xref: /openbmc/linux/tools/perf/util/machine.c (revision b78412b8)
1 #include <dirent.h>
2 #include <errno.h>
3 #include <inttypes.h>
4 #include <regex.h>
5 #include "callchain.h"
6 #include "debug.h"
7 #include "event.h"
8 #include "evsel.h"
9 #include "hist.h"
10 #include "machine.h"
11 #include "map.h"
12 #include "sort.h"
13 #include "strlist.h"
14 #include "thread.h"
15 #include "vdso.h"
16 #include <stdbool.h>
17 #include <sys/types.h>
18 #include <sys/stat.h>
19 #include <unistd.h>
20 #include "unwind.h"
21 #include "linux/hash.h"
22 #include "asm/bug.h"
23 
24 #include "sane_ctype.h"
25 #include <symbol/kallsyms.h>
26 
27 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
28 
29 static void dsos__init(struct dsos *dsos)
30 {
31 	INIT_LIST_HEAD(&dsos->head);
32 	dsos->root = RB_ROOT;
33 	pthread_rwlock_init(&dsos->lock, NULL);
34 }
35 
36 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
37 {
38 	memset(machine, 0, sizeof(*machine));
39 	map_groups__init(&machine->kmaps, machine);
40 	RB_CLEAR_NODE(&machine->rb_node);
41 	dsos__init(&machine->dsos);
42 
43 	machine->threads = RB_ROOT;
44 	pthread_rwlock_init(&machine->threads_lock, NULL);
45 	machine->nr_threads = 0;
46 	INIT_LIST_HEAD(&machine->dead_threads);
47 	machine->last_match = NULL;
48 
49 	machine->vdso_info = NULL;
50 	machine->env = NULL;
51 
52 	machine->pid = pid;
53 
54 	machine->id_hdr_size = 0;
55 	machine->kptr_restrict_warned = false;
56 	machine->comm_exec = false;
57 	machine->kernel_start = 0;
58 
59 	memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps));
60 
61 	machine->root_dir = strdup(root_dir);
62 	if (machine->root_dir == NULL)
63 		return -ENOMEM;
64 
65 	if (pid != HOST_KERNEL_ID) {
66 		struct thread *thread = machine__findnew_thread(machine, -1,
67 								pid);
68 		char comm[64];
69 
70 		if (thread == NULL)
71 			return -ENOMEM;
72 
73 		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
74 		thread__set_comm(thread, comm, 0);
75 		thread__put(thread);
76 	}
77 
78 	machine->current_tid = NULL;
79 
80 	return 0;
81 }
82 
83 struct machine *machine__new_host(void)
84 {
85 	struct machine *machine = malloc(sizeof(*machine));
86 
87 	if (machine != NULL) {
88 		machine__init(machine, "", HOST_KERNEL_ID);
89 
90 		if (machine__create_kernel_maps(machine) < 0)
91 			goto out_delete;
92 	}
93 
94 	return machine;
95 out_delete:
96 	free(machine);
97 	return NULL;
98 }
99 
100 struct machine *machine__new_kallsyms(void)
101 {
102 	struct machine *machine = machine__new_host();
103 	/*
104 	 * FIXME:
105 	 * 1) MAP__FUNCTION will go away when we stop loading separate maps for
106 	 *    functions and data objects.
107 	 * 2) We should switch to machine__load_kallsyms(), i.e. not explicitely
108 	 *    ask for not using the kcore parsing code, once this one is fixed
109 	 *    to create a map per module.
110 	 */
111 	if (machine && __machine__load_kallsyms(machine, "/proc/kallsyms", MAP__FUNCTION, true) <= 0) {
112 		machine__delete(machine);
113 		machine = NULL;
114 	}
115 
116 	return machine;
117 }
118 
119 static void dsos__purge(struct dsos *dsos)
120 {
121 	struct dso *pos, *n;
122 
123 	pthread_rwlock_wrlock(&dsos->lock);
124 
125 	list_for_each_entry_safe(pos, n, &dsos->head, node) {
126 		RB_CLEAR_NODE(&pos->rb_node);
127 		pos->root = NULL;
128 		list_del_init(&pos->node);
129 		dso__put(pos);
130 	}
131 
132 	pthread_rwlock_unlock(&dsos->lock);
133 }
134 
135 static void dsos__exit(struct dsos *dsos)
136 {
137 	dsos__purge(dsos);
138 	pthread_rwlock_destroy(&dsos->lock);
139 }
140 
141 void machine__delete_threads(struct machine *machine)
142 {
143 	struct rb_node *nd;
144 
145 	pthread_rwlock_wrlock(&machine->threads_lock);
146 	nd = rb_first(&machine->threads);
147 	while (nd) {
148 		struct thread *t = rb_entry(nd, struct thread, rb_node);
149 
150 		nd = rb_next(nd);
151 		__machine__remove_thread(machine, t, false);
152 	}
153 	pthread_rwlock_unlock(&machine->threads_lock);
154 }
155 
156 void machine__exit(struct machine *machine)
157 {
158 	machine__destroy_kernel_maps(machine);
159 	map_groups__exit(&machine->kmaps);
160 	dsos__exit(&machine->dsos);
161 	machine__exit_vdso(machine);
162 	zfree(&machine->root_dir);
163 	zfree(&machine->current_tid);
164 	pthread_rwlock_destroy(&machine->threads_lock);
165 }
166 
167 void machine__delete(struct machine *machine)
168 {
169 	if (machine) {
170 		machine__exit(machine);
171 		free(machine);
172 	}
173 }
174 
175 void machines__init(struct machines *machines)
176 {
177 	machine__init(&machines->host, "", HOST_KERNEL_ID);
178 	machines->guests = RB_ROOT;
179 }
180 
181 void machines__exit(struct machines *machines)
182 {
183 	machine__exit(&machines->host);
184 	/* XXX exit guest */
185 }
186 
187 struct machine *machines__add(struct machines *machines, pid_t pid,
188 			      const char *root_dir)
189 {
190 	struct rb_node **p = &machines->guests.rb_node;
191 	struct rb_node *parent = NULL;
192 	struct machine *pos, *machine = malloc(sizeof(*machine));
193 
194 	if (machine == NULL)
195 		return NULL;
196 
197 	if (machine__init(machine, root_dir, pid) != 0) {
198 		free(machine);
199 		return NULL;
200 	}
201 
202 	while (*p != NULL) {
203 		parent = *p;
204 		pos = rb_entry(parent, struct machine, rb_node);
205 		if (pid < pos->pid)
206 			p = &(*p)->rb_left;
207 		else
208 			p = &(*p)->rb_right;
209 	}
210 
211 	rb_link_node(&machine->rb_node, parent, p);
212 	rb_insert_color(&machine->rb_node, &machines->guests);
213 
214 	return machine;
215 }
216 
217 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
218 {
219 	struct rb_node *nd;
220 
221 	machines->host.comm_exec = comm_exec;
222 
223 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
224 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
225 
226 		machine->comm_exec = comm_exec;
227 	}
228 }
229 
230 struct machine *machines__find(struct machines *machines, pid_t pid)
231 {
232 	struct rb_node **p = &machines->guests.rb_node;
233 	struct rb_node *parent = NULL;
234 	struct machine *machine;
235 	struct machine *default_machine = NULL;
236 
237 	if (pid == HOST_KERNEL_ID)
238 		return &machines->host;
239 
240 	while (*p != NULL) {
241 		parent = *p;
242 		machine = rb_entry(parent, struct machine, rb_node);
243 		if (pid < machine->pid)
244 			p = &(*p)->rb_left;
245 		else if (pid > machine->pid)
246 			p = &(*p)->rb_right;
247 		else
248 			return machine;
249 		if (!machine->pid)
250 			default_machine = machine;
251 	}
252 
253 	return default_machine;
254 }
255 
256 struct machine *machines__findnew(struct machines *machines, pid_t pid)
257 {
258 	char path[PATH_MAX];
259 	const char *root_dir = "";
260 	struct machine *machine = machines__find(machines, pid);
261 
262 	if (machine && (machine->pid == pid))
263 		goto out;
264 
265 	if ((pid != HOST_KERNEL_ID) &&
266 	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
267 	    (symbol_conf.guestmount)) {
268 		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
269 		if (access(path, R_OK)) {
270 			static struct strlist *seen;
271 
272 			if (!seen)
273 				seen = strlist__new(NULL, NULL);
274 
275 			if (!strlist__has_entry(seen, path)) {
276 				pr_err("Can't access file %s\n", path);
277 				strlist__add(seen, path);
278 			}
279 			machine = NULL;
280 			goto out;
281 		}
282 		root_dir = path;
283 	}
284 
285 	machine = machines__add(machines, pid, root_dir);
286 out:
287 	return machine;
288 }
289 
290 void machines__process_guests(struct machines *machines,
291 			      machine__process_t process, void *data)
292 {
293 	struct rb_node *nd;
294 
295 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
296 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
297 		process(pos, data);
298 	}
299 }
300 
301 char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
302 {
303 	if (machine__is_host(machine))
304 		snprintf(bf, size, "[%s]", "kernel.kallsyms");
305 	else if (machine__is_default_guest(machine))
306 		snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
307 	else {
308 		snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
309 			 machine->pid);
310 	}
311 
312 	return bf;
313 }
314 
315 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
316 {
317 	struct rb_node *node;
318 	struct machine *machine;
319 
320 	machines->host.id_hdr_size = id_hdr_size;
321 
322 	for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
323 		machine = rb_entry(node, struct machine, rb_node);
324 		machine->id_hdr_size = id_hdr_size;
325 	}
326 
327 	return;
328 }
329 
330 static void machine__update_thread_pid(struct machine *machine,
331 				       struct thread *th, pid_t pid)
332 {
333 	struct thread *leader;
334 
335 	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
336 		return;
337 
338 	th->pid_ = pid;
339 
340 	if (th->pid_ == th->tid)
341 		return;
342 
343 	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
344 	if (!leader)
345 		goto out_err;
346 
347 	if (!leader->mg)
348 		leader->mg = map_groups__new(machine);
349 
350 	if (!leader->mg)
351 		goto out_err;
352 
353 	if (th->mg == leader->mg)
354 		return;
355 
356 	if (th->mg) {
357 		/*
358 		 * Maps are created from MMAP events which provide the pid and
359 		 * tid.  Consequently there never should be any maps on a thread
360 		 * with an unknown pid.  Just print an error if there are.
