xref: /openbmc/linux/tools/perf/util/machine.c (revision b24413180f5600bcb3bb70fbed5cf186b60864bd)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include "callchain.h"
7 #include "debug.h"
8 #include "event.h"
9 #include "evsel.h"
10 #include "hist.h"
11 #include "machine.h"
12 #include "map.h"
13 #include "sort.h"
14 #include "strlist.h"
15 #include "thread.h"
16 #include "vdso.h"
17 #include <stdbool.h>
18 #include <sys/types.h>
19 #include <sys/stat.h>
20 #include <unistd.h>
21 #include "unwind.h"
22 #include "linux/hash.h"
23 #include "asm/bug.h"
24 
25 #include "sane_ctype.h"
26 #include <symbol/kallsyms.h>
27 
28 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
29 
30 static void dsos__init(struct dsos *dsos)
31 {
32 	INIT_LIST_HEAD(&dsos->head);
33 	dsos->root = RB_ROOT;
34 	pthread_rwlock_init(&dsos->lock, NULL);
35 }
36 
37 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
38 {
39 	memset(machine, 0, sizeof(*machine));
40 	map_groups__init(&machine->kmaps, machine);
41 	RB_CLEAR_NODE(&machine->rb_node);
42 	dsos__init(&machine->dsos);
43 
44 	machine->threads = RB_ROOT;
45 	pthread_rwlock_init(&machine->threads_lock, NULL);
46 	machine->nr_threads = 0;
47 	INIT_LIST_HEAD(&machine->dead_threads);
48 	machine->last_match = NULL;
49 
50 	machine->vdso_info = NULL;
51 	machine->env = NULL;
52 
53 	machine->pid = pid;
54 
55 	machine->id_hdr_size = 0;
56 	machine->kptr_restrict_warned = false;
57 	machine->comm_exec = false;
58 	machine->kernel_start = 0;
59 
60 	memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps));
61 
62 	machine->root_dir = strdup(root_dir);
63 	if (machine->root_dir == NULL)
64 		return -ENOMEM;
65 
66 	if (pid != HOST_KERNEL_ID) {
67 		struct thread *thread = machine__findnew_thread(machine, -1,
68 								pid);
69 		char comm[64];
70 
71 		if (thread == NULL)
72 			return -ENOMEM;
73 
74 		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
75 		thread__set_comm(thread, comm, 0);
76 		thread__put(thread);
77 	}
78 
79 	machine->current_tid = NULL;
80 
81 	return 0;
82 }
83 
84 struct machine *machine__new_host(void)
85 {
86 	struct machine *machine = malloc(sizeof(*machine));
87 
88 	if (machine != NULL) {
89 		machine__init(machine, "", HOST_KERNEL_ID);
90 
91 		if (machine__create_kernel_maps(machine) < 0)
92 			goto out_delete;
93 	}
94 
95 	return machine;
96 out_delete:
97 	free(machine);
98 	return NULL;
99 }
100 
101 struct machine *machine__new_kallsyms(void)
102 {
103 	struct machine *machine = machine__new_host();
104 	/*
105 	 * FIXME:
106 	 * 1) MAP__FUNCTION will go away when we stop loading separate maps for
107 	 *    functions and data objects.
108 	 * 2) We should switch to machine__load_kallsyms(), i.e. not explicitely
109 	 *    ask for not using the kcore parsing code, once this one is fixed
110 	 *    to create a map per module.
111 	 */
112 	if (machine && __machine__load_kallsyms(machine, "/proc/kallsyms", MAP__FUNCTION, true) <= 0) {
113 		machine__delete(machine);
114 		machine = NULL;
115 	}
116 
117 	return machine;
118 }
119 
120 static void dsos__purge(struct dsos *dsos)
121 {
122 	struct dso *pos, *n;
123 
124 	pthread_rwlock_wrlock(&dsos->lock);
125 
126 	list_for_each_entry_safe(pos, n, &dsos->head, node) {
127 		RB_CLEAR_NODE(&pos->rb_node);
128 		pos->root = NULL;
129 		list_del_init(&pos->node);
130 		dso__put(pos);
131 	}
132 
133 	pthread_rwlock_unlock(&dsos->lock);
134 }
135 
136 static void dsos__exit(struct dsos *dsos)
137 {
138 	dsos__purge(dsos);
139 	pthread_rwlock_destroy(&dsos->lock);
140 }
141 
142 void machine__delete_threads(struct machine *machine)
143 {
144 	struct rb_node *nd;
145 
146 	pthread_rwlock_wrlock(&machine->threads_lock);
147 	nd = rb_first(&machine->threads);
148 	while (nd) {
149 		struct thread *t = rb_entry(nd, struct thread, rb_node);
150 
151 		nd = rb_next(nd);
152 		__machine__remove_thread(machine, t, false);
153 	}
154 	pthread_rwlock_unlock(&machine->threads_lock);
155 }
156 
157 void machine__exit(struct machine *machine)
158 {
159 	machine__destroy_kernel_maps(machine);
160 	map_groups__exit(&machine->kmaps);
161 	dsos__exit(&machine->dsos);
162 	machine__exit_vdso(machine);
163 	zfree(&machine->root_dir);
164 	zfree(&machine->current_tid);
165 	pthread_rwlock_destroy(&machine->threads_lock);
166 }
167 
168 void machine__delete(struct machine *machine)
169 {
170 	if (machine) {
171 		machine__exit(machine);
172 		free(machine);
173 	}
174 }
175 
176 void machines__init(struct machines *machines)
177 {
178 	machine__init(&machines->host, "", HOST_KERNEL_ID);
179 	machines->guests = RB_ROOT;
180 }
181 
182 void machines__exit(struct machines *machines)
183 {
184 	machine__exit(&machines->host);
185 	/* XXX exit guest */
186 }
187 
188 struct machine *machines__add(struct machines *machines, pid_t pid,
189 			      const char *root_dir)
190 {
191 	struct rb_node **p = &machines->guests.rb_node;
192 	struct rb_node *parent = NULL;
193 	struct machine *pos, *machine = malloc(sizeof(*machine));
194 
195 	if (machine == NULL)
196 		return NULL;
197 
198 	if (machine__init(machine, root_dir, pid) != 0) {
199 		free(machine);
200 		return NULL;
201 	}
202 
203 	while (*p != NULL) {
204 		parent = *p;
205 		pos = rb_entry(parent, struct machine, rb_node);
206 		if (pid < pos->pid)
207 			p = &(*p)->rb_left;
208 		else
209 			p = &(*p)->rb_right;
210 	}
211 
212 	rb_link_node(&machine->rb_node, parent, p);
213 	rb_insert_color(&machine->rb_node, &machines->guests);
214 
215 	return machine;
216 }
217 
218 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
219 {
220 	struct rb_node *nd;
221 
222 	machines->host.comm_exec = comm_exec;
223 
224 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
225 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
226 
227 		machine->comm_exec = comm_exec;
228 	}
229 }
230 
231 struct machine *machines__find(struct machines *machines, pid_t pid)
232 {
233 	struct rb_node **p = &machines->guests.rb_node;
234 	struct rb_node *parent = NULL;
235 	struct machine *machine;
236 	struct machine *default_machine = NULL;
237 
238 	if (pid == HOST_KERNEL_ID)
239 		return &machines->host;
240 
241 	while (*p != NULL) {
242 		parent = *p;
243 		machine = rb_entry(parent, struct machine, rb_node);
244 		if (pid < machine->pid)
245 			p = &(*p)->rb_left;
246 		else if (pid > machine->pid)
247 			p = &(*p)->rb_right;
248 		else
249 			return machine;
250 		if (!machine->pid)
251 			default_machine = machine;
252 	}
253 
254 	return default_machine;
255 }
256 
257 struct machine *machines__findnew(struct machines *machines, pid_t pid)
258 {
259 	char path[PATH_MAX];
260 	const char *root_dir = "";
261 	struct machine *machine = machines__find(machines, pid);
262 
263 	if (machine && (machine->pid == pid))
264 		goto out;
265 
266 	if ((pid != HOST_KERNEL_ID) &&
267 	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
268 	    (symbol_conf.guestmount)) {
269 		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
270 		if (access(path, R_OK)) {
271 			static struct strlist *seen;
272 
273 			if (!seen)
274 				seen = strlist__new(NULL, NULL);
275 
276 			if (!strlist__has_entry(seen, path)) {
277 				pr_err("Can't access file %s\n", path);
278 				strlist__add(seen, path);
279 			}
280 			machine = NULL;
281 			goto out;
282 		}
283 		root_dir = path;
284 	}
285 
286 	machine = machines__add(machines, pid, root_dir);
287 out:
288 	return machine;
289 }
290 
291 void machines__process_guests(struct machines *machines,
292 			      machine__process_t process, void *data)
293 {
294 	struct rb_node *nd;
295 
296 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
297 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
298 		process(pos, data);
299 	}
300 }
301 
302 char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
303 {
304 	if (machine__is_host(machine))
305 		snprintf(bf, size, "[%s]", "kernel.kallsyms");
306 	else if (machine__is_default_guest(machine))
307 		snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
308 	else {
309 		snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
310 			 machine->pid);
311 	}
312 
313 	return bf;
314 }
315 
316 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
317 {
318 	struct rb_node *node;
319 	struct machine *machine;
320 
321 	machines->host.id_hdr_size = id_hdr_size;
322 
323 	for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
324 		machine = rb_entry(node, struct machine, rb_node);
325 		machine->id_hdr_size = id_hdr_size;
326 	}
327 
328 	return;
329 }
330 
331 static void machine__update_thread_pid(struct machine *machine,
332 				       struct thread *th, pid_t pid)
333 {
334 	struct thread *leader;
335 
336 	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
337 		return;
338 
339 	th->pid_ = pid;
340 
341 	if (th->pid_ == th->tid)
342 		return;
343 
344 	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
345 	if (!leader)
346 		goto out_err;
347 
348 	if (!leader->mg)
349 		leader->mg = map_groups__new(machine);
350 
351 	if (!leader->mg)
352 		goto out_err;
353 
354 	if (th->mg == leader->mg)
355 		return;
356 
357 	if (th->mg) {
358 		/*
359 		 * Maps are created from MMAP events which provide the pid and
360 		 * tid.  Consequently there never should be any maps on a thread
361 		 * with an unknown pid.  Just print an error if there are.
