmap_name) - 1) == 0; 1619 if (xm->name[0] == '/' || 1620 (!is_kernel_mmap && xm->name[0] == '[')) { 1621 map = machine__addnew_module_map(machine, xm->start, 1622 xm->name); 1623 if (map == NULL) 1624 goto out_problem; 1625 1626 map->end = map->start + xm->end - xm->start; 1627 } else if (is_kernel_mmap) { 1628 const char *symbol_name = (xm->name + strlen(machine->mmap_name)); 1629 /* 1630 * Should be there already, from the build-id table in 1631 * the header. 1632 */ 1633 struct dso *kernel = NULL; 1634 struct dso *dso; 1635 1636 down_read(&machine->dsos.lock); 1637 1638 list_for_each_entry(dso, &machine->dsos.head, node) { 1639 1640 /* 1641 * The cpumode passed to is_kernel_module is not the 1642 * cpumode of *this* event. If we insist on passing 1643 * correct cpumode to is_kernel_module, we should 1644 * record the cpumode when we adding this dso to the 1645 * linked list. 1646 * 1647 * However we don't really need passing correct 1648 * cpumode. We know the correct cpumode must be kernel 1649 * mode (if not, we should not link it onto kernel_dsos 1650 * list). 1651 * 1652 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN. 1653 * is_kernel_module() treats it as a kernel cpumode. 1654 */ 1655 1656 if (!dso->kernel || 1657 is_kernel_module(dso->long_name, 1658 PERF_RECORD_MISC_CPUMODE_UNKNOWN)) 1659 continue; 1660 1661 1662 kernel = dso; 1663 break; 1664 } 1665 1666 up_read(&machine->dsos.lock); 1667 1668 if (kernel == NULL) 1669 kernel = machine__findnew_dso(machine, machine->mmap_name); 1670 if (kernel == NULL) 1671 goto out_problem; 1672 1673 kernel->kernel = dso_space; 1674 if (__machine__create_kernel_maps(machine, kernel) < 0) { 1675 dso__put(kernel); 1676 goto out_problem; 1677 } 1678 1679 if (strstr(kernel->long_name, "vmlinux")) 1680 dso__set_short_name(kernel, "[kernel.vmlinux]", false); 1681 1682 machine__update_kernel_mmap(machine, xm->start, xm->end); 1683 1684 /* 1685 * Avoid using a zero address (kptr_restrict) for the ref reloc 1686 * symbol. Effectively having zero here means that at record 1687 * time /proc/sys/kernel/kptr_restrict was non zero. 1688 */ 1689 if (xm->pgoff != 0) { 1690 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, 1691 symbol_name, 1692 xm->pgoff); 1693 } 1694 1695 if (machine__is_default_guest(machine)) { 1696 /* 1697 * preload dso of guest kernel and modules 1698 */ 1699 dso__load(kernel, machine__kernel_map(machine)); 1700 } 1701 } else if (perf_event__is_extra_kernel_mmap(machine, xm)) { 1702 return machine__process_extra_kernel_map(machine, xm); 1703 } 1704 return 0; 1705 out_problem: 1706 return -1; 1707 } 1708 1709 int machine__process_mmap2_event(struct machine *machine, 1710 union perf_event *event, 1711 struct perf_sample *sample) 1712 { 1713 struct thread *thread; 1714 struct map *map; 1715 struct dso_id dso_id = { 1716 .maj = event->mmap2.maj, 1717 .min = event->mmap2.min, 1718 .ino = event->mmap2.ino, 1719 .ino_generation = event->mmap2.ino_generation, 1720 }; 1721 int ret = 0; 1722 1723 if (dump_trace) 1724 perf_event__fprintf_mmap2(event, stdout); 1725 1726 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1727 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1728 struct extra_kernel_map xm = { 1729 .start = event->mmap2.start, 1730 .end = event->mmap2.start + event->mmap2.len, 1731 .pgoff = event->mmap2.pgoff, 1732 }; 1733 1734 strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN); 1735 ret = machine__process_kernel_mmap_event(machine, &xm); 1736 if (ret < 0) 1737 goto out_problem; 1738 return 0; 1739 } 1740 1741 thread = machine__findnew_thread(machine, event->mmap2.pid, 1742 event->mmap2.tid); 1743 if (thread == NULL) 1744 goto out_problem; 1745 1746 map = map__new(machine, event->mmap2.start, 1747 event->mmap2.len, event->mmap2.pgoff, 1748 &dso_id, event->mmap2.prot, 1749 event->mmap2.flags, 1750 event->mmap2.filename, thread); 1751 1752 if (map == NULL) 1753 goto out_problem_map; 1754 1755 ret = thread__insert_map(thread, map); 1756 if (ret) 1757 goto out_problem_insert; 1758 1759 thread__put(thread); 1760 map__put(map); 1761 return 0; 1762 1763 out_problem_insert: 1764 map__put(map); 1765 out_problem_map: 1766 thread__put(thread); 1767 out_problem: 1768 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n"); 1769 return 0; 1770 } 1771 1772 int machine__process_mmap_event(struct machine *machine, union perf_event *event, 1773 struct perf_sample *sample) 1774 { 1775 struct thread *thread; 1776 struct map *map; 1777 u32 prot = 0; 1778 int ret = 0; 1779 1780 if (dump_trace) 1781 perf_event__fprintf_mmap(event, stdout); 1782 1783 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1784 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1785 struct extra_kernel_map xm = { 1786 .start = event->mmap.start, 1787 .end = event->mmap.start + event->mmap.len, 1788 .pgoff = event->mmap.pgoff, 1789 }; 1790 1791 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN); 1792 ret = machine__process_kernel_mmap_event(machine, &xm); 1793 if (ret < 0) 1794 goto out_problem; 1795 return 0; 1796 } 1797 1798 thread = machine__findnew_thread(machine, event->mmap.pid, 1799 event->mmap.tid); 1800 if (thread == NULL) 1801 goto out_problem; 1802 1803 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA)) 1804 prot = PROT_EXEC; 1805 1806 map = map__new(machine, event->mmap.start, 1807 event->mmap.len, event->mmap.pgoff, 1808 NULL, prot, 0, event->mmap.filename, thread); 1809 1810 if (map == NULL) 1811 goto out_problem_map; 1812 1813 ret = thread__insert_map(thread, map); 1814 if (ret) 1815 goto out_problem_insert; 1816 1817 thread__put(thread); 1818 map__put(map); 1819 return 0; 1820 1821 out_problem_insert: 1822 map__put(map); 1823 out_problem_map: 1824 thread__put(thread); 1825 out_problem: 1826 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n"); 1827 return 0; 1828 } 1829 1830 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock) 1831 { 1832 struct threads *threads = machine__threads(machine, th->tid); 1833 1834 if (threads->last_match == th) 1835 threads__set_last_match(threads, NULL); 1836 1837 if (lock) 1838 down_write(&threads->lock); 1839 1840 BUG_ON(refcount_read(&th->refcnt) == 0); 1841 1842 rb_erase_cached(&th->rb_node, &threads->entries); 1843 RB_CLEAR_NODE(&th->rb_node); 1844 --threads->nr; 1845 /* 1846 * Move it first to the dead_threads list, then drop the reference, 1847 * if this is the last reference, then the thread__delete destructor 1848 * will be called and we will remove it from the dead_threads list. 1849 */ 1850 list_add_tail(&th->node, &threads->dead); 1851 1852 /* 1853 * We need to do the put here because if this is the last refcount, 1854 * then we will be touching the threads->dead head when removing the 1855 * thread. 1856 */ 1857 thread__put(th); 1858 1859 if (lock) 1860 up_write(&threads->lock); 1861 } 1862 1863 void machine__remove_thread(struct machine *machine, struct thread *th) 1864 { 1865 return __machine__remove_thread(machine, th, true); 1866 } 1867 1868 int machine__process_fork_event(struct machine *machine, union perf_event *event, 1869 struct perf_sample *sample) 1870 { 1871 struct thread *thread = machine__find_thread(machine, 1872 event->fork.pid, 1873 event->fork.tid); 1874 struct thread *parent = machine__findnew_thread(machine, 1875 event->fork.ppid, 1876 event->fork.ptid); 1877 bool do_maps_clone = true; 1878 int err = 0; 1879 1880 if (dump_trace) 1881 perf_event__fprintf_task(event, stdout); 1882 1883 /* 1884 * There may be an existing thread that is not actually the parent, 1885 * either because we are processing events out of order, or because the 1886 * (fork) event that would have removed the thread was lost. Assume the 1887 * latter case and continue on as best we can. 1888 */ 1889 if (parent->pid_ != (pid_t)event->fork.ppid) { 1890 dump_printf("removing erroneous parent thread %d/%d\n", 1891 parent->pid_, parent->tid); 1892 machine__remove_thread(machine, parent); 1893 thread__put(parent); 1894 parent = machine__findnew_thread(machine, event->fork.ppid, 1895 event->fork.ptid); 1896 } 1897 1898 /* if a thread currently exists for the thread id remove it */ 1899 if (thread != NULL) { 1900 machine__remove_thread(machine, thread); 1901 thread__put(thread); 1902 } 1903 1904 thread = machine__findnew_thread(machine, event->fork.pid, 1905 event->fork.tid); 1906 /* 1907 * When synthesizing FORK events, we are trying to create thread 1908 * objects for the already running tasks on the machine. 1909 * 1910 * Normally, for a kernel FORK event, we want to clone the parent's 1911 * maps because that is what the kernel just did. 1912 * 1913 * But when synthesizing, this should not be done. If we do, we end up 1914 * with overlapping maps as we process the sythesized MMAP2 events that 1915 * get delivered shortly thereafter. 1916 * 1917 * Use the FORK event misc flags in an internal way to signal this 1918 * situation, so we can elide the map clone when appropriate. 1919 */ 1920 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC) 1921 do_maps_clone = false; 1922 1923 if (thread == NULL || parent == NULL || 1924 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) { 1925 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n"); 1926 err = -1; 1927 } 1928 thread__put(thread); 1929 thread__put(parent); 1930 1931 return err; 1932 } 1933 1934 int machine__process_exit_event(struct machine *machine, union perf_event *event, 1935 struct perf_sample *sample __maybe_unused) 1936 { 1937 struct thread *thread = machine__find_thread(machine, 1938 event->fork.pid, 1939 event->fork.tid); 1940 1941 if (dump_trace) 1942 perf_event__fprintf_task(event, stdout); 1943 1944 if (thread != NULL) { 1945 thread__exited(thread); 1946 thread__put(thread); 1947 } 1948 1949 return 0; 1950 } 1951 1952 int machine__process_event(struct machine *machine, union perf_event *event, 1953 struct perf_sample *sample) 1954 { 1955 int ret; 1956 1957 switch (event->header.type) { 1958 case PERF_RECORD_COMM: 1959 ret = machine__process_comm_event(machine, event, sample); break; 1960 case PERF_RECORD_MMAP: 1961 ret = machine__process_mmap_event(machine, event, sample); break; 1962 case PERF_RECORD_NAMESPACES: 1963 ret = machine__process_namespaces_event(machine, event, sample); break; 1964 case PERF_RECORD_CGROUP: 1965 ret = machine__process_cgroup_event(machine, event, sample); break; 1966 case PERF_RECORD_MMAP2: 1967 ret = machine__process_mmap2_event(machine, event, sample); break; 1968 case PERF_RECORD_FORK: 1969 ret = machine__process_fork_event(machine, event, sample); break; 1970 case PERF_RECORD_EXIT: 1971 ret = machine__process_exit_event(machine, event, sample); break; 