1 // SPDX-License-Identifier: GPL-2.0 2 #include <dirent.h> 3 #include <errno.h> 4 #include <inttypes.h> 5 #include <regex.h> 6 #include <stdlib.h> 7 #include "callchain.h" 8 #include "debug.h" 9 #include "dso.h" 10 #include "env.h" 11 #include "event.h" 12 #include "evsel.h" 13 #include "hist.h" 14 #include "machine.h" 15 #include "map.h" 16 #include "map_symbol.h" 17 #include "branch.h" 18 #include "mem-events.h" 19 #include "srcline.h" 20 #include "symbol.h" 21 #include "sort.h" 22 #include "strlist.h" 23 #include "target.h" 24 #include "thread.h" 25 #include "util.h" 26 #include "vdso.h" 27 #include <stdbool.h> 28 #include <sys/types.h> 29 #include <sys/stat.h> 30 #include <unistd.h> 31 #include "unwind.h" 32 #include "linux/hash.h" 33 #include "asm/bug.h" 34 #include "bpf-event.h" 35 #include <internal/lib.h> // page_size 36 37 #include <linux/ctype.h> 38 #include <symbol/kallsyms.h> 39 #include <linux/mman.h> 40 #include <linux/string.h> 41 #include <linux/zalloc.h> 42 43 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock); 44 45 static struct dso *machine__kernel_dso(struct machine *machine) 46 { 47 return machine->vmlinux_map->dso; 48 } 49 50 static void dsos__init(struct dsos *dsos) 51 { 52 INIT_LIST_HEAD(&dsos->head); 53 dsos->root = RB_ROOT; 54 init_rwsem(&dsos->lock); 55 } 56 57 static void machine__threads_init(struct machine *machine) 58 { 59 int i; 60 61 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 62 struct threads *threads = &machine->threads[i]; 63 threads->entries = RB_ROOT_CACHED; 64 init_rwsem(&threads->lock); 65 threads->nr = 0; 66 INIT_LIST_HEAD(&threads->dead); 67 threads->last_match = NULL; 68 } 69 } 70 71 static int machine__set_mmap_name(struct machine *machine) 72 { 73 if (machine__is_host(machine)) 74 machine->mmap_name = strdup("[kernel.kallsyms]"); 75 else if (machine__is_default_guest(machine)) 76 machine->mmap_name = strdup("[guest.kernel.kallsyms]"); 77 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]", 78 machine->pid) < 0) 79 machine->mmap_name = NULL; 80 81 return machine->mmap_name ? 0 : -ENOMEM; 82 } 83 84 int machine__init(struct machine *machine, const char *root_dir, pid_t pid) 85 { 86 int err = -ENOMEM; 87 88 memset(machine, 0, sizeof(*machine)); 89 map_groups__init(&machine->kmaps, machine); 90 RB_CLEAR_NODE(&machine->rb_node); 91 dsos__init(&machine->dsos); 92 93 machine__threads_init(machine); 94 95 machine->vdso_info = NULL; 96 machine->env = NULL; 97 98 machine->pid = pid; 99 100 machine->id_hdr_size = 0; 101 machine->kptr_restrict_warned = false; 102 machine->comm_exec = false; 103 machine->kernel_start = 0; 104 machine->vmlinux_map = NULL; 105 106 machine->root_dir = strdup(root_dir); 107 if (machine->root_dir == NULL) 108 return -ENOMEM; 109 110 if (machine__set_mmap_name(machine)) 111 goto out; 112 113 if (pid != HOST_KERNEL_ID) { 114 struct thread *thread = machine__findnew_thread(machine, -1, 115 pid); 116 char comm[64]; 117 118 if (thread == NULL) 119 goto out; 120 121 snprintf(comm, sizeof(comm), "[guest/%d]", pid); 122 thread__set_comm(thread, comm, 0); 123 thread__put(thread); 124 } 125 126 machine->current_tid = NULL; 127 err = 0; 128 129 out: 130 if (err) { 131 zfree(&machine->root_dir); 132 zfree(&machine->mmap_name); 133 } 134 return 0; 135 } 136 137 struct machine *machine__new_host(void) 138 { 139 struct machine *machine = malloc(sizeof(*machine)); 140 141 if (machine != NULL) { 142 machine__init(machine, "", HOST_KERNEL_ID); 143 144 if (machine__create_kernel_maps(machine) < 0) 145 goto out_delete; 146 } 147 148 return machine; 149 out_delete: 150 free(machine); 151 return NULL; 152 } 153 154 struct machine *machine__new_kallsyms(void) 155 { 156 struct machine *machine = machine__new_host(); 157 /* 158 * FIXME: 159 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly 160 * ask for not using the kcore parsing code, once this one is fixed 161 * to create a map per module. 