361 		 */
362 		if (!map_groups__empty(th->mg))
363 			pr_err("Discarding thread maps for %d:%d\n",
364 			       th->pid_, th->tid);
365 		map_groups__put(th->mg);
366 	}
367 
368 	th->mg = map_groups__get(leader->mg);
369 out_put:
370 	thread__put(leader);
371 	return;
372 out_err:
373 	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
374 	goto out_put;
375 }
376 
377 /*
378  * Caller must eventually drop thread->refcnt returned with a successful
379  * lookup/new thread inserted.
380  */
381 static struct thread *____machine__findnew_thread(struct machine *machine,
382 						  pid_t pid, pid_t tid,
383 						  bool create)
384 {
385 	struct rb_node **p = &machine->threads.rb_node;
386 	struct rb_node *parent = NULL;
387 	struct thread *th;
388 
389 	/*
390 	 * Front-end cache - TID lookups come in blocks,
391 	 * so most of the time we dont have to look up
392 	 * the full rbtree:
393 	 */
394 	th = machine->last_match;
395 	if (th != NULL) {
396 		if (th->tid == tid) {
397 			machine__update_thread_pid(machine, th, pid);
398 			return thread__get(th);
399 		}
400 
401 		machine->last_match = NULL;
402 	}
403 
404 	while (*p != NULL) {
405 		parent = *p;
406 		th = rb_entry(parent, struct thread, rb_node);
407 
408 		if (th->tid == tid) {
409 			machine->last_match = th;
410 			machine__update_thread_pid(machine, th, pid);
411 			return thread__get(th);
412 		}
413 
414 		if (tid < th->tid)
415 			p = &(*p)->rb_left;
416 		else
417 			p = &(*p)->rb_right;
418 	}
419 
420 	if (!create)
421 		return NULL;
422 
423 	th = thread__new(pid, tid);
424 	if (th != NULL) {
425 		rb_link_node(&th->rb_node, parent, p);
426 		rb_insert_color(&th->rb_node, &machine->threads);
427 
428 		/*
429 		 * We have to initialize map_groups separately
430 		 * after rb tree is updated.
431 		 *
432 		 * The reason is that we call machine__findnew_thread
433 		 * within thread__init_map_groups to find the thread
434 		 * leader and that would screwed the rb tree.
435 		 */
436 		if (thread__init_map_groups(th, machine)) {
437 			rb_erase_init(&th->rb_node, &machine->threads);
438 			RB_CLEAR_NODE(&th->rb_node);
439 			thread__put(th);
440 			return NULL;
441 		}
442 		/*
443 		 * It is now in the rbtree, get a ref
444 		 */
445 		thread__get(th);
446 		machine->last_match = th;
447 		++machine->nr_threads;
448 	}
449 
450 	return th;
451 }
452 
453 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
454 {
455 	return ____machine__findnew_thread(machine, pid, tid, true);
456 }
457 
458 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
459 				       pid_t tid)
460 {
461 	struct thread *th;
462 
463 	pthread_rwlock_wrlock(&machine->threads_lock);
464 	th = __machine__findnew_thread(machine, pid, tid);
465 	pthread_rwlock_unlock(&machine->threads_lock);
466 	return th;
467 }
468 
469 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
470 				    pid_t tid)
471 {
472 	struct thread *th;
473 	pthread_rwlock_rdlock(&machine->threads_lock);
474 	th =  ____machine__findnew_thread(machine, pid, tid, false);
475 	pthread_rwlock_unlock(&machine->threads_lock);
476 	return th;
477 }
478 
479 struct comm *machine__thread_exec_comm(struct machine *machine,
480 				       struct thread *thread)
481 {
482 	if (machine->comm_exec)
483 		return thread__exec_comm(thread);
484 	else
485 		return thread__comm(thread);
486 }
487 
488 int machine__process_comm_event(struct machine *machine, union perf_event *event,
489 				struct perf_sample *sample)
490 {
491 	struct thread *thread = machine__findnew_thread(machine,
492 							event->comm.pid,
493 							event->comm.tid);
494 	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
495 	int err = 0;
496 
497 	if (exec)
498 		machine->comm_exec = true;
499 
500 	if (dump_trace)
501 		perf_event__fprintf_comm(event, stdout);
502 
503 	if (thread == NULL ||
504 	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
505 		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
506 		err = -1;
507 	}
508 
509 	thread__put(thread);
510 
511 	return err;
512 }
513 
514 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
515 				      union perf_event *event,
516 				      struct perf_sample *sample __maybe_unused)
517 {
518 	struct thread *thread = machine__findnew_thread(machine,
519 							event->namespaces.pid,
520 							event->namespaces.tid);
521 	int err = 0;
522 
523 	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
524 		  "\nWARNING: kernel seems to support more namespaces than perf"
525 		  " tool.\nTry updating the perf tool..\n\n");
526 
527 	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
528 		  "\nWARNING: perf tool seems to support more namespaces than"
529 		  " the kernel.\nTry updating the kernel..\n\n");
530 
531 	if (dump_trace)
532 		perf_event__fprintf_namespaces(event, stdout);
533 
534 	if (thread == NULL ||
535 	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
536 		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
537 		err = -1;
538 	}
539 
540 	thread__put(thread);
541 
542 	return err;
543 }
544 
545 int machine__process_lost_event(struct machine *machine __maybe_unused,
546 				union perf_event *event, struct perf_sample *sample __maybe_unused)
547 {
548 	dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
549 		    event->lost.id, event->lost.lost);
550 	return 0;
551 }
552 
553 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
554 					union perf_event *event, struct perf_sample *sample)
555 {
556 	dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
557 		    sample->id, event->lost_samples.lost);
558 	return 0;
559 }
560 
561 static struct dso *machine__findnew_module_dso(struct machine *machine,
562 					       struct kmod_path *m,
563 					       const char *filename)
564 {
565 	struct dso *dso;
566 
567 	pthread_rwlock_wrlock(&machine->dsos.lock);
568 
569 	dso = __dsos__find(&machine->dsos, m->name, true);
570 	if (!dso) {
571 		dso = __dsos__addnew(&machine->dsos, m->name);
572 		if (dso == NULL)
573 			goto out_unlock;
574 
575 		dso__set_module_info(dso, m, machine);
576 		dso__set_long_name(dso, strdup(filename), true);
577 	}
578 
579 	dso__get(dso);
580 out_unlock:
581 	pthread_rwlock_unlock(&machine->dsos.lock);
582 	return dso;
583 }
584 
585 int machine__process_aux_event(struct machine *machine __maybe_unused,
586 			       union perf_event *event)
587 {
588 	if (dump_trace)
589 		perf_event__fprintf_aux(event, stdout);
590 	return 0;
591 }
592 
593 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
594 					union perf_event *event)
595 {
596 	if (dump_trace)
597 		perf_event__fprintf_itrace_start(event, stdout);
598 	return 0;
599 }
600 
601 int machine__process_switch_event(struct machine *machine __maybe_unused,
602 				  union perf_event *event)
603 {
604 	if (dump_trace)
605 		perf_event__fprintf_switch(event, stdout);
606 	return 0;
607 }
608 
609 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
610 {
611 	const char *dup_filename;
612 
613 	if (!filename || !dso || !dso->long_name)
614 		return;
615 	if (dso->long_name[0] != '[')
616 		return;
617 	if (!strchr(filename, '/'))
618 		return;
619 
620 	dup_filename = strdup(filename);
621 	if (!dup_filename)
622 		return;
623 
624 	dso__set_long_name(dso, dup_filename, true);
625 }
626 
627 struct map *machine__findnew_module_map(struct machine *machine, u64 start,
628 					const char *filename)
629 {
630 	struct map *map = NULL;
631 	struct dso *dso = NULL;
632 	struct kmod_path m;
633 
634 	if (kmod_path__parse_name(&m, filename))
635 		return NULL;
636 
637 	map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
638 				       m.name);
639 	if (map) {
640 		/*
641 		 * If the map's dso is an offline module, give dso__load()
642 		 * a chance to find the file path of that module by fixing
643 		 * long_name.