1972 case PERF_RECORD_LOST: 1973 ret = machine__process_lost_event(machine, event, sample); break; 1974 case PERF_RECORD_AUX: 1975 ret = machine__process_aux_event(machine, event); break; 1976 case PERF_RECORD_ITRACE_START: 1977 ret = machine__process_itrace_start_event(machine, event); break; 1978 case PERF_RECORD_LOST_SAMPLES: 1979 ret = machine__process_lost_samples_event(machine, event, sample); break; 1980 case PERF_RECORD_SWITCH: 1981 case PERF_RECORD_SWITCH_CPU_WIDE: 1982 ret = machine__process_switch_event(machine, event); break; 1983 case PERF_RECORD_KSYMBOL: 1984 ret = machine__process_ksymbol(machine, event, sample); break; 1985 case PERF_RECORD_BPF_EVENT: 1986 ret = machine__process_bpf(machine, event, sample); break; 1987 case PERF_RECORD_TEXT_POKE: 1988 ret = machine__process_text_poke(machine, event, sample); break; 1989 default: 1990 ret = -1; 1991 break; 1992 } 1993 1994 return ret; 1995 } 1996 1997 static bool symbol__match_regex(struct symbol *sym, regex_t *regex) 1998 { 1999 if (!regexec(regex, sym->name, 0, NULL, 0)) 2000 return 1; 2001 return 0; 2002 } 2003 2004 static void ip__resolve_ams(struct thread *thread, 2005 struct addr_map_symbol *ams, 2006 u64 ip) 2007 { 2008 struct addr_location al; 2009 2010 memset(&al, 0, sizeof(al)); 2011 /* 2012 * We cannot use the header.misc hint to determine whether a 2013 * branch stack address is user, kernel, guest, hypervisor. 2014 * Branches may straddle the kernel/user/hypervisor boundaries. 2015 * Thus, we have to try consecutively until we find a match 2016 * or else, the symbol is unknown 2017 */ 2018 thread__find_cpumode_addr_location(thread, ip, &al); 2019 2020 ams->addr = ip; 2021 ams->al_addr = al.addr; 2022 ams->ms.maps = al.maps; 2023 ams->ms.sym = al.sym; 2024 ams->ms.map = al.map; 2025 ams->phys_addr = 0; 2026 ams->data_page_size = 0; 2027 } 2028 2029 static void ip__resolve_data(struct thread *thread, 2030 u8 m, struct addr_map_symbol *ams, 2031 u64 addr, u64 phys_addr, u64 daddr_page_size) 2032 { 2033 struct addr_location al; 2034 2035 memset(&al, 0, sizeof(al)); 2036 2037 thread__find_symbol(thread, m, addr, &al); 2038 2039 ams->addr = addr; 2040 ams->al_addr = al.addr; 2041 ams->ms.maps = al.maps; 2042 ams->ms.sym = al.sym; 2043 ams->ms.map = al.map; 2044 ams->phys_addr = phys_addr; 2045 ams->data_page_size = daddr_page_size; 2046 } 2047 2048 struct mem_info *sample__resolve_mem(struct perf_sample *sample, 2049 struct addr_location *al) 2050 { 2051 struct mem_info *mi = mem_info__new(); 2052 2053 if (!mi) 2054 return NULL; 2055 2056 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip); 2057 ip__resolve_data(al->thread, al->cpumode, &mi->daddr, 2058 sample->addr, sample->phys_addr, 2059 sample->data_page_size); 2060 mi->data_src.val = sample->data_src; 2061 2062 return mi; 2063 } 2064 2065 static char *callchain_srcline(struct map_symbol *ms, u64 ip) 2066 { 2067 struct map *map = ms->map; 2068 char *srcline = NULL; 2069 2070 if (!map || callchain_param.key == CCKEY_FUNCTION) 2071 return srcline; 2072 2073 srcline = srcline__tree_find(&map->dso->srclines, ip); 2074 if (!srcline) { 2075 bool show_sym = false; 2076 bool show_addr = callchain_param.key == CCKEY_ADDRESS; 2077 2078 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip), 2079 ms->sym, show_sym, show_addr, ip); 2080 srcline__tree_insert(&map->dso->srclines, ip, srcline); 2081 } 2082 2083 return srcline; 2084 } 2085 2086 struct iterations { 2087 int nr_loop_iter; 2088 u64 cycles; 2089 }; 2090 2091 static int add_callchain_ip(struct thread *thread, 2092 struct callchain_cursor *cursor, 2093 struct symbol **parent, 2094 struct addr_location *root_al, 2095 u8 *cpumode, 2096 u64 ip, 2097 bool branch, 2098 struct branch_flags *flags, 2099 struct iterations *iter, 2100 u64 branch_from) 2101 { 2102 struct map_symbol ms; 2103 struct addr_location al; 2104 int nr_loop_iter = 0; 2105 u64 iter_cycles = 0; 2106 const char *srcline = NULL; 2107 2108 al.filtered = 0; 2109 al.sym = NULL; 2110 if (!cpumode) { 2111 thread__find_cpumode_addr_location(thread, ip, &al); 2112 } else { 2113 if (ip >= PERF_CONTEXT_MAX) { 2114 switch (ip) { 2115 case PERF_CONTEXT_HV: 2116 *cpumode = PERF_RECORD_MISC_HYPERVISOR; 2117 break; 2118 case PERF_CONTEXT_KERNEL: 2119 *cpumode = PERF_RECORD_MISC_KERNEL; 2120 break; 2121 case PERF_CONTEXT_USER: 2122 *cpumode = PERF_RECORD_MISC_USER; 2123 break; 2124 default: 2125 pr_debug("invalid callchain context: " 2126 "%"PRId64"\n", (s64) ip); 2127 /* 2128 * It seems the callchain is corrupted. 2129 * Discard all. 2130 */ 2131 callchain_cursor_reset(cursor); 2132 return 1; 2133 } 2134 return 0; 2135 } 2136 thread__find_symbol(thread, *cpumode, ip, &al); 2137 } 2138 2139 if (al.sym != NULL) { 2140 if (perf_hpp_list.parent && !