1 // SPDX-License-Identifier: GPL-2.0 2 #include <dirent.h> 3 #include <errno.h> 4 #include <inttypes.h> 5 #include <regex.h> 6 #include "callchain.h" 7 #include "debug.h" 8 #include "event.h" 9 #include "evsel.h" 10 #include "hist.h" 11 #include "machine.h" 12 #include "map.h" 13 #include "sort.h" 14 #include "strlist.h" 15 #include "thread.h" 16 #include "vdso.h" 17 #include <stdbool.h> 18 #include <sys/types.h> 19 #include <sys/stat.h> 20 #include <unistd.h> 21 #include "unwind.h" 22 #include "linux/hash.h" 23 #include "asm/bug.h" 24 25 #include "sane_ctype.h" 26 #include <symbol/kallsyms.h> 27 28 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock); 29 30 static void dsos__init(struct dsos *dsos) 31 { 32 INIT_LIST_HEAD(&dsos->head); 33 dsos->root = RB_ROOT; 34 pthread_rwlock_init(&dsos->lock, NULL); 35 } 36 37 int machine__init(struct machine *machine, const char *root_dir, pid_t pid) 38 { 39 memset(machine, 0, sizeof(*machine)); 40 map_groups__init(&machine->kmaps, machine); 41 RB_CLEAR_NODE(&machine->rb_node); 42 dsos__init(&machine->dsos); 43 44 machine->threads = RB_ROOT; 45 pthread_rwlock_init(&machine->threads_lock, NULL); 46 machine->nr_threads = 0; 47 INIT_LIST_HEAD(&machine->dead_threads); 48 machine->last_match = NULL; 49 50 machine->vdso_info = NULL; 51 machine->env = NULL; 52 53 machine->pid = pid; 54 55 machine->id_hdr_size = 0; 56 machine->kptr_restrict_warned = false; 57 machine->comm_exec = false; 58 machine->kernel_start = 0; 59 60 memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps)); 61 62 machine->root_dir = strdup(root_dir); 63 if (machine->root_dir == NULL) 64 return -ENOMEM; 65 66 if (pid != HOST_KERNEL_ID) { 67 struct thread *thread = machine__findnew_thread(machine, -1, 68 pid); 69 char comm[64]; 70 71 if (thread == NULL) 72 return -ENOMEM; 73 74 snprintf(comm, sizeof(comm), "[guest/%d]", pid); 75 thread__set_comm(thread, comm, 0); 76 thread__put(thread); 77 } 78 79 machine->current_tid = NULL; 80 81 return 0; 82 } 83 84 struct machine *machine__new_host(void) 85 { 86 struct machine *machine = malloc(sizeof(*machine)); 87 88 if (machine != NULL) { 89 machine__init(machine, "", HOST_KERNEL_ID); 90 91 if (machine__create_kernel_maps(machine) < 0) 92 goto out_delete; 93 } 94 95 return machine; 96 out_delete: 97 free(machine); 98 return NULL; 99 } 100 101 struct machine *machine__new_kallsyms(void) 102 { 103 struct machine *machine = machine__new_host(); 104 /* 105 * FIXME: 106 * 1) MAP__FUNCTION will go away when we stop loading separate maps for 107 * functions and data objects. 108 * 2) We should switch to machine__load_kallsyms(), i.e. not explicitely 109 * ask for not using the kcore parsing code, once this one is fixed 110 * to create a map per module. 111 */ 112 if (machine && __machine__load_kallsyms(machine, "/proc/kallsyms", MAP__FUNCTION, true) <= 0) { 113 machine__delete(machine); 114 machine = NULL; 115 } 116 117 return machine; 118 } 119 120 static void dsos__purge(struct dsos *dsos) 121 { 122 struct dso *pos, *n; 123 124 pthread_rwlock_wrlock(&dsos->lock); 125 126 list_for_each_entry_safe(pos, n, &dsos->head, node) { 127 RB_CLEAR_NODE(&pos->rb_node); 128 pos->root = NULL; 129 list_del_init(&pos->node); 130 dso__put(pos); 131 } 132 133 pthread_rwlock_unlock(&dsos->lock); 134 } 135 136 static void dsos__exit(struct dsos *dsos) 137 { 138 dsos__purge(dsos); 139 pthread_rwlock_destroy(&dsos->lock); 140 } 141 142 void machine__delete_threads(struct machine *machine) 143 { 144 struct rb_node *nd; 145 146 pthread_rwlock_wrlock(&machine->threads_lock); 147 nd = rb_first(&machine->threads); 148 while (nd) { 149 struct thread *t = rb_entry(nd, struct thread, rb_node); 150 151 nd = rb_next(nd); 152 __machine__remove_thread(machine, t, false); 153 } 154 pthread_rwlock_unlock(&machine->threads_lock); 155 } 156 157 void machine__exit(struct machine *machine) 158 { 159 machine__destroy_kernel_maps(machine); 160 map_groups__exit(&machine->kmaps); 161 dsos__exit(&machine->dsos); 162 machine__exit_vdso(machine); 163 zfree(&machine->root_dir); 164 zfree(&machine->current_tid); 165 pthread_rwlock_destroy(&machine->threads_lock); 166 } 167 168 void machine__delete(struct machine *machine) 169 { 170 if (machine) { 171 machine__exit(machine); 172 free(machine); 173 } 174 } 175 176 void machines__init(struct machines *machines) 177 { 178 machine__init(&machines->host, "", HOST_KERNEL_ID); 179 machines->guests = RB_ROOT; 180 } 181 182 void machines__exit(struct machines *machines) 183 { 184 machine__exit(&machines->host); 185 /* XXX exit guest */ 186 } 187 188 struct machine *machines__add(struct machines *machines, pid_t pid, 189 const char *root_dir) 190 { 191 struct rb_node **p = &machines->guests.rb_node; 192 struct rb_node *parent = NULL; 193 struct machine *pos, *machine = malloc(sizeof(*machine)); 194 195 if (machine == NULL) 196 return NULL; 197 198 if (machine__init(machine, root_dir, pid) != 0) { 199 free(machine); 200 return NULL; 201 } 202 203 while (*p != NULL) { 204 parent = *p; 205 pos = rb_entry(parent, struct machine, rb_node); 206 if (pid < pos->pid) 207 p = &(*p)->rb_left; 208 else 209 p = &(*p)->rb_right; 210 } 211 212 rb_link_node(&machine->rb_node, parent, p); 213 rb_insert_color(&machine->rb_node, &machines->guests); 214 215 return machine; 216 } 217 218 void machines__set_comm_exec(struct machines *machines, bool comm_exec) 219 { 220 struct rb_node *nd; 221 222 machines->host.comm_exec = comm_exec; 223 224 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 225 struct machine *machine = rb_entry(nd, struct machine, rb_node); 226 227 machine->comm_exec = comm_exec; 228 } 229 } 230 231 struct machine *machines__find(struct machines *machines, pid_t pid) 232 { 233 struct rb_node **p = &machines->guests.rb_node; 234 struct rb_node *parent = NULL; 235 struct machine *machine; 236 struct machine *default_machine = NULL; 237 238 if (pid == HOST_KERNEL_ID) 239 return &machines->host; 240 241 while (*p != NULL) { 242 parent = *p; 243 machine = rb_entry(parent, struct machine, rb_node); 244 if (pid < machine->pid) 245 p = &(*p)->rb_left; 246 else if (pid > machine->pid) 247 p = &(*p)->rb_right; 248 else 249 return machine; 250 if (!machine->pid) 251 default_machine = machine; 252 } 253 254 return default_machine; 255 } 256 257 struct machine *machines__findnew(struct machines *machines, pid_t pid) 258 { 259 char path[PATH_MAX]; 260 const char *root_dir = ""; 261 struct machine *machine = machines__find(machines, pid); 262 263 if (machine && (machine->pid == pid)) 264 goto out; 265 266 if ((pid != HOST_KERNEL_ID) && 267 (pid != DEFAULT_GUEST_KERNEL_ID) && 268 (symbol_conf.guestmount)) { 269 sprintf(path, "%s/%d", symbol_conf.guestmount, pid); 270 if (access(path, R_OK)) { 271 static struct strlist *seen; 272 273 if (!seen) 274 seen = strlist__new(NULL, NULL); 275 276 if (!strlist__has_entry(seen, path)) { 277 pr_err("Can't access file %s\n", path); 278 strlist__add(seen, path); 279 } 280 machine = NULL; 281 goto out; 282 } 283 root_dir = path; 284 } 285 286 machine = machines__add(machines, pid, root_dir); 287 out: 288 return machine; 289 } 290 291 void machines__process_guests(struct machines *machines, 292 machine__process_t process, void *data) 293 { 294 struct rb_node *nd; 295 296 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 297 struct machine *pos = rb_entry(nd, struct machine, rb_node); 298 process(pos, data); 299 } 300 } 301 302 char *machine__mmap_name(struct machine *machine, char *bf, size_t size) 303 { 304 if (machine__is_host(machine)) 305 snprintf(bf, size, "[%s]", "kernel.kallsyms"); 