644 		 */
645 		dso__adjust_kmod_long_name(map->dso, filename);
646 		goto out;
647 	}
648 
649 	dso = machine__findnew_module_dso(machine, &m, filename);
650 	if (dso == NULL)
651 		goto out;
652 
653 	map = map__new2(start, dso, MAP__FUNCTION);
654 	if (map == NULL)
655 		goto out;
656 
657 	map_groups__insert(&machine->kmaps, map);
658 
659 	/* Put the map here because map_groups__insert alread got it */
660 	map__put(map);
661 out:
662 	/* put the dso here, corresponding to  machine__findnew_module_dso */
663 	dso__put(dso);
664 	free(m.name);
665 	return map;
666 }
667 
668 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
669 {
670 	struct rb_node *nd;
671 	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
672 
673 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
674 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
675 		ret += __dsos__fprintf(&pos->dsos.head, fp);
676 	}
677 
678 	return ret;
679 }
680 
681 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
682 				     bool (skip)(struct dso *dso, int parm), int parm)
683 {
684 	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
685 }
686 
687 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
688 				     bool (skip)(struct dso *dso, int parm), int parm)
689 {
690 	struct rb_node *nd;
691 	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
692 
693 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
694 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
695 		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
696 	}
697 	return ret;
698 }
699 
700 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
701 {
702 	int i;
703 	size_t printed = 0;
704 	struct dso *kdso = machine__kernel_map(machine)->dso;
705 
706 	if (kdso->has_build_id) {
707 		char filename[PATH_MAX];
708 		if (dso__build_id_filename(kdso, filename, sizeof(filename),
709 					   false))
710 			printed += fprintf(fp, "[0] %s\n", filename);
711 	}
712 
713 	for (i = 0; i < vmlinux_path__nr_entries; ++i)
714 		printed += fprintf(fp, "[%d] %s\n",
715 				   i + kdso->has_build_id, vmlinux_path[i]);
716 
717 	return printed;
718 }
719 
720 size_t machine__fprintf(struct machine *machine, FILE *fp)
721 {
722 	size_t ret;
723 	struct rb_node *nd;
724 
725 	pthread_rwlock_rdlock(&machine->threads_lock);
726 
727 	ret = fprintf(fp, "Threads: %u\n", machine->nr_threads);
728 
729 	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
730 		struct thread *pos = rb_entry(nd, struct thread, rb_node);
731 
732 		ret += thread__fprintf(pos, fp);
733 	}
734 
735 	pthread_rwlock_unlock(&machine->threads_lock);
736 
737 	return ret;
738 }
739 
740 static struct dso *machine__get_kernel(struct machine *machine)
741 {
742 	const char *vmlinux_name = NULL;
743 	struct dso *kernel;
744 
745 	if (machine__is_host(machine)) {
746 		vmlinux_name = symbol_conf.vmlinux_name;
747 		if (!vmlinux_name)
748 			vmlinux_name = DSO__NAME_KALLSYMS;
749 
750 		kernel = machine__findnew_kernel(machine, vmlinux_name,
751 						 "[kernel]", DSO_TYPE_KERNEL);
752 	} else {
753 		char bf[PATH_MAX];
754 
755 		if (machine__is_default_guest(machine))
756 			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
757 		if (!vmlinux_name)
758 			vmlinux_name = machine__mmap_name(machine, bf,
759 							  sizeof(bf));
760 
761 		kernel = machine__findnew_kernel(machine, vmlinux_name,
762 						 "[guest.kernel]",
763 						 DSO_TYPE_GUEST_KERNEL);
764 	}
765 
766 	if (kernel != NULL && (!kernel->has_build_id))
767 		dso__read_running_kernel_build_id(kernel, machine);
768 
769 	return kernel;
770 }
771 
772 struct process_args {
773 	u64 start;
774 };
775 
776 static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
777 					   size_t bufsz)
778 {
779 	if (machine__is_default_guest(machine))
780 		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
781 	else
782 		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
783 }
784 
785 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
786 
787 /* Figure out the start address of kernel map from /proc/kallsyms.
788  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
789  * symbol_name if it's not that important.
790  */
791 static int machine__get_running_kernel_start(struct machine *machine,
792 					     const char **symbol_name, u64 *start)
793 {
794 	char filename[PATH_MAX];
795 	int i, err = -1;
796 	const char *name;
797 	u64 addr = 0;
798 
799 	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
800 
801 	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
802 		return 0;
803 
804 	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
805 		err = kallsyms__get_function_start(filename, name, &addr);
806 		if (!err)
807 			break;
808 	}
809 
810 	if (err)
811 		return -1;
812 
813 	if (symbol_name)
814 		*symbol_name = name;
815 
816 	*start = addr;
817 	return 0;
818 }
819 
820 int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
821 {
822 	int type;
823 	u64 start = 0;
824 
825 	if (machine__get_running_kernel_start(machine, NULL, &start))
826 		return -1;
827 
828 	/* In case of renewal the kernel map, destroy previous one */
829 	machine__destroy_kernel_maps(machine);
830 
831 	for (type = 0; type < MAP__NR_TYPES; ++type) {
832 		struct kmap *kmap;
833 		struct map *map;
834 
835 		machine->vmlinux_maps[type] = map__new2(start, kernel, type);
836 		if (machine->vmlinux_maps[type] == NULL)
837 			return -1;
838 
839 		machine->vmlinux_maps[type]->map_ip =
840 			machine->vmlinux_maps[type]->unmap_ip =
841 				identity__map_ip;
842 		map = __machine__kernel_map(machine, type);
843 		kmap = map__kmap(map);
844 		if (!kmap)
845 			return -1;
846 
847 		kmap->kmaps = &machine->kmaps;
848 		map_groups__insert(&machine->kmaps, map);
849 	}
850 
851 	return 0;
852 }
853 
854 void machine__destroy_kernel_maps(struct machine *machine)
855 {
856 	int type;
857 
858 	for (type = 0; type < MAP__NR_TYPES; ++type) {
859 		struct kmap *kmap;
860 		struct map *map = __machine__kernel_map(machine, type);
861 
862 		if (map == NULL)
863 			continue;
864 
865 		kmap = map__kmap(map);
866 		map_groups__remove(&machine->kmaps, map);
867 		if (kmap && kmap->ref_reloc_sym) {
868 			/*
869 			 * ref_reloc_sym is shared among all maps, so free just
870 			 * on one of them.