*parent && 2141 symbol__match_regex(al.sym, &parent_regex)) 2142 *parent = al.sym; 2143 else if (have_ignore_callees && root_al && 2144 symbol__match_regex(al.sym, &ignore_callees_regex)) { 2145 /* Treat this symbol as the root, 2146 forgetting its callees. */ 2147 *root_al = al; 2148 callchain_cursor_reset(cursor); 2149 } 2150 } 2151 2152 if (symbol_conf.hide_unresolved && al.sym == NULL) 2153 return 0; 2154 2155 if (iter) { 2156 nr_loop_iter = iter->nr_loop_iter; 2157 iter_cycles = iter->cycles; 2158 } 2159 2160 ms.maps = al.maps; 2161 ms.map = al.map; 2162 ms.sym = al.sym; 2163 srcline = callchain_srcline(&ms, al.addr); 2164 return callchain_cursor_append(cursor, ip, &ms, 2165 branch, flags, nr_loop_iter, 2166 iter_cycles, branch_from, srcline); 2167 } 2168 2169 struct branch_info *sample__resolve_bstack(struct perf_sample *sample, 2170 struct addr_location *al) 2171 { 2172 unsigned int i; 2173 const struct branch_stack *bs = sample->branch_stack; 2174 struct branch_entry *entries = perf_sample__branch_entries(sample); 2175 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info)); 2176 2177 if (!bi) 2178 return NULL; 2179 2180 for (i = 0; i < bs->nr; i++) { 2181 ip__resolve_ams(al->thread, &bi[i].to, entries[i].to); 2182 ip__resolve_ams(al->thread, &bi[i].from, entries[i].from); 2183 bi[i].flags = entries[i].flags; 2184 } 2185 return bi; 2186 } 2187 2188 static void save_iterations(struct iterations *iter, 2189 struct branch_entry *be, int nr) 2190 { 2191 int i; 2192 2193 iter->nr_loop_iter++; 2194 iter->cycles = 0; 2195 2196 for (i = 0; i < nr; i++) 2197 iter->cycles += be[i].flags.cycles; 2198 } 2199 2200 #define CHASHSZ 127 2201 #define CHASHBITS 7 2202 #define NO_ENTRY 0xff 2203 2204 #define PERF_MAX_BRANCH_DEPTH 127 2205 2206 /* Remove loops. */ 2207 static int remove_loops(struct branch_entry *l, int nr, 2208 struct iterations *iter) 2209 { 2210 int i, j, off; 2211 unsigned char chash[CHASHSZ]; 2212 2213 memset(chash, NO_ENTRY, sizeof(chash)); 2214 2215 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255); 2216 2217 for (i = 0; i < nr; i++) { 2218 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ; 2219 2220 /* no collision handling for now */ 2221 if (chash[h] == NO_ENTRY) { 2222 chash[h] = i; 2223 } else if (l[chash[h]].from == l[i].from) { 2224 bool is_loop = true; 2225 /* check if it is a real loop */ 2226 off = 0; 2227 for (j = chash[h]; j < i && i + off < nr; j++, off++) 2228 if (l[j].from != l[i + off].from) { 2229 is_loop = false; 2230 break; 2231 } 2232 if (is_loop) { 2233 j = nr - (i + off); 2234 if (j > 0) { 2235 save_iterations(iter + i + off, 2236 l + i, off); 2237 2238 memmove(iter + i, iter + i + off, 2239 j * sizeof(*iter)); 2240 2241 memmove(l + i, l + i + off, 2242 j * sizeof(*l)); 2243 } 2244 2245 nr -= off; 2246 } 2247 } 2248 } 2249 return nr; 2250 } 2251 2252 static int lbr_callchain_add_kernel_ip(struct thread *thread, 2253 struct callchain_cursor *cursor, 2254 struct perf_sample *sample, 2255 struct symbol **parent, 2256 struct addr_location *root_al, 2257 u64 branch_from, 2258 bool callee, int end) 2259 { 2260 struct ip_callchain *chain = sample->callchain; 2261 u8 cpumode = PERF_RECORD_MISC_USER; 2262 int err, i; 2263 2264 if (callee) { 2265 for (i = 0; i < end + 1; i++) { 2266 err = add_callchain_ip(thread, cursor, parent, 2267 root_al, &cpumode, chain->ips[i], 2268 false, NULL, NULL, branch_from); 2269 if (err) 2270 return err; 2271 } 2272 return 0; 2273 } 2274 2275 for (i = end; i >= 0; i--) { 2276 err = add_callchain_ip(thread, cursor, parent, 2277 root_al, &cpumode, chain->ips[i], 2278 false, NULL, NULL, branch_from); 2279 if (err) 2280 return err; 2281 } 2282 2283 return 0; 2284 } 2285 2286 static void save_lbr_cursor_node(struct thread *thread, 2287 struct callchain_cursor *cursor, 2288 int idx) 2289 { 2290 struct lbr_stitch *lbr_stitch = thread->lbr_stitch; 2291 2292 if (!lbr_stitch) 2293 return; 2294 2295 if (cursor->pos == cursor->nr) { 2296 lbr_stitch->prev_lbr_cursor[idx].valid = false; 2297 return; 2298 } 2299 2300 if (!cursor->curr) 2301 cursor->curr = cursor->first; 2302 else 2303 cursor->curr = cursor->curr->next; 2304 memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr, 2305 sizeof(struct callchain_cursor_node)); 2306 2307 lbr_stitch->prev_lbr_cursor[idx].valid = true; 2308 cursor->pos++; 2309 } 2310 2311 static int lbr_callchain_add_lbr_ip(struct thread *thread, 2312 struct callchain_cursor *cursor, 2313 struct perf_sample *sample, 2314 struct symbol **parent, 2315 struct addr_location *root_al, 2316 u64 *branch_from, 2317 bool callee) 2318 { 2319 struct branch_stack *lbr_stack = sample->branch_stack; 2320 struct branch_entry *entries = perf_sample__branch_entries(sample); 2321 u8 cpumode = PERF_RECORD_MISC_USER; 2322 int lbr_nr = lbr_stack->nr; 2323 struct branch_flags *flags; 2324 int err, i; 2325 u64 ip; 2326 2327 /* 2328 * The curr and pos are not used in writing session. They are cleared 2329 * in callchain_cursor_commit() when the writing session is closed. 2330 * Using curr and pos to track the current cursor node. 2331 */ 2332 if (thread->lbr_stitch) { 2333 cursor->curr = NULL; 2334 cursor->pos = cursor->nr; 2335 if (cursor->nr) { 2336 cursor->curr = cursor->first; 2337 for (i = 0; i < (int)(cursor->nr - 1); i++) 2338 cursor->curr = cursor->curr->next; 2339 } 2340 } 2341 2342 if (callee) { 2343 /* Add LBR ip from first entries.to */ 2344 ip = entries[0].to; 2345 flags = &entries[0].flags; 2346 *branch_from = entries[0].from; 2347 err = add_callchain_ip(thread, cursor, parent, 2348 root_al, &cpumode, ip, 2349 true, flags, NULL, 2350 *branch_from); 2351 if (err) 2352 return err; 2353 2354 /* 2355 * The number of cursor node increases. 2356 * Move the current cursor node. 2357 * But does not need to save current cursor node for entry 0. 