162 */ 163 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) { 164 machine__delete(machine); 165 machine = NULL; 166 } 167 168 return machine; 169 } 170 171 static void dsos__purge(struct dsos *dsos) 172 { 173 struct dso *pos, *n; 174 175 down_write(&dsos->lock); 176 177 list_for_each_entry_safe(pos, n, &dsos->head, node) { 178 RB_CLEAR_NODE(&pos->rb_node); 179 pos->root = NULL; 180 list_del_init(&pos->node); 181 dso__put(pos); 182 } 183 184 up_write(&dsos->lock); 185 } 186 187 static void dsos__exit(struct dsos *dsos) 188 { 189 dsos__purge(dsos); 190 exit_rwsem(&dsos->lock); 191 } 192 193 void machine__delete_threads(struct machine *machine) 194 { 195 struct rb_node *nd; 196 int i; 197 198 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 199 struct threads *threads = &machine->threads[i]; 200 down_write(&threads->lock); 201 nd = rb_first_cached(&threads->entries); 202 while (nd) { 203 struct thread *t = rb_entry(nd, struct thread, rb_node); 204 205 nd = rb_next(nd); 206 __machine__remove_thread(machine, t, false); 207 } 208 up_write(&threads->lock); 209 } 210 } 211 212 void machine__exit(struct machine *machine) 213 { 214 int i; 215 216 if (machine == NULL) 217 return; 218 219 machine__destroy_kernel_maps(machine); 220 map_groups__exit(&machine->kmaps); 221 dsos__exit(&machine->dsos); 222 machine__exit_vdso(machine); 223 zfree(&machine->root_dir); 224 zfree(&machine->mmap_name); 225 zfree(&machine->current_tid); 226 227 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 228 struct threads *threads = &machine->threads[i]; 229 struct thread *thread, *n; 230 /* 231 * Forget about the dead, at this point whatever threads were 232 * left in the dead lists better have a reference count taken 233 * by who is using them, and then, when they drop those references 234 * and it finally hits zero, thread__put() will check and see that 235 * its not in the dead threads list and will not try to remove it 236 * from there, just calling thread__delete() straight away. 237 */ 238 list_for_each_entry_safe(thread, n, &threads->dead, node) 239 list_del_init(&thread->node); 240 241 exit_rwsem(&threads->lock); 242 } 243 } 244 245 void machine__delete(struct machine *machine) 246 { 247 if (machine) { 248 machine__exit(machine); 249 free(machine); 250 } 251 } 252 253 void machines__init(struct machines *machines) 254 { 255 machine__init(&machines->host, "", HOST_KERNEL_ID); 256 machines->guests = RB_ROOT_CACHED; 257 } 258 259 void machines__exit(struct machines *machines) 260 { 261 machine__exit(&machines->host); 262 /* XXX exit guest */ 263 } 264 265 struct machine *machines__add(struct machines *machines, pid_t pid, 266 const char *root_dir) 267 { 268 struct rb_node **p = &machines->guests.rb_root.rb_node; 269 struct rb_node *parent = NULL; 270 struct machine *pos, *machine = malloc(sizeof(*machine)); 271 bool leftmost = true; 272 273 if (machine == NULL) 274 return NULL; 275 276 if (machine__init(machine, root_dir, pid) != 0) { 277 free(machine); 278 return NULL; 279 } 280 281 while (*p != NULL) { 282 parent = *p; 283 pos = rb_entry(parent, struct machine, rb_node); 284 if (pid < pos->pid) 285 p = &(*p)->rb_left; 286 else { 287 p = &(*p)->rb_right; 288 leftmost = false; 289 } 290 } 291 292 rb_link_node(&machine->rb_node, parent, p); 293 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost); 294 295 return machine; 296 } 297 298 void machines__set_comm_exec(struct machines *machines, bool comm_exec) 299 { 300 struct rb_node *nd; 301 302 machines->host.comm_exec = comm_exec; 303 304 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 305 struct machine *machine = rb_entry(nd, struct machine, rb_node); 306 307 machine->comm_exec = comm_exec; 308 } 309 } 310 311 struct machine *machines__find(struct machines *machines, pid_t pid) 312 { 313 struct rb_node **p = &machines->guests.rb_root.rb_node; 314 struct rb_node *parent = NULL; 315 struct machine *machine; 316 struct machine *default_machine = NULL; 317 318 if (pid == HOST_KERNEL_ID) 319 return &machines->host; 320 321 while (*p != NULL) { 322 parent = *p; 323 machine = rb_entry(parent, struct machine, rb_node); 324 if (pid < machine->pid) 325 p = &(*p)->rb_left; 326 else if (pid > machine->pid) 327 p = &(*p)->rb_right; 328 else 329 return machine; 330 if (!machine->pid) 331 