1 // SPDX-License-Identifier: GPL-2.0 2 #include <dirent.h> 3 #include <errno.h> 4 #include <inttypes.h> 5 #include <regex.h> 6 #include <stdlib.h> 7 #include "callchain.h" 8 #include "debug.h" 9 #include "dso.h" 10 #include "env.h" 11 #include "event.h" 12 #include "evsel.h" 13 #include "hist.h" 14 #include "machine.h" 15 #include "map.h" 16 #include "map_symbol.h" 17 #include "branch.h" 18 #include "mem-events.h" 19 #include "srcline.h" 20 #include "symbol.h" 21 #include "sort.h" 22 #include "strlist.h" 23 #include "target.h" 24 #include "thread.h" 25 #include "util.h" 26 #include "vdso.h" 27 #include <stdbool.h> 28 #include <sys/types.h> 29 #include <sys/stat.h> 30 #include <unistd.h> 31 #include "unwind.h" 32 #include "linux/hash.h" 33 #include "asm/bug.h" 34 #include "bpf-event.h" 35 #include <internal/lib.h> // page_size 36 #include "cgroup.h" 37 38 #include <linux/ctype.h> 39 #include <symbol/kallsyms.h> 40 #include <linux/mman.h> 41 #include <linux/string.h> 42 #include <linux/zalloc.h> 43 44 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock); 45 46 static struct dso *machine__kernel_dso(struct machine *machine) 47 { 48 return machine->vmlinux_map->dso; 49 } 50 51 static void dsos__init(struct dsos *dsos) 52 { 53 INIT_LIST_HEAD(&dsos->head); 54 dsos->root = RB_ROOT; 55 init_rwsem(&dsos->lock); 56 } 57 58 static void machine__threads_init(struct machine *machine) 59 { 60 int i; 61 62 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 63 struct threads *threads = &machine->threads[i]; 64 threads->entries = RB_ROOT_CACHED; 65 init_rwsem(&threads->lock); 66 threads->nr = 0; 67 INIT_LIST_HEAD(&threads->dead); 68 threads->last_match = NULL; 69 } 70 } 71 72 static int machine__set_mmap_name(struct machine *machine) 73 { 74 if (machine__is_host(machine)) 75 machine->mmap_name = strdup("[kernel.kallsyms]"); 76 else if (machine__is_default_guest(machine)) 77 machine->mmap_name = strdup("[guest.kernel.kallsyms]"); 78 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]", 79 machine->pid) < 0) 80 machine->mmap_name = NULL; 81 82 return machine->mmap_name ? 0 : -ENOMEM; 83 } 84 85 int machine__init(struct machine *machine, const char *root_dir, pid_t pid) 86 { 87 int err = -ENOMEM; 88 89 memset(machine, 0, sizeof(*machine)); 90 maps__init(&machine->kmaps, machine); 91 RB_CLEAR_NODE(&machine->rb_node); 92 dsos__init(&machine->dsos); 93 94 machine__threads_init(machine); 95 96 machine->vdso_info = NULL; 97 machine->env = NULL; 98 99 machine->pid = pid; 100 101 machine->id_hdr_size = 0; 102 machine->kptr_restrict_warned = false; 103 machine->comm_exec = false; 104 machine->kernel_start = 0; 105 machine->vmlinux_map = NULL; 106 107 machine->root_dir = strdup(root_dir); 108 if (machine->root_dir == NULL) 109 return -ENOMEM; 110 111 if (machine__set_mmap_name(machine)) 112 goto out; 113 114 if (pid != HOST_KERNEL_ID) { 115 struct thread *thread = machine__findnew_thread(machine, -1, 116 pid); 117 char comm[64]; 118 119 if (thread == NULL) 120 goto out; 121 122 snprintf(comm, sizeof(comm), "[guest/%d]", pid); 123 thread__set_comm(thread, comm, 0); 124 thread__put(thread); 125 } 126 127 machine->current_tid = NULL; 128 err = 0; 129 130 out: 131 if (err) { 132 zfree(&machine->root_dir); 133 zfree(&machine->mmap_name); 134 } 135 return 0; 136 } 137 138 struct machine *machine__new_host(void) 139 { 140 struct machine *machine = malloc(sizeof(*machine)); 141 142 if (machine != NULL) { 143 machine__init(machine, "", HOST_KERNEL_ID); 144 145 if (machine__create_kernel_maps(machine) < 0) 146 goto out_delete; 147 } 148 149 return machine; 150 out_delete: 151 free(machine); 152 return NULL; 153 } 154 155 struct machine *machine__new_kallsyms(void) 156 { 157 struct machine *machine = machine__new_host(); 158 /* 159 * FIXME: 160 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly 161 * ask for not using the kcore parsing code, once this one is fixed 162 * to create a map per module. 163 */ 164 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) { 165 machine__delete(machine); 166 machine = NULL; 167 } 168 169 return machine; 170 } 171 172 static void dsos__purge(struct dsos *dsos) 173 { 174 struct dso *pos, *n; 175 176 down_write(&dsos->lock); 177 178 list_for_each_entry_safe(pos, n, &dsos->head, node) { 179 RB_CLEAR_NODE(&pos->rb_node); 180 pos->root = NULL; 181 list_del_init(&pos->node); 182 dso__put(pos); 183 } 184 185 up_write(&dsos->lock); 186 } 187 188 static void dsos__exit(struct dsos *dsos) 189 { 190 dsos__purge(dsos); 191 exit_rwsem(&dsos->lock); 192 } 193 194 void machine__delete_threads(struct machine *machine) 195 { 196 struct rb_node *nd; 197 int i; 198 199 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 200 struct threads *threads = &machine->threads[i]; 201 down_write(&threads->lock); 202 nd = rb_first_cached(&threads->entries); 203 while (nd) { 204 struct thread *t = rb_entry(nd, struct thread, rb_node); 205 206 nd = rb_next(nd); 207 __machine__remove_thread(machine, t, false); 208 } 209 up_write(&threads->lock); 210 } 211 } 212 213 void machine__exit(struct machine *machine) 214 { 215 int i; 216 217 if (machine == NULL) 218 return; 219 220 machine__destroy_kernel_maps(machine); 221 maps__exit(&machine->kmaps); 222 dsos__exit(&machine->dsos); 223 machine__exit_vdso(machine); 224 zfree(&machine->root_dir); 225 zfree(&machine->mmap_name); 226 zfree(&machine->current_tid); 227 228 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 229 struct threads *threads = &machine->threads[i]; 230 struct thread *thread, *n; 231 /* 232 * Forget about the dead, at this point whatever threads were 233 * left in the dead lists better have a reference count taken 234 * by who is using them, and then, when they drop those references 235 * and it finally hits zero, thread__put() will check and see that 236 * its not in the dead threads list and will not try to remove it 237 * from there, just calling thread__delete() straight away. 238 */ 239 list_for_each_entry_safe(thread, n, &threads->dead, node) 240 list_del_init(&thread->node); 241 242 exit_rwsem(&threads->lock); 243 } 244 } 245 246 void machine__delete(struct machine *machine) 247 { 248 if (machine) { 249 machine__exit(machine); 250 free(machine); 251 } 252 } 253 254 void machines__init(struct machines *machines) 255 { 256 machine__init(&machines->host, "", HOST_KERNEL_ID); 257 machines->guests = RB_ROOT_CACHED; 258 } 259 260 void machines__exit(struct machines *machines) 261 { 262 machine__exit(&machines->host); 263 /* XXX exit guest */ 264 } 265 266 struct machine *machines__add(struct machines *machines, pid_t pid, 267 const char *root_dir) 268 { 269 struct rb_node **p = &machines->guests.rb_root.rb_node; 270 struct rb_node *parent = NULL; 271 struct machine *pos, *machine = malloc(sizeof(*machine)); 272 bool leftmost = true; 273 274 if (machine == NULL) 275 return NULL; 276 277 if (machine__init(machine, root_dir, pid) != 0) { 278 free(machine); 279 return NULL; 280 } 281 282 while (*p != NULL) { 283 parent = *p; 284 pos = rb_entry(parent, struct machine, rb_node); 285 if (pid < pos->pid) 286 p = &(*p)->rb_left; 287 else { 288 p = &(*p)->rb_right; 289 leftmost = false; 290 } 291 } 292 293 rb_link_node(&machine->rb_node, parent, p); 294 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost); 295 296 return machine; 297 } 298 299 void machines__set_comm_exec(struct machines *machines, bool comm_exec) 300 { 301 struct rb_node *nd; 302 303 machines->host.comm_exec = comm_exec; 304 305 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 306 struct machine *machine = rb_entry(nd, struct machine, rb_node); 307 308 machine->comm_exec = comm_exec; 309 } 310 } 311 312 struct machine *machines__find(struct machines *machines, pid_t pid) 313 { 314 struct rb_node **p = &machines->guests.rb_root.rb_node; 315 struct rb_node *parent = NULL; 316 struct machine *machine; 317 struct machine *default_machine = NULL; 318 319 if (pid == HOST_KERNEL_ID) 320 return &machines->host; 321 322 while (*p != NULL) { 323 parent = *p; 324 machine = rb_entry(parent, struct machine, rb_node); 325 if (pid < machine->pid) 326 p = &(*p)->rb_left; 327 else if (pid > machine->pid) 328 p = &(*p)->rb_right; 329 else 330 return machine; 331 if (!machine->pid) 332 default_machine = machine; 333 } 334 335 return default_machine; 336 } 337 338 struct machine *machines__findnew(struct machines *machines, pid_t pid) 339 { 340 char path[PATH_MAX]; 341 const char *root_dir = ""; 342 struct machine *machine = machines__find(machines, pid); 343 344 if (machine && (machine->pid == pid)) 345 goto out; 346 347 if ((pid != HOST_KERNEL_ID) && 348 (pid != DEFAULT_GUEST_KERNEL_ID) && 349 (symbol_conf.guestmount)) { 350 sprintf(path, "%s/%d", symbol_conf.guestmount, pid); 351 if (access(path, R_OK)) { 352 static struct strlist *seen; 353 354 if (!seen) 355 seen = strlist__new(NULL, NULL); 356 357 if (!strlist__has_entry(seen, path)) { 358 pr_err("Can't access file %s\n", path); 359 strlist__add(seen, path); 360 } 361 machine = NULL; 362 goto out; 363 } 364 root_dir = path; 365 } 366 367 machine = machines__add(machines, pid, root_dir); 368 out: 369 return machine; 370 } 371 372 void machines__process_guests(struct machines *machines, 373 machine__process_t process, void *data) 374 { 375 struct rb_node *nd; 376 377 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 378 struct machine *pos = rb_entry(nd, struct machine, rb_node); 379 process(pos, data); 380 } 381 } 382 383 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size) 384 { 385 struct rb_node *node; 386 struct machine *machine; 387 388 machines->host.id_hdr_size = id_hdr_size; 389 390 for (node = rb_first_cached(&machines->guests); node; 391 node = rb_next(node)) { 392 machine = rb_entry(node, struct machine, rb_node); 393 machine->id_hdr_size = id_hdr_size; 394 } 395 396 return; 397 } 398 399 static void machine__update_thread_pid(struct machine *machine, 400 struct thread *th, pid_t pid) 401 { 402 struct thread *leader; 403 404 if (pid == th->pid_ || pid == -1 || th->pid_ != -1) 405 return; 406 407 th->pid_ = pid; 408 409 if (th->pid_ == th->tid) 410 return; 411 412 leader = __machine__findnew_thread(machine, th->pid_, th->pid_); 413 if (!leader) 414 goto out_err; 415 416 if (!leader->maps) 417 leader->maps = maps__new(machine); 418 419 if (!leader->maps) 420 goto out_err; 421 422 if (th->maps == leader->maps) 423 return; 424 425 if (th->maps) { 426 /* 427 * Maps are created from MMAP events which provide the pid and 428 * tid. Consequently