362 		 */
363 		if (!map_groups__empty(th->mg))
364 			pr_err("Discarding thread maps for %d:%d\n",
365 			       th->pid_, th->tid);
366 		map_groups__put(th->mg);
367 	}
368 
369 	th->mg = map_groups__get(leader->mg);
370 out_put:
371 	thread__put(leader);
372 	return;
373 out_err:
374 	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
375 	goto out_put;
376 }
377 
378 /*
379  * Caller must eventually drop thread->refcnt returned with a successful
380  * lookup/new thread inserted.
381  */
382 static struct thread *____machine__findnew_thread(struct machine *machine,
383 						  pid_t pid, pid_t tid,
384 						  bool create)
385 {
386 	struct rb_node **p = &machine->threads.rb_node;
387 	struct rb_node *parent = NULL;
388 	struct thread *th;
389 
390 	/*
391 	 * Front-end cache - TID lookups come in blocks,
392 	 * so most of the time we dont have to look up
393 	 * the full rbtree:
394 	 */
395 	th = machine->last_match;
396 	if (th != NULL) {
397 		if (th->tid == tid) {
398 			machine__update_thread_pid(machine, th, pid);
399 			return thread__get(th);
400 		}
401 
402 		machine->last_match = NULL;
403 	}
404 
405 	while (*p != NULL) {
406 		parent = *p;
407 		th = rb_entry(parent, struct thread, rb_node);
408 
409 		if (th->tid == tid) {
410 			machine->last_match = th;
411 			machine__update_thread_pid(machine, th, pid);
412 			return thread__get(th);
413 		}
414 
415 		if (tid < th->tid)
416 			p = &(*p)->rb_left;
417 		else
418 			p = &(*p)->rb_right;
419 	}
420 
421 	if (!create)
422 		return NULL;
423 
424 	th = thread__new(pid, tid);
425 	if (th != NULL) {
426 		rb_link_node(&th->rb_node, parent, p);
427 		rb_insert_color(&th->rb_node, &machine->threads);
428 
429 		/*
430 		 * We have to initialize map_groups separately
431 		 * after rb tree is updated.
432 		 *
433 		 * The reason is that we call machine__findnew_thread
434 		 * within thread__init_map_groups to find the thread
435 		 * leader and that would screwed the rb tree.
436 		 */
437 		if (thread__init_map_groups(th, machine)) {
438 			rb_erase_init(&th->rb_node, &machine->threads);
439 			RB_CLEAR_NODE(&th->rb_node);
440 			thread__put(th);
441 			return NULL;
442 		}
443 		/*
444 		 * It is now in the rbtree, get a ref
445 		 */
446 		thread__get(th);
447 		machine->last_match = th;
448 		++machine->nr_threads;
449 	}
450 
451 	return th;
452 }
453 
454 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
455 {
456 	return ____machine__findnew_thread(machine, pid, tid, true);
457 }
458 
459 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
460 				       pid_t tid)
461 {
462 	struct thread *th;
463 
464 	pthread_rwlock_wrlock(&machine->threads_lock);
465 	th = __machine__findnew_thread(machine, pid, tid);
466 	pthread_rwlock_unlock(&machine->threads_lock);
467 	return th;
468 }
469 
470 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
471 				    pid_t tid)
472 {
473 	struct thread *th;
474 	pthread_rwlock_rdlock(&machine->threads_lock);
475 	th =  ____machine__findnew_thread(machine, pid, tid, false);
476 	pthread_rwlock_unlock(&machine->threads_lock);
477 	return th;
478 }
479 
480 struct comm *machine__thread_exec_comm(struct machine *machine,
481 				       struct thread *thread)
482 {
483 	if (machine->comm_exec)
484 		return thread__exec_comm(thread);
485 	else
486 		return thread__comm(thread);
487 }
488 
489 int machine__process_comm_event(struct machine *machine, union perf_event *event,
490 				struct perf_sample *sample)
491 {
492 	struct thread *thread = machine__findnew_thread(machine,
493 							event->comm.pid,
494 							event->comm.tid);
495 	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
496 	int err = 0;
497 
498 	if (exec)
499 		machine->comm_exec = true;
500 
501 	if (dump_trace)
502 		perf_event__fprintf_comm(event, stdout);
503 
504 	if (thread == NULL ||
505 	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
506 		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
507 		err = -1;
508 	}
509 
510 	thread__put(thread);
511 
512 	return err;
513 }
514 
515 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
516 				      union perf_event *event,
517 				      struct perf_sample *sample __maybe_unused)
518 {
519 	struct thread *thread = machine__findnew_thread(machine,
520 							event->namespaces.pid,
521 							event->namespaces.tid);
522 	int err = 0;
523 
524 	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
525 		  "\nWARNING: kernel seems to support more namespaces than perf"
526 		  " tool.\nTry updating the perf tool..\n\n");
527 
528 	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
529 		  "\nWARNING: perf tool seems to support more namespaces than"
530 		  " the kernel.\nTry updating the kernel..\n\n");
531 
532 	if (dump_trace)
533 		perf_event__fprintf_namespaces(event, stdout);
534 
535 	if (thread == NULL ||
536 	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
537 		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
538 		err = -1;
539 	}
540 
541 	thread__put(thread);
542 
543 	return err;
544 }
545 
546 int machine__process_lost_event(struct machine *machine __maybe_unused,
547 				union perf_event *event, struct perf_sample *sample __maybe_unused)
548 {
549 	dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
550 		    event->lost.id, event->lost.lost);
551 	return 0;
552 }
553 
554 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
555 					union perf_event *event, struct perf_sample *sample)
556 {
557 	dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
558 		    sample->id, event->lost_samples.lost);
559 	return 0;
560 }
561 
562 static struct dso *machine__findnew_module_dso(struct machine *machine,
563 					       struct kmod_path *m,
564 					       const char *filename)
565 {
566 	struct dso *dso;
567 
568 	pthread_rwlock_wrlock(&machine->dsos.lock);
569 
570 	dso = __dsos__find(&machine->dsos, m->name, true);
571 	if (!dso) {
572 		dso = __dsos__addnew(&machine->dsos, m->name);
573 		if (dso == NULL)
574 			goto out_unlock;
575 
576 		dso__set_module_info(dso, m, machine);
577 		dso__set_long_name(dso, strdup(filename), true);
578 	}
579 
580 	dso__get(dso);
581 out_unlock:
582 	pthread_rwlock_unlock(&machine->dsos.lock);
583 	return dso;
584 }
585 
586 int machine__process_aux_event(struct machine *machine __maybe_unused,
587 			       union perf_event *event)
588 {
589 	if (dump_trace)
590 		perf_event__fprintf_aux(event, stdout);
591 	return 0;
592 }
593 
594 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
595 					union perf_event *event)
596 {
597 	if (dump_trace)
598 		perf_event__fprintf_itrace_start(event, stdout);
599 	return 0;
600 }
601 
602 int machine__process_switch_event(struct machine *machine __maybe_unused,
603 				  union perf_event *event)
604 {
605 	if (dump_trace)
606 		perf_event__fprintf_switch(event, stdout);
607 	return 0;
608 }
609 
610 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
611 {
612 	const char *dup_filename;
613 
614 	if (!filename || !dso || !dso->long_name)
615 		return;
616 	if (dso->long_name[0] != '[')
617 		return;
618 	if (!strchr(filename, '/'))
619 		return;
620 
621 	dup_filename = strdup(filename);
622 	if (!dup_filename)
623 		return;
624 
625 	dso__set_long_name(dso, dup_filename, true);
626 }
627 
628 struct map *machine__findnew_module_map(struct machine *machine, u64 start,
629 					const char *filename)
630 {
631 	struct map *map = NULL;
632 	struct dso *dso = NULL;
633 	struct kmod_path m;
634 
635 	if (kmod_path__parse_name(&m, filename))
636 		return NULL;
637 
638 	map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
639 				       m.name);
640 	if (map) {
641 		/*
642 		 * If the map's dso is an offline module, give dso__load()
643 		 * a chance to find the file path of that module by fixing
644 		 * long_name.