2358 * It's impossible to stitch the whole LBRs of previous sample. 2359 */ 2360 if (thread->lbr_stitch && (cursor->pos != cursor->nr)) { 2361 if (!cursor->curr) 2362 cursor->curr = cursor->first; 2363 else 2364 cursor->curr = cursor->curr->next; 2365 cursor->pos++; 2366 } 2367 2368 /* Add LBR ip from entries.from one by one. */ 2369 for (i = 0; i < lbr_nr; i++) { 2370 ip = entries[i].from; 2371 flags = &entries[i].flags; 2372 err = add_callchain_ip(thread, cursor, parent, 2373 root_al, &cpumode, ip, 2374 true, flags, NULL, 2375 *branch_from); 2376 if (err) 2377 return err; 2378 save_lbr_cursor_node(thread, cursor, i); 2379 } 2380 return 0; 2381 } 2382 2383 /* Add LBR ip from entries.from one by one. */ 2384 for (i = lbr_nr - 1; i >= 0; i--) { 2385 ip = entries[i].from; 2386 flags = &entries[i].flags; 2387 err = add_callchain_ip(thread, cursor, parent, 2388 root_al, &cpumode, ip, 2389 true, flags, NULL, 2390 *branch_from); 2391 if (err) 2392 return err; 2393 save_lbr_cursor_node(thread, cursor, i); 2394 } 2395 2396 /* Add LBR ip from first entries.to */ 2397 ip = entries[0].to; 2398 flags = &entries[0].flags; 2399 *branch_from = entries[0].from; 2400 err = add_callchain_ip(thread, cursor, parent, 2401 root_al, &cpumode, ip, 2402 true, flags, NULL, 2403 *branch_from); 2404 if (err) 2405 return err; 2406 2407 return 0; 2408 } 2409 2410 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread, 2411 struct callchain_cursor *cursor) 2412 { 2413 struct lbr_stitch *lbr_stitch = thread->lbr_stitch; 2414 struct callchain_cursor_node *cnode; 2415 struct stitch_list *stitch_node; 2416 int err; 2417 2418 list_for_each_entry(stitch_node, &lbr_stitch->lists, node) { 2419 cnode = &stitch_node->cursor; 2420 2421 err = callchain_cursor_append(cursor, cnode->ip, 2422 &cnode->ms, 2423 cnode->branch, 2424 &cnode->branch_flags, 2425 cnode->nr_loop_iter, 2426 cnode->iter_cycles, 2427 cnode->branch_from, 2428 cnode->srcline); 2429 if (err) 2430 return err; 2431 } 2432 return 0; 2433 } 2434 2435 static struct stitch_list *get_stitch_node(struct thread *thread) 2436 { 2437 struct lbr_stitch *lbr_stitch = thread->lbr_stitch; 2438 struct stitch_list *stitch_node; 2439 2440 if (!list_empty(&lbr_stitch->free_lists)) { 2441 stitch_node = list_first_entry(&lbr_stitch->free_lists, 2442 struct stitch_list, node); 2443 list_del(&stitch_node->node); 2444 2445 return stitch_node; 2446 } 2447 2448 return malloc(sizeof(struct stitch_list)); 2449 } 2450 2451 static bool has_stitched_lbr(struct thread *thread, 2452 struct perf_sample *cur, 2453 struct perf_sample *prev, 2454 unsigned int max_lbr, 2455 bool callee) 2456 { 2457 struct branch_stack *cur_stack = cur->branch_stack; 2458 struct branch_entry *cur_entries = perf_sample__branch_entries(cur); 2459 struct branch_stack *prev_stack = prev->branch_stack; 2460 struct branch_entry *prev_entries = perf_sample__branch_entries(prev); 2461 struct lbr_stitch *lbr_stitch = thread->lbr_stitch; 2462 int i, j, nr_identical_branches = 0; 2463 struct stitch_list *stitch_node; 2464 u64 cur_base, distance; 2465 2466 if (!cur_stack || !prev_stack) 2467 return false; 2468 2469 /* Find the physical index of the base-of-stack for current sample. */ 2470 cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1; 2471 2472 distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) : 2473 (max_lbr + prev_stack->hw_idx - cur_base); 2474 /* Previous sample has shorter stack. Nothing can be stitched. */ 2475 if (distance + 1 > prev_stack->nr) 2476 return false; 2477 2478 /* 2479 * Check if there are identical LBRs between two samples. 2480 * Identicall LBRs must have same from, to and flags values. Also, 2481 * they have to be saved in the same LBR registers (same physical 2482 * index). 2483 * 2484 * Starts from the base-of-stack of current sample. 2485 */ 2486 for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) { 2487 if ((prev_entries[i].from != cur_entries[j].from) || 2488 (prev_entries[i].to != cur_entries[j].to) || 2489 (prev_entries[i].flags.value != cur_entries[j].flags.value)) 2490 break; 2491 nr_identical_branches++; 2492 } 2493 2494 if (!nr_identical_branches) 2495 return false; 2496 2497 /* 2498 * Save the LBRs between the base-of-stack of previous sample 2499 * and the base-of-stack of current sample into lbr_stitch->lists. 2500 * These LBRs will be stitched later. 2501 */ 2502 for (i = prev_stack->nr - 1; i > (int)distance; i--) { 2503 2504 if (!lbr_stitch->prev_lbr_cursor[i].valid) 2505 continue; 2506 2507 stitch_node = get_stitch_node(thread); 2508 if (!stitch_node) 2509 return false; 2510 2511 memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i], 2512 sizeof(struct callchain_cursor_node)); 2513 2514 if (callee) 2515 list_add(&stitch_node->node, &lbr_stitch->lists); 2516 else 2517 list_add_tail(&stitch_node->node, &lbr_stitch->lists); 2518 } 2519 2520 return true; 2521 } 2522 2523 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr) 2524 { 2525 if (thread->lbr_stitch) 2526 return true; 2527 2528 thread->lbr_stitch = zalloc(sizeof(*thread->lbr_stitch)); 2529 if (!thread->lbr_stitch) 2530 goto err; 2531 2532 thread->lbr_stitch->prev_lbr_cursor = calloc(max_lbr + 1, sizeof(struct callchain_cursor_node)); 2533 if (!thread->lbr_stitch->prev_lbr_cursor) 2534 goto free_lbr_stitch; 2535 2536 INIT_LIST_HEAD(&thread->lbr_stitch->lists); 2537 INIT_LIST_HEAD(&thread->lbr_stitch->free_lists); 2538 2539 return true; 2540 2541 free_lbr_stitch: 2542 zfree(&thread->lbr_stitch); 2543 err: 2544 pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n"); 2545 thread->lbr_stitch_enable = false; 2546 return false; 2547 } 2548 2549 /* 2550 * Recolve LBR callstack chain sample 2551 * Return: 2552 * 1 on success get LBR callchain information 2553 * 0 no available LBR callchain information, should try fp 2554 * negative error code on other errors. 