there never should be any maps on a thread 429 * with an unknown pid. Just print an error if there are. 430 */ 431 if (!maps__empty(th->maps)) 432 pr_err("Discarding thread maps for %d:%d\n", 433 th->pid_, th->tid); 434 maps__put(th->maps); 435 } 436 437 th->maps = maps__get(leader->maps); 438 out_put: 439 thread__put(leader); 440 return; 441 out_err: 442 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid); 443 goto out_put; 444 } 445 446 /* 447 * Front-end cache - TID lookups come in blocks, 448 * so most of the time we dont have to look up 449 * the full rbtree: 450 */ 451 static struct thread* 452 __threads__get_last_match(struct threads *threads, struct machine *machine, 453 int pid, int tid) 454 { 455 struct thread *th; 456 457 th = threads->last_match; 458 if (th != NULL) { 459 if (th->tid == tid) { 460 machine__update_thread_pid(machine, th, pid); 461 return thread__get(th); 462 } 463 464 threads->last_match = NULL; 465 } 466 467 return NULL; 468 } 469 470 static struct thread* 471 threads__get_last_match(struct threads *threads, struct machine *machine, 472 int pid, int tid) 473 { 474 struct thread *th = NULL; 475 476 if (perf_singlethreaded) 477 th = __threads__get_last_match(threads, machine, pid, tid); 478 479 return th; 480 } 481 482 static void 483 __threads__set_last_match(struct threads *threads, struct thread *th) 484 { 485 threads->last_match = th; 486 } 487 488 static void 489 threads__set_last_match(struct threads *threads, struct thread *th) 490 { 491 if (perf_singlethreaded) 492 __threads__set_last_match(threads, th); 493 } 494 495 /* 496 * Caller must eventually drop thread->refcnt returned with a successful 497 * lookup/new thread inserted. 498 */ 499 static struct thread *____machine__findnew_thread(struct machine *machine, 500 struct threads *threads, 501 pid_t pid, pid_t tid, 502 bool create) 503 { 504 struct rb_node **p = &threads->entries.rb_root.rb_node; 505 struct rb_node *parent = NULL; 506 struct thread *th; 507 bool leftmost = true; 508 509 th = threads__get_last_match(threads, machine, pid, tid); 510 if (th) 511 return th; 512 513 while (*p != NULL) { 514 parent = *p; 515 th = rb_entry(parent, struct thread, rb_node); 516 517 if (th->tid == tid) { 518 threads__set_last_match(threads, th); 519 machine__update_thread_pid(machine, th, pid); 520 return thread__get(th); 521 } 522 523 if (tid < th->tid) 524 p = &(*p)->rb_left; 525 else { 526 p = &(*p)->rb_right; 527 leftmost = false; 528 } 529 } 530 531 if (!create) 532 return NULL; 533 534 th = thread__new(pid, tid); 535 if (th != NULL) { 536 rb_link_node(&th->rb_node, parent, p); 537 rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost); 538 539 /* 540 * We have to initialize maps separately after rb tree is updated. 541 * 542 * The reason is that we call machine__findnew_thread 543 * within thread__init_maps to find the thread 544 * leader and that would screwed the rb tree. 545 */ 546 if (thread__init_maps(th, machine)) { 547 rb_erase_cached(&th->rb_node, &threads->entries); 548 RB_CLEAR_NODE(&th->rb_node); 549 thread__put(th); 550 return NULL; 551 } 552 /* 553 * It is now in the rbtree, get a ref 554 */ 555 thread__get(th); 556 threads__set_last_match(threads, th); 557 ++threads->nr; 558 } 559 560 return th; 561 } 562 563 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid) 564 { 565 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true); 566 } 567 568 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, 569 pid_t tid) 570 { 571 struct threads *threads = machine__threads(machine, tid); 572 struct thread *th; 573 574 down_write(&threads->lock); 575 th = __machine__findnew_thread(machine, pid, tid); 576 up_write(&threads->lock); 577 return th; 578 } 579 580 struct thread *machine__find_thread(struct machine *machine, pid_t pid, 581 pid_t tid) 582 { 583 struct threads *threads = machine__threads(machine, tid); 584 struct thread *th; 585 586 down_read(&threads->lock); 587 th = ____machine__findnew_thread(machine, threads, pid, tid, false); 588 up_read(&threads->lock); 589 return th; 590 } 591 592 struct comm *machine__thread_exec_comm(struct machine *machine, 593 struct thread *thread) 594 { 595 if (machine->comm_exec) 596 return thread__exec_comm(thread); 597 else 598 return thread__comm(thread); 599 } 600 601 int machine__process_comm_event(struct machine *machine, union perf_event *event, 602 struct perf_sample *sample) 603 { 604 struct thread *thread = machine__findnew_thread(machine, 605 event->comm.pid, 606 event->comm.tid); 607 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC; 608 int err = 0; 609 610 if (exec) 611 machine->comm_exec = true; 612 613 if (dump_trace) 614 perf_event__fprintf_comm(event, stdout); 615 616 if (thread == NULL || 617 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) { 618 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n"); 619 err = -1; 620 } 621 622 thread__put(thread); 623 624 return err; 625 } 626 627 int machine__process_namespaces_event(struct machine *machine __maybe_unused, 628 union perf_event *event, 629 struct perf_sample *sample __maybe_unused) 630 { 631 struct thread *thread = machine__findnew_thread(machine, 632 event->namespaces.pid, 633 event->namespaces.tid); 634 int err = 0; 635 636 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES, 637 "\nWARNING: kernel seems to support more namespaces than perf" 638 " tool.\nTry updating the perf tool..\n\n"); 639 640 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES, 641 "\nWARNING: perf tool seems to support more namespaces than" 642 " the kernel.\nTry updating the kernel..\n\n"); 643 644 if (dump_trace) 645 perf_event__fprintf_namespaces(event, stdout); 646 647 if (thread == NULL || 648 thread__set_namespaces(thread, sample->time, &event->namespaces)) { 649 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n"); 650 err = -1; 651 } 652 653 thread__put(thread); 654 655 return err; 656 } 657 658 int machine__process_cgroup_event(struct machine *machine, 659 union perf_event *event, 660 struct perf_sample *sample __maybe_unused) 661 { 662 struct cgroup *cgrp; 663 664 if (dump_trace) 665 perf_event__fprintf_cgroup(event, stdout); 666 667 cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path); 668 if (cgrp == NULL) 669 return -ENOMEM; 670 671 return 0; 672 } 673 674 int machine__process_lost_event(struct machine *machine __maybe_unused, 675 union perf_event *event, struct perf_sample *sample __maybe_unused) 676 { 677 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n", 678 event->lost.id, event->lost.lost); 679 return 0; 680 } 681 682 int machine__process_lost_samples_event(struct machine *machine __maybe_unused, 683 union perf_event *event, struct perf_sample *sample) 684 { 685 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n", 686 sample->id, event->lost_samples.lost); 687 return 0; 688 } 689 690 static struct dso *machine__findnew_module_dso(struct machine *machine, 691 struct kmod_path *m, 692 const char *filename) 693 { 694 struct dso *dso; 695 696 down_write(&machine->dsos.lock); 697 698 dso = __dsos__find(&machine->dsos, m->name, true); 699 if (!dso) { 700 dso = __dsos__addnew(&machine->dsos, m->name); 701 if (dso == NULL) 702 goto out_unlock; 703 704 dso__set_module_info(dso, m, machine); 705 dso__set_long_name(dso, strdup(filename), true); 706 dso->kernel = DSO_SPACE__KERNEL; 707 } 708 709 dso__get(dso); 710 out_unlock: 711 up_write(&machine->dsos.lock); 712 return dso; 713 } 714 715 int machine__process_aux_event(struct machine *machine __maybe_unused, 716 union perf_event *event) 717 { 718 if (dump_trace) 719 perf_event__fprintf_aux(event, stdout); 720 return 0; 721 } 722 723 int machine__process_itrace_start_event(struct machine *machine __maybe_unused, 724 union perf_event *event) 725 { 726 if (dump_trace) 727 perf_event__fprintf_itrace_start(event, stdout); 728 return 0; 729 } 730 731 int machine__process_switch_event(struct machine *machine __maybe_unused, 732 union perf_event *event) 733 { 734 if (dump_trace) 735 perf_event__fprintf_switch(event, stdout); 736 return 0; 737 } 738 739 static int machine__process_ksymbol_register(struct machine *machine, 740 union perf_event *event, 741 struct perf_sample *sample __maybe_unused) 742 { 743 struct symbol *sym; 744 struct map *map = maps__find(&machine->kmaps, event->ksymbol.addr); 745 746 if (!map) { 747 struct dso *dso = dso__new(event->ksymbol.name); 748 749 if (dso) { 750 dso->kernel = DSO_SPACE__KERNEL; 751 map = map__new2(0, dso); 752 } 753 754 if (!dso || !map) { 755 dso__put(dso); 756 return -ENOMEM; 757 } 758 759 if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) { 760 map->dso->binary_type = DSO_BINARY_TYPE__OOL; 761 map->dso->data.file_size = event->ksymbol.len; 762 dso__set_loaded(map->dso); 763 } 764 765 map->start = event->ksymbol.addr; 766 map->end = map->start + event->ksymbol.len; 767 maps__insert(&machine->kmaps, map); 768 dso__set_loaded(dso); 769 770 if (is_bpf_image(event->ksymbol.name)) { 771 dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE; 772 dso__set_long_name(dso, "", false); 773 } 774 } 775 776 sym = symbol__new(map->map_ip(map, map->start), 777 event->ksymbol.len, 778 0, 0, event->ksymbol.name); 779 if (!sym) 780 return -ENOMEM; 781 dso__insert_symbol(map->dso, sym); 782 return 0; 783 } 784 785 static int machine__process_ksymbol_unregister(struct machine *machine, 786 union perf_event *event, 787 struct perf_sample *sample __maybe_unused) 788 { 789 struct map *map; 790 791 map = maps__find(&machine->kmaps, event->ksymbol.addr); 792 if (map) 793 maps__remove(&machine->kmaps, map); 794 795 return 0; 796 } 797 798 int machine__process_ksymbol(struct machine *machine __maybe_unused, 799 union perf_event *event, 800 struct perf_sample *sample) 801 { 802 if (dump_trace) 803 perf_event__fprintf_ksymbol(event, stdout); 804 805 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER) 806 return machine__process_ksymbol_unregister(machine, event, 807 sample); 808 return machine__process_ksymbol_register(machine, event, sample); 809 } 810 811 int machine__process_text_poke(struct machine *machine, union perf_event *event, 812 struct perf_sample *sample __maybe_unused) 813 { 814 struct map *map = maps__find(&machine->kmaps, event->text_poke.addr); 815 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 816 817 if (dump_trace) 818 perf_event__fprintf_text_poke(event, machine, stdout); 819 820 if (!event->text_poke.new_len) 821 return 0; 822 823 if (cpumode != PERF_RECORD_MISC_KERNEL) { 