871 			 */
872 			if (type == MAP__FUNCTION) {
873 				zfree((char **)&kmap->ref_reloc_sym->name);
874 				zfree(&kmap->ref_reloc_sym);
875 			} else
876 				kmap->ref_reloc_sym = NULL;
877 		}
878 
879 		map__put(machine->vmlinux_maps[type]);
880 		machine->vmlinux_maps[type] = NULL;
881 	}
882 }
883 
884 int machines__create_guest_kernel_maps(struct machines *machines)
885 {
886 	int ret = 0;
887 	struct dirent **namelist = NULL;
888 	int i, items = 0;
889 	char path[PATH_MAX];
890 	pid_t pid;
891 	char *endp;
892 
893 	if (symbol_conf.default_guest_vmlinux_name ||
894 	    symbol_conf.default_guest_modules ||
895 	    symbol_conf.default_guest_kallsyms) {
896 		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
897 	}
898 
899 	if (symbol_conf.guestmount) {
900 		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
901 		if (items <= 0)
902 			return -ENOENT;
903 		for (i = 0; i < items; i++) {
904 			if (!isdigit(namelist[i]->d_name[0])) {
905 				/* Filter out . and .. */
906 				continue;
907 			}
908 			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
909 			if ((*endp != '\0') ||
910 			    (endp == namelist[i]->d_name) ||
911 			    (errno == ERANGE)) {
912 				pr_debug("invalid directory (%s). Skipping.\n",
913 					 namelist[i]->d_name);
914 				continue;
915 			}
916 			sprintf(path, "%s/%s/proc/kallsyms",
917 				symbol_conf.guestmount,
918 				namelist[i]->d_name);
919 			ret = access(path, R_OK);
920 			if (ret) {
921 				pr_debug("Can't access file %s\n", path);
922 				goto failure;
923 			}
924 			machines__create_kernel_maps(machines, pid);
925 		}
926 failure:
927 		free(namelist);
928 	}
929 
930 	return ret;
931 }
932 
933 void machines__destroy_kernel_maps(struct machines *machines)
934 {
935 	struct rb_node *next = rb_first(&machines->guests);
936 
937 	machine__destroy_kernel_maps(&machines->host);
938 
939 	while (next) {
940 		struct machine *pos = rb_entry(next, struct machine, rb_node);
941 
942 		next = rb_next(&pos->rb_node);
943 		rb_erase(&pos->rb_node, &machines->guests);
944 		machine__delete(pos);
945 	}
946 }
947 
948 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
949 {
950 	struct machine *machine = machines__findnew(machines, pid);
951 
952 	if (machine == NULL)
953 		return -1;
954 
955 	return machine__create_kernel_maps(machine);
956 }
957 
958 int __machine__load_kallsyms(struct machine *machine, const char *filename,
959 			     enum map_type type, bool no_kcore)
960 {
961 	struct map *map = machine__kernel_map(machine);
962 	int ret = __dso__load_kallsyms(map->dso, filename, map, no_kcore);
963 
964 	if (ret > 0) {
965 		dso__set_loaded(map->dso, type);
966 		/*
967 		 * Since /proc/kallsyms will have multiple sessions for the
968 		 * kernel, with modules between them, fixup the end of all
969 		 * sections.
970 		 */
971 		__map_groups__fixup_end(&machine->kmaps, type);
972 	}
973 
974 	return ret;
975 }
976 
977 int machine__load_kallsyms(struct machine *machine, const char *filename,
978 			   enum map_type type)
979 {
980 	return __machine__load_kallsyms(machine, filename, type, false);
981 }
982 
983 int machine__load_vmlinux_path(struct machine *machine, enum map_type type)
984 {
985 	struct map *map = machine__kernel_map(machine);
986 	int ret = dso__load_vmlinux_path(map->dso, map);
987 
988 	if (ret > 0)
989 		dso__set_loaded(map->dso, type);
990 
991 	return ret;
992 }
993 
994 static void map_groups__fixup_end(struct map_groups *mg)
995 {
996 	int i;
997 	for (i = 0; i < MAP__NR_TYPES; ++i)
998 		__map_groups__fixup_end(mg, i);
999 }
1000 
1001 static char *get_kernel_version(const char *root_dir)
1002 {
1003 	char version[PATH_MAX];
1004 	FILE *file;
1005 	char *name, *tmp;
1006 	const char *prefix = "Linux version ";
1007 
1008 	sprintf(version, "%s/proc/version", root_dir);
1009 	file = fopen(version, "r");
1010 	if (!file)
1011 		return NULL;
1012 
1013 	version[0] = '\0';
1014 	tmp = fgets(version, sizeof(version), file);
1015 	fclose(file);
1016 
1017 	name = strstr(version, prefix);
1018 	if (!name)
1019 		return NULL;
1020 	name += strlen(prefix);
1021 	tmp = strchr(name, ' ');
1022 	if (tmp)
1023 		*tmp = '\0';
1024 
1025 	return strdup(name);
1026 }
1027 
1028 static bool is_kmod_dso(struct dso *dso)
1029 {
1030 	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1031 	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1032 }
1033 
1034 static int map_groups__set_module_path(struct map_groups *mg, const char *path,
1035 				       struct kmod_path *m)
1036 {
1037 	struct map *map;
1038 	char *long_name;
1039 
1040 	map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
1041 	if (map == NULL)
1042 		return 0;
1043 
1044 	long_name = strdup(path);
1045 	if (long_name == NULL)
1046 		return -ENOMEM;
1047 
1048 	dso__set_long_name(map->dso, long_name, true);
1049 	dso__kernel_module_get_build_id(map->dso, "");
1050 
1051 	/*
1052 	 * Full name could reveal us kmod compression, so
1053 	 * we need to update the symtab_type if needed.
1054 	 */
1055 	if (m->comp && is_kmod_dso(map->dso))
1056 		map->dso->symtab_type++;
1057 
1058 	return 0;
1059 }
1060 
1061 static int map_groups__set_modules_path_dir(struct map_groups *mg,
1062 				const char *dir_name, int depth)
1063 {
1064 	struct dirent *dent;
1065 	DIR *dir = opendir(dir_name);
1066 	int ret = 0;
1067 
1068 	if (!dir) {
1069 		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1070 		return -1;
1071 	}
1072 
1073 	while ((dent = readdir(dir)) != NULL) {
1074 		char path[PATH_MAX];
1075 		struct stat st;
1076 
1077 		/*sshfs might return bad dent->d_type, so we have to stat*/
1078 		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1079 		if (stat(path, &st))
1080 			continue;
1081 
1082 		if (S_ISDIR(st.st_mode)) {
1083 			if (!strcmp(dent->d_name, ".") ||
1084 			    !strcmp(dent->d_name, ".."))
1085 				continue;
1086 
1087 			/* Do not follow top-level source and build symlinks */
1088 			if (depth == 0) {
1089 				if (!strcmp(dent->d_name, "source") ||
1090 				    !strcmp(dent->d_name, "build"))
1091 					continue;
1092 			}
1093 
1094 			ret = map_groups__set_modules_path_dir(mg, path,
1095 							       depth + 1);
1096 			if (ret < 0)
1097 				goto out;
1098 		} else {
1099 			struct kmod_path m;
1100 
1101 			ret = kmod_path__parse_name(&m, dent->d_name);
1102 			if (ret)
1103 				goto out;
1104 
1105 			if (m.kmod)
1106 				ret = map_groups__set_module_path(mg, path, &m);
1107 
1108 			free(m.name);
1109 
1110 			if (ret)
1111 				goto out;
1112 		}
1113 	}
1114 
1115 out:
1116 	closedir(dir);
1117 	return ret;
1118 }
1119 
1120 static int machine__set_modules_path(struct machine *machine)
1121 {
1122 	char *version;
1123 	char modules_path[PATH_MAX];
1124 
1125 	version = get_kernel_version(machine->root_dir);
1126 	if (!version)
1127 		return -1;
1128 
1129 	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1130 		 machine->root_dir, version);
1131 	free(version);
1132 
1133 	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1134 }
1135 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1136 				const char *name __maybe_unused)
1137 {
1138 	return 0;
1139 }
1140 
1141 static int machine__create_module(void *arg, const char *name, u64 start,
1142 				  u64 size)
1143 {
1144 	struct machine *machine = arg;
1145 	struct map *map;
1146 
1147 	if (arch__fix_module_text_start(&start, name) < 0)
1148 		return -1;
1149 
1150 	map = machine__findnew_module_map(machine, start, name);
1151 	if (map == NULL)
1152 		return -1;
1153 	map->end = start + size;
1154 
1155 	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1156 
1157 	return 0;
1158 }
1159 
1160 static int machine__create_modules(struct machine *machine)
1161 {
1162 	const char *modules;
1163 	char path[PATH_MAX];
1164 
1165 	if (machine__is_default_guest(machine)) {
1166 		modules = symbol_conf.default_guest_modules;
1167 	} else {
1168 		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1169 		modules = path;
1170 	}
1171 
1172 	if (symbol__restricted_filename(modules, "/proc/modules"))
1173 		return -1;
1174 
1175 	if (modules__parse(modules, machine, machine__create_module))
1176 		return -1;
1177 
1178 	if (!machine__set_modules_path(machine))
1179 		return 0;
1180 
1181 	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1182 
1183 	return 0;
1184 }
1185 
1186 int machine__create_kernel_maps(struct machine *machine)
1187 {
1188 	struct dso *kernel = machine__get_kernel(machine);
1189 	const char *name = NULL;
1190 	u64 addr = 0;
1191 	int ret;
1192 
1193 	if (kernel == NULL)
1194 		return -1;
1195 
1196 	ret = __machine__create_kernel_maps(machine, kernel);
1197 	dso__put(kernel);
1198 	if (ret < 0)
1199 		return -1;
1200 
1201 	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1202 		if (machine__is_host(machine))
1203 			pr_debug("Problems creating module maps, "
1204 				 "continuing anyway...\n");
1205 		else
1206 			pr_debug("Problems creating module maps for guest %d, "
1207 				 "continuing anyway...\n", machine->pid);
1208 	}
1209 
1210 	/*
1211 	 * Now that we have all the maps created, just set the ->end of them:
1212 	 */
1213 	map_groups__fixup_end(&machine->kmaps);
1214 
1215 	if (!machine__get_running_kernel_start(machine, &name, &addr)) {
1216 		if (name &&
1217 		    maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name, addr)) {
1218 			machine__destroy_kernel_maps(machine);
1219 			return -1;
1220 		}
1221 	}
1222 
1223 	return 0;
1224 }
1225 
1226 static void machine__set_kernel_mmap_len(struct machine *machine,
1227 					 union perf_event *event)
1228 {
1229 	int i;
1230 
1231 	for (i = 0; i < MAP__NR_TYPES; i++) {
1232 		machine->vmlinux_maps[i]->start = event->mmap.start;
1233 		machine->vmlinux_maps[i]->end   = (event->mmap.start +
1234 						   event->mmap.len);
1235 		/*
1236 		 * Be a bit paranoid here, some perf.data file came with
1237 		 * a zero sized synthesized MMAP event for the kernel.