306 else if (machine__is_default_guest(machine)) 307 snprintf(bf, size, "[%s]", "guest.kernel.kallsyms"); 308 else { 309 snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms", 310 machine->pid); 311 } 312 313 return bf; 314 } 315 316 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size) 317 { 318 struct rb_node *node; 319 struct machine *machine; 320 321 machines->host.id_hdr_size = id_hdr_size; 322 323 for (node = rb_first(&machines->guests); node; node = rb_next(node)) { 324 machine = rb_entry(node, struct machine, rb_node); 325 machine->id_hdr_size = id_hdr_size; 326 } 327 328 return; 329 } 330 331 static void machine__update_thread_pid(struct machine *machine, 332 struct thread *th, pid_t pid) 333 { 334 struct thread *leader; 335 336 if (pid == th->pid_ || pid == -1 || th->pid_ != -1) 337 return; 338 339 th->pid_ = pid; 340 341 if (th->pid_ == th->tid) 342 return; 343 344 leader = __machine__findnew_thread(machine, th->pid_, th->pid_); 345 if (!leader) 346 goto out_err; 347 348 if (!leader->mg) 349 leader->mg = map_groups__new(machine); 350 351 if (!leader->mg) 352 goto out_err; 353 354 if (th->mg == leader->mg) 355 return; 356 357 if (th->mg) { 358 /* 359 * Maps are created from MMAP events which provide the pid and 360 * tid. Consequently there never should be any maps on a thread 361 * with an unknown pid. Just print an error if there are. 362 */ 363 if (!map_groups__empty(th->mg)) 364 pr_err("Discarding thread maps for %d:%d\n", 365 th->pid_, th->tid); 366 map_groups__put(th->mg); 367 } 368 369 th->mg = map_groups__get(leader->mg); 370 out_put: 371 thread__put(leader); 372 return; 373 out_err: 374 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid); 375 goto out_put; 376 } 377 378 /* 379 * Caller must eventually drop thread->refcnt returned with a successful 380 * lookup/new thread inserted. 381 */ 382 static struct thread *____machine__findnew_thread(struct machine *machine, 383 pid_t pid, pid_t tid, 384 bool create) 385 { 386 struct rb_node **p = &machine->threads.rb_node; 387 struct rb_node *parent = NULL; 388 struct thread *th; 389 390 /* 391 * Front-end cache - TID lookups come in blocks, 392 * so most of the time we dont have to look up 393 * the full rbtree: 394 */ 395 th = machine->last_match; 396 if (th != NULL) { 397 if (th->tid == tid) { 398 machine__update_thread_pid(machine, th, pid); 399 return thread__get(th); 400 } 401 402 machine->last_match = NULL; 403 } 404 405 while (*p != NULL) { 406 parent = *p; 407 th = rb_entry(parent, struct thread, rb_node); 408 409 if (th->tid == tid) { 410 machine->last_match = th; 411 machine__update_thread_pid(machine, th, pid); 412 return thread__get(th); 413 } 414 415 if (tid < th->tid) 416 p = &(*p)->rb_left; 417 else 418 p = &(*p)->rb_right; 419 } 420 421 if (!create) 422 return NULL; 423 424 th = thread__new(pid, tid); 425 if (th != NULL) { 426 rb_link_node(&th->rb_node, parent, p); 427 rb_insert_color(&th->rb_node, &machine->threads); 428 429 /* 430 * We have to initialize map_groups separately 431 * after rb tree is updated. 432 * 433 * The reason is that we call machine__findnew_thread 434 * within thread__init_map_groups to find the thread 435 * leader and that would screwed the rb tree. 436 */ 437 if (thread__init_map_groups(th, machine)) { 438 rb_erase_init(&th->rb_node, &machine->threads); 439 RB_CLEAR_NODE(&th->rb_node); 440 thread__put(th); 441 return NULL; 442 } 443 /* 444 * It is now in the rbtree, get a ref 445 */ 446 thread__get(th); 447 machine->last_match = th; 448 ++machine->nr_threads; 449 } 450 451 return th; 452 } 453 454 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid) 455 { 456 return ____machine__findnew_thread(machine, pid, tid, true); 457 } 458 459 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, 460 pid_t tid) 461 { 462 struct thread *th; 463 464 pthread_rwlock_wrlock(&machine->threads_lock); 465 th = __machine__findnew_thread(machine, pid, tid); 466 pthread_rwlock_unlock(&machine->threads_lock); 467 return th; 468 } 469 470 struct thread *machine__find_thread(struct machine *machine, pid_t pid, 471 pid_t tid) 472 { 473 struct thread *th; 474 pthread_rwlock_rdlock(&machine->threads_lock); 475 th = ____machine__findnew_thread(machine, pid, tid, false); 476 pthread_rwlock_unlock(&machine->threads_lock); 477 return th; 478 } 479 480 struct comm *machine__thread_exec_comm(struct machine *machine, 481 struct thread *thread) 482 { 483 if (machine->comm_exec) 484 return thread__exec_comm(thread); 485 else 486 return thread__comm(thread); 487 } 488 489 int machine__process_comm_event(struct machine *machine, union perf_event *event, 490 struct perf_sample *sample) 491 { 492 struct thread *thread = machine__findnew_thread(machine, 493 event->comm.pid, 494 event->comm.tid); 495 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC; 496 int err = 0; 497 498 if (exec) 499 machine->comm_exec = true; 500 501 if (dump_trace) 502 perf_event__fprintf_comm(event, stdout); 503 504 if (thread == NULL || 505 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) { 506 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n"); 507 err = -1; 508 } 509 510 thread__put(thread); 511 512 return err; 513 } 514 515 int machine__process_namespaces_event(struct machine *machine __maybe_unused, 516 union perf_event *event, 517 struct perf_sample *sample __maybe_unused) 518 { 519 struct thread *thread = machine__findnew_thread(machine, 520 event->namespaces.pid, 521 event->namespaces.tid); 522 int err = 0; 523 524 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES, 525 "\nWARNING: kernel seems to support more namespaces than perf" 526 " tool.\nTry updating the perf tool..\n\n"); 527 528 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES, 529 "\nWARNING: perf tool seems to support more namespaces than" 530 " the kernel.\nTry updating the kernel..\n\n"); 531 532 if (dump_trace) 533 perf_event__fprintf_namespaces(event, stdout); 534 535 if (thread == NULL || 536 thread__set_namespaces(thread, sample->time, &event->namespaces)) { 537 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n"); 538 err = -1; 539 } 540 541 thread__put(thread); 542 543 return err; 544 } 545 546 int machine__process_lost_event(struct machine *machine __maybe_unused, 547 union perf_event *event, struct perf_sample *sample __maybe_unused) 548 { 549 dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n", 550 event->lost.id, event->lost.lost); 551 return 0; 552 } 553 554 int machine__process_lost_samples_event(struct machine *machine __maybe_unused, 555 union perf_event *event, struct perf_sample *sample) 556 { 557 dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n", 558 sample->id, event->lost_samples.lost); 559 return 0; 560 } 561 562 static struct dso *machine__findnew_module_dso(struct machine *machine, 563 struct kmod_path *m, 564 const char *filename) 565 { 566 struct dso *dso; 567 568 pthread_rwlock_wrlock(&machine->dsos.lock); 569 570 dso = __dsos__find(&machine->dsos, m->name, true); 571 if (!dso) { 572 dso = __dsos__addnew(&machine->dsos, m->name); 573 if (dso == NULL) 574 goto out_unlock; 575 576 dso__set_module_info(dso, m, machine); 577 dso__set_long_name(dso, strdup(filename), true); 578 } 579 580 dso__get(dso); 581 out_unlock: 582 pthread_rwlock_unlock(&machine->dsos.lock); 583 return dso; 584 } 585 586 int machine__process_aux_event(struct machine *machine __maybe_unused, 587 union perf_event *event) 588 { 589 if (dump_trace) 590 perf_event__fprintf_aux(event, stdout); 591 return 0; 592 } 593 594 int machine__process_itrace_start_event(struct