824 pr_debug("%s: unsupported cpumode - ignoring\n", __func__); 825 return 0; 826 } 827 828 if (map && map->dso) { 829 u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len; 830 int ret; 831 832 /* 833 * Kernel maps might be changed when loading symbols so loading 834 * must be done prior to using kernel maps. 835 */ 836 map__load(map); 837 ret = dso__data_write_cache_addr(map->dso, map, machine, 838 event->text_poke.addr, 839 new_bytes, 840 event->text_poke.new_len); 841 if (ret != event->text_poke.new_len) 842 pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n", 843 event->text_poke.addr); 844 } else { 845 pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n", 846 event->text_poke.addr); 847 } 848 849 return 0; 850 } 851 852 static struct map *machine__addnew_module_map(struct machine *machine, u64 start, 853 const char *filename) 854 { 855 struct map *map = NULL; 856 struct kmod_path m; 857 struct dso *dso; 858 859 if (kmod_path__parse_name(&m, filename)) 860 return NULL; 861 862 dso = machine__findnew_module_dso(machine, &m, filename); 863 if (dso == NULL) 864 goto out; 865 866 map = map__new2(start, dso); 867 if (map == NULL) 868 goto out; 869 870 maps__insert(&machine->kmaps, map); 871 872 /* Put the map here because maps__insert alread got it */ 873 map__put(map); 874 out: 875 /* put the dso here, corresponding to machine__findnew_module_dso */ 876 dso__put(dso); 877 zfree(&m.name); 878 return map; 879 } 880 881 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp) 882 { 883 struct rb_node *nd; 884 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp); 885 886 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 887 struct machine *pos = rb_entry(nd, struct machine, rb_node); 888 ret += __dsos__fprintf(&pos->dsos.head, fp); 889 } 890 891 return ret; 892 } 893 894 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp, 895 bool (skip)(struct dso *dso, int parm), int parm) 896 { 897 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm); 898 } 899 900 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp, 901 bool (skip)(struct dso *dso, int parm), int parm) 902 { 903 struct rb_node *nd; 904 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm); 905 906 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 907 struct machine *pos = rb_entry(nd, struct machine, rb_node); 908 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm); 909 } 910 return ret; 911 } 912 913 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp) 914 { 915 int i; 916 size_t printed = 0; 917 struct dso *kdso = machine__kernel_dso(machine); 918 919 if (kdso->has_build_id) { 920 char filename[PATH_MAX]; 921 if (dso__build_id_filename(kdso, filename, sizeof(filename), 922 false)) 923 printed += fprintf(fp, "[0] %s\n", filename); 924 } 925 926 for (i = 0; i < vmlinux_path__nr_entries; ++i) 927 printed += fprintf(fp, "[%d] %s\n", 928 i + kdso->has_build_id, vmlinux_path[i]); 929 930 return printed; 931 } 932 933 size_t machine__fprintf(struct machine *machine, FILE *fp) 934 { 935 struct rb_node *nd; 936 size_t ret; 937 int i; 938 939 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 940 struct threads *threads = &machine->threads[i]; 941 942 down_read(&threads->lock); 943 944 ret = fprintf(fp, "Threads: %u\n", threads->nr); 945 946 for (nd = rb_first_cached(&threads->entries); nd; 947 nd = rb_next(nd)) { 948 struct thread *pos = rb_entry(nd, struct thread, rb_node); 949 950 ret += thread__fprintf(pos, fp); 951 } 952 953 up_read(&threads->lock); 954 } 955 return ret; 956 } 957 958 static struct dso *machine__get_kernel(struct machine *machine) 959 { 960 const char *vmlinux_name = machine->mmap_name; 961 struct dso *kernel; 962 963 if (machine__is_host(machine)) { 964 if (symbol_conf.vmlinux_name) 965 vmlinux_name = symbol_conf.vmlinux_name; 966 967 kernel = machine__findnew_kernel(machine, vmlinux_name, 968 "[kernel]", DSO_SPACE__KERNEL); 969 } else { 970 if (symbol_conf.default_guest_vmlinux_name) 971 vmlinux_name = symbol_conf.default_guest_vmlinux_name; 972 973 kernel = machine__findnew_kernel(machine, vmlinux_name, 974 "[guest.kernel]", 975 DSO_SPACE__KERNEL_GUEST); 976 } 977 978 if (kernel != NULL && (!kernel->has_build_id)) 979 dso__read_running_kernel_build_id(kernel, machine); 980 981 return kernel; 982 } 983 984 struct process_args { 985 u64 start; 986 }; 987 988 void machine__get_kallsyms_filename(struct machine *machine, char *buf, 989 size_t bufsz) 990 { 991 if (machine__is_default_guest(machine)) 992 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms); 993 else 994 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir); 995 } 996 997 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL}; 998 999 /* Figure out the start address of kernel map from /proc/kallsyms. 1000 * Returns the name of the start symbol in *symbol_name. Pass in NULL as 1001 * symbol_name if it's not that important. 1002 */ 1003 static int machine__get_running_kernel_start(struct machine *machine, 1004 const char **symbol_name, 1005 u64 *start, u64 *end) 1006 { 1007 char filename[PATH_MAX]; 1008 int i, err = -1; 1009 const char *name; 1010 u64 addr = 0; 1011 1012 machine__get_kallsyms_filename(machine, filename, PATH_MAX); 1013 1014 if (symbol__restricted_filename(filename, "/proc/kallsyms")) 1015 return 0; 1016 1017 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) { 1018 err = kallsyms__get_function_start(filename, name, &addr); 1019 if (!err) 1020 break; 1021 } 1022 1023 if (err) 1024 return -1; 1025 1026 if (symbol_name) 1027 *symbol_name = name; 1028 1029 *start = addr; 1030 1031 err = kallsyms__get_function_start(filename, "_etext", &addr); 1032 if (!err) 1033 *end = addr; 1034 1035 return 0; 1036 } 1037 1038 int machine__create_extra_kernel_map(struct machine *machine, 1039 struct dso *kernel, 1040 struct extra_kernel_map *xm) 1041 { 1042 struct kmap *kmap; 1043 struct map *map; 1044 1045 map = map__new2(xm->start, kernel); 1046 if (!map) 1047 return -1; 1048 1049 map->end = xm->end; 1050 map->pgoff = xm->pgoff; 1051 1052 kmap = map__kmap(map); 1053 1054 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN); 1055 1056 maps__insert(&machine->kmaps, map); 1057 1058 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n", 1059 kmap->name, map->start, map->end); 1060 1061 map__put(map); 1062 1063 return 0; 1064 } 1065 1066 static u64 find_entry_trampoline(struct dso *dso) 1067 { 1068 /* Duplicates are removed so lookup all aliases */ 1069 const char *syms[] = { 1070 "_entry_trampoline", 1071 "__entry_trampoline_start", 1072 "entry_SYSCALL_64_trampoline", 1073 }; 1074 struct symbol *sym = dso__first_symbol(dso); 1075 unsigned int i; 1076 1077 for (; sym; sym = dso__next_symbol(sym)) { 1078 if (sym->binding != STB_GLOBAL) 1079 continue; 1080 for (i = 0; i < ARRAY_SIZE(syms); i++) { 1081 if (!strcmp(sym->name, syms[i])) 1082 return sym->start; 1083 } 1084 } 1085 1086 return 0; 1087 } 1088 1089 /* 1090 * These values can be used for kernels that do not have symbols for the entry 1091 * trampolines in kallsyms. 1092 */ 1093 #define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL 1094 #define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000 1095 #define X86_64_ENTRY_TRAMPOLINE 0x6000 1096 1097 /* Map x86_64 PTI entry trampolines */ 1098 int machine__map_x86_64_entry_trampolines(struct machine *machine, 1099 struct dso *kernel) 1100 { 1101 struct maps *kmaps = &machine->kmaps; 1102 int nr_cpus_avail, cpu; 1103 bool found = false; 1104 struct map *map; 1105 u64 pgoff; 1106 1107 /* 1108 * In the vmlinux case, pgoff is a virtual address which must now be 1109 * mapped to a vmlinux offset. 1110 */ 1111 maps__for_each_entry(kmaps, map) { 1112 struct kmap *kmap = __map__kmap(map); 1113 struct map *dest_map; 1114 1115 if (!kmap || !is_entry_trampoline(kmap->name)) 1116 continue; 1117 1118 dest_map = maps__find(kmaps, map->pgoff); 1119 if (dest_map != map) 1120 map->pgoff = dest_map->map_ip(dest_map, map->pgoff); 1121 found = true; 1122 } 1123 if (found || machine->trampolines_mapped) 1124 return 0; 1125 1126 pgoff = find_entry_trampoline(kernel); 1127 if (!pgoff) 1128 return 0; 1129 1130 nr_cpus_avail = machine__nr_cpus_avail(machine); 1131 1132 /* Add a 1 page map for each CPU's entry trampoline */ 1133 for (cpu = 0; cpu < nr_cpus_avail; cpu++) { 1134 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU + 1135 cpu * X86_64_CPU_ENTRY_AREA_SIZE + 1136 X86_64_ENTRY_TRAMPOLINE; 1137 struct extra_kernel_map xm = { 1138 .start = va, 1139 .end = va + page_size, 1140 .pgoff = pgoff, 1141 }; 1142 1143 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN); 1144 1145 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0) 1146 return -1; 1147 } 1148 1149 machine->trampolines_mapped = nr_cpus_avail; 1150 1151 return 0; 1152 } 1153 1154 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused, 1155 struct dso *kernel __maybe_unused) 1156 { 1157 return 0; 1158 } 1159 1160 static int 1161 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel) 1162 { 1163 /* In case of renewal the kernel map, destroy previous one */ 1164 machine__destroy_kernel_maps(machine); 1165 1166 machine->vmlinux_map = map__new2(0, kernel); 1167 if (machine->vmlinux_map == NULL) 1168 return -1; 1169 1170 machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip; 1171 maps__insert(&machine->kmaps, machine->vmlinux_map); 1172 return 0; 1173 } 1174 1175 void machine__destroy_kernel_maps(struct machine *machine) 1176 { 1177 struct kmap *kmap; 1178 struct map *map = machine__kernel_map(machine); 1179 1180 if (map == NULL) 1181 return; 1182 1183 kmap = map__kmap(map); 1184 maps__remove(&machine->kmaps, map); 1185 if (kmap && kmap->ref_reloc_sym) { 1186 zfree((char **)&kmap->ref_reloc_sym->name); 1187 zfree(&kmap->ref_reloc_sym); 1188 } 1189 1190 map__zput(machine->vmlinux_map); 1191 } 1192 1193 int machines__create_guest_kernel_maps(struct machines *machines) 1194 { 1195 int ret = 0; 1196 struct dirent **namelist = NULL; 1197 int i, items = 0; 1198 char path[PATH_MAX]; 1199 pid_t pid; 1200 char *endp; 1201 1202 if (symbol_conf.default_guest_vmlinux_name || 1203 symbol_conf.default_guest_modules || 1204 symbol_conf.default_guest_kallsyms) { 1205 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID); 1206 } 1207 1208 if (symbol_conf.guestmount) { 1209 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL); 1210 if (items <= 0) 1211 return -ENOENT; 1212 for (i = 0; i < items; i++) { 1213 if (!isdigit(namelist[i]->d_name[0])) { 1214 /* Filter out . and .. */ 1215 continue; 1216 } 1217 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10); 1218 if ((*endp != '\0') || 1219 (endp == namelist[i]->d_name) || 1220 (errno == ERANGE)) { 1221 pr_debug("invalid directory (%s). Skipping.