645 		 */
646 		dso__adjust_kmod_long_name(map->dso, filename);
647 		goto out;
648 	}
649 
650 	dso = machine__findnew_module_dso(machine, &m, filename);
651 	if (dso == NULL)
652 		goto out;
653 
654 	map = map__new2(start, dso, MAP__FUNCTION);
655 	if (map == NULL)
656 		goto out;
657 
658 	map_groups__insert(&machine->kmaps, map);
659 
660 	/* Put the map here because map_groups__insert alread got it */
661 	map__put(map);
662 out:
663 	/* put the dso here, corresponding to  machine__findnew_module_dso */
664 	dso__put(dso);
665 	free(m.name);
666 	return map;
667 }
668 
669 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
670 {
671 	struct rb_node *nd;
672 	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
673 
674 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
675 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
676 		ret += __dsos__fprintf(&pos->dsos.head, fp);
677 	}
678 
679 	return ret;
680 }
681 
682 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
683 				     bool (skip)(struct dso *dso, int parm), int parm)
684 {
685 	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
686 }
687 
688 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
689 				     bool (skip)(struct dso *dso, int parm), int parm)
690 {
691 	struct rb_node *nd;
692 	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
693 
694 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
695 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
696 		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
697 	}
698 	return ret;
699 }
700 
701 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
702 {
703 	int i;
704 	size_t printed = 0;
705 	struct dso *kdso = machine__kernel_map(machine)->dso;
706 
707 	if (kdso->has_build_id) {
708 		char filename[PATH_MAX];
709 		if (dso__build_id_filename(kdso, filename, sizeof(filename),
710 					   false))
711 			printed += fprintf(fp, "[0] %s\n", filename);
712 	}
713 
714 	for (i = 0; i < vmlinux_path__nr_entries; ++i)
715 		printed += fprintf(fp, "[%d] %s\n",
716 				   i + kdso->has_build_id, vmlinux_path[i]);
717 
718 	return printed;
719 }
720 
721 size_t machine__fprintf(struct machine *machine, FILE *fp)
722 {
723 	size_t ret;
724 	struct rb_node *nd;
725 
726 	pthread_rwlock_rdlock(&machine->threads_lock);
727 
728 	ret = fprintf(fp, "Threads: %u\n", machine->nr_threads);
729 
730 	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
731 		struct thread *pos = rb_entry(nd, struct thread, rb_node);
732 
733 		ret += thread__fprintf(pos, fp);
734 	}
735 
736 	pthread_rwlock_unlock(&machine->threads_lock);
737 
738 	return ret;
739 }
740 
741 static struct dso *machine__get_kernel(struct machine *machine)
742 {
743 	const char *vmlinux_name = NULL;
744 	struct dso *kernel;
745 
746 	if (machine__is_host(machine)) {
747 		vmlinux_name = symbol_conf.vmlinux_name;
748 		if (!vmlinux_name)
749 			vmlinux_name = DSO__NAME_KALLSYMS;
750 
751 		kernel = machine__findnew_kernel(machine, vmlinux_name,
752 						 "[kernel]", DSO_TYPE_KERNEL);
753 	} else {
754 		char bf[PATH_MAX];
755 
756 		if (machine__is_default_guest(machine))
757 			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
758 		if (!vmlinux_name)
759 			vmlinux_name = machine__mmap_name(machine, bf,
760 							  sizeof(bf));
761 
762 		kernel = machine__findnew_kernel(machine, vmlinux_name,
763 						 "[guest.kernel]",
764 						 DSO_TYPE_GUEST_KERNEL);
765 	}
766 
767 	if (kernel != NULL && (!kernel->has_build_id))
768 		dso__read_running_kernel_build_id(kernel, machine);
769 
770 	return kernel;
771 }
772 
773 struct process_args {
774 	u64 start;
775 };
776 
777 static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
778 					   size_t bufsz)
779 {
780 	if (machine__is_default_guest(machine))
781 		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
782 	else
783 		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
784 }
785 
786 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
787 
788 /* Figure out the start address of kernel map from /proc/kallsyms.
789  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
790  * symbol_name if it's not that important.
791  */
792 static int machine__get_running_kernel_start(struct machine *machine,
793 					     const char **symbol_name, u64 *start)
794 {
795 	char filename[PATH_MAX];
796 	int i, err = -1;
797 	const char *name;
798 	u64 addr = 0;
799 
800 	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
801 
802 	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
803 		return 0;
804 
805 	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
806 		err = kallsyms__get_function_start(filename, name, &addr);
807 		if (!err)
808 			break;
809 	}
810 
811 	if (err)
812 		return -1;
813 
814 	if (symbol_name)
815 		*symbol_name = name;
816 
817 	*start = addr;
818 	return 0;
819 }
820 
821 int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
822 {
823 	int type;
824 	u64 start = 0;
825 
826 	if (machine__get_running_kernel_start(machine, NULL, &start))
827 		return -1;
828 
829 	/* In case of renewal the kernel map, destroy previous one */
830 	machine__destroy_kernel_maps(machine);
831 
832 	for (type = 0; type < MAP__NR_TYPES; ++type) {
833 		struct kmap *kmap;
834 		struct map *map;
835 
836 		machine->vmlinux_maps[type] = map__new2(start, kernel, type);
837 		if (machine->vmlinux_maps[type] == NULL)
838 			return -1;
839 
840 		machine->vmlinux_maps[type]->map_ip =
841 			machine->vmlinux_maps[type]->unmap_ip =
842 				identity__map_ip;
843 		map = __machine__kernel_map(machine, type);
844 		kmap = map__kmap(map);
845 		if (!kmap)
846 			return -1;
847 
848 		kmap->kmaps = &machine->kmaps;
849 		map_groups__insert(&machine->kmaps, map);
850 	}
851 
852 	return 0;
853 }
854 
855 void machine__destroy_kernel_maps(struct machine *machine)
856 {
857 	int type;
858 
859 	for (type = 0; type < MAP__NR_TYPES; ++type) {
860 		struct kmap *kmap;
861 		struct map *map = __machine__kernel_map(machine, type);
862 
863 		if (map == NULL)
864 			continue;
865 
866 		kmap = map__kmap(map);
867 		map_groups__remove(&machine->kmaps, map);
868 		if (kmap && kmap->ref_reloc_sym) {
869 			/*
870 			 * ref_reloc_sym is shared among all maps, so free just
871 			 * on one of them.
872 			 */
873 			if (type == MAP__FUNCTION) {
874 				zfree((char **)&kmap->ref_reloc_sym->name);
875 				zfree(&kmap->ref_reloc_sym);
876 			} else
877 				kmap->ref_reloc_sym = NULL;
878 		}
879 
880 		map__put(machine->vmlinux_maps[type]);
881 		machine->vmlinux_maps[type] = NULL;
882 	}
883 }
884 
885 int machines__create_guest_kernel_maps(struct machines *machines)
886 {
887 	int ret = 0;
888 	struct dirent **namelist = NULL;
889 	int i, items = 0;
890 	char path[PATH_MAX];
891 	pid_t pid;
892 	char *endp;
893 
894 	if (symbol_conf.default_guest_vmlinux_name ||
895 	    symbol_conf.default_guest_modules ||
896 	    symbol_conf.default_guest_kallsyms) {
897 		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
898 	}
899 
900 	if (symbol_conf.guestmount) {
901 		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
902 		if (items <= 0)
903 			return -ENOENT;
904 		for (i = 0; i < items; i++) {
905 			if (!isdigit(namelist[i]->d_name[0])) {
906 				/* Filter out . and .. */
907 				continue;
908 			}
909 			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
910 			if ((*endp != '\0') ||
911 			    (endp == namelist[i]->d_name) ||
912 			    (errno == ERANGE)) {
913 				pr_debug("invalid directory (%s). Skipping.\n",
914 					 namelist[i]->d_name);
915 				continue;
916 			}
917 			sprintf(path, "%s/%s/proc/kallsyms",
918 				symbol_conf.guestmount,
919 				namelist[i]->d_name);
920 			ret = access(path, R_OK);
921 			if (ret) {
922 				pr_debug("Can't access file %s\n", path);
923 				goto failure;
924 			}
925 			machines__create_kernel_maps(machines, pid);
926 		}
927 failure:
928 		free(namelist);
929 	}
930 
931 	return ret;
932 }
933 
934 void machines__destroy_kernel_maps(struct machines *machines)
935 {
936 	struct rb_node *next = rb_first(&machines->guests);
937 
938 	machine__destroy_kernel_maps(&machines->host);
939 
940 	while (next) {
941 		struct machine *pos = rb_entry(next, struct machine, rb_node);
942 
943 		next = rb_next(&pos->rb_node);
944 		rb_erase(&pos->rb_node, &machines->guests);
945 		machine__delete(pos);
946 	}
947 }
948 
949 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
950 {
951 	struct machine *machine = machines__findnew(machines, pid);
952 
953 	if (machine == NULL)
954 		return -1;
955 
956 	return machine__create_kernel_maps(machine);
957 }
958 
959 int __machine__load_kallsyms(struct machine *machine, const char *filename,
960 			     enum map_type type, bool no_kcore)
961 {
962 	struct map *map = machine__kernel_map(machine);
963 	int ret = __dso__load_kallsyms(map->dso, filename, map, no_kcore);
964 
965 	if (ret > 0) {
966 		dso__set_loaded(map->dso, type);
967 		/*
968 		 * Since /proc/kallsyms will have multiple sessions for the
969 		 * kernel, with modules between them, fixup the end of all
970 		 * sections.