machine *machine __maybe_unused, 595 union perf_event *event) 596 { 597 if (dump_trace) 598 perf_event__fprintf_itrace_start(event, stdout); 599 return 0; 600 } 601 602 int machine__process_switch_event(struct machine *machine __maybe_unused, 603 union perf_event *event) 604 { 605 if (dump_trace) 606 perf_event__fprintf_switch(event, stdout); 607 return 0; 608 } 609 610 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename) 611 { 612 const char *dup_filename; 613 614 if (!filename || !dso || !dso->long_name) 615 return; 616 if (dso->long_name[0] != '[') 617 return; 618 if (!strchr(filename, '/')) 619 return; 620 621 dup_filename = strdup(filename); 622 if (!dup_filename) 623 return; 624 625 dso__set_long_name(dso, dup_filename, true); 626 } 627 628 struct map *machine__findnew_module_map(struct machine *machine, u64 start, 629 const char *filename) 630 { 631 struct map *map = NULL; 632 struct dso *dso = NULL; 633 struct kmod_path m; 634 635 if (kmod_path__parse_name(&m, filename)) 636 return NULL; 637 638 map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION, 639 m.name); 640 if (map) { 641 /* 642 * If the map's dso is an offline module, give dso__load() 643 * a chance to find the file path of that module by fixing 644 * long_name. 645 */ 646 dso__adjust_kmod_long_name(map->dso, filename); 647 goto out; 648 } 649 650 dso = machine__findnew_module_dso(machine, &m, filename); 651 if (dso == NULL) 652 goto out; 653 654 map = map__new2(start, dso, MAP__FUNCTION); 655 if (map == NULL) 656 goto out; 657 658 map_groups__insert(&machine->kmaps, map); 659 660 /* Put the map here because map_groups__insert alread got it */ 661 map__put(map); 662 out: 663 /* put the dso here, corresponding to machine__findnew_module_dso */ 664 dso__put(dso); 665 free(m.name); 666 return map; 667 } 668 669 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp) 670 { 671 struct rb_node *nd; 672 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp); 673 674 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 675 struct machine *pos = rb_entry(nd, struct machine, rb_node); 676 ret += __dsos__fprintf(&pos->dsos.head, fp); 677 } 678 679 return ret; 680 } 681 682 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp, 683 bool (skip)(struct dso *dso, int parm), int parm) 684 { 685 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm); 686 } 687 688 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp, 689 bool (skip)(struct dso *dso, int parm), int parm) 690 { 691 struct rb_node *nd; 692 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm); 693 694 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 695 struct machine *pos = rb_entry(nd, struct machine, rb_node); 696 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm); 697 } 698 return ret; 699 } 700 701 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp) 702 { 703 int i; 704 size_t printed = 0; 705 struct dso *kdso = machine__kernel_map(machine)->dso; 706 707 if (kdso->has_build_id) { 708 char filename[PATH_MAX]; 709 if (dso__build_id_filename(kdso, filename, sizeof(filename), 710 false)) 711 printed += fprintf(fp, "[0] %s\n", filename); 712 } 713 714 for (i = 0; i < vmlinux_path__nr_entries; ++i) 715 printed += fprintf(fp, "[%d] %s\n", 716 i + kdso->has_build_id, vmlinux_path[i]); 717 718 return printed; 719 } 720 721 size_t machine__fprintf(struct machine *machine, FILE *fp) 722 { 723 size_t ret; 724 struct rb_node *nd; 725 726 pthread_rwlock_rdlock(&machine->threads_lock); 727 728 ret = fprintf(fp, "Threads: %u\n", machine->nr_threads); 729 730 for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) { 731 struct thread *pos = rb_entry(nd, struct thread, rb_node); 732 733 ret += thread__fprintf(pos, fp); 734 } 735 736 pthread_rwlock_unlock(&machine->threads_lock); 737 738 return ret; 739 } 740 741 static struct dso *machine__get_kernel(struct machine *machine) 742 { 743 const char *vmlinux_name = NULL; 744 struct dso *kernel; 745 746 if (machine__is_host(machine)) { 747 vmlinux_name = symbol_conf.vmlinux_name; 748 if (!vmlinux_name) 749 vmlinux_name = DSO__NAME_KALLSYMS; 750 751 kernel = machine__findnew_kernel(machine, vmlinux_name, 752 "[kernel]", DSO_TYPE_KERNEL); 753 } else { 754 char bf[PATH_MAX]; 755 756 if (machine__is_default_guest(machine)) 757 vmlinux_name = symbol_conf.default_guest_vmlinux_name; 758 if (!vmlinux_name) 759 vmlinux_name = machine__mmap_name(machine, bf, 760 sizeof(bf)); 761 762 kernel = machine__findnew_kernel(machine, vmlinux_name, 763 "[guest.kernel]", 764 DSO_TYPE_GUEST_KERNEL); 765 } 766 767 if (kernel != NULL && (!kernel->has_build_id)) 768 dso__read_running_kernel_build_id(kernel, machine); 769 770 return kernel; 771 } 772 773 struct process_args { 774 u64 start; 775 }; 776 777 static void machine__get_kallsyms_filename(struct machine *machine, char *buf, 778 size_t bufsz) 779 { 780 if (machine__is_default_guest(machine)) 781 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms); 782 else 783 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir); 784 } 785 786 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL}; 787 788 /* Figure out the start address of kernel map from /proc/kallsyms. 789 * Returns the name of the start symbol in *symbol_name. Pass in NULL as 790 * symbol_name if it's not that important. 791 */ 792 static int machine__get_running_kernel_start(struct machine *machine, 793 const char **symbol_name, u64 *start) 794 { 795 char filename[PATH_MAX]; 796 int i, err = -1; 797 const char *name; 798 u64 addr = 0; 799 800 machine__get_kallsyms_filename(machine, filename, PATH_MAX); 801 802 if (symbol__restricted_filename(filename, "/proc/kallsyms")) 803 return 0; 804 805 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) { 806 err = kallsyms__get_function_start(filename, name, &addr); 807 if (!err) 808 break; 809 } 810 811 if (err) 812 return -1; 813 814 if (symbol_name) 815 *symbol_name = name; 816 817 *start = addr; 818 return 0; 819 } 820 821 int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel) 822 { 823 int type; 824 u64 start = 0; 825 826 if (machine__get_running_kernel_start(machine, NULL, &start)) 827 return -1; 828 829 /* In case of renewal the kernel map, destroy previous one */ 830 machine__destroy_kernel_maps(machine); 831 832 for (type = 0; type < MAP__NR_TYPES; ++type) { 833 struct kmap *kmap; 834 struct map *map; 835 836 machine->vmlinux_maps[type] = map__new2(start, kernel, type); 837 if (machine->vmlinux_maps[type] == NULL) 838 return -1; 839 840 machine->vmlinux_maps[type]->map_ip = 841 machine->vmlinux_maps[type]->unmap_ip = 842 identity__map_ip; 843 map = __machine__kernel_map(machine, type); 844 kmap = map__kmap(map); 845 if (!kmap) 846 return -1; 847 848 kmap->kmaps = &machine->kmaps; 849 map_groups__insert(&machine->kmaps, map); 850 } 851 852 return 0; 853 } 854 855 void machine__destroy_kernel_maps(struct machine *machine) 856 { 857 int type; 858 859 for (type = 0; type < MAP__NR_TYPES; ++type) { 860 struct kmap *kmap; 861 struct map *map = __machine__kernel_map(machine, type); 862 863 if (map == NULL) 864 continue; 865 866 kmap = map__kmap(map); 867 map_groups__remove(&machine->kmaps, map); 868 if (kmap && kmap->ref_reloc_sym) { 869 /* 870 * ref_reloc_sym is shared among all maps, so free just 871 * on one of them. 872 */ 873 if (type == MAP__FUNCTION) { 874 zfree((char **)&kmap->ref_reloc_sym->name); 875 zfree(&kmap->ref_reloc_sym); 876 } else 877 kmap->ref_reloc_sym = NULL; 878 } 879 880 map__put(machine->vmlinux_maps[type]); 881 machine->vmlinux_maps[type] = NULL; 882 } 883 } 884 885 int machines__create_guest_kernel_maps(struct machines *machines) 886 { 887 int ret = 0; 888 struct dirent **namelist = NULL; 889 int i, items = 0; 890 char path[PATH_MAX]; 891 pid_t pid; 892 char *endp; 893 894 if (symbol_conf.default_guest_vmlinux_name || 895 symbol_conf.default_guest_modules || 896 symbol_conf.default_guest_kallsyms) { 897 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID); 898 } 899 900 if (symbol_conf.guestmount) { 901 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL); 902 if (items <= 0) 903 return -ENOENT; 904 for (i = 0; i < items; i++) { 905 if (!isdigit(namelist[i]->d_name[0])) { 906 /* Filter out . and .. */ 907 continue; 908 } 909 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10); 910 if ((*endp != '\0') || 911 (endp == namelist[i]->d_name) || 912 (errno == ERANGE)) { 913 pr_debug("invalid directory (%s). Skipping.