\n", 1222 namelist[i]->d_name); 1223 continue; 1224 } 1225 sprintf(path, "%s/%s/proc/kallsyms", 1226 symbol_conf.guestmount, 1227 namelist[i]->d_name); 1228 ret = access(path, R_OK); 1229 if (ret) { 1230 pr_debug("Can't access file %s\n", path); 1231 goto failure; 1232 } 1233 machines__create_kernel_maps(machines, pid); 1234 } 1235 failure: 1236 free(namelist); 1237 } 1238 1239 return ret; 1240 } 1241 1242 void machines__destroy_kernel_maps(struct machines *machines) 1243 { 1244 struct rb_node *next = rb_first_cached(&machines->guests); 1245 1246 machine__destroy_kernel_maps(&machines->host); 1247 1248 while (next) { 1249 struct machine *pos = rb_entry(next, struct machine, rb_node); 1250 1251 next = rb_next(&pos->rb_node); 1252 rb_erase_cached(&pos->rb_node, &machines->guests); 1253 machine__delete(pos); 1254 } 1255 } 1256 1257 int machines__create_kernel_maps(struct machines *machines, pid_t pid) 1258 { 1259 struct machine *machine = machines__findnew(machines, pid); 1260 1261 if (machine == NULL) 1262 return -1; 1263 1264 return machine__create_kernel_maps(machine); 1265 } 1266 1267 int machine__load_kallsyms(struct machine *machine, const char *filename) 1268 { 1269 struct map *map = machine__kernel_map(machine); 1270 int ret = __dso__load_kallsyms(map->dso, filename, map, true); 1271 1272 if (ret > 0) { 1273 dso__set_loaded(map->dso); 1274 /* 1275 * Since /proc/kallsyms will have multiple sessions for the 1276 * kernel, with modules between them, fixup the end of all 1277 * sections. 1278 */ 1279 maps__fixup_end(&machine->kmaps); 1280 } 1281 1282 return ret; 1283 } 1284 1285 int machine__load_vmlinux_path(struct machine *machine) 1286 { 1287 struct map *map = machine__kernel_map(machine); 1288 int ret = dso__load_vmlinux_path(map->dso, map); 1289 1290 if (ret > 0) 1291 dso__set_loaded(map->dso); 1292 1293 return ret; 1294 } 1295 1296 static char *get_kernel_version(const char *root_dir) 1297 { 1298 char version[PATH_MAX]; 1299 FILE *file; 1300 char *name, *tmp; 1301 const char *prefix = "Linux version "; 1302 1303 sprintf(version, "%s/proc/version", root_dir); 1304 file = fopen(version, "r"); 1305 if (!file) 1306 return NULL; 1307 1308 tmp = fgets(version, sizeof(version), file); 1309 fclose(file); 1310 if (!tmp) 1311 return NULL; 1312 1313 name = strstr(version, prefix); 1314 if (!name) 1315 return NULL; 1316 name += strlen(prefix); 1317 tmp = strchr(name, ' '); 1318 if (tmp) 1319 *tmp = '\0'; 1320 1321 return strdup(name); 1322 } 1323 1324 static bool is_kmod_dso(struct dso *dso) 1325 { 1326 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE || 1327 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE; 1328 } 1329 1330 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m) 1331 { 1332 char *long_name; 1333 struct map *map = maps__find_by_name(maps, m->name); 1334 1335 if (map == NULL) 1336 return 0; 1337 1338 long_name = strdup(path); 1339 if (long_name == NULL) 1340 return -ENOMEM; 1341 1342 dso__set_long_name(map->dso, long_name, true); 1343 dso__kernel_module_get_build_id(map->dso, ""); 1344 1345 /* 1346 * Full name could reveal us kmod compression, so 1347 * we need to update the symtab_type if needed. 1348 */ 1349 if (m->comp && is_kmod_dso(map->dso)) { 1350 map->dso->symtab_type++; 1351 map->dso->comp = m->comp; 1352 } 1353 1354 return 0; 1355 } 1356 1357 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth) 1358 { 1359 struct dirent *dent; 1360 DIR *dir = opendir(dir_name); 1361 int ret = 0; 1362 1363 if (!dir) { 1364 pr_debug("%s: cannot open %s dir\n", __func__, dir_name); 1365 return -1; 1366 } 1367 1368 while ((dent = readdir(dir)) != NULL) { 1369 char path[PATH_MAX]; 1370 struct stat st; 1371 1372 /*sshfs might return bad dent->d_type, so we have to stat*/ 1373 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name); 1374 if (stat(path, &st)) 1375 continue; 1376 1377 if (S_ISDIR(st.st_mode)) { 1378 if (!strcmp(dent->d_name, ".") || 1379 !strcmp(dent->d_name, "..")) 1380 continue; 1381 1382 /* Do not follow top-level source and build symlinks */ 1383 if (depth == 0) { 1384 if (!strcmp(dent->d_name, "source") || 1385 !strcmp(dent->d_name, "build")) 1386 continue; 1387 } 1388 1389 ret = maps__set_modules_path_dir(maps, path, depth + 1); 1390 if (ret < 0) 1391 goto out; 1392 } else { 1393 struct kmod_path m; 1394 1395 ret = kmod_path__parse_name(&m, dent->d_name); 1396 if (ret) 1397 goto out; 1398 1399 if (m.kmod) 1400 ret = maps__set_module_path(maps, path, &m); 1401 1402 zfree(&m.name); 1403 1404 if (ret) 1405 goto out; 1406 } 1407 } 1408 1409 out: 1410 closedir(dir); 1411 return ret; 1412 } 1413 1414 static int machine__set_modules_path(struct machine *machine) 1415 { 1416 char *version; 1417 char modules_path[PATH_MAX]; 1418 1419 version = get_kernel_version(machine->root_dir); 1420 if (!version) 1421 return -1; 1422 1423 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s", 1424 machine->root_dir, version); 1425 free(version); 1426 1427 return maps__set_modules_path_dir(&machine->kmaps, modules_path, 0); 1428 } 1429 int __weak arch__fix_module_text_start(u64 *start __maybe_unused, 1430 u64 *size __maybe_unused, 1431 const char *name __maybe_unused) 1432 { 1433 return 0; 1434 } 1435 1436 static int machine__create_module(void *arg, const char *name, u64 start, 1437 u64 size) 1438 { 1439 struct machine *machine = arg; 1440 struct map *map; 1441 1442 if (arch__fix_module_text_start(&start, &size, name) < 0) 1443 return -1; 1444 1445 map = machine__addnew_module_map(machine, start, name); 1446 if (map == NULL) 1447 return -1; 1448 map->end = start + size; 1449 1450 dso__kernel_module_get_build_id(map->dso, machine->root_dir); 1451 1452 return 0; 1453 } 1454 1455 static int machine__create_modules(struct machine *machine) 1456 { 1457 const char *modules; 1458 char path[PATH_MAX]; 1459 1460 if (machine__is_default_guest(machine)) { 1461 modules = symbol_conf.default_guest_modules; 1462 } else { 1463 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir); 1464 modules = path; 1465 } 1466 1467 if (symbol__restricted_filename(modules, "/proc/modules")) 1468 return -1; 1469 1470 if (modules__parse(modules, machine, machine__create_module)) 1471 return -1; 1472 1473 if (!machine__set_modules_path(machine)) 1474 return 0; 1475 1476 pr_debug("Problems setting modules path maps, continuing anyway...\n"); 1477 1478 return 0; 1479 } 1480 1481 static void machine__set_kernel_mmap(struct machine *machine, 1482 u64 start, u64 end) 1483 { 1484 machine->vmlinux_map->start = start; 1485 machine->vmlinux_map->end = end; 1486 /* 1487 * Be a bit paranoid here, some perf.data file came with 1488 * a zero sized synthesized MMAP event for the kernel. 1489 */ 1490 if (start == 0 && end == 0) 1491 machine->vmlinux_map->end = ~0ULL; 1492 } 1493 1494 static void machine__update_kernel_mmap(struct machine *machine, 1495 u64 start, u64 end) 1496 { 1497 struct map *map = machine__kernel_map(machine); 1498 1499 map__get(map); 1500 maps__remove(&machine->kmaps, map); 1501 1502 machine__set_kernel_mmap(machine, start, end); 1503 1504 maps__insert(&machine->kmaps, map); 1505 map__put(map); 1506 } 1507 1508 int machine__create_kernel_maps(struct machine *machine) 1509 { 1510 struct dso *kernel = machine__get_kernel(machine); 1511 const char *name = NULL; 1512 struct map *map; 1513 u64 start = 0, end = ~0ULL; 1514 int ret; 1515 1516 if (kernel == NULL) 1517 return -1; 1518 1519 ret = __machine__create_kernel_maps(machine, kernel); 1520 if (ret < 0) 1521 goto out_put; 1522 1523 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) { 1524 if (machine__is_host(machine)) 1525 pr_debug("Problems creating module maps, " 1526 "continuing anyway...\n"); 1527 else 1528 pr_debug("Problems creating module maps for guest %d, " 1529 "continuing anyway...\n", machine->pid); 1530 } 1531 1532 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) { 1533 if (name && 1534 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) { 1535 machine__destroy_kernel_maps(machine); 1536 ret = -1; 1537 goto out_put; 1538 } 1539 1540 /* 1541 * we have a real start address now, so re-order the kmaps 1542 * assume it's the last in the kmaps 1543 */ 1544 machine__update_kernel_mmap(machine, start, end); 1545 } 1546 1547 if (machine__create_extra_kernel_maps(machine, kernel)) 1548 pr_debug("Problems creating extra kernel maps, continuing anyway...\n"); 1549 1550 if (end == ~0ULL) { 1551 /* update end address of the kernel map using adjacent module address */ 1552 map = map__next(machine__kernel_map(machine)); 1553 if (map) 1554 machine__set_kernel_mmap(machine, start, map->start); 1555 } 1556 1557 out_put: 1558 dso__put(kernel); 1559 return ret; 1560 } 1561 1562 static bool machine__uses_kcore(struct machine *machine) 1563 { 1564 struct dso *dso; 1565 1566 list_for_each_entry(dso, &machine->dsos.head, node) { 1567 if (dso__is_kcore(dso)) 1568 return true; 1569 } 1570 1571 return false; 1572 } 1573 1574 static bool perf_event__is_extra_kernel_mmap(struct machine *machine, 1575 union perf_event *event) 1576 { 1577 return machine__is(machine, "x86_64") && 1578 is_entry_trampoline(event->mmap.filename); 1579 } 1580 1581 static int machine__process_extra_kernel_map(struct machine *machine, 1582 union perf_event *event) 1583 { 1584 struct dso *kernel = machine__kernel_dso(machine); 1585 struct extra_kernel_map xm = { 1586 .start = event->mmap.start, 1587 .end = event->mmap.start + event->mmap.len, 1588 .pgoff = event->mmap.pgoff, 1589 }; 1590 1591 if (kernel == NULL) 1592 return -1; 1593 1594 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN); 1595 1596 return machine__create_extra_kernel_map(machine, kernel, &xm); 1597 } 1598 1599 static int machine__process_kernel_mmap_event(struct machine *machine, 1600 union perf_event *event) 1601 { 1602 struct map *map; 1603 enum dso_space_type dso_space; 1604 bool is_kernel_mmap; 1605 1606 /* If we have maps from kcore then we do not need or want any others */ 1607 if (machine__uses_kcore(machine)) 1608 return 0; 1609 1610 if (machine__is_host(machine)) 1611 dso_space = DSO_SPACE__KERNEL; 1612 else 1613 dso_space = DSO_SPACE__KERNEL_GUEST; 1614 1615 is_kernel_mmap = memcmp(event->mmap.filename, 1616 machine->mmap_name, 1617 strlen(machine->mmap_name) - 1) == 0; 1618 if (event->mmap.filename[0] == '/' || 1619 (!is_kernel_mmap && event->mmap.filename[0] == '[')) { 1620 map = machine__addnew_module_map(machine, event->mmap.start, 1621 event->mmap.filename); 1622 if (map == NULL) 1623 goto out_problem; 1624 1625 map->end = map->start + event->mmap.len; 1626 } else if (is_kernel_mmap) { 1627 const char *symbol_name = (event->mmap.filename + 1628 strlen(machine->mmap_name)); 1629 /* 1630 * Should be there already, from the build-id table in 1631 * the header. 