1238 		 */
1239 		if (machine->vmlinux_maps[i]->end == 0)
1240 			machine->vmlinux_maps[i]->end = ~0ULL;
1241 	}
1242 }
1243 
1244 static bool machine__uses_kcore(struct machine *machine)
1245 {
1246 	struct dso *dso;
1247 
1248 	list_for_each_entry(dso, &machine->dsos.head, node) {
1249 		if (dso__is_kcore(dso))
1250 			return true;
1251 	}
1252 
1253 	return false;
1254 }
1255 
1256 static int machine__process_kernel_mmap_event(struct machine *machine,
1257 					      union perf_event *event)
1258 {
1259 	struct map *map;
1260 	char kmmap_prefix[PATH_MAX];
1261 	enum dso_kernel_type kernel_type;
1262 	bool is_kernel_mmap;
1263 
1264 	/* If we have maps from kcore then we do not need or want any others */
1265 	if (machine__uses_kcore(machine))
1266 		return 0;
1267 
1268 	machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
1269 	if (machine__is_host(machine))
1270 		kernel_type = DSO_TYPE_KERNEL;
1271 	else
1272 		kernel_type = DSO_TYPE_GUEST_KERNEL;
1273 
1274 	is_kernel_mmap = memcmp(event->mmap.filename,
1275 				kmmap_prefix,
1276 				strlen(kmmap_prefix) - 1) == 0;
1277 	if (event->mmap.filename[0] == '/' ||
1278 	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1279 		map = machine__findnew_module_map(machine, event->mmap.start,
1280 						  event->mmap.filename);
1281 		if (map == NULL)
1282 			goto out_problem;
1283 
1284 		map->end = map->start + event->mmap.len;
1285 	} else if (is_kernel_mmap) {
1286 		const char *symbol_name = (event->mmap.filename +
1287 				strlen(kmmap_prefix));
1288 		/*
1289 		 * Should be there already, from the build-id table in
1290 		 * the header.
1291 		 */
1292 		struct dso *kernel = NULL;
1293 		struct dso *dso;
1294 
1295 		pthread_rwlock_rdlock(&machine->dsos.lock);
1296 
1297 		list_for_each_entry(dso, &machine->dsos.head, node) {
1298 
1299 			/*
1300 			 * The cpumode passed to is_kernel_module is not the
1301 			 * cpumode of *this* event. If we insist on passing
1302 			 * correct cpumode to is_kernel_module, we should
1303 			 * record the cpumode when we adding this dso to the
1304 			 * linked list.
1305 			 *
1306 			 * However we don't really need passing correct
1307 			 * cpumode.  We know the correct cpumode must be kernel
1308 			 * mode (if not, we should not link it onto kernel_dsos
1309 			 * list).
1310 			 *
1311 			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1312 			 * is_kernel_module() treats it as a kernel cpumode.
1313 			 */
1314 
1315 			if (!dso->kernel ||
1316 			    is_kernel_module(dso->long_name,
1317 					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1318 				continue;
1319 
1320 
1321 			kernel = dso;
1322 			break;
1323 		}
1324 
1325 		pthread_rwlock_unlock(&machine->dsos.lock);
1326 
1327 		if (kernel == NULL)
1328 			kernel = machine__findnew_dso(machine, kmmap_prefix);
1329 		if (kernel == NULL)
1330 			goto out_problem;
1331 
1332 		kernel->kernel = kernel_type;
1333 		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1334 			dso__put(kernel);
1335 			goto out_problem;
1336 		}
1337 
1338 		if (strstr(kernel->long_name, "vmlinux"))
1339 			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1340 
1341 		machine__set_kernel_mmap_len(machine, event);
1342 
1343 		/*
1344 		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1345 		 * symbol. Effectively having zero here means that at record
1346 		 * time /proc/sys/kernel/kptr_restrict was non zero.
1347 		 */
1348 		if (event->mmap.pgoff != 0) {
1349 			maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
1350 							 symbol_name,
1351 							 event->mmap.pgoff);
1352 		}
1353 
1354 		if (machine__is_default_guest(machine)) {
1355 			/*
1356 			 * preload dso of guest kernel and modules
1357 			 */
1358 			dso__load(kernel, machine__kernel_map(machine));
1359 		}
1360 	}
1361 	return 0;
1362 out_problem:
1363 	return -1;
1364 }
1365 
1366 int machine__process_mmap2_event(struct machine *machine,
1367 				 union perf_event *event,
1368 				 struct perf_sample *sample)
1369 {
1370 	struct thread *thread;
1371 	struct map *map;
1372 	enum map_type type;
1373 	int ret = 0;
1374 
1375 	if (dump_trace)
1376 		perf_event__fprintf_mmap2(event, stdout);
1377 
1378 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1379 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1380 		ret = machine__process_kernel_mmap_event(machine, event);
1381 		if (ret < 0)
1382 			goto out_problem;
1383 		return 0;
1384 	}
1385 
1386 	thread = machine__findnew_thread(machine, event->mmap2.pid,
1387 					event->mmap2.tid);
1388 	if (thread == NULL)
1389 		goto out_problem;
1390 
1391 	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1392 		type = MAP__VARIABLE;
1393 	else
1394 		type = MAP__FUNCTION;
1395 
1396 	map = map__new(machine, event->mmap2.start,
1397 			event->mmap2.len, event->mmap2.pgoff,
1398 			event->mmap2.maj,
1399 			event->mmap2.min, event->mmap2.ino,
1400 			event->mmap2.ino_generation,
1401 			event->mmap2.prot,
1402 			event->mmap2.flags,
1403 			event->mmap2.filename, type, thread);
1404 
1405 	if (map == NULL)
1406 		goto out_problem_map;
1407 
1408 	ret = thread__insert_map(thread, map);
1409 	if (ret)
1410 		goto out_problem_insert;
1411 
1412 	thread__put(thread);
1413 	map__put(map);
1414 	return 0;
1415 
1416 out_problem_insert:
1417 	map__put(map);
1418 out_problem_map:
1419 	thread__put(thread);
1420 out_problem:
1421 	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1422 	return 0;
1423 }
1424 
1425 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1426 				struct perf_sample *sample)
1427 {
1428 	struct thread *thread;
1429 	struct map *map;
1430 	enum map_type type;
1431 	int ret = 0;
1432 
1433 	if (dump_trace)
1434 		perf_event__fprintf_mmap(event, stdout);
1435 
1436 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1437 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1438 		ret = machine__process_kernel_mmap_event(machine, event);
1439 		if (ret < 0)
1440 			goto out_problem;
1441 		return 0;
1442 	}
1443 
1444 	thread = machine__findnew_thread(machine, event->mmap.pid,
1445 					 event->mmap.tid);
1446 	if (thread == NULL)
1447 		goto out_problem;
1448 
1449 	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1450 		type = MAP__VARIABLE;
1451 	else
1452 		type = MAP__FUNCTION;
1453 
1454 	map = map__new(machine, event->mmap.start,
1455 			event->mmap.len, event->mmap.pgoff,
1456 			0, 0, 0, 0, 0, 0,
1457 			event->mmap.filename,
1458 			type, thread);
1459 
1460 	if (map == NULL)
1461 		goto out_problem_map;
1462 
1463 	ret = thread__insert_map(thread, map);
1464 	if (ret)
1465 		goto out_problem_insert;
1466 
1467 	thread__put(thread);
1468 	map__put(map);
1469 	return 0;
1470 
1471 out_problem_insert:
1472 	map__put(map);
1473 out_problem_map:
1474 	thread__put(thread);
1475 out_problem:
1476 	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1477 	return 0;
1478 }
1479 
1480 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1481 {
1482 	if (machine->last_match == th)
1483 		machine->last_match = NULL;
1484 
1485 	BUG_ON(refcount_read(&th->refcnt) == 0);
1486 	if (lock)
1487 		pthread_rwlock_wrlock(&machine->threads_lock);
1488 	rb_erase_init(&th->rb_node, &machine->threads);
1489 	RB_CLEAR_NODE(&th->rb_node);
1490 	--machine->nr_threads;
1491 	/*
1492 	 * Move it first to the dead_threads list, then drop the reference,
1493 	 * if this is the last reference, then the thread__delete destructor
1494 	 * will be called and we will remove it from the dead_threads list.