\n", 914 namelist[i]->d_name); 915 continue; 916 } 917 sprintf(path, "%s/%s/proc/kallsyms", 918 symbol_conf.guestmount, 919 namelist[i]->d_name); 920 ret = access(path, R_OK); 921 if (ret) { 922 pr_debug("Can't access file %s\n", path); 923 goto failure; 924 } 925 machines__create_kernel_maps(machines, pid); 926 } 927 failure: 928 free(namelist); 929 } 930 931 return ret; 932 } 933 934 void machines__destroy_kernel_maps(struct machines *machines) 935 { 936 struct rb_node *next = rb_first(&machines->guests); 937 938 machine__destroy_kernel_maps(&machines->host); 939 940 while (next) { 941 struct machine *pos = rb_entry(next, struct machine, rb_node); 942 943 next = rb_next(&pos->rb_node); 944 rb_erase(&pos->rb_node, &machines->guests); 945 machine__delete(pos); 946 } 947 } 948 949 int machines__create_kernel_maps(struct machines *machines, pid_t pid) 950 { 951 struct machine *machine = machines__findnew(machines, pid); 952 953 if (machine == NULL) 954 return -1; 955 956 return machine__create_kernel_maps(machine); 957 } 958 959 int __machine__load_kallsyms(struct machine *machine, const char *filename, 960 enum map_type type, bool no_kcore) 961 { 962 struct map *map = machine__kernel_map(machine); 963 int ret = __dso__load_kallsyms(map->dso, filename, map, no_kcore); 964 965 if (ret > 0) { 966 dso__set_loaded(map->dso, type); 967 /* 968 * Since /proc/kallsyms will have multiple sessions for the 969 * kernel, with modules between them, fixup the end of all 970 * sections. 971 */ 972 __map_groups__fixup_end(&machine->kmaps, type); 973 } 974 975 return ret; 976 } 977 978 int machine__load_kallsyms(struct machine *machine, const char *filename, 979 enum map_type type) 980 { 981 return __machine__load_kallsyms(machine, filename, type, false); 982 } 983 984 int machine__load_vmlinux_path(struct machine *machine, enum map_type type) 985 { 986 struct map *map = machine__kernel_map(machine); 987 int ret = dso__load_vmlinux_path(map->dso, map); 988 989 if (ret > 0) 990 dso__set_loaded(map->dso, type); 991 992 return ret; 993 } 994 995 static void map_groups__fixup_end(struct map_groups *mg) 996 { 997 int i; 998 for (i = 0; i < MAP__NR_TYPES; ++i) 999 __map_groups__fixup_end(mg, i); 1000 } 1001 1002 static char *get_kernel_version(const char *root_dir) 1003 { 1004 char version[PATH_MAX]; 1005 FILE *file; 1006 char *name, *tmp; 1007 const char *prefix = "Linux version "; 1008 1009 sprintf(version, "%s/proc/version", root_dir); 1010 file = fopen(version, "r"); 1011 if (!file) 1012 return NULL; 1013 1014 version[0] = '\0'; 1015 tmp = fgets(version, sizeof(version), file); 1016 fclose(file); 1017 1018 name = strstr(version, prefix); 1019 if (!name) 1020 return NULL; 1021 name += strlen(prefix); 1022 tmp = strchr(name, ' '); 1023 if (tmp) 1024 *tmp = '\0'; 1025 1026 return strdup(name); 1027 } 1028 1029 static bool is_kmod_dso(struct dso *dso) 1030 { 1031 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE || 1032 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE; 1033 } 1034 1035 static int map_groups__set_module_path(struct map_groups *mg, const char *path, 1036 struct kmod_path *m) 1037 { 1038 struct map *map; 1039 char *long_name; 1040 1041 map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name); 1042 if (map == NULL) 1043 return 0; 1044 1045 long_name = strdup(path); 1046 if (long_name == NULL) 1047 return -ENOMEM; 1048 1049 dso__set_long_name(map->dso, long_name, true); 1050 dso__kernel_module_get_build_id(map->dso, ""); 1051 1052 /* 1053 * Full name could reveal us kmod compression, so 1054 * we need to update the symtab_type if needed. 1055 */ 1056 if (m->comp && is_kmod_dso(map->dso)) 1057 map->dso->symtab_type++; 1058 1059 return 0; 1060 } 1061 1062 static int map_groups__set_modules_path_dir(struct map_groups *mg, 1063 const char *dir_name, int depth) 1064 { 1065 struct dirent *dent; 1066 DIR *dir = opendir(dir_name); 1067 int ret = 0; 1068 1069 if (!dir) { 1070 pr_debug("%s: cannot open %s dir\n", __func__, dir_name); 1071 return -1; 1072 } 1073 1074 while ((dent = readdir(dir)) != NULL) { 1075 char path[PATH_MAX]; 1076 struct stat st; 1077 1078 /*sshfs might return bad dent->d_type, so we have to stat*/ 1079 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name); 1080 if (stat(path, &st)) 1081 continue; 1082 1083 if (S_ISDIR(st.st_mode)) { 1084 if (!strcmp(dent->d_name, ".") || 1085 !strcmp(dent->d_name, "..")) 1086 continue; 1087 1088 /* Do not follow top-level source and build symlinks */ 1089 if (depth == 0) { 1090 if (!strcmp(dent->d_name, "source") || 1091 !strcmp(dent->d_name, "build")) 1092 continue; 1093 } 1094 1095 ret = map_groups__set_modules_path_dir(mg, path, 1096 depth + 1); 1097 if (ret < 0) 1098 goto out; 1099 } else { 1100 struct kmod_path m; 1101 1102 ret = kmod_path__parse_name(&m, dent->d_name); 1103 if (ret) 1104 goto out; 1105 1106 if (m.kmod) 1107 ret = map_groups__set_module_path(mg, path, &m); 1108 1109 free(m.name); 1110 1111 if (ret) 1112 goto out; 1113 } 1114 } 1115 1116 out: 1117 closedir(dir); 1118 return ret; 1119 } 1120 1121 static int machine__set_modules_path(struct machine *machine) 1122 { 1123 char *version; 1124 char modules_path[PATH_MAX]; 1125 1126 version = get_kernel_version(machine->root_dir); 1127 if (!version) 1128 return -1; 1129 1130 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s", 1131 machine->root_dir, version); 1132 free(version); 1133 1134 return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0); 1135 } 1136 int __weak arch__fix_module_text_start(u64 *start __maybe_unused, 1137 const char *name __maybe_unused) 1138 { 1139 return 0; 1140 } 1141 1142 static int machine__create_module(void *arg, const char *name, u64 start, 1143 u64 size) 1144 { 1145 struct machine *machine = arg; 1146 struct map *map; 1147 1148 if (arch__fix_module_text_start(&start, name) < 0) 1149 return -1; 1150 1151 map = machine__findnew_module_map(machine, start, name); 1152 if (map == NULL) 1153 return -1; 1154 map->end = start + size; 1155 1156 dso__kernel_module_get_build_id(map->dso, machine->root_dir); 1157 1158 return 0; 1159 } 1160 1161 static int machine__create_modules(struct machine *machine) 1162 { 1163 const char *modules; 1164 char path[PATH_MAX]; 1165 1166 if (machine__is_default_guest(machine)) { 1167 modules = symbol_conf.default_guest_modules; 1168 } else { 1169 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir); 1170 modules = path; 1171 } 1172 1173 if (symbol__restricted_filename(modules, "/proc/modules")) 1174 return -1; 1175 1176 if (modules__parse(modules, machine, machine__create_module)) 1177 return -1; 1178 1179 if (!machine__set_modules_path(machine)) 1180 return 0; 1181 1182 pr_debug("Problems setting modules path maps, continuing anyway...