1632 */ 1633 struct dso *kernel = NULL; 1634 struct dso *dso; 1635 1636 down_read(&machine->dsos.lock); 1637 1638 list_for_each_entry(dso, &machine->dsos.head, node) { 1639 1640 /* 1641 * The cpumode passed to is_kernel_module is not the 1642 * cpumode of *this* event. If we insist on passing 1643 * correct cpumode to is_kernel_module, we should 1644 * record the cpumode when we adding this dso to the 1645 * linked list. 1646 * 1647 * However we don't really need passing correct 1648 * cpumode. We know the correct cpumode must be kernel 1649 * mode (if not, we should not link it onto kernel_dsos 1650 * list). 1651 * 1652 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN. 1653 * is_kernel_module() treats it as a kernel cpumode. 1654 */ 1655 1656 if (!dso->kernel || 1657 is_kernel_module(dso->long_name, 1658 PERF_RECORD_MISC_CPUMODE_UNKNOWN)) 1659 continue; 1660 1661 1662 kernel = dso; 1663 break; 1664 } 1665 1666 up_read(&machine->dsos.lock); 1667 1668 if (kernel == NULL) 1669 kernel = machine__findnew_dso(machine, machine->mmap_name); 1670 if (kernel == NULL) 1671 goto out_problem; 1672 1673 kernel->kernel = dso_space; 1674 if (__machine__create_kernel_maps(machine, kernel) < 0) { 1675 dso__put(kernel); 1676 goto out_problem; 1677 } 1678 1679 if (strstr(kernel->long_name, "vmlinux")) 1680 dso__set_short_name(kernel, "[kernel.vmlinux]", false); 1681 1682 machine__update_kernel_mmap(machine, event->mmap.start, 1683 event->mmap.start + event->mmap.len); 1684 1685 /* 1686 * Avoid using a zero address (kptr_restrict) for the ref reloc 1687 * symbol. Effectively having zero here means that at record 1688 * time /proc/sys/kernel/kptr_restrict was non zero. 1689 */ 1690 if (event->mmap.pgoff != 0) { 1691 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, 1692 symbol_name, 1693 event->mmap.pgoff); 1694 } 1695 1696 if (machine__is_default_guest(machine)) { 1697 /* 1698 * preload dso of guest kernel and modules 1699 */ 1700 dso__load(kernel, machine__kernel_map(machine)); 1701 } 1702 } else if (perf_event__is_extra_kernel_mmap(machine, event)) { 1703 return machine__process_extra_kernel_map(machine, event); 1704 } 1705 return 0; 1706 out_problem: 1707 return -1; 1708 } 1709 1710 int machine__process_mmap2_event(struct machine *machine, 1711 union perf_event *event, 1712 struct perf_sample *sample) 1713 { 1714 struct thread *thread; 1715 struct map *map; 1716 struct dso_id dso_id = { 1717 .maj = event->mmap2.maj, 1718 .min = event->mmap2.min, 1719 .ino = event->mmap2.ino, 1720 .ino_generation = event->mmap2.ino_generation, 1721 }; 1722 int ret = 0; 1723 1724 if (dump_trace) 1725 perf_event__fprintf_mmap2(event, stdout); 1726 1727 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1728 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1729 ret = machine__process_kernel_mmap_event(machine, event); 1730 if (ret < 0) 1731 goto out_problem; 1732 return 0; 1733 } 1734 1735 thread = machine__findnew_thread(machine, event->mmap2.pid, 1736 event->mmap2.tid); 1737 if (thread == NULL) 1738 goto out_problem; 1739 1740 map = map__new(machine, event->mmap2.start, 1741 event->mmap2.len, event->mmap2.pgoff, 1742 &dso_id, event->mmap2.prot, 1743 event->mmap2.flags, 1744 event->mmap2.filename, thread); 1745 1746 if (map == NULL) 1747 goto out_problem_map; 1748 1749 ret = thread__insert_map(thread, map); 1750 if (ret) 1751 goto out_problem_insert; 1752 1753 thread__put(thread); 1754 map__put(map); 1755 return 0; 1756 1757 out_problem_insert: 1758 map__put(map); 1759 out_problem_map: 1760 thread__put(thread); 1761 out_problem: 1762 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n"); 1763 return 0; 1764 } 1765 1766 int machine__process_mmap_event(struct machine *machine, union perf_event *event, 1767 struct perf_sample *sample) 1768 { 1769 struct thread *thread; 1770 struct map *map; 1771 u32 prot = 0; 1772 int ret = 0; 1773 1774 if (dump_trace) 1775 perf_event__fprintf_mmap(event, stdout); 1776 1777 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1778 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1779 ret = machine__process_kernel_mmap_event(machine, event); 1780 if (ret < 0) 1781 goto out_problem; 1782 return 0; 1783 } 1784 1785 thread = machine__findnew_thread(machine, event->mmap.pid, 1786 event->mmap.tid); 1787 if (thread == NULL) 1788 goto out_problem; 1789 1790 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA)) 1791 prot = PROT_EXEC; 1792 1793 map = map__new(machine, event->mmap.start, 1794 event->mmap.len, event->mmap.pgoff, 1795 NULL, prot, 0, event->mmap.filename, thread); 1796 1797 if (map == NULL) 1798 goto out_problem_map; 1799 1800 ret = thread__insert_map(thread, map); 1801 if (ret) 1802 goto out_problem_insert; 1803 1804 thread__put(thread); 1805 map__put(map); 1806 return 0; 1807 1808 out_problem_insert: 1809 map__put(map); 1810 out_problem_map: 1811 thread__put(thread); 1812 out_problem: 1813 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n"); 1814 return 0; 1815 } 1816 1817 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock) 1818 { 1819 struct threads *threads = machine__threads(machine, th->tid); 1820 1821 if (threads->last_match == th) 1822 threads__set_last_match(threads, NULL); 1823 1824 if (lock) 1825 down_write(&threads->lock); 1826 1827 BUG_ON(refcount_read(&th->refcnt) == 0); 1828 1829 rb_erase_cached(&th->rb_node, &threads->entries); 1830 RB_CLEAR_NODE(&th->rb_node); 1831 --threads->nr; 1832 /* 1833 * Move it first to the dead_threads list, then drop the reference, 1834 * if this is the last reference, then the thread__delete destructor 1835 * will be called and we will remove it from the dead_threads list. 1836 */ 1837 list_add_tail(&th->node, &threads->dead); 1838 1839 /* 1840 * We need to do the put here because if this is the last refcount, 1841 * then we will be touching the threads->dead head when removing the 1842 * thread. 1843 */ 1844 thread__put(th); 1845 1846 if (lock) 1847 up_write(&threads->lock); 1848 } 1849 1850 void machine__remove_thread(struct machine *machine, struct thread *th) 1851 { 1852 return __machine__remove_thread(machine, th, true); 1853 } 1854 1855 int machine__process_fork_event(struct machine *machine, union perf_event *event, 1856 struct perf_sample *sample) 1857 { 1858 struct thread *thread = machine__find_thread(machine, 1859 event->fork.pid, 1860 event->fork.tid); 1861 struct thread *parent = machine__findnew_thread(machine, 1862 event->fork.ppid, 1863 event->fork.ptid); 1864 bool do_maps_clone = true; 1865 int err = 0; 1866 1867 if (dump_trace) 1868 perf_event__fprintf_task(event, stdout); 1869 1870 /* 1871 * There may be an existing thread that is not actually the parent, 1872 * either because we are processing events out of order, or because the 1873 * (fork) event that would have removed the thread was lost. Assume the 1874 * latter case and continue on as best we can. 1875 */ 1876 if (parent->pid_ != (pid_t)event->fork.ppid) { 1877 dump_printf("removing erroneous parent thread %d/%d\n", 1878 parent->pid_, parent->tid); 1879 machine__remove_thread(machine, parent); 1880 thread__put(parent); 1881 parent = machine__findnew_thread(machine, event->fork.ppid, 1882 event->fork.ptid); 1883 } 1884 1885 /* if a thread currently exists for the thread id remove it */ 1886 if (thread != NULL) { 1887 machine__remove_thread(machine, thread); 1888 thread__put(thread); 1889 } 1890 1891 thread = machine__findnew_thread(machine, event->fork.pid, 1892 event->fork.tid); 1893 /* 1894 * When synthesizing FORK events, we are trying to create thread 1895 * objects for the already running tasks on the machine. 1896 * 1897 * Normally, for a kernel FORK event, we want to clone the parent's 1898 * maps because that is what the kernel just did. 1899 * 1900 * But when synthesizing, this should not be done. If we do, we end up 1901 * with overlapping maps as we process the sythesized MMAP2 events that 1902 * get delivered shortly thereafter. 1903 * 1904 * Use the FORK event misc flags in an internal way to signal this 1905 * situation, so we can elide the map clone when appropriate. 1906 */ 1907 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC) 1908 do_maps_clone = false; 1909 1910 if (thread == NULL || parent == NULL || 1911 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) { 1912 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n"); 1913 err = -1; 1914 } 1915 thread__put(thread); 1916 thread__put(parent); 1917 1918 return err; 1919 } 1920 1921 int machine__process_exit_event(struct machine *machine, union perf_event *event, 1922 struct perf_sample *sample __maybe_unused) 1923 { 1924 struct thread *thread = machine__find_thread(machine, 1925 event->fork.pid, 1926 event->fork.tid); 1927 1928 if (dump_trace) 1929 perf_event__fprintf_task(event, stdout); 1930 1931 if (thread != NULL) { 1932 thread__exited(thread); 1933 thread__put(thread); 1934 } 1935 1936 return 0; 1937 } 1938 1939 int machine__process_event(struct machine *machine, union perf_event *event, 1940 struct perf_sample *sample) 1941 { 1942 int ret; 1943 1944 switch (event->header.type) { 1945 case PERF_RECORD_COMM: 1946 ret = machine__process_comm_event(machine, event, sample); break; 1947 case PERF_RECORD_MMAP: 1948 ret = machine__process_mmap_event(machine, event, sample); break; 1949 case PERF_RECORD_NAMESPACES: 1950 ret = machine__process_namespaces_event(machine, event, sample); break; 1951 case PERF_RECORD_CGROUP: 1952 ret = machine__process_cgroup_event(machine, event, sample); break; 1953 case PERF_RECORD_MMAP2: 1954 ret = machine__process_mmap2_event(machine, event, sample); break; 1955 case PERF_RECORD_FORK: 1956 ret = machine__process_fork_event(machine, event, sample); break; 1957 case PERF_RECORD_EXIT: 1958 ret = machine__process_exit_event(machine, event, sample); break; 1959 case PERF_RECORD_LOST: 1960 ret = machine__process_lost_event(machine, event, sample); break; 1961 case PERF_RECORD_AUX: 1962 ret = machine__process_aux_event(machine, event); break; 1963 case PERF_RECORD_ITRACE_START: 1964 ret = machine__process_itrace_start_event(machine, event); break; 1965 case PERF_RECORD_LOST_SAMPLES: 1966 ret = machine__process_lost_samples_event(machine, event, sample); break; 1967 case PERF_RECORD_SWITCH: 1968 case PERF_RECORD_SWITCH_CPU_WIDE: 1969 ret = machine__process_switch_event(machine, event); break; 1970 case PERF_RECORD_KSYMBOL: 1971 ret = machine__process_ksymbol(machine, event, sample); break; 1972 case PERF_RECORD_BPF_EVENT: 1973 ret = machine__process_bpf(machine, event, sample); break; 1974 case PERF_RECORD_TEXT_POKE: 1975 ret = machine__process_text_poke(machine, event, sample); break; 1976 default: 1977 ret = -1; 1978 break; 1979 } 1980 1981 return ret; 1982 } 1983 1984 static bool symbol__match_regex(struct symbol *sym, regex_t *regex) 1985 { 1986 if (!regexec(regex, sym->name, 0, NULL, 0)) 1987 return 1; 1988 return 0; 1989 } 1990 1991 static void ip__resolve_ams(struct thread *thread, 1992 struct addr_map_symbol *ams, 1993 u64 ip) 1994 { 1995 struct addr_location al; 1996 1997 memset(&al, 0, sizeof(al)); 1998 /* 1999 * We cannot use the header.misc hint to determine whether a 2000 * branch stack address is user, kernel, guest, hypervisor. 