971 		 */
972 		__map_groups__fixup_end(&machine->kmaps, type);
973 	}
974 
975 	return ret;
976 }
977 
978 int machine__load_kallsyms(struct machine *machine, const char *filename,
979 			   enum map_type type)
980 {
981 	return __machine__load_kallsyms(machine, filename, type, false);
982 }
983 
984 int machine__load_vmlinux_path(struct machine *machine, enum map_type type)
985 {
986 	struct map *map = machine__kernel_map(machine);
987 	int ret = dso__load_vmlinux_path(map->dso, map);
988 
989 	if (ret > 0)
990 		dso__set_loaded(map->dso, type);
991 
992 	return ret;
993 }
994 
995 static void map_groups__fixup_end(struct map_groups *mg)
996 {
997 	int i;
998 	for (i = 0; i < MAP__NR_TYPES; ++i)
999 		__map_groups__fixup_end(mg, i);
1000 }
1001 
1002 static char *get_kernel_version(const char *root_dir)
1003 {
1004 	char version[PATH_MAX];
1005 	FILE *file;
1006 	char *name, *tmp;
1007 	const char *prefix = "Linux version ";
1008 
1009 	sprintf(version, "%s/proc/version", root_dir);
1010 	file = fopen(version, "r");
1011 	if (!file)
1012 		return NULL;
1013 
1014 	version[0] = '\0';
1015 	tmp = fgets(version, sizeof(version), file);
1016 	fclose(file);
1017 
1018 	name = strstr(version, prefix);
1019 	if (!name)
1020 		return NULL;
1021 	name += strlen(prefix);
1022 	tmp = strchr(name, ' ');
1023 	if (tmp)
1024 		*tmp = '\0';
1025 
1026 	return strdup(name);
1027 }
1028 
1029 static bool is_kmod_dso(struct dso *dso)
1030 {
1031 	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1032 	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1033 }
1034 
1035 static int map_groups__set_module_path(struct map_groups *mg, const char *path,
1036 				       struct kmod_path *m)
1037 {
1038 	struct map *map;
1039 	char *long_name;
1040 
1041 	map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
1042 	if (map == NULL)
1043 		return 0;
1044 
1045 	long_name = strdup(path);
1046 	if (long_name == NULL)
1047 		return -ENOMEM;
1048 
1049 	dso__set_long_name(map->dso, long_name, true);
1050 	dso__kernel_module_get_build_id(map->dso, "");
1051 
1052 	/*
1053 	 * Full name could reveal us kmod compression, so
1054 	 * we need to update the symtab_type if needed.
1055 	 */
1056 	if (m->comp && is_kmod_dso(map->dso))
1057 		map->dso->symtab_type++;
1058 
1059 	return 0;
1060 }
1061 
1062 static int map_groups__set_modules_path_dir(struct map_groups *mg,
1063 				const char *dir_name, int depth)
1064 {
1065 	struct dirent *dent;
1066 	DIR *dir = opendir(dir_name);
1067 	int ret = 0;
1068 
1069 	if (!dir) {
1070 		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1071 		return -1;
1072 	}
1073 
1074 	while ((dent = readdir(dir)) != NULL) {
1075 		char path[PATH_MAX];
1076 		struct stat st;
1077 
1078 		/*sshfs might return bad dent->d_type, so we have to stat*/
1079 		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1080 		if (stat(path, &st))
1081 			continue;
1082 
1083 		if (S_ISDIR(st.st_mode)) {
1084 			if (!strcmp(dent->d_name, ".") ||
1085 			    !strcmp(dent->d_name, ".."))
1086 				continue;
1087 
1088 			/* Do not follow top-level source and build symlinks */
1089 			if (depth == 0) {
1090 				if (!strcmp(dent->d_name, "source") ||
1091 				    !strcmp(dent->d_name, "build"))
1092 					continue;
1093 			}
1094 
1095 			ret = map_groups__set_modules_path_dir(mg, path,
1096 							       depth + 1);
1097 			if (ret < 0)
1098 				goto out;
1099 		} else {
1100 			struct kmod_path m;
1101 
1102 			ret = kmod_path__parse_name(&m, dent->d_name);
1103 			if (ret)
1104 				goto out;
1105 
1106 			if (m.kmod)
1107 				ret = map_groups__set_module_path(mg, path, &m);
1108 
1109 			free(m.name);
1110 
1111 			if (ret)
1112 				goto out;
1113 		}
1114 	}
1115 
1116 out:
1117 	closedir(dir);
1118 	return ret;
1119 }
1120 
1121 static int machine__set_modules_path(struct machine *machine)
1122 {
1123 	char *version;
1124 	char modules_path[PATH_MAX];
1125 
1126 	version = get_kernel_version(machine->root_dir);
1127 	if (!version)
1128 		return -1;
1129 
1130 	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1131 		 machine->root_dir, version);
1132 	free(version);
1133 
1134 	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1135 }
1136 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1137 				const char *name __maybe_unused)
1138 {
1139 	return 0;
1140 }
1141 
1142 static int machine__create_module(void *arg, const char *name, u64 start,
1143 				  u64 size)
1144 {
1145 	struct machine *machine = arg;
1146 	struct map *map;
1147 
1148 	if (arch__fix_module_text_start(&start, name) < 0)
1149 		return -1;
1150 
1151 	map = machine__findnew_module_map(machine, start, name);
1152 	if (map == NULL)
1153 		return -1;
1154 	map->end = start + size;
1155 
1156 	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1157 
1158 	return 0;
1159 }
1160 
1161 static int machine__create_modules(struct machine *machine)
1162 {
1163 	const char *modules;
1164 	char path[PATH_MAX];
1165 
1166 	if (machine__is_default_guest(machine)) {
1167 		modules = symbol_conf.default_guest_modules;
1168 	} else {
1169 		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1170 		modules = path;
1171 	}
1172 
1173 	if (symbol__restricted_filename(modules, "/proc/modules"))
1174 		return -1;
1175 
1176 	if (modules__parse(modules, machine, machine__create_module))
1177 		return -1;
1178 
1179 	if (!machine__set_modules_path(machine))
1180 		return 0;
1181 
1182 	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1183 
1184 	return 0;
1185 }
1186 
1187 int machine__create_kernel_maps(struct machine *machine)
1188 {
1189 	struct dso *kernel = machine__get_kernel(machine);
1190 	const char *name = NULL;
1191 	u64 addr = 0;
1192 	int ret;
1193 
1194 	if (kernel == NULL)
1195 		return -1;
1196 
1197 	ret = __machine__create_kernel_maps(machine, kernel);
1198 	dso__put(kernel);
1199 	if (ret < 0)
1200 		return -1;
1201 
1202 	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1203 		if (machine__is_host(machine))
1204 			pr_debug("Problems creating module maps, "
1205 				 "continuing anyway...\n");
1206 		else
1207 			pr_debug("Problems creating module maps for guest %d, "
1208 				 "continuing anyway...\n", machine->pid);
1209 	}
1210 
1211 	/*
1212 	 * Now that we have all the maps created, just set the ->end of them:
1213 	 */
1214 	map_groups__fixup_end(&machine->kmaps);
1215 
1216 	if (!machine__get_running_kernel_start(machine, &name, &addr)) {
1217 		if (name &&
1218 		    maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name, addr)) {
1219 			machine__destroy_kernel_maps(machine);
1220 			return -1;
1221 		}
1222 	}
1223 
1224 	return 0;
1225 }
1226 
1227 static void machine__set_kernel_mmap_len(struct machine *machine,
1228 					 union perf_event *event)
1229 {
1230 	int i;
1231 
1232 	for (i = 0; i < MAP__NR_TYPES; i++) {
1233 		machine->vmlinux_maps[i]->start = event->mmap.start;
1234 		machine->vmlinux_maps[i]->end   = (event->mmap.start +
1235 						   event->mmap.len);
1236 		/*
1237 		 * Be a bit paranoid here, some perf.data file came with
1238 		 * a zero sized synthesized MMAP event for the kernel.