1495 	 */
1496 	list_add_tail(&th->node, &machine->dead_threads);
1497 	if (lock)
1498 		pthread_rwlock_unlock(&machine->threads_lock);
1499 	thread__put(th);
1500 }
1501 
1502 void machine__remove_thread(struct machine *machine, struct thread *th)
1503 {
1504 	return __machine__remove_thread(machine, th, true);
1505 }
1506 
1507 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1508 				struct perf_sample *sample)
1509 {
1510 	struct thread *thread = machine__find_thread(machine,
1511 						     event->fork.pid,
1512 						     event->fork.tid);
1513 	struct thread *parent = machine__findnew_thread(machine,
1514 							event->fork.ppid,
1515 							event->fork.ptid);
1516 	int err = 0;
1517 
1518 	if (dump_trace)
1519 		perf_event__fprintf_task(event, stdout);
1520 
1521 	/*
1522 	 * There may be an existing thread that is not actually the parent,
1523 	 * either because we are processing events out of order, or because the
1524 	 * (fork) event that would have removed the thread was lost. Assume the
1525 	 * latter case and continue on as best we can.
1526 	 */
1527 	if (parent->pid_ != (pid_t)event->fork.ppid) {
1528 		dump_printf("removing erroneous parent thread %d/%d\n",
1529 			    parent->pid_, parent->tid);
1530 		machine__remove_thread(machine, parent);
1531 		thread__put(parent);
1532 		parent = machine__findnew_thread(machine, event->fork.ppid,
1533 						 event->fork.ptid);
1534 	}
1535 
1536 	/* if a thread currently exists for the thread id remove it */
1537 	if (thread != NULL) {
1538 		machine__remove_thread(machine, thread);
1539 		thread__put(thread);
1540 	}
1541 
1542 	thread = machine__findnew_thread(machine, event->fork.pid,
1543 					 event->fork.tid);
1544 
1545 	if (thread == NULL || parent == NULL ||
1546 	    thread__fork(thread, parent, sample->time) < 0) {
1547 		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1548 		err = -1;
1549 	}
1550 	thread__put(thread);
1551 	thread__put(parent);
1552 
1553 	return err;
1554 }
1555 
1556 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1557 				struct perf_sample *sample __maybe_unused)
1558 {
1559 	struct thread *thread = machine__find_thread(machine,
1560 						     event->fork.pid,
1561 						     event->fork.tid);
1562 
1563 	if (dump_trace)
1564 		perf_event__fprintf_task(event, stdout);
1565 
1566 	if (thread != NULL) {
1567 		thread__exited(thread);
1568 		thread__put(thread);
1569 	}
1570 
1571 	return 0;
1572 }
1573 
1574 int machine__process_event(struct machine *machine, union perf_event *event,
1575 			   struct perf_sample *sample)
1576 {
1577 	int ret;
1578 
1579 	switch (event->header.type) {
1580 	case PERF_RECORD_COMM:
1581 		ret = machine__process_comm_event(machine, event, sample); break;
1582 	case PERF_RECORD_MMAP:
1583 		ret = machine__process_mmap_event(machine, event, sample); break;
1584 	case PERF_RECORD_NAMESPACES:
1585 		ret = machine__process_namespaces_event(machine, event, sample); break;
1586 	case PERF_RECORD_MMAP2:
1587 		ret = machine__process_mmap2_event(machine, event, sample); break;
1588 	case PERF_RECORD_FORK:
1589 		ret = machine__process_fork_event(machine, event, sample); break;
1590 	case PERF_RECORD_EXIT:
1591 		ret = machine__process_exit_event(machine, event, sample); break;
1592 	case PERF_RECORD_LOST:
1593 		ret = machine__process_lost_event(machine, event, sample); break;
1594 	case PERF_RECORD_AUX:
1595 		ret = machine__process_aux_event(machine, event); break;
1596 	case PERF_RECORD_ITRACE_START:
1597 		ret = machine__process_itrace_start_event(machine, event); break;
1598 	case PERF_RECORD_LOST_SAMPLES:
1599 		ret = machine__process_lost_samples_event(machine, event, sample); break;
1600 	case PERF_RECORD_SWITCH:
1601 	case PERF_RECORD_SWITCH_CPU_WIDE:
1602 		ret = machine__process_switch_event(machine, event); break;
1603 	default:
1604 		ret = -1;
1605 		break;
1606 	}
1607 
1608 	return ret;
1609 }
1610 
1611 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1612 {
1613 	if (!regexec(regex, sym->name, 0, NULL, 0))
1614 		return 1;
1615 	return 0;
1616 }
1617 
1618 static void ip__resolve_ams(struct thread *thread,
1619 			    struct addr_map_symbol *ams,
1620 			    u64 ip)
1621 {
1622 	struct addr_location al;
1623 
1624 	memset(&al, 0, sizeof(al));
1625 	/*
1626 	 * We cannot use the header.misc hint to determine whether a
1627 	 * branch stack address is user, kernel, guest, hypervisor.
1628 	 * Branches may straddle the kernel/user/hypervisor boundaries.
1629 	 * Thus, we have to try consecutively until we find a match
1630 	 * or else, the symbol is unknown
1631 	 */
1632 	thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1633 
1634 	ams->addr = ip;
1635 	ams->al_addr = al.addr;
1636 	ams->sym = al.sym;
1637 	ams->map = al.map;
1638 	ams->phys_addr = 0;
1639 }
1640 
1641 static void ip__resolve_data(struct thread *thread,
1642 			     u8 m, struct addr_map_symbol *ams,
1643 			     u64 addr, u64 phys_addr)
1644 {
1645 	struct addr_location al;
1646 
1647 	memset(&al, 0, sizeof(al));
1648 
1649 	thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1650 	if (al.map == NULL) {
1651 		/*
1652 		 * some shared data regions have execute bit set which puts
1653 		 * their mapping in the MAP__FUNCTION type array.
1654 		 * Check there as a fallback option before dropping the sample.
1655 		 */
1656 		thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1657 	}
1658 
1659 	ams->addr = addr;
1660 	ams->al_addr = al.addr;
1661 	ams->sym = al.sym;
1662 	ams->map = al.map;
1663 	ams->phys_addr = phys_addr;
1664 }
1665 
1666 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1667 				     struct addr_location *al)
1668 {
1669 	struct mem_info *mi = zalloc(sizeof(*mi));
1670 
1671 	if (!mi)
1672 		return NULL;
1673 
1674 	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1675 	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
1676 			 sample->addr, sample->phys_addr);
1677 	mi->data_src.val = sample->data_src;
1678 
1679 	return mi;
1680 }
1681 
1682 struct iterations {
1683 	int nr_loop_iter;
1684 	u64 cycles;
1685 };
1686 
1687 static int add_callchain_ip(struct thread *thread,
1688 			    struct callchain_cursor *cursor,
1689 			    struct symbol **parent,
1690 			    struct addr_location *root_al,
1691 			    u8 *cpumode,
1692 			    u64 ip,
1693 			    bool branch,
1694 			    struct branch_flags *flags,
1695 			    struct iterations *iter,
1696 			    u64 branch_from)
1697 {
1698 	struct addr_location al;
1699 	int nr_loop_iter = 0;
1700 	u64 iter_cycles = 0;
1701 
1702 	al.filtered = 0;
1703 	al.sym = NULL;
1704 	if (!cpumode) {
1705 		thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
1706 						   ip, &al);
1707 	} else {
1708 		if (ip >= PERF_CONTEXT_MAX) {
1709 			switch (ip) {
1710 			case PERF_CONTEXT_HV:
1711 				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
1712 				break;
1713 			case PERF_CONTEXT_KERNEL:
1714 				*cpumode = PERF_RECORD_MISC_KERNEL;
1715 				break;
1716 			case PERF_CONTEXT_USER:
1717 				*cpumode = PERF_RECORD_MISC_USER;
1718 				break;
1719 			default:
1720 				pr_debug("invalid callchain context: "
1721 					 "%"PRId64"\n", (s64) ip);
1722 				/*
1723 				 * It seems the callchain is corrupted.
1724 				 * Discard all.