2001 * Branches may straddle the kernel/user/hypervisor boundaries. 2002 * Thus, we have to try consecutively until we find a match 2003 * or else, the symbol is unknown 2004 */ 2005 thread__find_cpumode_addr_location(thread, ip, &al); 2006 2007 ams->addr = ip; 2008 ams->al_addr = al.addr; 2009 ams->ms.maps = al.maps; 2010 ams->ms.sym = al.sym; 2011 ams->ms.map = al.map; 2012 ams->phys_addr = 0; 2013 } 2014 2015 static void ip__resolve_data(struct thread *thread, 2016 u8 m, struct addr_map_symbol *ams, 2017 u64 addr, u64 phys_addr) 2018 { 2019 struct addr_location al; 2020 2021 memset(&al, 0, sizeof(al)); 2022 2023 thread__find_symbol(thread, m, addr, &al); 2024 2025 ams->addr = addr; 2026 ams->al_addr = al.addr; 2027 ams->ms.maps = al.maps; 2028 ams->ms.sym = al.sym; 2029 ams->ms.map = al.map; 2030 ams->phys_addr = phys_addr; 2031 } 2032 2033 struct mem_info *sample__resolve_mem(struct perf_sample *sample, 2034 struct addr_location *al) 2035 { 2036 struct mem_info *mi = mem_info__new(); 2037 2038 if (!mi) 2039 return NULL; 2040 2041 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip); 2042 ip__resolve_data(al->thread, al->cpumode, &mi->daddr, 2043 sample->addr, sample->phys_addr); 2044 mi->data_src.val = sample->data_src; 2045 2046 return mi; 2047 } 2048 2049 static char *callchain_srcline(struct map_symbol *ms, u64 ip) 2050 { 2051 struct map *map = ms->map; 2052 char *srcline = NULL; 2053 2054 if (!map || callchain_param.key == CCKEY_FUNCTION) 2055 return srcline; 2056 2057 srcline = srcline__tree_find(&map->dso->srclines, ip); 2058 if (!srcline) { 2059 bool show_sym = false; 2060 bool show_addr = callchain_param.key == CCKEY_ADDRESS; 2061 2062 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip), 2063 ms->sym, show_sym, show_addr, ip); 2064 srcline__tree_insert(&map->dso->srclines, ip, srcline); 2065 } 2066 2067 return srcline; 2068 } 2069 2070 struct iterations { 2071 int nr_loop_iter; 2072 u64 cycles; 2073 }; 2074 2075 static int add_callchain_ip(struct thread *thread, 2076 struct callchain_cursor *cursor, 2077 struct symbol **parent, 2078 struct addr_location *root_al, 2079 u8 *cpumode, 2080 u64 ip, 2081 bool branch, 2082 struct branch_flags *flags, 2083 struct iterations *iter, 2084 u64 branch_from) 2085 { 2086 struct map_symbol ms; 2087 struct addr_location al; 2088 int nr_loop_iter = 0; 2089 u64 iter_cycles = 0; 2090 const char *srcline = NULL; 2091 2092 al.filtered = 0; 2093 al.sym = NULL; 2094 if (!cpumode) { 2095 thread__find_cpumode_addr_location(thread, ip, &al); 2096 } else { 2097 if (ip >= PERF_CONTEXT_MAX) { 2098 switch (ip) { 2099 case PERF_CONTEXT_HV: 2100 *cpumode = PERF_RECORD_MISC_HYPERVISOR; 2101 break; 2102 case PERF_CONTEXT_KERNEL: 2103 *cpumode = PERF_RECORD_MISC_KERNEL; 2104 break; 2105 case PERF_CONTEXT_USER: 2106 *cpumode = PERF_RECORD_MISC_USER; 2107 break; 2108 default: 2109 pr_debug("invalid callchain context: " 2110 "%"PRId64"\n", (s64) ip); 2111 /* 2112 * It seems the callchain is corrupted. 2113 * Discard all. 2114 */ 2115 callchain_cursor_reset(cursor); 2116 return 1; 2117 } 2118 return 0; 2119 } 2120 thread__find_symbol(thread, *cpumode, ip, &al); 2121 } 2122 2123 if (al.sym != NULL) { 2124 if (perf_hpp_list.parent && !*parent && 2125 symbol__match_regex(al.sym, &parent_regex)) 2126 *parent = al.sym; 2127 else if (have_ignore_callees && root_al && 2128 symbol__match_regex(al.sym, &ignore_callees_regex)) { 2129 /* Treat this symbol as the root, 2130 forgetting its callees. */ 2131 *root_al = al; 2132 callchain_cursor_reset(cursor); 2133 } 2134 } 2135 2136 if (symbol_conf.hide_unresolved && al.sym == NULL) 2137 return 0; 2138 2139 if (iter) { 2140 nr_loop_iter = iter->nr_loop_iter; 2141 iter_cycles = iter->cycles; 2142 } 2143 2144 ms.maps = al.maps; 2145 ms.map = al.map; 2146 ms.sym = al.sym; 2147 srcline = callchain_srcline(&ms, al.addr); 2148 return callchain_cursor_append(cursor, ip, &ms, 2149 branch, flags, nr_loop_iter, 2150 iter_cycles, branch_from, srcline); 2151 } 2152 2153 struct branch_info *sample__resolve_bstack(struct perf_sample *sample, 2154 struct addr_location *al) 2155 { 2156 unsigned int i; 2157 const struct branch_stack *bs = sample->branch_stack; 2158 struct branch_entry *entries = perf_sample__branch_entries(sample); 2159 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info)); 2160 2161 if (!bi) 2162 return NULL; 2163 2164 for (i = 0; i < bs->nr; i++) { 2165 ip__resolve_ams(al->thread, &bi[i].to, entries[i].to); 2166 ip__resolve_ams(al->thread, &bi[i].from, entries[i].from); 2167 bi[i].flags = entries[i].flags; 2168 } 2169 return bi; 2170 } 2171 2172 static void save_iterations(struct iterations *iter, 2173 struct branch_entry *be, int nr) 2174 { 2175 int i; 2176 2177 iter->nr_loop_iter++; 2178 iter->cycles = 0; 2179 2180 for (i = 0; i < nr; i++) 2181 iter->cycles += be[i].flags.cycles; 2182 } 2183 2184 #define CHASHSZ 127 2185 #define CHASHBITS 7 2186 #define NO_ENTRY 0xff 2187 2188 #define PERF_MAX_BRANCH_DEPTH 127 2189 2190 /* Remove loops. */ 2191 static int remove_loops(struct branch_entry *l, int nr, 2192 struct iterations *iter) 2193 { 2194 int i, j, off; 2195 unsigned char chash[CHASHSZ]; 2196 2197 memset(chash, NO_ENTRY, sizeof(chash)); 2198 2199 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255); 2200 2201 for (i = 0; i < nr; i++) { 2202 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ; 2203 2204 /* no collision handling for now */ 2205 if (chash[h] == NO_ENTRY) { 2206 chash[h] = i; 2207 } else if (l[chash[h]].from == l[i].from) { 2208 bool is_loop = true; 2209 /* check if it is a real loop */ 2210 off = 0; 2211 for (j = chash[h]; j < i && i + off < nr; j++, off++) 2212 if (l[j].from != l[i + off].from) { 2213 is_loop = false; 2214 break; 2215 } 2216 if (is_loop) { 2217 j = nr - (i + off); 2218 if (j > 0) { 2219 save_iterations(iter + i + off, 2220 l + i, off); 2221 2222 memmove(iter + i, iter + i + off, 2223 j * sizeof(*iter)); 2224 2225 memmove(l + i, l + i + off, 2226 j * sizeof(*l)); 2227 } 2228 2229 nr -= off; 2230 } 2231 } 2232 } 2233 return nr; 2234 } 2235 2236 static int lbr_callchain_add_kernel_ip(struct thread *thread, 2237 struct callchain_cursor *cursor, 2238 struct perf_sample *sample, 2239 struct symbol **parent, 2240 struct addr_location *root_al, 2241 u64 branch_from, 2242 bool callee, int end) 2243 { 2244 struct ip_callchain *chain = sample->callchain; 2245 u8 cpumode = PERF_RECORD_MISC_USER; 2246 int err, i; 2247 2248 if (callee) { 2249 for (i = 0; i < end + 1; i++) { 2250 err = add_callchain_ip(thread, cursor, parent, 2251 root_al, &cpumode, chain->ips[i], 2252 false, NULL, NULL, branch_from); 2253 if (err) 2254 return err; 2255 } 2256 return 0; 2257 } 2258 2259 for (i = end; i >= 0; i--) { 2260 err = add_callchain_ip(thread, cursor, parent, 2261 root_al, &cpumode, chain->ips[i], 2262 false, NULL, NULL, branch_from); 2263 if (err) 2264 return err; 2265 } 2266 2267 return 0; 2268 } 2269 2270 static void save_lbr_cursor_node(struct thread *thread, 2271 struct callchain_cursor *cursor, 2272 int idx) 2273 { 2274 struct lbr_stitch *lbr_stitch = thread->lbr_stitch; 2275 2276 if (!lbr_stitch) 2277 return; 2278 2279 if (cursor->pos == cursor->nr) { 2280 lbr_stitch->prev_lbr_cursor[idx].valid = false; 2281 return; 2282 } 2283 2284 if (!cursor->curr) 2285 cursor->curr = cursor->first; 2286 else 2287 cursor->curr = cursor->curr->next; 2288 memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr, 2289 sizeof(struct callchain_cursor_node)); 2290 2291 lbr_stitch->prev_lbr_cursor[idx].valid = true; 2292 cursor->pos++; 2293 } 2294 2295 static int lbr_callchain_add_lbr_ip(struct thread *thread, 2296 struct callchain_cursor *cursor, 2297 struct perf_sample *sample, 2298 struct symbol **parent, 2299 struct addr_location *root_al, 2300 u64 *branch_from, 2301 bool callee) 2302 { 2303 struct branch_stack *lbr_stack = sample->branch_stack; 2304 struct branch_entry *entries = perf_sample__branch_entries(sample); 2305 u8 cpumode = PERF_RECORD_MISC_USER; 2306 int lbr_nr = lbr_stack->nr; 2307 struct branch_flags *flags; 2308 int err, i; 2309 u64 ip; 2310 2311 /* 2312 * The curr and pos are not used in writing session. They are cleared 2313 * in callchain_cursor_commit() when the writing session is closed. 2314 * Using curr and pos to track the current cursor node. 2315 */ 2316 if (thread->lbr_stitch) { 2317 cursor->curr = NULL; 2318 cursor->pos = cursor->nr; 2319 if (cursor->nr) { 2320 cursor->curr = cursor->first; 2321 for (i = 0; i < (int)(cursor->nr - 1); i++) 2322 cursor->curr = cursor->curr->next; 2323 } 2324 } 2325 2326 if (callee) { 2327 /* Add LBR ip from first entries.to */ 2328 ip = entries[0].to; 2329 flags = &entries[0].flags; 2330 *branch_from = entries[0].from; 2331 err = add_callchain_ip(thread, cursor, parent, 2332 root_al, &cpumode, ip, 2333 true, flags, NULL, 2334 *branch_from); 2335 if (err) 2336 return err; 2337 2338 /* 2339 * The number of cursor node increases. 2340 * Move the current cursor node. 2341 * But does not need to save current cursor node for entry 0. 2342 * It's impossible to stitch the whole LBRs of previous sample. 