2555 */ 2556 static int resolve_lbr_callchain_sample(struct thread *thread, 2557 struct callchain_cursor *cursor, 2558 struct perf_sample *sample, 2559 struct symbol **parent, 2560 struct addr_location *root_al, 2561 int max_stack, 2562 unsigned int max_lbr) 2563 { 2564 bool callee = (callchain_param.order == ORDER_CALLEE); 2565 struct ip_callchain *chain = sample->callchain; 2566 int chain_nr = min(max_stack, (int)chain->nr), i; 2567 struct lbr_stitch *lbr_stitch; 2568 bool stitched_lbr = false; 2569 u64 branch_from = 0; 2570 int err; 2571 2572 for (i = 0; i < chain_nr; i++) { 2573 if (chain->ips[i] == PERF_CONTEXT_USER) 2574 break; 2575 } 2576 2577 /* LBR only affects the user callchain */ 2578 if (i == chain_nr) 2579 return 0; 2580 2581 if (thread->lbr_stitch_enable && !sample->no_hw_idx && 2582 (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) { 2583 lbr_stitch = thread->lbr_stitch; 2584 2585 stitched_lbr = has_stitched_lbr(thread, sample, 2586 &lbr_stitch->prev_sample, 2587 max_lbr, callee); 2588 2589 if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) { 2590 list_replace_init(&lbr_stitch->lists, 2591 &lbr_stitch->free_lists); 2592 } 2593 memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample)); 2594 } 2595 2596 if (callee) { 2597 /* Add kernel ip */ 2598 err = lbr_callchain_add_kernel_ip(thread, cursor, sample, 2599 parent, root_al, branch_from, 2600 true, i); 2601 if (err) 2602 goto error; 2603 2604 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent, 2605 root_al, &branch_from, true); 2606 if (err) 2607 goto error; 2608 2609 if (stitched_lbr) { 2610 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor); 2611 if (err) 2612 goto error; 2613 } 2614 2615 } else { 2616 if (stitched_lbr) { 2617 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor); 2618 if (err) 2619 goto error; 2620 } 2621 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent, 2622 root_al, &branch_from, false); 2623 if (err) 2624 goto error; 2625 2626 /* Add kernel ip */ 2627 err = lbr_callchain_add_kernel_ip(thread, cursor, sample, 2628 parent, root_al, branch_from, 2629 false, i); 2630 if (err) 2631 goto error; 2632 } 2633 return 1; 2634 2635 error: 2636 return (err < 0) ? err : 0; 2637 } 2638 2639 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread, 2640 struct callchain_cursor *cursor, 2641 struct symbol **parent, 2642 struct addr_location *root_al, 2643 u8 *cpumode, int ent) 2644 { 2645 int err = 0; 2646 2647 while (--ent >= 0) { 2648 u64 ip = chain->ips[ent]; 2649 2650 if (ip >= PERF_CONTEXT_MAX) { 2651 err = add_callchain_ip(thread, cursor, parent, 2652 root_al, cpumode, ip, 2653 false, NULL, NULL, 0); 2654 break; 2655 } 2656 } 2657 return err; 2658 } 2659 2660 static int thread__resolve_callchain_sample(struct thread *thread, 2661 struct callchain_cursor *cursor, 2662 struct evsel *evsel, 2663 struct perf_sample *sample, 2664 struct symbol **parent, 2665 struct addr_location *root_al, 2666 int max_stack) 2667 { 2668 struct branch_stack *branch = sample->branch_stack; 2669 struct branch_entry *entries = perf_sample__branch_entries(sample); 2670 struct ip_callchain *chain = sample->callchain; 2671 int chain_nr = 0; 2672 u8 cpumode = PERF_RECORD_MISC_USER; 2673 int i, j, err, nr_entries; 2674 int skip_idx = -1; 2675 int first_call = 0; 2676 2677 if (chain) 2678 chain_nr = chain->nr; 2679 2680 if (evsel__has_branch_callstack(evsel)) { 2681 struct perf_env *env = evsel__env(evsel); 2682 2683 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent, 2684 root_al, max_stack, 2685 !env ? 0 : env->max_branches); 2686 if (err) 2687 return (err < 0) ? err : 0; 2688 } 2689 2690 /* 2691 * Based on DWARF debug information, some architectures skip 2692 * a callchain entry saved by the kernel. 2693 */ 2694 skip_idx = arch_skip_callchain_idx(thread, chain); 2695 2696 /* 2697 * Add branches to call stack for easier browsing. This gives 2698 * more context for a sample than just the callers. 2699 * 2700 * This uses individual histograms of paths compared to the 2701 * aggregated histograms the normal LBR mode uses. 2702 * 2703 * Limitations for now: 2704 * - No extra filters 2705 * - No annotations (should annotate somehow) 2706 */ 2707 2708 if (branch && callchain_param.branch_callstack) { 2709 int nr = min(max_stack, (int)branch->nr); 2710 struct branch_entry be[nr]; 2711 struct iterations iter[nr]; 2712 2713 if (branch->nr > PERF_MAX_BRANCH_DEPTH) { 2714 pr_warning("corrupted branch chain. skipping...\n"); 2715 goto check_calls; 2716 } 2717 2718 for (i = 0; i < nr; i++) { 2719 if (callchain_param.order == ORDER_CALLEE) { 2720 be[i] = entries[i]; 2721 2722 if (chain == NULL) 2723 continue; 2724 2725 /* 2726 * Check for overlap into the callchain. 