1239 		 */
1240 		if (machine->vmlinux_maps[i]->end == 0)
1241 			machine->vmlinux_maps[i]->end = ~0ULL;
1242 	}
1243 }
1244 
1245 static bool machine__uses_kcore(struct machine *machine)
1246 {
1247 	struct dso *dso;
1248 
1249 	list_for_each_entry(dso, &machine->dsos.head, node) {
1250 		if (dso__is_kcore(dso))
1251 			return true;
1252 	}
1253 
1254 	return false;
1255 }
1256 
1257 static int machine__process_kernel_mmap_event(struct machine *machine,
1258 					      union perf_event *event)
1259 {
1260 	struct map *map;
1261 	char kmmap_prefix[PATH_MAX];
1262 	enum dso_kernel_type kernel_type;
1263 	bool is_kernel_mmap;
1264 
1265 	/* If we have maps from kcore then we do not need or want any others */
1266 	if (machine__uses_kcore(machine))
1267 		return 0;
1268 
1269 	machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
1270 	if (machine__is_host(machine))
1271 		kernel_type = DSO_TYPE_KERNEL;
1272 	else
1273 		kernel_type = DSO_TYPE_GUEST_KERNEL;
1274 
1275 	is_kernel_mmap = memcmp(event->mmap.filename,
1276 				kmmap_prefix,
1277 				strlen(kmmap_prefix) - 1) == 0;
1278 	if (event->mmap.filename[0] == '/' ||
1279 	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1280 		map = machine__findnew_module_map(machine, event->mmap.start,
1281 						  event->mmap.filename);
1282 		if (map == NULL)
1283 			goto out_problem;
1284 
1285 		map->end = map->start + event->mmap.len;
1286 	} else if (is_kernel_mmap) {
1287 		const char *symbol_name = (event->mmap.filename +
1288 				strlen(kmmap_prefix));
1289 		/*
1290 		 * Should be there already, from the build-id table in
1291 		 * the header.
1292 		 */
1293 		struct dso *kernel = NULL;
1294 		struct dso *dso;
1295 
1296 		pthread_rwlock_rdlock(&machine->dsos.lock);
1297 
1298 		list_for_each_entry(dso, &machine->dsos.head, node) {
1299 
1300 			/*
1301 			 * The cpumode passed to is_kernel_module is not the
1302 			 * cpumode of *this* event. If we insist on passing
1303 			 * correct cpumode to is_kernel_module, we should
1304 			 * record the cpumode when we adding this dso to the
1305 			 * linked list.
1306 			 *
1307 			 * However we don't really need passing correct
1308 			 * cpumode.  We know the correct cpumode must be kernel
1309 			 * mode (if not, we should not link it onto kernel_dsos
1310 			 * list).
1311 			 *
1312 			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1313 			 * is_kernel_module() treats it as a kernel cpumode.
1314 			 */
1315 
1316 			if (!dso->kernel ||
1317 			    is_kernel_module(dso->long_name,
1318 					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1319 				continue;
1320 
1321 
1322 			kernel = dso;
1323 			break;
1324 		}
1325 
1326 		pthread_rwlock_unlock(&machine->dsos.lock);
1327 
1328 		if (kernel == NULL)
1329 			kernel = machine__findnew_dso(machine, kmmap_prefix);
1330 		if (kernel == NULL)
1331 			goto out_problem;
1332 
1333 		kernel->kernel = kernel_type;
1334 		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1335 			dso__put(kernel);
1336 			goto out_problem;
1337 		}
1338 
1339 		if (strstr(kernel->long_name, "vmlinux"))
1340 			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1341 
1342 		machine__set_kernel_mmap_len(machine, event);
1343 
1344 		/*
1345 		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1346 		 * symbol. Effectively having zero here means that at record
1347 		 * time /proc/sys/kernel/kptr_restrict was non zero.
1348 		 */
1349 		if (event->mmap.pgoff != 0) {
1350 			maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
1351 							 symbol_name,
1352 							 event->mmap.pgoff);
1353 		}
1354 
1355 		if (machine__is_default_guest(machine)) {
1356 			/*
1357 			 * preload dso of guest kernel and modules
1358 			 */
1359 			dso__load(kernel, machine__kernel_map(machine));
1360 		}
1361 	}
1362 	return 0;
1363 out_problem:
1364 	return -1;
1365 }
1366 
1367 int machine__process_mmap2_event(struct machine *machine,
1368 				 union perf_event *event,
1369 				 struct perf_sample *sample)
1370 {
1371 	struct thread *thread;
1372 	struct map *map;
1373 	enum map_type type;
1374 	int ret = 0;
1375 
1376 	if (dump_trace)
1377 		perf_event__fprintf_mmap2(event, stdout);
1378 
1379 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1380 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1381 		ret = machine__process_kernel_mmap_event(machine, event);
1382 		if (ret < 0)
1383 			goto out_problem;
1384 		return 0;
1385 	}
1386 
1387 	thread = machine__findnew_thread(machine, event->mmap2.pid,
1388 					event->mmap2.tid);
1389 	if (thread == NULL)
1390 		goto out_problem;
1391 
1392 	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1393 		type = MAP__VARIABLE;
1394 	else
1395 		type = MAP__FUNCTION;
1396 
1397 	map = map__new(machine, event->mmap2.start,
1398 			event->mmap2.len, event->mmap2.pgoff,
1399 			event->mmap2.maj,
1400 			event->mmap2.min, event->mmap2.ino,
1401 			event->mmap2.ino_generation,
1402 			event->mmap2.prot,
1403 			event->mmap2.flags,
1404 			event->mmap2.filename, type, thread);
1405 
1406 	if (map == NULL)
1407 		goto out_problem_map;
1408 
1409 	ret = thread__insert_map(thread, map);
1410 	if (ret)
1411 		goto out_problem_insert;
1412 
1413 	thread__put(thread);
1414 	map__put(map);
1415 	return 0;
1416 
1417 out_problem_insert:
1418 	map__put(map);
1419 out_problem_map:
1420 	thread__put(thread);
1421 out_problem:
1422 	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1423 	return 0;
1424 }
1425 
1426 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1427 				struct perf_sample *sample)
1428 {
1429 	struct thread *thread;
1430 	struct map *map;
1431 	enum map_type type;
1432 	int ret = 0;
1433 
1434 	if (dump_trace)
1435 		perf_event__fprintf_mmap(event, stdout);
1436 
1437 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1438 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1439 		ret = machine__process_kernel_mmap_event(machine, event);
1440 		if (ret < 0)
1441 			goto out_problem;
1442 		return 0;
1443 	}
1444 
1445 	thread = machine__findnew_thread(machine, event->mmap.pid,
1446 					 event->mmap.tid);
1447 	if (thread == NULL)
1448 		goto out_problem;
1449 
1450 	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1451 		type = MAP__VARIABLE;
1452 	else
1453 		type = MAP__FUNCTION;
1454 
1455 	map = map__new(machine, event->mmap.start,
1456 			event->mmap.len, event->mmap.pgoff,
1457 			0, 0, 0, 0, 0, 0,
1458 			event->mmap.filename,
1459 			type, thread);
1460 
1461 	if (map == NULL)
1462 		goto out_problem_map;
1463 
1464 	ret = thread__insert_map(thread, map);
1465 	if (ret)
1466 		goto out_problem_insert;
1467 
1468 	thread__put(thread);
1469 	map__put(map);
1470 	return 0;
1471 
1472 out_problem_insert:
1473 	map__put(map);
1474 out_problem_map:
1475 	thread__put(thread);
1476 out_problem:
1477 	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1478 	return 0;
1479 }
1480 
1481 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1482 {
1483 	if (machine->last_match == th)
1484 		machine->last_match = NULL;
1485 
1486 	BUG_ON(refcount_read(&th->refcnt) == 0);
1487 	if (lock)
1488 		pthread_rwlock_wrlock(&machine->threads_lock);
1489 	rb_erase_init(&th->rb_node, &machine->threads);
1490 	RB_CLEAR_NODE(&th->rb_node);
1491 	--machine->nr_threads;
1492 	/*
1493 	 * Move it first to the dead_threads list, then drop the reference,
1494 	 * if this is the last reference, then the thread__delete destructor
1495 	 * will be called and we will remove it from the dead_threads list.