\n"); 1183 1184 return 0; 1185 } 1186 1187 int machine__create_kernel_maps(struct machine *machine) 1188 { 1189 struct dso *kernel = machine__get_kernel(machine); 1190 const char *name = NULL; 1191 u64 addr = 0; 1192 int ret; 1193 1194 if (kernel == NULL) 1195 return -1; 1196 1197 ret = __machine__create_kernel_maps(machine, kernel); 1198 dso__put(kernel); 1199 if (ret < 0) 1200 return -1; 1201 1202 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) { 1203 if (machine__is_host(machine)) 1204 pr_debug("Problems creating module maps, " 1205 "continuing anyway...\n"); 1206 else 1207 pr_debug("Problems creating module maps for guest %d, " 1208 "continuing anyway...\n", machine->pid); 1209 } 1210 1211 /* 1212 * Now that we have all the maps created, just set the ->end of them: 1213 */ 1214 map_groups__fixup_end(&machine->kmaps); 1215 1216 if (!machine__get_running_kernel_start(machine, &name, &addr)) { 1217 if (name && 1218 maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name, addr)) { 1219 machine__destroy_kernel_maps(machine); 1220 return -1; 1221 } 1222 } 1223 1224 return 0; 1225 } 1226 1227 static void machine__set_kernel_mmap_len(struct machine *machine, 1228 union perf_event *event) 1229 { 1230 int i; 1231 1232 for (i = 0; i < MAP__NR_TYPES; i++) { 1233 machine->vmlinux_maps[i]->start = event->mmap.start; 1234 machine->vmlinux_maps[i]->end = (event->mmap.start + 1235 event->mmap.len); 1236 /* 1237 * Be a bit paranoid here, some perf.data file came with 1238 * a zero sized synthesized MMAP event for the kernel. 1239 */ 1240 if (machine->vmlinux_maps[i]->end == 0) 1241 machine->vmlinux_maps[i]->end = ~0ULL; 1242 } 1243 } 1244 1245 static bool machine__uses_kcore(struct machine *machine) 1246 { 1247 struct dso *dso; 1248 1249 list_for_each_entry(dso, &machine->dsos.head, node) { 1250 if (dso__is_kcore(dso)) 1251 return true; 1252 } 1253 1254 return false; 1255 } 1256 1257 static int machine__process_kernel_mmap_event(struct machine *machine, 1258 union perf_event *event) 1259 { 1260 struct map *map; 1261 char kmmap_prefix[PATH_MAX]; 1262 enum dso_kernel_type kernel_type; 1263 bool is_kernel_mmap; 1264 1265 /* If we have maps from kcore then we do not need or want any others */ 1266 if (machine__uses_kcore(machine)) 1267 return 0; 1268 1269 machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix)); 1270 if (machine__is_host(machine)) 1271 kernel_type = DSO_TYPE_KERNEL; 1272 else 1273 kernel_type = DSO_TYPE_GUEST_KERNEL; 1274 1275 is_kernel_mmap = memcmp(event->mmap.filename, 1276 kmmap_prefix, 1277 strlen(kmmap_prefix) - 1) == 0; 1278 if (event->mmap.filename[0] == '/' || 1279 (!is_kernel_mmap && event->mmap.filename[0] == '[')) { 1280 map = machine__findnew_module_map(machine, event->mmap.start, 1281 event->mmap.filename); 1282 if (map == NULL) 1283 goto out_problem; 1284 1285 map->end = map->start + event->mmap.len; 1286 } else if (is_kernel_mmap) { 1287 const char *symbol_name = (event->mmap.filename + 1288 strlen(kmmap_prefix)); 1289 /* 1290 * Should be there already, from the build-id table in 1291 * the header. 1292 */ 1293 struct dso *kernel = NULL; 1294 struct dso *dso; 1295 1296 pthread_rwlock_rdlock(&machine->dsos.lock); 1297 1298 list_for_each_entry(dso, &machine->dsos.head, node) { 1299 1300 /* 1301 * The cpumode passed to is_kernel_module is not the 1302 * cpumode of *this* event. If we insist on passing 1303 * correct cpumode to is_kernel_module, we should 1304 * record the cpumode when we adding this dso to the 1305 * linked list. 1306 * 1307 * However we don't really need passing correct 1308 * cpumode. We know the correct cpumode must be kernel 1309 * mode (if not, we should not link it onto kernel_dsos 1310 * list). 1311 * 1312 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN. 1313 * is_kernel_module() treats it as a kernel cpumode. 1314 */ 1315 1316 if (!dso->kernel || 1317 is_kernel_module(dso->long_name, 1318 PERF_RECORD_MISC_CPUMODE_UNKNOWN)) 1319 continue; 1320 1321 1322 kernel = dso; 1323 break; 1324 } 1325 1326 pthread_rwlock_unlock(&machine->dsos.lock); 1327 1328 if (kernel == NULL) 1329 kernel = machine__findnew_dso(machine, kmmap_prefix); 1330 if (kernel == NULL) 1331 goto out_problem; 1332 1333 kernel->kernel = kernel_type; 1334 if (__machine__create_kernel_maps(machine, kernel) < 0) { 1335 dso__put(kernel); 1336 goto out_problem; 1337 } 1338 1339 if (strstr(kernel->long_name, "vmlinux")) 1340 dso__set_short_name(kernel, "[kernel.vmlinux]", false); 1341 1342 machine__set_kernel_mmap_len(machine, event); 1343 1344 /* 1345 * Avoid using a zero address (kptr_restrict) for the ref reloc 1346 * symbol. Effectively having zero here means that at record 1347 * time /proc/sys/kernel/kptr_restrict was non zero. 1348 */ 1349 if (event->mmap.pgoff != 0) { 1350 maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, 1351 symbol_name, 1352 event->mmap.pgoff); 1353 } 1354 1355 if (machine__is_default_guest(machine)) { 1356 /* 1357 * preload dso of guest kernel and modules 1358 */ 1359 dso__load(kernel, machine__kernel_map(machine)); 1360 } 1361 } 1362 return 0; 1363 out_problem: 1364 return -1; 1365 } 1366 1367 int machine__process_mmap2_event(struct machine *machine, 1368 union perf_event *event, 1369 struct perf_sample *sample) 1370 { 1371 struct thread *thread; 1372 struct map *map; 1373 enum map_type type; 1374 int ret = 0; 1375 1376 if (dump_trace) 1377 perf_event__fprintf_mmap2(event, stdout); 1378 1379 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1380 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1381 ret = machine__process_kernel_mmap_event(machine, event); 1382 if (ret < 0) 1383 goto out_problem; 1384 return 0; 1385 } 1386 1387 thread = machine__findnew_thread(machine, event->mmap2.pid, 1388 event->mmap2.tid); 1389 if (thread == NULL) 1390 goto out_problem; 1391 1392 if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA) 1393 type = MAP__VARIABLE; 1394 else 1395 type = MAP__FUNCTION; 1396 1397 map = map__new(machine, event->mmap2.start, 1398 event->mmap2.len, event->mmap2.pgoff, 1399 event->mmap2.maj, 1400 event->mmap2.min, event->mmap2.ino, 1401 event->mmap2.ino_generation, 1402 event->mmap2.prot, 1403 event->mmap2.flags, 1404 event->mmap2.filename, type, thread); 1405 1406 if (map == NULL) 1407 goto out_problem_map; 1408 1409 ret = thread__insert_map(thread, map); 1410 if (ret) 1411 goto out_problem_insert; 1412 1413 thread__put(thread); 1414 map__put(map); 1415 return 0; 1416 1417 out_problem_insert: 1418 map__put(map); 1419 out_problem_map: 1420 thread__put(thread); 1421 out_problem: 1422 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n"); 1423 return 0; 1424 } 1425 1426 int machine__process_mmap_event(struct machine *machine, union perf_event *event, 1427 struct perf_sample *sample) 1428 { 1429 struct thread *thread; 1430 struct map *map; 1431 enum map_type type; 1432 int ret = 0; 1433 1434 if (dump_trace) 1435 perf_event__fprintf_mmap(event, stdout); 1436 1437 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1438 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1439 ret = machine__process_kernel_mmap_event(machine, event); 1440 if (ret < 0) 1441 goto out_problem; 1442 return 0; 1443 } 1444 1445 thread = machine__findnew_thread(machine, event->mmap.pid, 1446 event->mmap.tid); 1447 if (thread == NULL) 1448 goto out_problem; 1449 1450 if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA) 1451 type = MAP__VARIABLE; 1452 else 1453 type = MAP__FUNCTION; 1454 1455 map = map__new(machine, event->mmap.start, 