2343 */ 2344 if (thread->lbr_stitch && (cursor->pos != cursor->nr)) { 2345 if (!cursor->curr) 2346 cursor->curr = cursor->first; 2347 else 2348 cursor->curr = cursor->curr->next; 2349 cursor->pos++; 2350 } 2351 2352 /* Add LBR ip from entries.from one by one. */ 2353 for (i = 0; i < lbr_nr; i++) { 2354 ip = entries[i].from; 2355 flags = &entries[i].flags; 2356 err = add_callchain_ip(thread, cursor, parent, 2357 root_al, &cpumode, ip, 2358 true, flags, NULL, 2359 *branch_from); 2360 if (err) 2361 return err; 2362 save_lbr_cursor_node(thread, cursor, i); 2363 } 2364 return 0; 2365 } 2366 2367 /* Add LBR ip from entries.from one by one. */ 2368 for (i = lbr_nr - 1; i >= 0; i--) { 2369 ip = entries[i].from; 2370 flags = &entries[i].flags; 2371 err = add_callchain_ip(thread, cursor, parent, 2372 root_al, &cpumode, ip, 2373 true, flags, NULL, 2374 *branch_from); 2375 if (err) 2376 return err; 2377 save_lbr_cursor_node(thread, cursor, i); 2378 } 2379 2380 /* Add LBR ip from first entries.to */ 2381 ip = entries[0].to; 2382 flags = &entries[0].flags; 2383 *branch_from = entries[0].from; 2384 err = add_callchain_ip(thread, cursor, parent, 2385 root_al, &cpumode, ip, 2386 true, flags, NULL, 2387 *branch_from); 2388 if (err) 2389 return err; 2390 2391 return 0; 2392 } 2393 2394 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread, 2395 struct callchain_cursor *cursor) 2396 { 2397 struct lbr_stitch *lbr_stitch = thread->lbr_stitch; 2398 struct callchain_cursor_node *cnode; 2399 struct stitch_list *stitch_node; 2400 int err; 2401 2402 list_for_each_entry(stitch_node, &lbr_stitch->lists, node) { 2403 cnode = &stitch_node->cursor; 2404 2405 err = callchain_cursor_append(cursor, cnode->ip, 2406 &cnode->ms, 2407 cnode->branch, 2408 &cnode->branch_flags, 2409 cnode->nr_loop_iter, 2410 cnode->iter_cycles, 2411 cnode->branch_from, 2412 cnode->srcline); 2413 if (err) 2414 return err; 2415 } 2416 return 0; 2417 } 2418 2419 static struct stitch_list *get_stitch_node(struct thread *thread) 2420 { 2421 struct lbr_stitch *lbr_stitch = thread->lbr_stitch; 2422 struct stitch_list *stitch_node; 2423 2424 if (!list_empty(&lbr_stitch->free_lists)) { 2425 stitch_node = list_first_entry(&lbr_stitch->free_lists, 2426 struct stitch_list, node); 2427 list_del(&stitch_node->node); 2428 2429 return stitch_node; 2430 } 2431 2432 return malloc(sizeof(struct stitch_list)); 2433 } 2434 2435 static bool has_stitched_lbr(struct thread *thread, 2436 struct perf_sample *cur, 2437 struct perf_sample *prev, 2438 unsigned int max_lbr, 2439 bool callee) 2440 { 2441 struct branch_stack *cur_stack = cur->branch_stack; 2442 struct branch_entry *cur_entries = perf_sample__branch_entries(cur); 2443 struct branch_stack *prev_stack = prev->branch_stack; 2444 struct branch_entry *prev_entries = perf_sample__branch_entries(prev); 2445 struct lbr_stitch *lbr_stitch = thread->lbr_stitch; 2446 int i, j, nr_identical_branches = 0; 2447 struct stitch_list *stitch_node; 2448 u64 cur_base, distance; 2449 2450 if (!cur_stack || !prev_stack) 2451 return false; 2452 2453 /* Find the physical index of the base-of-stack for current sample. */ 2454 cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1; 2455 2456 distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) : 2457 (max_lbr + prev_stack->hw_idx - cur_base); 2458 /* Previous sample has shorter stack. Nothing can be stitched. */ 2459 if (distance + 1 > prev_stack->nr) 2460 return false; 2461 2462 /* 2463 * Check if there are identical LBRs between two samples. 2464 * Identicall LBRs must have same from, to and flags values. Also, 2465 * they have to be saved in the same LBR registers (same physical 2466 * index). 2467 * 2468 * Starts from the base-of-stack of current sample. 2469 */ 2470 for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) { 2471 if ((prev_entries[i].from != cur_entries[j].from) || 2472 (prev_entries[i].to != cur_entries[j].to) || 2473 (prev_entries[i].flags.value != cur_entries[j].flags.value)) 2474 break; 2475 nr_identical_branches++; 2476 } 2477 2478 if (!nr_identical_branches) 2479 return false; 2480 2481 /* 2482 * Save the LBRs between the base-of-stack of previous sample 2483 * and the base-of-stack of current sample into lbr_stitch->lists. 2484 * These LBRs will be stitched later. 2485 */ 2486 for (i = prev_stack->nr - 1; i > (int)distance; i--) { 2487 2488 if (!lbr_stitch->prev_lbr_cursor[i].valid) 2489 continue; 2490 2491 stitch_node = get_stitch_node(thread); 2492 if (!stitch_node) 2493 return false; 2494 2495 memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i], 2496 sizeof(struct callchain_cursor_node)); 2497 2498 if (callee) 2499 list_add(&stitch_node->node, &lbr_stitch->lists); 2500 else 2501 list_add_tail(&stitch_node->node, &lbr_stitch->lists); 2502 } 2503 2504 return true; 2505 } 2506 2507 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr) 2508 { 2509 if (thread->lbr_stitch) 2510 return true; 2511 2512 thread->lbr_stitch = zalloc(sizeof(*thread->lbr_stitch)); 2513 if (!thread->lbr_stitch) 2514 goto err; 2515 2516 thread->lbr_stitch->prev_lbr_cursor = calloc(max_lbr + 1, sizeof(struct callchain_cursor_node)); 2517 if (!thread->lbr_stitch->prev_lbr_cursor) 2518 goto free_lbr_stitch; 2519 2520 INIT_LIST_HEAD(&thread->lbr_stitch->lists); 2521 INIT_LIST_HEAD(&thread->lbr_stitch->free_lists); 2522 2523 return true; 2524 2525 free_lbr_stitch: 2526 zfree(&thread->lbr_stitch); 2527 err: 2528 pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n"); 2529 thread->lbr_stitch_enable = false; 2530 return false; 2531 } 2532 2533 /* 2534 * Recolve LBR callstack chain sample 2535 * Return: 2536 * 1 on success get LBR callchain information 2537 * 0 no available LBR callchain information, should try fp 2538 * negative error code on other errors. 2539 */ 2540 static int resolve_lbr_callchain_sample(struct thread *thread, 2541 struct callchain_cursor *cursor, 2542 struct perf_sample *sample, 2543 struct symbol **parent, 2544 struct addr_location *root_al, 2545 int max_stack, 2546 unsigned int max_lbr) 2547 { 2548 bool callee = (callchain_param.order == ORDER_CALLEE); 2549 struct ip_callchain *chain = sample->callchain; 2550 int chain_nr = min(max_stack, (int)chain->nr), i; 2551 struct lbr_stitch *lbr_stitch; 2552 bool stitched_lbr = false; 2553 u64 branch_from = 0; 2554 int err; 2555 2556 for (i = 0; i < chain_nr; i++) { 2557 if (chain->ips[i] == PERF_CONTEXT_USER) 2558 break; 2559 } 2560 2561 /* LBR only affects the user callchain */ 2562 if (i == chain_nr) 2563 return 0; 2564 2565 if (thread->lbr_stitch_enable && !sample->no_hw_idx && 2566 (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) { 2567 lbr_stitch = thread->lbr_stitch; 2568 2569 stitched_lbr = has_stitched_lbr(thread, sample, 2570 &lbr_stitch->prev_sample, 2571 max_lbr, callee); 2572 2573 if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) { 2574 list_replace_init(&lbr_stitch->lists, 2575 &lbr_stitch->free_lists); 2576 } 2577 memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample)); 2578 } 2579 2580 if (callee) { 2581 /* Add kernel ip */ 2582 err = lbr_callchain_add_kernel_ip(thread, cursor, sample, 2583 parent, root_al, branch_from, 2584 true, i); 2585 if (err) 2586 goto error; 2587 2588 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent, 2589 root_al, &branch_from, true); 2590 if (err) 2591 goto error; 2592 2593 if (stitched_lbr) { 2594 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor); 2595 if (err) 2596 goto error; 2597 } 2598 2599 } else { 2600 if (stitched_lbr) { 2601 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor); 2602 if (err) 2603 goto error; 2604 } 2605 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent, 2606 root_al, &branch_from, false); 2607 if (err) 2608 goto error; 2609 2610 /* Add kernel ip */ 2611 err = lbr_callchain_add_kernel_ip(thread, cursor, sample, 2612 parent, root_al, branch_from, 2613 false, i); 2614 if (err) 2615 goto error; 2616 } 2617 return 1; 2618 2619 error: 2620 return (err < 0) ? err : 0; 2621 } 2622 2623 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread, 2624 struct callchain_cursor *cursor, 2625 struct symbol **parent, 2626 struct addr_location *root_al, 2627 u8 *cpumode, int ent) 2628 { 2629 int err = 0; 2630 2631 while (--ent >= 0) { 2632 u64 ip = chain->ips[ent]; 2633 2634 if (ip >= PERF_CONTEXT_MAX) { 2635 err = add_callchain_ip(thread, cursor, parent, 2636 root_al, cpumode, ip, 2637 false, NULL, NULL, 0); 2638 break; 2639 } 2640 } 2641 return err; 2642 } 2643 2644 static int thread__resolve_callchain_sample(struct thread *thread, 2645 struct callchain_cursor *cursor, 2646 struct evsel *evsel, 2647 struct perf_sample *sample, 2648 struct symbol **parent, 2649 struct addr_location *root_al, 2650 int max_stack) 2651 { 2652 struct branch_stack *branch = sample->branch_stack; 2653 struct branch_entry *entries = perf_sample__branch_entries(sample); 2654 struct ip_callchain *chain = sample->callchain; 2655 int chain_nr = 0; 2656 u8 cpumode = PERF_RECORD_MISC_USER; 2657 int i, j, err, nr_entries; 2658 int skip_idx = -1; 2659 int first_call = 0; 2660 2661 if (chain) 2662 chain_nr = chain->nr; 2663 2664 if (evsel__has_branch_callstack(evsel)) { 2665 struct perf_env *env = evsel__env(evsel); 2666 2667 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent, 2668 root_al, max_stack, 2669 !env ? 0 : env->max_branches); 2670 if (err) 2671 return (err < 0) ? err : 0; 2672 } 2673 2674 /* 2675 * Based on DWARF debug information, some architectures skip 2676 * a callchain entry saved by the kernel. 2677 */ 2678 skip_idx = arch_skip_callchain_idx(thread, chain); 2679 2680 /* 2681 * Add branches to call stack for easier browsing. This gives 2682 * more context for a sample than just the callers. 2683 * 2684 * This uses individual histograms of paths compared to the 2685 * aggregated histograms the normal LBR mode uses. 2686 * 2687 * Limitations for now: 2688 * - No extra filters 2689 * - No annotations (should annotate somehow) 2690 */ 2691 2692 if (branch && callchain_param.branch_callstack) { 2693 int nr = min(max_stack, (int)branch->nr); 2694 struct branch_entry be[nr]; 2695 struct iterations iter[nr]; 2696 2697 if (branch->nr > PERF_MAX_BRANCH_DEPTH) { 2698 pr_warning("corrupted branch chain. skipping...\n"); 2699 goto check_calls; 2700 } 2701 2702 for (i = 0; i < nr; i++) { 2703 if (callchain_param.order == ORDER_CALLEE) { 2704 be[i] = entries[i]; 2705 2706 if (chain == NULL) 2707 continue; 2708 2709 /* 2710 * Check for overlap into the callchain. 2711 * The return address is one off compared to 2712 * the branch entry. To adjust for this 2713 * assume the calling instruction is not longer 2714 * than 8 bytes. 