default_machine = machine; 332 } 333 334 return default_machine; 335 } 336 337 struct machine *machines__findnew(struct machines *machines, pid_t pid) 338 { 339 char path[PATH_MAX]; 340 const char *root_dir = ""; 341 struct machine *machine = machines__find(machines, pid); 342 343 if (machine && (machine->pid == pid)) 344 goto out; 345 346 if ((pid != HOST_KERNEL_ID) && 347 (pid != DEFAULT_GUEST_KERNEL_ID) && 348 (symbol_conf.guestmount)) { 349 sprintf(path, "%s/%d", symbol_conf.guestmount, pid); 350 if (access(path, R_OK)) { 351 static struct strlist *seen; 352 353 if (!seen) 354 seen = strlist__new(NULL, NULL); 355 356 if (!strlist__has_entry(seen, path)) { 357 pr_err("Can't access file %s\n", path); 358 strlist__add(seen, path); 359 } 360 machine = NULL; 361 goto out; 362 } 363 root_dir = path; 364 } 365 366 machine = machines__add(machines, pid, root_dir); 367 out: 368 return machine; 369 } 370 371 void machines__process_guests(struct machines *machines, 372 machine__process_t process, void *data) 373 { 374 struct rb_node *nd; 375 376 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 377 struct machine *pos = rb_entry(nd, struct machine, rb_node); 378 process(pos, data); 379 } 380 } 381 382 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size) 383 { 384 struct rb_node *node; 385 struct machine *machine; 386 387 machines->host.id_hdr_size = id_hdr_size; 388 389 for (node = rb_first_cached(&machines->guests); node; 390 node = rb_next(node)) { 391 machine = rb_entry(node, struct machine, rb_node); 392 machine->id_hdr_size = id_hdr_size; 393 } 394 395 return; 396 } 397 398 static void machine__update_thread_pid(struct machine *machine, 399 struct thread *th, pid_t pid) 400 { 401 struct thread *leader; 402 403 if (pid == th->pid_ || pid == -1 || th->pid_ != -1) 404 return; 405 406 th->pid_ = pid; 407 408 if (th->pid_ == th->tid) 409 return; 410 411 leader = __machine__findnew_thread(machine, th->pid_, th->pid_); 412 if (!leader) 413 goto out_err; 414 415 if (!leader->mg) 416 leader->mg = map_groups__new(machine); 417 418 if (!leader->mg) 419 goto out_err; 420 421 if (th->mg == leader->mg) 422 return; 423 424 if (th->mg) { 425 /* 426 * Maps are created from MMAP events which provide the pid and 427 * tid. Consequently there never should be any maps on a thread 428 * with an unknown pid. Just print an error if there are. 429 */ 430 if (!map_groups__empty(th->mg)) 431 pr_err("Discarding thread maps for %d:%d\n", 432 th->pid_, th->tid); 433 map_groups__put(th->mg); 434 } 435 436 th->mg = map_groups__get(leader->mg); 437 out_put: 438 thread__put(leader); 439 return; 440 out_err: 441 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid); 442 goto out_put; 443 } 444 445 /* 446 * Front-end cache - TID lookups come in blocks, 447 * so most of the time we dont have to look up 448 * the full rbtree: 449 */ 450 static struct thread* 451 __threads__get_last_match(struct threads *threads, struct machine *machine, 452 int pid, int tid) 453 { 454 struct thread *th; 455 456 th = threads->last_match; 457 if (th != NULL) { 458 if (th->tid == tid) { 459 machine__update_thread_pid(machine, th, pid); 460 return thread__get(th); 461 } 462 463 threads->last_match = NULL; 464 } 465 466 return NULL; 467 } 468 469 static struct thread* 470 threads__get_last_match(struct threads *threads, struct machine *machine, 471 int pid, int tid) 472 { 473 struct thread *th = NULL; 474 475 if (perf_singlethreaded) 476 th = __threads__get_last_match(threads, machine, pid, tid); 477 478 return th; 479 } 480 481 static void 482 __threads__set_last_match(struct threads *threads, struct thread *th) 483 { 484 threads->last_match = th; 485 } 486 487 static void 488 threads__set_last_match(struct threads *threads, struct thread *th) 489 { 490 if (perf_singlethreaded) 491 __threads__set_last_match(threads, th); 492 } 493 494 /* 495 * Caller must eventually drop thread->refcnt returned with a successful 496 * lookup/new thread inserted. 