2727 * The return address is one off compared to 2728 * the branch entry. To adjust for this 2729 * assume the calling instruction is not longer 2730 * than 8 bytes. 2731 */ 2732 if (i == skip_idx || 2733 chain->ips[first_call] >= PERF_CONTEXT_MAX) 2734 first_call++; 2735 else if (be[i].from < chain->ips[first_call] && 2736 be[i].from >= chain->ips[first_call] - 8) 2737 first_call++; 2738 } else 2739 be[i] = entries[branch->nr - i - 1]; 2740 } 2741 2742 memset(iter, 0, sizeof(struct iterations) * nr); 2743 nr = remove_loops(be, nr, iter); 2744 2745 for (i = 0; i < nr; i++) { 2746 err = add_callchain_ip(thread, cursor, parent, 2747 root_al, 2748 NULL, be[i].to, 2749 true, &be[i].flags, 2750 NULL, be[i].from); 2751 2752 if (!err) 2753 err = add_callchain_ip(thread, cursor, parent, root_al, 2754 NULL, be[i].from, 2755 true, &be[i].flags, 2756 &iter[i], 0); 2757 if (err == -EINVAL) 2758 break; 2759 if (err) 2760 return err; 2761 } 2762 2763 if (chain_nr == 0) 2764 return 0; 2765 2766 chain_nr -= nr; 2767 } 2768 2769 check_calls: 2770 if (chain && callchain_param.order != ORDER_CALLEE) { 2771 err = find_prev_cpumode(chain, thread, cursor, parent, root_al, 2772 &cpumode, chain->nr - first_call); 2773 if (err) 2774 return (err < 0) ? err : 0; 2775 } 2776 for (i = first_call, nr_entries = 0; 2777 i < chain_nr && nr_entries < max_stack; i++) { 2778 u64 ip; 2779 2780 if (callchain_param.order == ORDER_CALLEE) 2781 j = i; 2782 else 2783 j = chain->nr - i - 1; 2784 2785 #ifdef HAVE_SKIP_CALLCHAIN_IDX 2786 if (j == skip_idx) 2787 continue; 2788 #endif 2789 ip = chain->ips[j]; 2790 if (ip < PERF_CONTEXT_MAX) 2791 ++nr_entries; 2792 else if (callchain_param.order != ORDER_CALLEE) { 2793 err = find_prev_cpumode(chain, thread, cursor, parent, 2794 root_al, &cpumode, j); 2795 if (err) 2796 return (err < 0) ? err : 0; 2797 continue; 2798 } 2799 2800 err = add_callchain_ip(thread, cursor, parent, 2801 root_al, &cpumode, ip, 2802 false, NULL, NULL, 0); 2803 2804 if (err) 2805 return (err < 0) ? err : 0; 2806 } 2807 2808 return 0; 2809 } 2810 2811 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip) 2812 { 2813 struct symbol *sym = ms->sym; 2814 struct map *map = ms->map; 2815 struct inline_node *inline_node; 2816 struct inline_list *ilist; 2817 u64 addr; 2818 int ret = 1; 2819 2820 if (!symbol_conf.inline_name || !map || !sym) 2821 return ret; 2822 2823 addr = map__map_ip(map, ip); 2824 addr = map__rip_2objdump(map, addr); 2825 2826 inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr); 2827 if (!inline_node) { 2828 inline_node = dso__parse_addr_inlines(map->dso, addr, sym); 2829 if (!inline_node) 2830 return ret; 2831 inlines__tree_insert(&map->dso->inlined_nodes, inline_node); 2832 } 2833 2834 list_for_each_entry(ilist, &inline_node->val, list) { 2835 struct map_symbol ilist_ms = { 2836 .maps = ms->maps, 2837 .map = map, 2838 .sym = ilist->symbol, 2839 }; 2840 ret = callchain_cursor_append(cursor, ip, &ilist_ms, false, 2841 NULL, 0, 0, 0, ilist->srcline); 2842 2843 if (ret != 0) 2844 return ret; 2845 } 2846 2847 return ret; 2848 } 2849 2850 static int unwind_entry(struct unwind_entry *entry, void *arg) 2851 { 2852 struct callchain_cursor *cursor = arg; 2853 const char *srcline = NULL; 2854 u64 addr = entry->ip; 2855 2856 if (symbol_conf.hide_unresolved && entry->ms.sym == NULL) 2857 return 0; 2858 2859 if (append_inlines(cursor, &entry->ms, entry->ip) == 0) 2860 return 0; 2861 2862 /* 2863 * Convert entry->ip from a virtual address to an offset in 2864 * its corresponding binary. 2865 */ 2866 if (entry->ms.map) 2867 addr = map__map_ip(entry->ms.map, entry->ip); 2868 2869 srcline = callchain_srcline(&entry->ms, addr); 2870 return callchain_cursor_append(cursor, entry->ip, &entry->ms, 2871 false, NULL, 0, 0, 0, srcline); 2872 } 2873 2874 static int thread__resolve_callchain_unwind(struct thread *thread, 2875 struct callchain_cursor *cursor, 2876 struct evsel *evsel, 2877 struct perf_sample *sample, 2878 int max_stack) 2879 { 2880 /* Can we do dwarf post unwind? */ 2881 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) && 2882 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER))) 2883 return 0; 2884 2885 /* Bail out if nothing was captured. */ 2886 if ((!sample->user_regs.regs) || 2887 (!sample->user_stack.size)) 2888 return 0; 2889 2890 return unwind__get_entries(unwind_entry, cursor, 2891 thread, sample, max_stack); 2892 } 2893 2894 int thread__resolve_callchain(struct thread *thread, 2895 struct callchain_cursor *cursor, 2896 struct evsel *evsel, 2897 struct perf_sample *sample, 2898 struct symbol **parent, 2899 struct addr_location *root_al, 2900 int max_stack) 2901 { 2902 int ret = 0; 2903 2904 callchain_cursor_reset(cursor); 2905 2906 if (callchain_param.order == ORDER_CALLEE) { 2907 ret = thread__resolve_callchain_sample(thread, cursor, 2908 evsel, sample, 2909 parent, root_al, 2910 max_stack); 2911 if (ret) 2912 return ret; 2913 ret = thread__resolve_callchain_unwind(thread, cursor, 2914 evsel, sample, 2915 max_stack); 2916 } else { 2917 ret = thread__resolve_callchain_unwind(thread, cursor, 2918 evsel, sample, 2919 max_stack); 2920 if (ret) 2921 return ret; 2922 ret = thread__resolve_callchain_sample(thread, cursor, 2923 evsel, sample, 2924 parent, root_al, 2925 max_stack); 2926 } 2927 2928 return ret; 2929 } 2930 2931 int machine__for_each_thread(struct machine *machine, 2932 int (*fn)(struct