1456 event->mmap.len, event->mmap.pgoff, 1457 0, 0, 0, 0, 0, 0, 1458 event->mmap.filename, 1459 type, thread); 1460 1461 if (map == NULL) 1462 goto out_problem_map; 1463 1464 ret = thread__insert_map(thread, map); 1465 if (ret) 1466 goto out_problem_insert; 1467 1468 thread__put(thread); 1469 map__put(map); 1470 return 0; 1471 1472 out_problem_insert: 1473 map__put(map); 1474 out_problem_map: 1475 thread__put(thread); 1476 out_problem: 1477 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n"); 1478 return 0; 1479 } 1480 1481 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock) 1482 { 1483 if (machine->last_match == th) 1484 machine->last_match = NULL; 1485 1486 BUG_ON(refcount_read(&th->refcnt) == 0); 1487 if (lock) 1488 pthread_rwlock_wrlock(&machine->threads_lock); 1489 rb_erase_init(&th->rb_node, &machine->threads); 1490 RB_CLEAR_NODE(&th->rb_node); 1491 --machine->nr_threads; 1492 /* 1493 * Move it first to the dead_threads list, then drop the reference, 1494 * if this is the last reference, then the thread__delete destructor 1495 * will be called and we will remove it from the dead_threads list. 1496 */ 1497 list_add_tail(&th->node, &machine->dead_threads); 1498 if (lock) 1499 pthread_rwlock_unlock(&machine->threads_lock); 1500 thread__put(th); 1501 } 1502 1503 void machine__remove_thread(struct machine *machine, struct thread *th) 1504 { 1505 return __machine__remove_thread(machine, th, true); 1506 } 1507 1508 int machine__process_fork_event(struct machine *machine, union perf_event *event, 1509 struct perf_sample *sample) 1510 { 1511 struct thread *thread = machine__find_thread(machine, 1512 event->fork.pid, 1513 event->fork.tid); 1514 struct thread *parent = machine__findnew_thread(machine, 1515 event->fork.ppid, 1516 event->fork.ptid); 1517 int err = 0; 1518 1519 if (dump_trace) 1520 perf_event__fprintf_task(event, stdout); 1521 1522 /* 1523 * There may be an existing thread that is not actually the parent, 1524 * either because we are processing events out of order, or because the 1525 * (fork) event that would have removed the thread was lost. Assume the 1526 * latter case and continue on as best we can. 1527 */ 1528 if (parent->pid_ != (pid_t)event->fork.ppid) { 1529 dump_printf("removing erroneous parent thread %d/%d\n", 1530 parent->pid_, parent->tid); 1531 machine__remove_thread(machine, parent); 1532 thread__put(parent); 1533 parent = machine__findnew_thread(machine, event->fork.ppid, 1534 event->fork.ptid); 1535 } 1536 1537 /* if a thread currently exists for the thread id remove it */ 1538 if (thread != NULL) { 1539 machine__remove_thread(machine, thread); 1540 thread__put(thread); 1541 } 1542 1543 thread = machine__findnew_thread(machine, event->fork.pid, 1544 event->fork.tid); 1545 1546 if (thread == NULL || parent == NULL || 1547 thread__fork(thread, parent, sample->time) < 0) { 1548 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n"); 1549 err = -1; 1550 } 1551 thread__put(thread); 1552 thread__put(parent); 1553 1554 return err; 1555 } 1556 1557 int machine__process_exit_event(struct machine *machine, union perf_event *event, 1558 struct perf_sample *sample __maybe_unused) 1559 { 1560 struct thread *thread = machine__find_thread(machine, 1561 event->fork.pid, 1562 event->fork.tid); 1563 1564 if (dump_trace) 1565 perf_event__fprintf_task(event, stdout); 1566 1567 if (thread != NULL) { 1568 thread__exited(thread); 1569 thread__put(thread); 1570 } 1571 1572 return 0; 1573 } 1574 1575 int machine__process_event(struct machine *machine, union perf_event *event, 1576 struct perf_sample *sample) 1577 { 1578 int ret; 1579 1580 switch (event->header.type) { 1581 case PERF_RECORD_COMM: 1582 ret = machine__process_comm_event(machine, event, sample); break; 1583 case PERF_RECORD_MMAP: 1584 ret = machine__process_mmap_event(machine, event, sample); break; 1585 case PERF_RECORD_NAMESPACES: 1586 ret = machine__process_namespaces_event(machine, event, sample); break; 1587 case PERF_RECORD_MMAP2: 1588 ret = machine__process_mmap2_event(machine, event, sample); break; 1589 case PERF_RECORD_FORK: 1590 ret = machine__process_fork_event(machine, event, sample); break; 1591 case PERF_RECORD_EXIT: 1592 ret = machine__process_exit_event(machine, event, sample); break; 1593 case PERF_RECORD_LOST: 1594 ret = machine__process_lost_event(machine, event, sample); break; 1595 case PERF_RECORD_AUX: 1596 ret = machine__process_aux_event(machine, event); break; 1597 case PERF_RECORD_ITRACE_START: 1598 ret = machine__process_itrace_start_event(machine, event); break; 1599 case PERF_RECORD_LOST_SAMPLES: 1600 ret = machine__process_lost_samples_event(machine, event, sample); break; 1601 case PERF_RECORD_SWITCH: 1602 case PERF_RECORD_SWITCH_CPU_WIDE: 1603 ret = machine__process_switch_event(machine, event); break; 1604 default: 1605 ret = -1; 1606 break; 1607 } 1608 1609 return ret; 1610 } 1611 1612 static bool symbol__match_regex(struct symbol *sym, regex_t *regex) 1613 { 1614 if (!regexec(regex, sym->name, 0, NULL, 0)) 1615 return 1; 1616 return 0; 1617 } 1618 1619 static void ip__resolve_ams(struct thread *thread, 1620 struct addr_map_symbol *ams, 1621 u64 ip) 1622 { 1623 struct addr_location al; 1624 1625 memset(&al, 0, sizeof(al)); 1626 /* 1627 * We cannot use the header.misc hint to determine whether a 1628 * branch stack address is user, kernel, guest, hypervisor. 1629 * Branches may straddle the kernel/user/hypervisor boundaries. 1630 * Thus, we have to try consecutively until we find a match 1631 * or else, the symbol is unknown 1632 */ 1633 thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al); 1634 1635 ams->addr = ip; 1636 ams->al_addr = al.addr; 1637 ams->sym = al.sym; 1638 ams->map = al.map; 1639 ams->phys_addr = 0; 1640 } 1641 1642 static void ip__resolve_data(struct thread *thread, 1643 u8 m, struct addr_map_symbol *ams, 1644 u64 addr, u64 phys_addr) 1645 { 1646 struct addr_location al; 1647 1648 memset(&al, 0, sizeof(al)); 1649 1650 thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al); 1651 if (al.map == NULL) { 1652 /* 1653 * some shared data regions have execute bit set which puts 1654 * their mapping in the MAP__FUNCTION type array. 1655 * Check there as a fallback option before dropping the sample. 1656 */ 1657 thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al); 1658 } 1659 1660 ams->addr = addr; 1661 ams->al_addr = al.addr; 1662 ams->sym = al.sym; 1663 ams->map = al.map; 1664 ams->phys_addr = phys_addr; 1665 } 1666 1667 struct mem_info *sample__resolve_mem(struct perf_sample *sample, 1668 struct addr_location *al) 1669 { 1670 struct mem_info *mi = zalloc(sizeof(*mi)); 1671 1672 if (!mi) 1673 return NULL; 1674 1675 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip); 1676 ip__resolve_data(al->thread, al->cpumode, &mi->daddr, 1677 sample->addr, sample->phys_addr); 1678 mi->data_src.val = sample->data_src; 1679 1680 return mi; 1681 } 1682 1683 struct iterations { 1684 int nr_loop_iter; 1685 u64 cycles; 1686 }; 1687 1688 static int add_callchain_ip(struct thread *thread, 1689 struct callchain_cursor *cursor, 1690 struct symbol **parent, 1691 struct addr_location *root_al, 1692 u8 *cpumode, 1693 u64 ip, 1694 bool branch, 1695 struct branch_flags *flags, 1696 struct iterations *iter, 1697 u64 branch_from) 1698 { 1699 struct addr_location al; 1700 int nr_loop_iter = 0; 1701 u64 iter_cycles = 0; 1702 1703 al.filtered = 0; 1704 al.sym = NULL; 1705 if (!cpumode) { 1706 thread__find_cpumode_addr_location(thread, MAP__FUNCTION, 1707 ip, &al); 1708 } else { 1709 if (ip >= PERF_CONTEXT_MAX) { 1710 switch (ip) { 1711 case PERF_CONTEXT_HV: 1712 *cpumode = PERF_RECORD_MISC_HYPERVISOR; 1713 break; 1714 case PERF_CONTEXT_KERNEL: 1715 *cpumode = PERF_RECORD_MISC_KERNEL; 1716 break; 1717 case PERF_CONTEXT_USER: 1718 *cpumode = PERF_RECORD_MISC_USER; 1719 break; 1720 default: 1721 pr_debug("invalid callchain context: " 1722 "%"PRId64"\n", (s64) ip); 1723 /* 1724 * It seems the callchain is corrupted. 