1725 				 */
1726 				callchain_cursor_reset(cursor);
1727 				return 1;
1728 			}
1729 			return 0;
1730 		}
1731 		thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
1732 					   ip, &al);
1733 	}
1734 
1735 	if (al.sym != NULL) {
1736 		if (perf_hpp_list.parent && !*parent &&
1737 		    symbol__match_regex(al.sym, &parent_regex))
1738 			*parent = al.sym;
1739 		else if (have_ignore_callees && root_al &&
1740 		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
1741 			/* Treat this symbol as the root,
1742 			   forgetting its callees. */
1743 			*root_al = al;
1744 			callchain_cursor_reset(cursor);
1745 		}
1746 	}
1747 
1748 	if (symbol_conf.hide_unresolved && al.sym == NULL)
1749 		return 0;
1750 
1751 	if (iter) {
1752 		nr_loop_iter = iter->nr_loop_iter;
1753 		iter_cycles = iter->cycles;
1754 	}
1755 
1756 	return callchain_cursor_append(cursor, al.addr, al.map, al.sym,
1757 				       branch, flags, nr_loop_iter,
1758 				       iter_cycles, branch_from);
1759 }
1760 
1761 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1762 					   struct addr_location *al)
1763 {
1764 	unsigned int i;
1765 	const struct branch_stack *bs = sample->branch_stack;
1766 	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1767 
1768 	if (!bi)
1769 		return NULL;
1770 
1771 	for (i = 0; i < bs->nr; i++) {
1772 		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1773 		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1774 		bi[i].flags = bs->entries[i].flags;
1775 	}
1776 	return bi;
1777 }
1778 
1779 static void save_iterations(struct iterations *iter,
1780 			    struct branch_entry *be, int nr)
1781 {
1782 	int i;
1783 
1784 	iter->nr_loop_iter = nr;
1785 	iter->cycles = 0;
1786 
1787 	for (i = 0; i < nr; i++)
1788 		iter->cycles += be[i].flags.cycles;
1789 }
1790 
1791 #define CHASHSZ 127
1792 #define CHASHBITS 7
1793 #define NO_ENTRY 0xff
1794 
1795 #define PERF_MAX_BRANCH_DEPTH 127
1796 
1797 /* Remove loops. */
1798 static int remove_loops(struct branch_entry *l, int nr,
1799 			struct iterations *iter)
1800 {
1801 	int i, j, off;
1802 	unsigned char chash[CHASHSZ];
1803 
1804 	memset(chash, NO_ENTRY, sizeof(chash));
1805 
1806 	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
1807 
1808 	for (i = 0; i < nr; i++) {
1809 		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
1810 
1811 		/* no collision handling for now */
1812 		if (chash[h] == NO_ENTRY) {
1813 			chash[h] = i;
1814 		} else if (l[chash[h]].from == l[i].from) {
1815 			bool is_loop = true;
1816 			/* check if it is a real loop */
1817 			off = 0;
1818 			for (j = chash[h]; j < i && i + off < nr; j++, off++)
1819 				if (l[j].from != l[i + off].from) {
1820 					is_loop = false;
1821 					break;
1822 				}
1823 			if (is_loop) {
1824 				j = nr - (i + off);
1825 				if (j > 0) {
1826 					save_iterations(iter + i + off,
1827 						l + i, off);
1828 
1829 					memmove(iter + i, iter + i + off,
1830 						j * sizeof(*iter));
1831 
1832 					memmove(l + i, l + i + off,
1833 						j * sizeof(*l));
1834 				}
1835 
1836 				nr -= off;
1837 			}
1838 		}
1839 	}
1840 	return nr;
1841 }
1842 
1843 /*
1844  * Recolve LBR callstack chain sample
1845  * Return:
1846  * 1 on success get LBR callchain information
1847  * 0 no available LBR callchain information, should try fp
1848  * negative error code on other errors.
1849  */
1850 static int resolve_lbr_callchain_sample(struct thread *thread,
1851 					struct callchain_cursor *cursor,
1852 					struct perf_sample *sample,
1853 					struct symbol **parent,
1854 					struct addr_location *root_al,
1855 					int max_stack)
1856 {
1857 	struct ip_callchain *chain = sample->callchain;
1858 	int chain_nr = min(max_stack, (int)chain->nr), i;
1859 	u8 cpumode = PERF_RECORD_MISC_USER;
1860 	u64 ip, branch_from = 0;
1861 
1862 	for (i = 0; i < chain_nr; i++) {
1863 		if (chain->ips[i] == PERF_CONTEXT_USER)
1864 			break;
1865 	}
1866 
1867 	/* LBR only affects the user callchain */
1868 	if (i != chain_nr) {
1869 		struct branch_stack *lbr_stack = sample->branch_stack;
1870 		int lbr_nr = lbr_stack->nr, j, k;
1871 		bool branch;
1872 		struct branch_flags *flags;
1873 		/*
1874 		 * LBR callstack can only get user call chain.
1875 		 * The mix_chain_nr is kernel call chain
1876 		 * number plus LBR user call chain number.
1877 		 * i is kernel call chain number,
1878 		 * 1 is PERF_CONTEXT_USER,
1879 		 * lbr_nr + 1 is the user call chain number.
1880 		 * For details, please refer to the comments
1881 		 * in callchain__printf
1882 		 */
1883 		int mix_chain_nr = i + 1 + lbr_nr + 1;
1884 
1885 		for (j = 0; j < mix_chain_nr; j++) {
1886 			int err;
1887 			branch = false;
1888 			flags = NULL;
1889 
1890 			if (callchain_param.order == ORDER_CALLEE) {
1891 				if (j < i + 1)
1892 					ip = chain->ips[j];
1893 				else if (j > i + 1) {
1894 					k = j - i - 2;
1895 					ip = lbr_stack->entries[k].from;
1896 					branch = true;
1897 					flags = &lbr_stack->entries[k].flags;
1898 				} else {
1899 					ip = lbr_stack->entries[0].to;
1900 					branch = true;
1901 					flags = &lbr_stack->entries[0].flags;
1902 					branch_from =
1903 						lbr_stack->entries[0].from;
1904 				}
1905 			} else {
1906 				if (j < lbr_nr) {
1907 					k = lbr_nr - j - 1;
1908 					ip = lbr_stack->entries[k].from;
1909 					branch = true;
1910 					flags = &lbr_stack->entries[k].flags;
1911 				}
1912 				else if (j > lbr_nr)
1913 					ip = chain->ips[i + 1 - (j - lbr_nr)];
1914 				else {
1915 					ip = lbr_stack->entries[0].to;
1916 					branch = true;
1917 					flags = &lbr_stack->entries[0].flags;
1918 					branch_from =
1919 						lbr_stack->entries[0].from;
1920 				}
1921 			}
1922 
1923 			err = add_callchain_ip(thread, cursor, parent,
1924 					       root_al, &cpumode, ip,
1925 					       branch, flags, NULL,
1926 					       branch_from);
1927 			if (err)
1928 				return (err < 0) ? err : 0;
1929 		}
1930 		return 1;
1931 	}
1932 
1933 	return 0;
1934 }
1935 
1936 static int thread__resolve_callchain_sample(struct thread *thread,
1937 					    struct callchain_cursor *cursor,
1938 					    struct perf_evsel *evsel,
1939 					    struct perf_sample *sample,
1940 					    struct symbol **parent,
1941 					    struct addr_location *root_al,
1942 					    int max_stack)
1943 {
1944 	struct branch_stack *branch = sample->branch_stack;
1945 	struct ip_callchain *chain = sample->callchain;
1946 	int chain_nr = 0;
1947 	u8 cpumode = PERF_RECORD_MISC_USER;
1948 	int i, j, err, nr_entries;
1949 	int skip_idx = -1;
1950 	int first_call = 0;
1951 
1952 	if (chain)
1953 		chain_nr = chain->nr;
1954 
1955 	if (perf_evsel__has_branch_callstack(evsel)) {
1956 		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
1957 						   root_al, max_stack);
1958 		if (err)
1959 			return (err < 0) ? err : 0;
1960 	}
1961 
1962 	/*
1963 	 * Based on DWARF debug information, some architectures skip
1964 	 * a callchain entry saved by the kernel.
1965 	 */
1966 	skip_idx = arch_skip_callchain_idx(thread, chain);
1967 
1968 	/*
1969 	 * Add branches to call stack for easier browsing. This gives
1970 	 * more context for a sample than just the callers.
1971 	 *
1972 	 * This uses individual histograms of paths compared to the
1973 	 * aggregated histograms the normal LBR mode uses.
1974 	 *
1975 	 * Limitations for now:
1976 	 * - No extra filters
1977 	 * - No annotations (should annotate somehow)
1978 	 */
1979 
1980 	if (branch && callchain_param.branch_callstack) {
1981 		int nr = min(max_stack, (int)branch->nr);
1982 		struct branch_entry be[nr];
1983 		struct iterations iter[nr];
1984 
1985 		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
1986 			pr_warning("corrupted branch chain. skipping...\n");
1987 			goto check_calls;
1988 		}
1989 
1990 		for (i = 0; i < nr; i++) {
1991 			if (callchain_param.order == ORDER_CALLEE) {
1992 				be[i] = branch->entries[i];
1993 
1994 				if (chain == NULL)
1995 					continue;
1996 
1997 				/*
1998 				 * Check for overlap into the callchain.