497 */ 498 static struct thread *____machine__findnew_thread(struct machine *machine, 499 struct threads *threads, 500 pid_t pid, pid_t tid, 501 bool create) 502 { 503 struct rb_node **p = &threads->entries.rb_root.rb_node; 504 struct rb_node *parent = NULL; 505 struct thread *th; 506 bool leftmost = true; 507 508 th = threads__get_last_match(threads, machine, pid, tid); 509 if (th) 510 return th; 511 512 while (*p != NULL) { 513 parent = *p; 514 th = rb_entry(parent, struct thread, rb_node); 515 516 if (th->tid == tid) { 517 threads__set_last_match(threads, th); 518 machine__update_thread_pid(machine, th, pid); 519 return thread__get(th); 520 } 521 522 if (tid < th->tid) 523 p = &(*p)->rb_left; 524 else { 525 p = &(*p)->rb_right; 526 leftmost = false; 527 } 528 } 529 530 if (!create) 531 return NULL; 532 533 th = thread__new(pid, tid); 534 if (th != NULL) { 535 rb_link_node(&th->rb_node, parent, p); 536 rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost); 537 538 /* 539 * We have to initialize map_groups separately 540 * after rb tree is updated. 541 * 542 * The reason is that we call machine__findnew_thread 543 * within thread__init_map_groups to find the thread 544 * leader and that would screwed the rb tree. 545 */ 546 if (thread__init_map_groups(th, machine)) { 547 rb_erase_cached(&th->rb_node, &threads->entries); 548 RB_CLEAR_NODE(&th->rb_node); 549 thread__put(th); 550 return NULL; 551 } 552 /* 553 * It is now in the rbtree, get a ref 554 */ 555 thread__get(th); 556 threads__set_last_match(threads, th); 557 ++threads->nr; 558 } 559 560 return th; 561 } 562 563 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid) 564 { 565 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true); 566 } 567 568 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, 569 pid_t tid) 570 { 571 struct threads *threads = machine__threads(machine, tid); 572 struct thread *th; 573 574 down_write(&threads->lock); 575 th = __machine__findnew_thread(machine, pid, tid); 576 up_write(&threads->lock); 577 return th; 578 } 579 580 struct thread *machine__find_thread(struct machine *machine, pid_t pid, 581 pid_t tid) 582 { 583 struct threads *threads = machine__threads(machine, tid); 584 struct thread *th; 585 586 down_read(&threads->lock); 587 th = ____machine__findnew_thread(machine, threads, pid, tid, false); 588 up_read(&threads->lock); 589 return th; 590 } 591 592 struct comm *machine__thread_exec_comm(struct machine *machine, 593 struct thread *thread) 594 { 595 if (machine->comm_exec) 596 return thread__exec_comm(thread); 597 else 598 return thread__comm(thread); 599 } 600 601 int machine__process_comm_event(struct machine *machine, union perf_event *event, 602 struct perf_sample *sample) 603 { 604 struct thread *thread = machine__findnew_thread(machine, 605 event->comm.pid, 606 event->comm.tid); 607 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC; 608 int err = 0; 609 610 if (exec) 611 machine->comm_exec = true; 612 613 if (dump_trace) 614 perf_event__fprintf_comm(event, stdout); 615 616 if (thread == NULL || 617 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) { 618 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n"); 619 err = -1; 620 } 621 622 thread__put(thread); 623 624 return err; 625 } 626 627 int machine__process_namespaces_event(struct machine *machine __maybe_unused, 628 union perf_event *event, 629 struct perf_sample *sample __maybe_unused) 630 { 631 struct thread *thread = machine__findnew_thread(machine, 632 event->namespaces.pid, 633 event->namespaces.tid); 634 int err = 0; 635 636 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES, 637 "\nWARNING: kernel seems to support more namespaces than perf" 638 " tool.\nTry updating the perf tool..\n\n"); 639 640 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES, 641 "\nWARNING: perf tool seems to support more namespaces than" 642 " the kernel.\nTry updating the kernel..