2715 */ 2716 if (i == skip_idx || 2717 chain->ips[first_call] >= PERF_CONTEXT_MAX) 2718 first_call++; 2719 else if (be[i].from < chain->ips[first_call] && 2720 be[i].from >= chain->ips[first_call] - 8) 2721 first_call++; 2722 } else 2723 be[i] = entries[branch->nr - i - 1]; 2724 } 2725 2726 memset(iter, 0, sizeof(struct iterations) * nr); 2727 nr = remove_loops(be, nr, iter); 2728 2729 for (i = 0; i < nr; i++) { 2730 err = add_callchain_ip(thread, cursor, parent, 2731 root_al, 2732 NULL, be[i].to, 2733 true, &be[i].flags, 2734 NULL, be[i].from); 2735 2736 if (!err) 2737 err = add_callchain_ip(thread, cursor, parent, root_al, 2738 NULL, be[i].from, 2739 true, &be[i].flags, 2740 &iter[i], 0); 2741 if (err == -EINVAL) 2742 break; 2743 if (err) 2744 return err; 2745 } 2746 2747 if (chain_nr == 0) 2748 return 0; 2749 2750 chain_nr -= nr; 2751 } 2752 2753 check_calls: 2754 if (chain && callchain_param.order != ORDER_CALLEE) { 2755 err = find_prev_cpumode(chain, thread, cursor, parent, root_al, 2756 &cpumode, chain->nr - first_call); 2757 if (err) 2758 return (err < 0) ? err : 0; 2759 } 2760 for (i = first_call, nr_entries = 0; 2761 i < chain_nr && nr_entries < max_stack; i++) { 2762 u64 ip; 2763 2764 if (callchain_param.order == ORDER_CALLEE) 2765 j = i; 2766 else 2767 j = chain->nr - i - 1; 2768 2769 #ifdef HAVE_SKIP_CALLCHAIN_IDX 2770 if (j == skip_idx) 2771 continue; 2772 #endif 2773 ip = chain->ips[j]; 2774 if (ip < PERF_CONTEXT_MAX) 2775 ++nr_entries; 2776 else if (callchain_param.order != ORDER_CALLEE) { 2777 err = find_prev_cpumode(chain, thread, cursor, parent, 2778 root_al, &cpumode, j); 2779 if (err) 2780 return (err < 0) ? err : 0; 2781 continue; 2782 } 2783 2784 err = add_callchain_ip(thread, cursor, parent, 2785 root_al, &cpumode, ip, 2786 false, NULL, NULL, 0); 2787 2788 if (err) 2789 return (err < 0) ? err : 0; 2790 } 2791 2792 return 0; 2793 } 2794 2795 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip) 2796 { 2797 struct symbol *sym = ms->sym; 2798 struct map *map = ms->map; 2799 struct inline_node *inline_node; 2800 struct inline_list *ilist; 2801 u64 addr; 2802 int ret = 1; 2803 2804 if (!symbol_conf.inline_name || !map || !sym) 2805 return ret; 2806 2807 addr = map__map_ip(map, ip); 2808 addr = map__rip_2objdump(map, addr); 2809 2810 inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr); 2811 if (!inline_node) { 2812 inline_node = dso__parse_addr_inlines(map->dso, addr, sym); 2813 if (!inline_node) 2814 return ret; 2815 inlines__tree_insert(&map->dso->inlined_nodes, inline_node); 2816 } 2817 2818 list_for_each_entry(ilist, &inline_node->val, list) { 2819 struct map_symbol ilist_ms = { 2820 .maps = ms->maps, 2821 .map = map, 2822 .sym = ilist->symbol, 2823 }; 2824 ret = callchain_cursor_append(cursor, ip, &ilist_ms, false, 2825 NULL, 0, 0, 0, ilist->srcline); 2826 2827 if (ret != 0) 2828 return ret; 2829 } 2830 2831 return ret; 2832 } 2833 2834 static int unwind_entry(struct unwind_entry *entry, void *arg) 2835 { 2836 struct callchain_cursor *cursor = arg; 2837 const char *srcline = NULL; 2838 u64 addr = entry->ip; 2839 2840 if (symbol_conf.hide_unresolved && entry->ms.sym == NULL) 2841 return 0; 2842 2843 if (append_inlines(cursor, &entry->ms, entry->ip) == 0) 2844 return 0; 2845 2846 /* 2847 * Convert entry->ip from a virtual address to an offset in 2848 * its corresponding binary. 2849 */ 2850 if (entry->ms.map) 2851 addr = map__map_ip(entry->ms.map, entry->ip); 2852 2853 srcline = callchain_srcline(&entry->ms, addr); 2854 return callchain_cursor_append(cursor, entry->ip, &entry->ms, 2855 false, NULL, 0, 0, 0, srcline); 2856 } 2857 2858 static int thread__resolve_callchain_unwind(struct thread *thread, 2859 struct callchain_cursor *cursor, 2860 struct evsel *evsel, 2861 struct perf_sample *sample, 2862 int max_stack) 2863 { 2864 /* Can we do dwarf post unwind? */ 2865 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) && 2866 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER))) 2867 return 0; 2868 2869 /* Bail out if nothing was captured. */ 2870 if ((!sample->user_regs.regs) || 2871 (!sample->user_stack.size)) 2872 return 0; 2873 2874 return unwind__get_entries(unwind_entry, cursor, 2875 thread, sample, max_stack); 2876 } 2877 2878 int thread__resolve_callchain(struct thread *thread, 2879 struct callchain_cursor *cursor, 2880 struct evsel *evsel, 2881 struct perf_sample *sample, 2882 struct symbol **parent, 2883 struct addr_location *root_al, 2884 int max_stack) 2885 { 2886 int ret = 0; 2887 2888 callchain_cursor_reset(cursor); 2889 2890 if (callchain_param.order == ORDER_CALLEE) { 2891 ret = thread__resolve_callchain_sample(thread, cursor, 2892 evsel, sample, 2893 parent, root_al, 2894 max_stack); 2895 if (ret) 2896 return ret; 2897 ret = thread__resolve_callchain_unwind(thread, cursor, 2898 evsel, sample, 2899 max_stack); 2900 } else { 2901 ret = thread__resolve_callchain_unwind(thread, cursor, 2902 evsel, sample, 2903 max_stack); 2904 if (ret) 2905 return ret; 2906 ret = thread__resolve_callchain_sample(thread, cursor, 2907 evsel, sample, 2908 parent, root_al, 2909 max_stack); 2910 } 2911 2912 return ret; 2913 } 2914 2915 int machine__for_each_thread(struct machine *machine, 2916 int (*fn)(struct thread *thread, void *p), 2917 void *priv) 2918 { 2919 struct threads *threads; 2920 struct rb_node *nd; 2921 struct thread *thread; 2922 int rc = 0; 2923 int i; 2924 2925 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 2926 threads = &machine->threads[i]; 2927 for (nd = rb_first_cached(&threads->entries); nd; 2928 nd = rb_next(nd)) { 2929 thread = rb_entry(nd, struct thread, rb_node); 2930 rc = fn(thread, priv); 2931 if (rc != 0) 2932 return rc; 2933 } 2934 2935 list_for_each_entry(thread, &threads->dead, node) { 2936 rc = fn(thread, priv); 2937 if (rc != 0) 2938 return rc; 2939 } 2940 } 2941 return rc; 2942 } 2943 2944 int machines__for_each_thread(struct machines *machines, 2945 int (*fn)(struct thread *thread, void *p), 2946 void *priv) 2947 { 2948 struct rb_node *nd; 2949 int rc = 0; 2950 2951 rc = machine__for_each_thread(&machines->host, fn, priv); 2952 if (rc != 0) 2953 return rc; 2954 2955 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 2956 struct machine *machine = rb_entry(nd, struct machine, rb_node); 2957 2958 rc = machine__for_each_thread(machine, fn, priv); 2959 if (rc != 0) 2960 return rc; 2961 } 2962 return rc; 2963 } 2964 2965 pid_t machine__get_current_tid(struct machine *machine, int cpu) 2966 { 2967 int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS); 2968 2969 if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid) 2970 return -1; 2971 2972 return machine->current_tid[cpu]; 2973 } 2974 2975 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid, 2976 pid_t tid) 2977 { 2978 struct thread *thread; 2979 int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS); 2980 2981 if (cpu < 0) 2982 return -EINVAL; 2983 2984 if (!machine->current_tid) { 2985 int i; 2986 2987 machine->current_tid = calloc(nr_cpus, sizeof(pid_t)); 2988 if (!machine->current_tid) 2989 return -ENOMEM; 2990 for (i = 0; i < nr_cpus; i++) 2991 machine->current_tid[i] = -1; 2992 } 2993 2994 if (cpu >= nr_cpus) { 2995 pr_err("Requested CPU %d too large. ", cpu); 2996 pr_err("Consider raising MAX_NR_CPUS\n"); 2997 return -EINVAL; 2998 } 2999 3000 machine->current_tid[cpu] = tid; 3001 3002 thread = machine__findnew_thread(machine, pid, tid); 3003 if (!thread) 3004 return -ENOMEM; 3005 3006 thread->cpu = cpu; 3007 thread__put(thread); 3008 3009 return 0; 3010 } 3011 3012 /* 3013 * Compares the raw arch string. N.B. see instead perf_env__arch() if a 3014 * normalized arch is needed. 3015 */ 3016 bool machine__is(struct machine *machine, const char *arch) 3017 { 3018 return machine && !strcmp(perf_env__raw_arch(machine->env), arch); 3019 } 3020 3021 int machine__nr_cpus_avail(struct machine *machine) 3022 { 3023 return machine ? perf_env__nr_cpus_avail(machine->env) : 0; 3024 } 3025 3026 int machine__get_kernel_start(struct machine *machine) 3027 { 3028 struct map *map = machine__kernel_map(machine); 3029 int err = 0; 3030 3031 /* 3032 * The only addresses above 2^63 are kernel addresses of a 64-bit 3033 * kernel. Note that addresses are unsigned so that on a 32-bit system 3034 * all addresses including kernel addresses are less than 2^32. In 3035 * that case (32-bit system), if the kernel mapping is unknown, all 3036 * addresses will be assumed to be in user space - see 3037 * machine__kernel_ip(). 3038 */ 3039 machine->kernel_start = 1ULL << 63; 3040 if (map) { 3041 err = map__load(map); 3042 /* 3043 * On x86_64, PTI entry trampolines are less than the 3044 * start of kernel text, but still above 2^63. So leave 3045 * kernel_start = 1ULL << 63 for x86_64. 3046 */ 3047 if (!err && !machine__is(machine, "x86_64")) 3048 machine->kernel_start = map->start; 3049 } 3050 return err; 3051 } 3052 3053 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr) 3054 { 3055 u8 addr_cpumode = cpumode; 3056 bool kernel_ip; 3057 3058 if (!machine->single_address_space) 3059 goto out; 3060 3061 kernel_ip = machine__kernel_ip(machine, addr); 3062 switch (cpumode) { 3063 case PERF_RECORD_MISC_KERNEL: 3064 case PERF_RECORD_MISC_USER: 3065 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL : 3066 PERF_RECORD_MISC_USER; 3067 break; 3068 case PERF_RECORD_MISC_GUEST_KERNEL: 3069 case PERF_RECORD_MISC_GUEST_USER: 3070 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL : 3071 PERF_RECORD_MISC_GUEST_USER; 3072 break; 3073 default: 3074 break; 3075 } 3076 out: 3077 return addr_cpumode; 3078 } 3079 3080 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id) 3081 { 3082 return dsos__findnew_id(&machine->dsos, filename, id); 3083 } 3084 3085 struct dso *machine__findnew_dso(struct machine *machine, const char *filename) 3086 { 3087 return machine__findnew_dso_id(machine, filename, NULL); 3088 } 3089 3090 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp) 3091 { 3092 struct machine *machine = vmachine; 3093 struct map *map; 3094 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map); 3095 3096 if (sym == NULL) 3097 return NULL; 3098 3099 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL; 3100 *addrp = map->unmap_ip(map, sym->start); 3101 return sym->name; 3102 } 3103 3104 int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv) 3105 { 3106 struct dso *pos; 3107 int err = 0; 3108 3109 list_for_each_entry(pos, &machine->dsos.head, node) { 3110 if (fn(pos, machine, priv)) 3111 err = -1; 3112 } 3113 return err; 3114 } 3115