1725 * Discard all. 1726 */ 1727 callchain_cursor_reset(cursor); 1728 return 1; 1729 } 1730 return 0; 1731 } 1732 thread__find_addr_location(thread, *cpumode, MAP__FUNCTION, 1733 ip, &al); 1734 } 1735 1736 if (al.sym != NULL) { 1737 if (perf_hpp_list.parent && !*parent && 1738 symbol__match_regex(al.sym, &parent_regex)) 1739 *parent = al.sym; 1740 else if (have_ignore_callees && root_al && 1741 symbol__match_regex(al.sym, &ignore_callees_regex)) { 1742 /* Treat this symbol as the root, 1743 forgetting its callees. */ 1744 *root_al = al; 1745 callchain_cursor_reset(cursor); 1746 } 1747 } 1748 1749 if (symbol_conf.hide_unresolved && al.sym == NULL) 1750 return 0; 1751 1752 if (iter) { 1753 nr_loop_iter = iter->nr_loop_iter; 1754 iter_cycles = iter->cycles; 1755 } 1756 1757 return callchain_cursor_append(cursor, al.addr, al.map, al.sym, 1758 branch, flags, nr_loop_iter, 1759 iter_cycles, branch_from); 1760 } 1761 1762 struct branch_info *sample__resolve_bstack(struct perf_sample *sample, 1763 struct addr_location *al) 1764 { 1765 unsigned int i; 1766 const struct branch_stack *bs = sample->branch_stack; 1767 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info)); 1768 1769 if (!bi) 1770 return NULL; 1771 1772 for (i = 0; i < bs->nr; i++) { 1773 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to); 1774 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from); 1775 bi[i].flags = bs->entries[i].flags; 1776 } 1777 return bi; 1778 } 1779 1780 static void save_iterations(struct iterations *iter, 1781 struct branch_entry *be, int nr) 1782 { 1783 int i; 1784 1785 iter->nr_loop_iter = nr; 1786 iter->cycles = 0; 1787 1788 for (i = 0; i < nr; i++) 1789 iter->cycles += be[i].flags.cycles; 1790 } 1791 1792 #define CHASHSZ 127 1793 #define CHASHBITS 7 1794 #define NO_ENTRY 0xff 1795 1796 #define PERF_MAX_BRANCH_DEPTH 127 1797 1798 /* Remove loops. */ 1799 static int remove_loops(struct branch_entry *l, int nr, 1800 struct iterations *iter) 1801 { 1802 int i, j, off; 1803 unsigned char chash[CHASHSZ]; 1804 1805 memset(chash, NO_ENTRY, sizeof(chash)); 1806 1807 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255); 1808 1809 for (i = 0; i < nr; i++) { 1810 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ; 1811 1812 /* no collision handling for now */ 1813 if (chash[h] == NO_ENTRY) { 1814 chash[h] = i; 1815 } else if (l[chash[h]].from == l[i].from) { 1816 bool is_loop = true; 1817 /* check if it is a real loop */ 1818 off = 0; 1819 for (j = chash[h]; j < i && i + off < nr; j++, off++) 1820 if (l[j].from != l[i + off].from) { 1821 is_loop = false; 1822 break; 1823 } 1824 if (is_loop) { 1825 j = nr - (i + off); 1826 if (j > 0) { 1827 save_iterations(iter + i + off, 1828 l + i, off); 1829 1830 memmove(iter + i, iter + i + off, 1831 j * sizeof(*iter)); 1832 1833 memmove(l + i, l + i + off, 1834 j * sizeof(*l)); 1835 } 1836 1837 nr -= off; 1838 } 1839 } 1840 } 1841 return nr; 1842 } 1843 1844 /* 1845 * Recolve LBR callstack chain sample 1846 * Return: 1847 * 1 on success get LBR callchain information 1848 * 0 no available LBR callchain information, should try fp 1849 * negative error code on other errors. 1850 */ 1851 static int resolve_lbr_callchain_sample(struct thread *thread, 1852 struct callchain_cursor *cursor, 1853 struct perf_sample *sample, 1854 struct symbol **parent, 1855 struct addr_location *root_al, 1856 int max_stack) 1857 { 1858 struct ip_callchain *chain = sample->callchain; 1859 int chain_nr = min(max_stack, (int)chain->nr), i; 1860 u8 cpumode = PERF_RECORD_MISC_USER; 1861 u64 ip, branch_from = 0; 1862 1863 for (i = 0; i < chain_nr; i++) { 1864 if (chain->ips[i] == PERF_CONTEXT_USER) 1865 break; 1866 } 1867 1868 /* LBR only affects the user callchain */ 1869 if (i != chain_nr) { 1870 struct branch_stack *lbr_stack = sample->branch_stack; 1871 int lbr_nr = lbr_stack->nr, j, k; 1872 bool branch; 1873 struct branch_flags *flags; 1874 /* 1875 * LBR callstack can only get user call chain. 1876 * The mix_chain_nr is kernel call chain 1877 * number plus LBR user call chain number. 1878 * i is kernel call chain number, 1879 * 1 is PERF_CONTEXT_USER, 1880 * lbr_nr + 1 is the user call chain number. 1881 * For details, please refer to the comments 1882 * in callchain__printf 1883 */ 1884 int mix_chain_nr = i + 1 + lbr_nr + 1; 1885 1886 for (j = 0; j < mix_chain_nr; j++) { 1887 int err; 1888 branch = false; 1889 flags = NULL; 1890 1891 if (callchain_param.order == ORDER_CALLEE) { 1892 if (j < i + 1) 1893 ip = chain->ips[j]; 1894 else if (j > i + 1) { 1895 k = j - i - 2; 1896 ip = lbr_stack->entries[k].from; 1897 branch = true; 1898 flags = &lbr_stack->entries[k].flags; 1899 } else { 1900 ip = lbr_stack->entries[0].to; 1901 branch = true; 1902 flags = &lbr_stack->entries[0].flags; 1903 branch_from = 1904 lbr_stack->entries[0].from; 1905 } 1906 } else { 1907 if (j < lbr_nr) { 1908 k = lbr_nr - j - 1; 1909 ip = lbr_stack->entries[k].from; 1910 branch = true; 1911 flags = &lbr_stack->entries[k].flags; 1912 } 1913 else if (j > lbr_nr) 1914 ip = chain->ips[i + 1 - (j - lbr_nr)]; 1915 else { 1916 ip = lbr_stack->entries[0].to; 1917 branch = true; 1918 flags = &lbr_stack->entries[0].flags; 1919 branch_from = 1920 lbr_stack->entries[0].from; 1921 } 1922 } 1923 1924 err = add_callchain_ip(thread, cursor, parent, 1925 root_al, &cpumode, ip, 1926 branch, flags, NULL, 1927 branch_from); 1928 if (err) 1929 return (err < 0) ? err : 0; 1930 } 1931 return 1; 1932 } 1933 1934 return 0; 1935 } 1936 1937 static int thread__resolve_callchain_sample(struct thread *thread, 1938 struct callchain_cursor *cursor, 1939 struct perf_evsel *evsel, 1940 struct perf_sample *sample, 1941 struct symbol **parent, 1942 struct addr_location *root_al, 1943 int max_stack) 1944 { 1945 struct branch_stack *branch = sample->branch_stack; 1946 struct ip_callchain *chain = sample->callchain; 1947 int chain_nr = 0; 1948 u8 cpumode = PERF_RECORD_MISC_USER; 1949 int i, j, err, nr_entries; 1950 int skip_idx = -1; 1951 int first_call = 0; 1952 1953 if (chain) 1954 chain_nr = chain->nr; 1955 1956 if (perf_evsel__has_branch_callstack(evsel)) { 1957 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent, 1958 root_al, max_stack); 1959 if (err) 1960 return (err < 0) ? err : 0; 1961 } 1962 1963 /* 1964 * Based on DWARF debug information, some architectures skip 1965 * a callchain entry saved by the kernel. 1966 */ 1967 skip_idx = arch_skip_callchain_idx(thread, chain); 1968 1969 /* 1970 * Add branches to call stack for easier browsing. This gives 1971 * more context for a sample than just the callers. 1972 * 1973 * This uses individual histograms of paths compared to the 1974 * aggregated histograms the normal LBR mode uses. 1975 * 1976 * Limitations for now: 1977 * - No extra filters 1978 * - No annotations (should annotate somehow) 1979 */ 1980 1981 if (branch && callchain_param.branch_callstack) { 1982 int nr = min(max_stack, (int)branch->nr); 1983 struct branch_entry be[nr]; 1984 struct iterations iter[nr]; 1985 1986 if (branch->nr > PERF_MAX_BRANCH_DEPTH) { 1987 pr_warning("corrupted branch chain. skipping...