1496 	 */
1497 	list_add_tail(&th->node, &machine->dead_threads);
1498 	if (lock)
1499 		pthread_rwlock_unlock(&machine->threads_lock);
1500 	thread__put(th);
1501 }
1502 
1503 void machine__remove_thread(struct machine *machine, struct thread *th)
1504 {
1505 	return __machine__remove_thread(machine, th, true);
1506 }
1507 
1508 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1509 				struct perf_sample *sample)
1510 {
1511 	struct thread *thread = machine__find_thread(machine,
1512 						     event->fork.pid,
1513 						     event->fork.tid);
1514 	struct thread *parent = machine__findnew_thread(machine,
1515 							event->fork.ppid,
1516 							event->fork.ptid);
1517 	int err = 0;
1518 
1519 	if (dump_trace)
1520 		perf_event__fprintf_task(event, stdout);
1521 
1522 	/*
1523 	 * There may be an existing thread that is not actually the parent,
1524 	 * either because we are processing events out of order, or because the
1525 	 * (fork) event that would have removed the thread was lost. Assume the
1526 	 * latter case and continue on as best we can.
1527 	 */
1528 	if (parent->pid_ != (pid_t)event->fork.ppid) {
1529 		dump_printf("removing erroneous parent thread %d/%d\n",
1530 			    parent->pid_, parent->tid);
1531 		machine__remove_thread(machine, parent);
1532 		thread__put(parent);
1533 		parent = machine__findnew_thread(machine, event->fork.ppid,
1534 						 event->fork.ptid);
1535 	}
1536 
1537 	/* if a thread currently exists for the thread id remove it */
1538 	if (thread != NULL) {
1539 		machine__remove_thread(machine, thread);
1540 		thread__put(thread);
1541 	}
1542 
1543 	thread = machine__findnew_thread(machine, event->fork.pid,
1544 					 event->fork.tid);
1545 
1546 	if (thread == NULL || parent == NULL ||
1547 	    thread__fork(thread, parent, sample->time) < 0) {
1548 		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1549 		err = -1;
1550 	}
1551 	thread__put(thread);
1552 	thread__put(parent);
1553 
1554 	return err;
1555 }
1556 
1557 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1558 				struct perf_sample *sample __maybe_unused)
1559 {
1560 	struct thread *thread = machine__find_thread(machine,
1561 						     event->fork.pid,
1562 						     event->fork.tid);
1563 
1564 	if (dump_trace)
1565 		perf_event__fprintf_task(event, stdout);
1566 
1567 	if (thread != NULL) {
1568 		thread__exited(thread);
1569 		thread__put(thread);
1570 	}
1571 
1572 	return 0;
1573 }
1574 
1575 int machine__process_event(struct machine *machine, union perf_event *event,
1576 			   struct perf_sample *sample)
1577 {
1578 	int ret;
1579 
1580 	switch (event->header.type) {
1581 	case PERF_RECORD_COMM:
1582 		ret = machine__process_comm_event(machine, event, sample); break;
1583 	case PERF_RECORD_MMAP:
1584 		ret = machine__process_mmap_event(machine, event, sample); break;
1585 	case PERF_RECORD_NAMESPACES:
1586 		ret = machine__process_namespaces_event(machine, event, sample); break;
1587 	case PERF_RECORD_MMAP2:
1588 		ret = machine__process_mmap2_event(machine, event, sample); break;
1589 	case PERF_RECORD_FORK:
1590 		ret = machine__process_fork_event(machine, event, sample); break;
1591 	case PERF_RECORD_EXIT:
1592 		ret = machine__process_exit_event(machine, event, sample); break;
1593 	case PERF_RECORD_LOST:
1594 		ret = machine__process_lost_event(machine, event, sample); break;
1595 	case PERF_RECORD_AUX:
1596 		ret = machine__process_aux_event(machine, event); break;
1597 	case PERF_RECORD_ITRACE_START:
1598 		ret = machine__process_itrace_start_event(machine, event); break;
1599 	case PERF_RECORD_LOST_SAMPLES:
1600 		ret = machine__process_lost_samples_event(machine, event, sample); break;
1601 	case PERF_RECORD_SWITCH:
1602 	case PERF_RECORD_SWITCH_CPU_WIDE:
1603 		ret = machine__process_switch_event(machine, event); break;
1604 	default:
1605 		ret = -1;
1606 		break;
1607 	}
1608 
1609 	return ret;
1610 }
1611 
1612 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1613 {
1614 	if (!regexec(regex, sym->name, 0, NULL, 0))
1615 		return 1;
1616 	return 0;
1617 }
1618 
1619 static void ip__resolve_ams(struct thread *thread,
1620 			    struct addr_map_symbol *ams,
1621 			    u64 ip)
1622 {
1623 	struct addr_location al;
1624 
1625 	memset(&al, 0, sizeof(al));
1626 	/*
1627 	 * We cannot use the header.misc hint to determine whether a
1628 	 * branch stack address is user, kernel, guest, hypervisor.
1629 	 * Branches may straddle the kernel/user/hypervisor boundaries.
1630 	 * Thus, we have to try consecutively until we find a match
1631 	 * or else, the symbol is unknown
1632 	 */
1633 	thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1634 
1635 	ams->addr = ip;
1636 	ams->al_addr = al.addr;
1637 	ams->sym = al.sym;
1638 	ams->map = al.map;
1639 	ams->phys_addr = 0;
1640 }
1641 
1642 static void ip__resolve_data(struct thread *thread,
1643 			     u8 m, struct addr_map_symbol *ams,
1644 			     u64 addr, u64 phys_addr)
1645 {
1646 	struct addr_location al;
1647 
1648 	memset(&al, 0, sizeof(al));
1649 
1650 	thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1651 	if (al.map == NULL) {
1652 		/*
1653 		 * some shared data regions have execute bit set which puts
1654 		 * their mapping in the MAP__FUNCTION type array.
1655 		 * Check there as a fallback option before dropping the sample.
1656 		 */
1657 		thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1658 	}
1659 
1660 	ams->addr = addr;
1661 	ams->al_addr = al.addr;
1662 	ams->sym = al.sym;
1663 	ams->map = al.map;
1664 	ams->phys_addr = phys_addr;
1665 }
1666 
1667 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1668 				     struct addr_location *al)
1669 {
1670 	struct mem_info *mi = zalloc(sizeof(*mi));
1671 
1672 	if (!mi)
1673 		return NULL;
1674 
1675 	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1676 	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
1677 			 sample->addr, sample->phys_addr);
1678 	mi->data_src.val = sample->data_src;
1679 
1680 	return mi;
1681 }
1682 
1683 struct iterations {
1684 	int nr_loop_iter;
1685 	u64 cycles;
1686 };
1687 
1688 static int add_callchain_ip(struct thread *thread,
1689 			    struct callchain_cursor *cursor,
1690 			    struct symbol **parent,
1691 			    struct addr_location *root_al,
1692 			    u8 *cpumode,
1693 			    u64 ip,
1694 			    bool branch,
1695 			    struct branch_flags *flags,
1696 			    struct iterations *iter,
1697 			    u64 branch_from)
1698 {
1699 	struct addr_location al;
1700 	int nr_loop_iter = 0;
1701 	u64 iter_cycles = 0;
1702 
1703 	al.filtered = 0;
1704 	al.sym = NULL;
1705 	if (!cpumode) {
1706 		thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
1707 						   ip, &al);
1708 	} else {
1709 		if (ip >= PERF_CONTEXT_MAX) {
1710 			switch (ip) {
1711 			case PERF_CONTEXT_HV:
1712 				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
1713 				break;
1714 			case PERF_CONTEXT_KERNEL:
1715 				*cpumode = PERF_RECORD_MISC_KERNEL;
1716 				break;
1717 			case PERF_CONTEXT_USER:
1718 				*cpumode = PERF_RECORD_MISC_USER;
1719 				break;
1720 			default:
1721 				pr_debug("invalid callchain context: "
1722 					 "%"PRId64"\n", (s64) ip);
1723 				/*
1724 				 * It seems the callchain is corrupted.
1725 				 * Discard all.