thread *thread, void *p), 2933 void *priv) 2934 { 2935 struct threads *threads; 2936 struct rb_node *nd; 2937 struct thread *thread; 2938 int rc = 0; 2939 int i; 2940 2941 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 2942 threads = &machine->threads[i]; 2943 for (nd = rb_first_cached(&threads->entries); nd; 2944 nd = rb_next(nd)) { 2945 thread = rb_entry(nd, struct thread, rb_node); 2946 rc = fn(thread, priv); 2947 if (rc != 0) 2948 return rc; 2949 } 2950 2951 list_for_each_entry(thread, &threads->dead, node) { 2952 rc = fn(thread, priv); 2953 if (rc != 0) 2954 return rc; 2955 } 2956 } 2957 return rc; 2958 } 2959 2960 int machines__for_each_thread(struct machines *machines, 2961 int (*fn)(struct thread *thread, void *p), 2962 void *priv) 2963 { 2964 struct rb_node *nd; 2965 int rc = 0; 2966 2967 rc = machine__for_each_thread(&machines->host, fn, priv); 2968 if (rc != 0) 2969 return rc; 2970 2971 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 2972 struct machine *machine = rb_entry(nd, struct machine, rb_node); 2973 2974 rc = machine__for_each_thread(machine, fn, priv); 2975 if (rc != 0) 2976 return rc; 2977 } 2978 return rc; 2979 } 2980 2981 pid_t machine__get_current_tid(struct machine *machine, int cpu) 2982 { 2983 int nr_cpus = min(machine->env->nr_cpus_avail, MAX_NR_CPUS); 2984 2985 if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid) 2986 return -1; 2987 2988 return machine->current_tid[cpu]; 2989 } 2990 2991 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid, 2992 pid_t tid) 2993 { 2994 struct thread *thread; 2995 int nr_cpus = min(machine->env->nr_cpus_avail, MAX_NR_CPUS); 2996 2997 if (cpu < 0) 2998 return -EINVAL; 2999 3000 if (!machine->current_tid) { 3001 int i; 3002 3003 machine->current_tid = calloc(nr_cpus, sizeof(pid_t)); 3004 if (!machine->current_tid) 3005 return -ENOMEM; 3006 for (i = 0; i < nr_cpus; i++) 3007 machine->current_tid[i] = -1; 3008 } 3009 3010 if (cpu >= nr_cpus) { 3011 pr_err("Requested CPU %d too large. ", cpu); 3012 pr_err("Consider raising MAX_NR_CPUS\n"); 3013 return -EINVAL; 3014 } 3015 3016 machine->current_tid[cpu] = tid; 3017 3018 thread = machine__findnew_thread(machine, pid, tid); 3019 if (!thread) 3020 return -ENOMEM; 3021 3022 thread->cpu = cpu; 3023 thread__put(thread); 3024 3025 return 0; 3026 } 3027 3028 /* 3029 * Compares the raw arch string. N.B. see instead perf_env__arch() if a 3030 * normalized arch is needed. 3031 */ 3032 bool machine__is(struct machine *machine, const char *arch) 3033 { 3034 return machine && !strcmp(perf_env__raw_arch(machine->env), arch); 3035 } 3036 3037 int machine__nr_cpus_avail(struct machine *machine) 3038 { 3039 return machine ? perf_env__nr_cpus_avail(machine->env) : 0; 3040 } 3041 3042 int machine__get_kernel_start(struct machine *machine) 3043 { 3044 struct map *map = machine__kernel_map(machine); 3045 int err = 0; 3046 3047 /* 3048 * The only addresses above 2^63 are kernel addresses of a 64-bit 3049 * kernel. Note that addresses are unsigned so that on a 32-bit system 3050 * all addresses including kernel addresses are less than 2^32. In 3051 * that case (32-bit system), if the kernel mapping is unknown, all 3052 * addresses will be assumed to be in user space - see 3053 * machine__kernel_ip(). 3054 */ 3055 machine->kernel_start = 1ULL << 63; 3056 if (map) { 3057 err = map__load(map); 3058 /* 3059 * On x86_64, PTI entry trampolines are less than the 3060 * start of kernel text, but still above 2^63. So leave 3061 * kernel_start = 1ULL << 63 for x86_64. 3062 */ 3063 if (!err && !machine__is(machine, "x86_64")) 3064 machine->kernel_start = map->start; 3065 } 3066 return err; 3067 } 3068 3069 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr) 3070 { 3071 u8 addr_cpumode = cpumode; 3072 bool kernel_ip; 3073 3074 if (!machine->single_address_space) 3075 goto out; 3076 3077 kernel_ip = machine__kernel_ip(machine, addr); 3078 switch (cpumode) { 3079 case PERF_RECORD_MISC_KERNEL: 3080 case PERF_RECORD_MISC_USER: 3081 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL : 3082 PERF_RECORD_MISC_USER; 3083 break; 3084 case PERF_RECORD_MISC_GUEST_KERNEL: 3085 case PERF_RECORD_MISC_GUEST_USER: 3086 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL : 3087 PERF_RECORD_MISC_GUEST_USER; 3088 break; 3089 default: 3090 break; 3091 } 3092 out: 3093 return addr_cpumode; 3094 } 3095 3096 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id) 3097 { 3098 return dsos__findnew_id(&machine->dsos, filename, id); 3099 } 3100 3101 struct dso *machine__findnew_dso(struct machine *machine, const char *filename) 3102 { 3103 return machine__findnew_dso_id(machine, filename, NULL); 3104 } 3105 3106 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp) 3107 { 3108 struct machine *machine = vmachine; 3109 struct map *map; 3110 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map); 3111 3112 if (sym == NULL) 3113 return NULL; 3114 3115 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL; 3116 *addrp = map->unmap_ip(map, sym->start); 3117 return sym->name; 3118 } 3119 3120 int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv) 3121 { 3122 struct dso *pos; 3123 int err = 0; 3124 3125 list_for_each_entry(pos, &machine->dsos.head, node) { 3126 if (fn(pos, machine, priv)) 3127 err = -1; 3128 } 3129 return err; 3130 } 3131