\n"); 1988 goto check_calls; 1989 } 1990 1991 for (i = 0; i < nr; i++) { 1992 if (callchain_param.order == ORDER_CALLEE) { 1993 be[i] = branch->entries[i]; 1994 1995 if (chain == NULL) 1996 continue; 1997 1998 /* 1999 * Check for overlap into the callchain. 2000 * The return address is one off compared to 2001 * the branch entry. To adjust for this 2002 * assume the calling instruction is not longer 2003 * than 8 bytes. 2004 */ 2005 if (i == skip_idx || 2006 chain->ips[first_call] >= PERF_CONTEXT_MAX) 2007 first_call++; 2008 else if (be[i].from < chain->ips[first_call] && 2009 be[i].from >= chain->ips[first_call] - 8) 2010 first_call++; 2011 } else 2012 be[i] = branch->entries[branch->nr - i - 1]; 2013 } 2014 2015 memset(iter, 0, sizeof(struct iterations) * nr); 2016 nr = remove_loops(be, nr, iter); 2017 2018 for (i = 0; i < nr; i++) { 2019 err = add_callchain_ip(thread, cursor, parent, 2020 root_al, 2021 NULL, be[i].to, 2022 true, &be[i].flags, 2023 NULL, be[i].from); 2024 2025 if (!err) 2026 err = add_callchain_ip(thread, cursor, parent, root_al, 2027 NULL, be[i].from, 2028 true, &be[i].flags, 2029 &iter[i], 0); 2030 if (err == -EINVAL) 2031 break; 2032 if (err) 2033 return err; 2034 } 2035 2036 if (chain_nr == 0) 2037 return 0; 2038 2039 chain_nr -= nr; 2040 } 2041 2042 check_calls: 2043 for (i = first_call, nr_entries = 0; 2044 i < chain_nr && nr_entries < max_stack; i++) { 2045 u64 ip; 2046 2047 if (callchain_param.order == ORDER_CALLEE) 2048 j = i; 2049 else 2050 j = chain->nr - i - 1; 2051 2052 #ifdef HAVE_SKIP_CALLCHAIN_IDX 2053 if (j == skip_idx) 2054 continue; 2055 #endif 2056 ip = chain->ips[j]; 2057 2058 if (ip < PERF_CONTEXT_MAX) 2059 ++nr_entries; 2060 2061 err = add_callchain_ip(thread, cursor, parent, 2062 root_al, &cpumode, ip, 2063 false, NULL, NULL, 0); 2064 2065 if (err) 2066 return (err < 0) ? err : 0; 2067 } 2068 2069 return 0; 2070 } 2071 2072 static int unwind_entry(struct unwind_entry *entry, void *arg) 2073 { 2074 struct callchain_cursor *cursor = arg; 2075 2076 if (symbol_conf.hide_unresolved && entry->sym == NULL) 2077 return 0; 2078 return callchain_cursor_append(cursor, entry->ip, 2079 entry->map, entry->sym, 2080 false, NULL, 0, 0, 0); 2081 } 2082 2083 static int thread__resolve_callchain_unwind(struct thread *thread, 2084 struct callchain_cursor *cursor, 2085 struct perf_evsel *evsel, 2086 struct perf_sample *sample, 2087 int max_stack) 2088 { 2089 /* Can we do dwarf post unwind? */ 2090 if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) && 2091 (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER))) 2092 return 0; 2093 2094 /* Bail out if nothing was captured. */ 2095 if ((!sample->user_regs.regs) || 2096 (!sample->user_stack.size)) 2097 return 0; 2098 2099 return unwind__get_entries(unwind_entry, cursor, 2100 thread, sample, max_stack); 2101 } 2102 2103 int thread__resolve_callchain(struct thread *thread, 2104 struct callchain_cursor *cursor, 2105 struct perf_evsel *evsel, 2106 struct perf_sample *sample, 2107 struct symbol **parent, 2108 struct addr_location *root_al, 2109 int max_stack) 2110 { 2111 int ret = 0; 2112 2113 callchain_cursor_reset(&callchain_cursor); 2114 2115 if (callchain_param.order == ORDER_CALLEE) { 2116 ret = thread__resolve_callchain_sample(thread, cursor, 2117 evsel, sample, 2118 parent, root_al, 2119 max_stack); 2120 if (ret) 2121 return ret; 2122 ret = thread__resolve_callchain_unwind(thread, cursor, 2123 evsel, sample, 2124 max_stack); 2125 } else { 2126 ret = thread__resolve_callchain_unwind(thread, cursor, 2127 evsel, sample, 2128 max_stack); 2129 if (ret) 2130 return ret; 2131 ret = thread__resolve_callchain_sample(thread, cursor, 2132 evsel, sample, 2133 parent, root_al, 2134 max_stack); 2135 } 2136 2137 return ret; 2138 } 2139 2140 int machine__for_each_thread(struct machine *machine, 2141 int (*fn)(struct thread *thread, void *p), 2142 void *priv) 2143 { 2144 struct rb_node *nd; 2145 struct thread *thread; 2146 int rc = 0; 2147 2148 for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) { 2149 thread = rb_entry(nd, struct thread, rb_node); 2150 rc = fn(thread, priv); 2151 if (rc != 0) 2152 return rc; 2153 } 2154 2155 list_for_each_entry(thread, &machine->dead_threads, node) { 2156 rc = fn(thread, priv); 2157 if (rc != 0) 2158 return rc; 2159 } 2160 return rc; 2161 } 2162 2163 int machines__for_each_thread(struct machines *machines, 2164 int (*fn)(struct thread *thread, void *p), 2165 void *priv) 2166 { 2167 struct rb_node *nd; 2168 int rc = 0; 2169 2170 rc = machine__for_each_thread(&machines->host, fn, priv); 2171 if (rc != 0) 2172 return rc; 2173 2174 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 2175 struct machine *machine = rb_entry(nd, struct machine, rb_node); 2176 2177 rc = machine__for_each_thread(machine, fn, priv); 2178 if (rc != 0) 2179 return rc; 2180 } 2181 return rc; 2182 } 2183 2184 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool, 2185 struct target *target, struct thread_map *threads, 2186 perf_event__handler_t process, bool data_mmap, 2187 unsigned int proc_map_timeout) 2188 { 2189 if (target__has_task(target)) 2190 return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout); 2191 else if (target__has_cpu(target)) 2192 return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout); 2193 /* command specified */ 2194 return 0; 2195 } 2196 2197 pid_t machine__get_current_tid(struct machine *machine, int cpu) 2198 { 2199 if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid) 2200 return -1; 2201 2202 return machine->current_tid[cpu]; 2203 } 2204 2205 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid, 2206 pid_t tid) 2207 { 2208 struct thread *thread; 2209 2210 if (cpu < 0) 2211 return -EINVAL; 2212 2213 if (!machine->current_tid) { 2214 int i; 2215 2216 machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t)); 2217 if (!machine->current_tid) 2218 return -ENOMEM; 2219 for (i = 0; i < MAX_NR_CPUS; i++) 2220 machine->current_tid[i] = -1; 2221 } 2222 2223 if (cpu >= MAX_NR_CPUS) { 2224 pr_err("Requested CPU %d too large. ", cpu); 2225 pr_err("Consider raising MAX_NR_CPUS\n"); 2226 return -EINVAL; 2227 } 2228 2229 machine->current_tid[cpu] = tid; 2230 2231 thread = machine__findnew_thread(machine, pid, tid); 2232 if (!thread) 2233 return -ENOMEM; 2234 2235 thread->cpu = cpu; 2236 thread__put(thread); 2237 2238 return 0; 2239 } 2240 2241 int machine__get_kernel_start(struct machine *machine) 2242 { 2243 struct map *map = machine__kernel_map(machine); 2244 int err = 0; 2245 2246 /* 2247 * The only addresses above 2^63 are kernel addresses of a 64-bit 2248 * kernel. Note that addresses are unsigned so that on a 32-bit system 2249 * all addresses including kernel addresses are less than 2^32. In 2250 * that case (32-bit system), if the kernel mapping is unknown, all 2251 * addresses will be assumed to be in user space - see 2252 * machine__kernel_ip(). 2253 */ 2254 machine->kernel_start = 1ULL << 63; 2255 if (map) { 2256 err = map__load(map); 2257 if (!err) 2258 machine->kernel_start = map->start; 2259 } 2260 return err; 2261 } 2262 2263 struct dso *machine__findnew_dso(struct machine *machine, const char *filename) 2264 { 2265 return dsos__findnew(&machine->dsos, filename); 2266 } 2267 2268 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp) 2269 { 2270 struct machine *machine = vmachine; 2271 struct map *map; 2272 struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map); 2273 2274 if (sym == NULL) 2275 return NULL; 2276 2277 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL; 2278 *addrp = map->unmap_ip(map, sym->start); 2279 return sym->name; 2280 } 2281