1726 				 */
1727 				callchain_cursor_reset(cursor);
1728 				return 1;
1729 			}
1730 			return 0;
1731 		}
1732 		thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
1733 					   ip, &al);
1734 	}
1735 
1736 	if (al.sym != NULL) {
1737 		if (perf_hpp_list.parent && !*parent &&
1738 		    symbol__match_regex(al.sym, &parent_regex))
1739 			*parent = al.sym;
1740 		else if (have_ignore_callees && root_al &&
1741 		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
1742 			/* Treat this symbol as the root,
1743 			   forgetting its callees. */
1744 			*root_al = al;
1745 			callchain_cursor_reset(cursor);
1746 		}
1747 	}
1748 
1749 	if (symbol_conf.hide_unresolved && al.sym == NULL)
1750 		return 0;
1751 
1752 	if (iter) {
1753 		nr_loop_iter = iter->nr_loop_iter;
1754 		iter_cycles = iter->cycles;
1755 	}
1756 
1757 	return callchain_cursor_append(cursor, al.addr, al.map, al.sym,
1758 				       branch, flags, nr_loop_iter,
1759 				       iter_cycles, branch_from);
1760 }
1761 
1762 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1763 					   struct addr_location *al)
1764 {
1765 	unsigned int i;
1766 	const struct branch_stack *bs = sample->branch_stack;
1767 	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1768 
1769 	if (!bi)
1770 		return NULL;
1771 
1772 	for (i = 0; i < bs->nr; i++) {
1773 		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1774 		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1775 		bi[i].flags = bs->entries[i].flags;
1776 	}
1777 	return bi;
1778 }
1779 
1780 static void save_iterations(struct iterations *iter,
1781 			    struct branch_entry *be, int nr)
1782 {
1783 	int i;
1784 
1785 	iter->nr_loop_iter = nr;
1786 	iter->cycles = 0;
1787 
1788 	for (i = 0; i < nr; i++)
1789 		iter->cycles += be[i].flags.cycles;
1790 }
1791 
1792 #define CHASHSZ 127
1793 #define CHASHBITS 7
1794 #define NO_ENTRY 0xff
1795 
1796 #define PERF_MAX_BRANCH_DEPTH 127
1797 
1798 /* Remove loops. */
1799 static int remove_loops(struct branch_entry *l, int nr,
1800 			struct iterations *iter)
1801 {
1802 	int i, j, off;
1803 	unsigned char chash[CHASHSZ];
1804 
1805 	memset(chash, NO_ENTRY, sizeof(chash));
1806 
1807 	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
1808 
1809 	for (i = 0; i < nr; i++) {
1810 		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
1811 
1812 		/* no collision handling for now */
1813 		if (chash[h] == NO_ENTRY) {
1814 			chash[h] = i;
1815 		} else if (l[chash[h]].from == l[i].from) {
1816 			bool is_loop = true;
1817 			/* check if it is a real loop */
1818 			off = 0;
1819 			for (j = chash[h]; j < i && i + off < nr; j++, off++)
1820 				if (l[j].from != l[i + off].from) {
1821 					is_loop = false;
1822 					break;
1823 				}
1824 			if (is_loop) {
1825 				j = nr - (i + off);
1826 				if (j > 0) {
1827 					save_iterations(iter + i + off,
1828 						l + i, off);
1829 
1830 					memmove(iter + i, iter + i + off,
1831 						j * sizeof(*iter));
1832 
1833 					memmove(l + i, l + i + off,
1834 						j * sizeof(*l));
1835 				}
1836 
1837 				nr -= off;
1838 			}
1839 		}
1840 	}
1841 	return nr;
1842 }
1843 
1844 /*
1845  * Recolve LBR callstack chain sample
1846  * Return:
1847  * 1 on success get LBR callchain information
1848  * 0 no available LBR callchain information, should try fp
1849  * negative error code on other errors.
1850  */
1851 static int resolve_lbr_callchain_sample(struct thread *thread,
1852 					struct callchain_cursor *cursor,
1853 					struct perf_sample *sample,
1854 					struct symbol **parent,
1855 					struct addr_location *root_al,
1856 					int max_stack)
1857 {
1858 	struct ip_callchain *chain = sample->callchain;
1859 	int chain_nr = min(max_stack, (int)chain->nr), i;
1860 	u8 cpumode = PERF_RECORD_MISC_USER;
1861 	u64 ip, branch_from = 0;
1862 
1863 	for (i = 0; i < chain_nr; i++) {
1864 		if (chain->ips[i] == PERF_CONTEXT_USER)
1865 			break;
1866 	}
1867 
1868 	/* LBR only affects the user callchain */
1869 	if (i != chain_nr) {
1870 		struct branch_stack *lbr_stack = sample->branch_stack;
1871 		int lbr_nr = lbr_stack->nr, j, k;
1872 		bool branch;
1873 		struct branch_flags *flags;
1874 		/*
1875 		 * LBR callstack can only get user call chain.
1876 		 * The mix_chain_nr is kernel call chain
1877 		 * number plus LBR user call chain number.
1878 		 * i is kernel call chain number,
1879 		 * 1 is PERF_CONTEXT_USER,
1880 		 * lbr_nr + 1 is the user call chain number.
1881 		 * For details, please refer to the comments
1882 		 * in callchain__printf
1883 		 */
1884 		int mix_chain_nr = i + 1 + lbr_nr + 1;
1885 
1886 		for (j = 0; j < mix_chain_nr; j++) {
1887 			int err;
1888 			branch = false;
1889 			flags = NULL;
1890 
1891 			if (callchain_param.order == ORDER_CALLEE) {
1892 				if (j < i + 1)
1893 					ip = chain->ips[j];
1894 				else if (j > i + 1) {
1895 					k = j - i - 2;
1896 					ip = lbr_stack->entries[k].from;
1897 					branch = true;
1898 					flags = &lbr_stack->entries[k].flags;
1899 				} else {
1900 					ip = lbr_stack->entries[0].to;
1901 					branch = true;
1902 					flags = &lbr_stack->entries[0].flags;
1903 					branch_from =
1904 						lbr_stack->entries[0].from;
1905 				}
1906 			} else {
1907 				if (j < lbr_nr) {
1908 					k = lbr_nr - j - 1;
1909 					ip = lbr_stack->entries[k].from;
1910 					branch = true;
1911 					flags = &lbr_stack->entries[k].flags;
1912 				}
1913 				else if (j > lbr_nr)
1914 					ip = chain->ips[i + 1 - (j - lbr_nr)];
1915 				else {
1916 					ip = lbr_stack->entries[0].to;
1917 					branch = true;
1918 					flags = &lbr_stack->entries[0].flags;
1919 					branch_from =
1920 						lbr_stack->entries[0].from;
1921 				}
1922 			}
1923 
1924 			err = add_callchain_ip(thread, cursor, parent,
1925 					       root_al, &cpumode, ip,
1926 					       branch, flags, NULL,
1927 					       branch_from);
1928 			if (err)
1929 				return (err < 0) ? err : 0;
1930 		}
1931 		return 1;
1932 	}
1933 
1934 	return 0;
1935 }
1936 
1937 static int thread__resolve_callchain_sample(struct thread *thread,
1938 					    struct callchain_cursor *cursor,
1939 					    struct perf_evsel *evsel,
1940 					    struct perf_sample *sample,
1941 					    struct symbol **parent,
1942 					    struct addr_location *root_al,
1943 					    int max_stack)
1944 {
1945 	struct branch_stack *branch = sample->branch_stack;
1946 	struct ip_callchain *chain = sample->callchain;
1947 	int chain_nr = 0;
1948 	u8 cpumode = PERF_RECORD_MISC_USER;
1949 	int i, j, err, nr_entries;
1950 	int skip_idx = -1;
1951 	int first_call = 0;
1952 
1953 	if (chain)
1954 		chain_nr = chain->nr;
1955 
1956 	if (perf_evsel__has_branch_callstack(evsel)) {
1957 		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
1958 						   root_al, max_stack);
1959 		if (err)
1960 			return (err < 0) ? err : 0;
1961 	}
1962 
1963 	/*
1964 	 * Based on DWARF debug information, some architectures skip
1965 	 * a callchain entry saved by the kernel.
1966 	 */
1967 	skip_idx = arch_skip_callchain_idx(thread, chain);
1968 
1969 	/*
1970 	 * Add branches to call stack for easier browsing. This gives
1971 	 * more context for a sample than just the callers.
1972 	 *
1973 	 * This uses individual histograms of paths compared to the
1974 	 * aggregated histograms the normal LBR mode uses.
1975 	 *
1976 	 * Limitations for now:
1977 	 * - No extra filters
1978 	 * - No annotations (should annotate somehow)
1979 	 */
1980 
1981 	if (branch && callchain_param.branch_callstack) {
1982 		int nr = min(max_stack, (int)branch->nr);
1983 		struct branch_entry be[nr];
1984 		struct iterations iter[nr];
1985 
1986 		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
1987 			pr_warning("corrupted branch chain. skipping...\n");
1988 			goto check_calls;
1989 		}
1990 
1991 		for (i = 0; i < nr; i++) {
1992 			if (callchain_param.order == ORDER_CALLEE) {
1993 				be[i] = branch->entries[i];
1994 
1995 				if (chain == NULL)
1996 					continue;
1997 
1998 				/*
1999 				 * Check for overlap into the callchain.