1999 				 * The return address is one off compared to
2000 				 * the branch entry. To adjust for this
2001 				 * assume the calling instruction is not longer
2002 				 * than 8 bytes.
2003 				 */
2004 				if (i == skip_idx ||
2005 				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2006 					first_call++;
2007 				else if (be[i].from < chain->ips[first_call] &&
2008 				    be[i].from >= chain->ips[first_call] - 8)
2009 					first_call++;
2010 			} else
2011 				be[i] = branch->entries[branch->nr - i - 1];
2012 		}
2013 
2014 		memset(iter, 0, sizeof(struct iterations) * nr);
2015 		nr = remove_loops(be, nr, iter);
2016 
2017 		for (i = 0; i < nr; i++) {
2018 			err = add_callchain_ip(thread, cursor, parent,
2019 					       root_al,
2020 					       NULL, be[i].to,
2021 					       true, &be[i].flags,
2022 					       NULL, be[i].from);
2023 
2024 			if (!err)
2025 				err = add_callchain_ip(thread, cursor, parent, root_al,
2026 						       NULL, be[i].from,
2027 						       true, &be[i].flags,
2028 						       &iter[i], 0);
2029 			if (err == -EINVAL)
2030 				break;
2031 			if (err)
2032 				return err;
2033 		}
2034 
2035 		if (chain_nr == 0)
2036 			return 0;
2037 
2038 		chain_nr -= nr;
2039 	}
2040 
2041 check_calls:
2042 	for (i = first_call, nr_entries = 0;
2043 	     i < chain_nr && nr_entries < max_stack; i++) {
2044 		u64 ip;
2045 
2046 		if (callchain_param.order == ORDER_CALLEE)
2047 			j = i;
2048 		else
2049 			j = chain->nr - i - 1;
2050 
2051 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2052 		if (j == skip_idx)
2053 			continue;
2054 #endif
2055 		ip = chain->ips[j];
2056 
2057 		if (ip < PERF_CONTEXT_MAX)
2058                        ++nr_entries;
2059 
2060 		err = add_callchain_ip(thread, cursor, parent,
2061 				       root_al, &cpumode, ip,
2062 				       false, NULL, NULL, 0);
2063 
2064 		if (err)
2065 			return (err < 0) ? err : 0;
2066 	}
2067 
2068 	return 0;
2069 }
2070 
2071 static int unwind_entry(struct unwind_entry *entry, void *arg)
2072 {
2073 	struct callchain_cursor *cursor = arg;
2074 
2075 	if (symbol_conf.hide_unresolved && entry->sym == NULL)
2076 		return 0;
2077 	return callchain_cursor_append(cursor, entry->ip,
2078 				       entry->map, entry->sym,
2079 				       false, NULL, 0, 0, 0);
2080 }
2081 
2082 static int thread__resolve_callchain_unwind(struct thread *thread,
2083 					    struct callchain_cursor *cursor,
2084 					    struct perf_evsel *evsel,
2085 					    struct perf_sample *sample,
2086 					    int max_stack)
2087 {
2088 	/* Can we do dwarf post unwind? */
2089 	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2090 	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
2091 		return 0;
2092 
2093 	/* Bail out if nothing was captured. */
2094 	if ((!sample->user_regs.regs) ||
2095 	    (!sample->user_stack.size))
2096 		return 0;
2097 
2098 	return unwind__get_entries(unwind_entry, cursor,
2099 				   thread, sample, max_stack);
2100 }
2101 
2102 int thread__resolve_callchain(struct thread *thread,
2103 			      struct callchain_cursor *cursor,
2104 			      struct perf_evsel *evsel,
2105 			      struct perf_sample *sample,
2106 			      struct symbol **parent,
2107 			      struct addr_location *root_al,
2108 			      int max_stack)
2109 {
2110 	int ret = 0;
2111 
2112 	callchain_cursor_reset(&callchain_cursor);
2113 
2114 	if (callchain_param.order == ORDER_CALLEE) {
2115 		ret = thread__resolve_callchain_sample(thread, cursor,
2116 						       evsel, sample,
2117 						       parent, root_al,
2118 						       max_stack);
2119 		if (ret)
2120 			return ret;
2121 		ret = thread__resolve_callchain_unwind(thread, cursor,
2122 						       evsel, sample,
2123 						       max_stack);
2124 	} else {
2125 		ret = thread__resolve_callchain_unwind(thread, cursor,
2126 						       evsel, sample,
2127 						       max_stack);
2128 		if (ret)
2129 			return ret;
2130 		ret = thread__resolve_callchain_sample(thread, cursor,
2131 						       evsel, sample,
2132 						       parent, root_al,
2133 						       max_stack);
2134 	}
2135 
2136 	return ret;
2137 }
2138 
2139 int machine__for_each_thread(struct machine *machine,
2140 			     int (*fn)(struct thread *thread, void *p),
2141 			     void *priv)
2142 {
2143 	struct rb_node *nd;
2144 	struct thread *thread;
2145 	int rc = 0;
2146 
2147 	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
2148 		thread = rb_entry(nd, struct thread, rb_node);
2149 		rc = fn(thread, priv);
2150 		if (rc != 0)
2151 			return rc;
2152 	}
2153 
2154 	list_for_each_entry(thread, &machine->dead_threads, node) {
2155 		rc = fn(thread, priv);
2156 		if (rc != 0)
2157 			return rc;
2158 	}
2159 	return rc;
2160 }
2161 
2162 int machines__for_each_thread(struct machines *machines,
2163 			      int (*fn)(struct thread *thread, void *p),
2164 			      void *priv)
2165 {
2166 	struct rb_node *nd;
2167 	int rc = 0;
2168 
2169 	rc = machine__for_each_thread(&machines->host, fn, priv);
2170 	if (rc != 0)
2171 		return rc;
2172 
2173 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
2174 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
2175 
2176 		rc = machine__for_each_thread(machine, fn, priv);
2177 		if (rc != 0)
2178 			return rc;
2179 	}
2180 	return rc;
2181 }
2182 
2183 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2184 				  struct target *target, struct thread_map *threads,
2185 				  perf_event__handler_t process, bool data_mmap,
2186 				  unsigned int proc_map_timeout)
2187 {
2188 	if (target__has_task(target))
2189 		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
2190 	else if (target__has_cpu(target))
2191 		return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout);
2192 	/* command specified */
2193 	return 0;
2194 }
2195 
2196 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2197 {
2198 	if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
2199 		return -1;
2200 
2201 	return machine->current_tid[cpu];
2202 }
2203 
2204 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2205 			     pid_t tid)
2206 {
2207 	struct thread *thread;
2208 
2209 	if (cpu < 0)
2210 		return -EINVAL;
2211 
2212 	if (!machine->current_tid) {
2213 		int i;
2214 
2215 		machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
2216 		if (!machine->current_tid)
2217 			return -ENOMEM;
2218 		for (i = 0; i < MAX_NR_CPUS; i++)
2219 			machine->current_tid[i] = -1;
2220 	}
2221 
2222 	if (cpu >= MAX_NR_CPUS) {
2223 		pr_err("Requested CPU %d too large. ", cpu);
2224 		pr_err("Consider raising MAX_NR_CPUS\n");
2225 		return -EINVAL;
2226 	}
2227 
2228 	machine->current_tid[cpu] = tid;
2229 
2230 	thread = machine__findnew_thread(machine, pid, tid);
2231 	if (!thread)
2232 		return -ENOMEM;
2233 
2234 	thread->cpu = cpu;
2235 	thread__put(thread);
2236 
2237 	return 0;
2238 }
2239 
2240 int machine__get_kernel_start(struct machine *machine)
2241 {
2242 	struct map *map = machine__kernel_map(machine);
2243 	int err = 0;
2244 
2245 	/*
2246 	 * The only addresses above 2^63 are kernel addresses of a 64-bit
2247 	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
2248 	 * all addresses including kernel addresses are less than 2^32.  In
2249 	 * that case (32-bit system), if the kernel mapping is unknown, all
2250 	 * addresses will be assumed to be in user space - see
2251 	 * machine__kernel_ip().
2252 	 */
2253 	machine->kernel_start = 1ULL << 63;
2254 	if (map) {
2255 		err = map__load(map);
2256 		if (!err)
2257 			machine->kernel_start = map->start;
2258 	}
2259 	return err;
2260 }
2261 
2262 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2263 {
2264 	return dsos__findnew(&machine->dsos, filename);
2265 }
2266 
2267 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2268 {
2269 	struct machine *machine = vmachine;
2270 	struct map *map;
2271 	struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map);
2272 
2273 	if (sym == NULL)
2274 		return NULL;
2275 
2276 	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2277 	*addrp = map->unmap_ip(map, sym->start);
2278 	return sym->name;
2279 }
2280