2000 				 * The return address is one off compared to
2001 				 * the branch entry. To adjust for this
2002 				 * assume the calling instruction is not longer
2003 				 * than 8 bytes.
2004 				 */
2005 				if (i == skip_idx ||
2006 				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2007 					first_call++;
2008 				else if (be[i].from < chain->ips[first_call] &&
2009 				    be[i].from >= chain->ips[first_call] - 8)
2010 					first_call++;
2011 			} else
2012 				be[i] = branch->entries[branch->nr - i - 1];
2013 		}
2014 
2015 		memset(iter, 0, sizeof(struct iterations) * nr);
2016 		nr = remove_loops(be, nr, iter);
2017 
2018 		for (i = 0; i < nr; i++) {
2019 			err = add_callchain_ip(thread, cursor, parent,
2020 					       root_al,
2021 					       NULL, be[i].to,
2022 					       true, &be[i].flags,
2023 					       NULL, be[i].from);
2024 
2025 			if (!err)
2026 				err = add_callchain_ip(thread, cursor, parent, root_al,
2027 						       NULL, be[i].from,
2028 						       true, &be[i].flags,
2029 						       &iter[i], 0);
2030 			if (err == -EINVAL)
2031 				break;
2032 			if (err)
2033 				return err;
2034 		}
2035 
2036 		if (chain_nr == 0)
2037 			return 0;
2038 
2039 		chain_nr -= nr;
2040 	}
2041 
2042 check_calls:
2043 	for (i = first_call, nr_entries = 0;
2044 	     i < chain_nr && nr_entries < max_stack; i++) {
2045 		u64 ip;
2046 
2047 		if (callchain_param.order == ORDER_CALLEE)
2048 			j = i;
2049 		else
2050 			j = chain->nr - i - 1;
2051 
2052 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2053 		if (j == skip_idx)
2054 			continue;
2055 #endif
2056 		ip = chain->ips[j];
2057 
2058 		if (ip < PERF_CONTEXT_MAX)
2059                        ++nr_entries;
2060 
2061 		err = add_callchain_ip(thread, cursor, parent,
2062 				       root_al, &cpumode, ip,
2063 				       false, NULL, NULL, 0);
2064 
2065 		if (err)
2066 			return (err < 0) ? err : 0;
2067 	}
2068 
2069 	return 0;
2070 }
2071 
2072 static int unwind_entry(struct unwind_entry *entry, void *arg)
2073 {
2074 	struct callchain_cursor *cursor = arg;
2075 
2076 	if (symbol_conf.hide_unresolved && entry->sym == NULL)
2077 		return 0;
2078 	return callchain_cursor_append(cursor, entry->ip,
2079 				       entry->map, entry->sym,
2080 				       false, NULL, 0, 0, 0);
2081 }
2082 
2083 static int thread__resolve_callchain_unwind(struct thread *thread,
2084 					    struct callchain_cursor *cursor,
2085 					    struct perf_evsel *evsel,
2086 					    struct perf_sample *sample,
2087 					    int max_stack)
2088 {
2089 	/* Can we do dwarf post unwind? */
2090 	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2091 	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
2092 		return 0;
2093 
2094 	/* Bail out if nothing was captured. */
2095 	if ((!sample->user_regs.regs) ||
2096 	    (!sample->user_stack.size))
2097 		return 0;
2098 
2099 	return unwind__get_entries(unwind_entry, cursor,
2100 				   thread, sample, max_stack);
2101 }
2102 
2103 int thread__resolve_callchain(struct thread *thread,
2104 			      struct callchain_cursor *cursor,
2105 			      struct perf_evsel *evsel,
2106 			      struct perf_sample *sample,
2107 			      struct symbol **parent,
2108 			      struct addr_location *root_al,
2109 			      int max_stack)
2110 {
2111 	int ret = 0;
2112 
2113 	callchain_cursor_reset(&callchain_cursor);
2114 
2115 	if (callchain_param.order == ORDER_CALLEE) {
2116 		ret = thread__resolve_callchain_sample(thread, cursor,
2117 						       evsel, sample,
2118 						       parent, root_al,
2119 						       max_stack);
2120 		if (ret)
2121 			return ret;
2122 		ret = thread__resolve_callchain_unwind(thread, cursor,
2123 						       evsel, sample,
2124 						       max_stack);
2125 	} else {
2126 		ret = thread__resolve_callchain_unwind(thread, cursor,
2127 						       evsel, sample,
2128 						       max_stack);
2129 		if (ret)
2130 			return ret;
2131 		ret = thread__resolve_callchain_sample(thread, cursor,
2132 						       evsel, sample,
2133 						       parent, root_al,
2134 						       max_stack);
2135 	}
2136 
2137 	return ret;
2138 }
2139 
2140 int machine__for_each_thread(struct machine *machine,
2141 			     int (*fn)(struct thread *thread, void *p),
2142 			     void *priv)
2143 {
2144 	struct rb_node *nd;
2145 	struct thread *thread;
2146 	int rc = 0;
2147 
2148 	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
2149 		thread = rb_entry(nd, struct thread, rb_node);
2150 		rc = fn(thread, priv);
2151 		if (rc != 0)
2152 			return rc;
2153 	}
2154 
2155 	list_for_each_entry(thread, &machine->dead_threads, node) {
2156 		rc = fn(thread, priv);
2157 		if (rc != 0)
2158 			return rc;
2159 	}
2160 	return rc;
2161 }
2162 
2163 int machines__for_each_thread(struct machines *machines,
2164 			      int (*fn)(struct thread *thread, void *p),
2165 			      void *priv)
2166 {
2167 	struct rb_node *nd;
2168 	int rc = 0;
2169 
2170 	rc = machine__for_each_thread(&machines->host, fn, priv);
2171 	if (rc != 0)
2172 		return rc;
2173 
2174 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
2175 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
2176 
2177 		rc = machine__for_each_thread(machine, fn, priv);
2178 		if (rc != 0)
2179 			return rc;
2180 	}
2181 	return rc;
2182 }
2183 
2184 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2185 				  struct target *target, struct thread_map *threads,
2186 				  perf_event__handler_t process, bool data_mmap,
2187 				  unsigned int proc_map_timeout)
2188 {
2189 	if (target__has_task(target))
2190 		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
2191 	else if (target__has_cpu(target))
2192 		return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout);
2193 	/* command specified */
2194 	return 0;
2195 }
2196 
2197 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2198 {
2199 	if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
2200 		return -1;
2201 
2202 	return machine->current_tid[cpu];
2203 }
2204 
2205 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2206 			     pid_t tid)
2207 {
2208 	struct thread *thread;
2209 
2210 	if (cpu < 0)
2211 		return -EINVAL;
2212 
2213 	if (!machine->current_tid) {
2214 		int i;
2215 
2216 		machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
2217 		if (!machine->current_tid)
2218 			return -ENOMEM;
2219 		for (i = 0; i < MAX_NR_CPUS; i++)
2220 			machine->current_tid[i] = -1;
2221 	}
2222 
2223 	if (cpu >= MAX_NR_CPUS) {
2224 		pr_err("Requested CPU %d too large. ", cpu);
2225 		pr_err("Consider raising MAX_NR_CPUS\n");
2226 		return -EINVAL;
2227 	}
2228 
2229 	machine->current_tid[cpu] = tid;
2230 
2231 	thread = machine__findnew_thread(machine, pid, tid);
2232 	if (!thread)
2233 		return -ENOMEM;
2234 
2235 	thread->cpu = cpu;
2236 	thread__put(thread);
2237 
2238 	return 0;
2239 }
2240 
2241 int machine__get_kernel_start(struct machine *machine)
2242 {
2243 	struct map *map = machine__kernel_map(machine);
2244 	int err = 0;
2245 
2246 	/*
2247 	 * The only addresses above 2^63 are kernel addresses of a 64-bit
2248 	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
2249 	 * all addresses including kernel addresses are less than 2^32.  In
2250 	 * that case (32-bit system), if the kernel mapping is unknown, all
2251 	 * addresses will be assumed to be in user space - see
2252 	 * machine__kernel_ip().
2253 	 */
2254 	machine->kernel_start = 1ULL << 63;
2255 	if (map) {
2256 		err = map__load(map);
2257 		if (!err)
2258 			machine->kernel_start = map->start;
2259 	}
2260 	return err;
2261 }
2262 
2263 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2264 {
2265 	return dsos__findnew(&machine->dsos, filename);
2266 }
2267 
2268 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2269 {
2270 	struct machine *machine = vmachine;
2271 	struct map *map;
2272 	struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map);
2273 
2274 	if (sym == NULL)
2275 		return NULL;
2276 
2277 	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2278 	*addrp = map->unmap_ip(map, sym->start);
2279 	return sym->name;
2280 }
2281