\n\n"); 643 644 if (dump_trace) 645 perf_event__fprintf_namespaces(event, stdout); 646 647 if (thread == NULL || 648 thread__set_namespaces(thread, sample->time, &event->namespaces)) { 649 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n"); 650 err = -1; 651 } 652 653 thread__put(thread); 654 655 return err; 656 } 657 658 int machine__process_lost_event(struct machine *machine __maybe_unused, 659 union perf_event *event, struct perf_sample *sample __maybe_unused) 660 { 661 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n", 662 event->lost.id, event->lost.lost); 663 return 0; 664 } 665 666 int machine__process_lost_samples_event(struct machine *machine __maybe_unused, 667 union perf_event *event, struct perf_sample *sample) 668 { 669 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n", 670 sample->id, event->lost_samples.lost); 671 return 0; 672 } 673 674 static struct dso *machine__findnew_module_dso(struct machine *machine, 675 struct kmod_path *m, 676 const char *filename) 677 { 678 struct dso *dso; 679 680 down_write(&machine->dsos.lock); 681 682 dso = __dsos__find(&machine->dsos, m->name, true); 683 if (!dso) { 684 dso = __dsos__addnew(&machine->dsos, m->name); 685 if (dso == NULL) 686 goto out_unlock; 687 688 dso__set_module_info(dso, m, machine); 689 dso__set_long_name(dso, strdup(filename), true); 690 } 691 692 dso__get(dso); 693 out_unlock: 694 up_write(&machine->dsos.lock); 695 return dso; 696 } 697 698 int machine__process_aux_event(struct machine *machine __maybe_unused, 699 union perf_event *event) 700 { 701 if (dump_trace) 702 perf_event__fprintf_aux(event, stdout); 703 return 0; 704 } 705 706 int machine__process_itrace_start_event(struct machine *machine __maybe_unused, 707 union perf_event *event) 708 { 709 if (dump_trace) 710 perf_event__fprintf_itrace_start(event, stdout); 711 return 0; 712 } 713 714 int machine__process_switch_event(struct machine *machine __maybe_unused, 715 union perf_event *event) 716 { 717 if (dump_trace) 718 perf_event__fprintf_switch(event, stdout); 719 return 0; 720 } 721 722 static int machine__process_ksymbol_register(struct machine *machine, 723 union perf_event *event, 724 struct perf_sample *sample __maybe_unused) 725 { 726 struct symbol *sym; 727 struct map *map; 728 729 map = map_groups__find(&machine->kmaps, event->ksymbol.addr); 730 if (!map) { 731 map = dso__new_map(event->ksymbol.name); 732 if (!map) 733 return -ENOMEM; 734 735 map->start = event->ksymbol.addr; 736 map->end = map->start + event->ksymbol.len; 737 map_groups__insert(&machine->kmaps, map); 738 } 739 740 sym = symbol__new(map->map_ip(map, map->start), 741 event->ksymbol.len, 742 0, 0, event->ksymbol.name); 743 if (!sym) 744 return -ENOMEM; 745 dso__insert_symbol(map->dso, sym); 746 return 0; 747 } 748 749 static int machine__process_ksymbol_unregister(struct machine *machine, 750 union perf_event *event, 751 struct perf_sample *sample __maybe_unused) 752 { 753 struct map *map; 754 755 map = map_groups__find(&machine->kmaps, event->ksymbol.addr); 756 if (map) 757 map_groups__remove(&machine->kmaps, map); 758 759 return 0; 760 } 761 762 int machine__process_ksymbol(struct machine *machine __maybe_unused, 763 union perf_event *event, 764 struct perf_sample *sample) 765 { 766 if (dump_trace) 767 perf_event__fprintf_ksymbol(event, stdout); 768 769 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER) 770 return machine__process_ksymbol_unregister(machine, event, 771 sample); 772 return machine__process_ksymbol_register(machine, event, sample); 773 } 774 775 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename) 776 { 777 const char *dup_filename; 778 779 if (!filename || !dso || !dso->long_name) 780 return; 781 if (dso->long_name[0] != '[') 782 return; 783 if (!strchr(filename, '/')) 784 return; 785 786 dup_filename = strdup(filename); 787 if (!dup_filename) 788 return; 789 790 dso__set_long_name(dso, dup_filename, true); 791 } 792 793 struct map *machine__findnew_module_map(struct machine *machine, u64 start, 794 const char *filename) 795 { 796 struct map *map = NULL; 797 struct dso *dso = NULL; 798 struct kmod_path m; 799 800 if (kmod_path__parse_name(&m, filename)) 801 return NULL; 802 803 map = map_groups__find_by_name(&machine->kmaps, m.name); 804 if (map) { 805 /* 806 * If the map's dso is an offline module, give dso__load() 807 * a chance to find the file path of that module by fixing 808 * long_name. 809 */ 810 dso__adjust_kmod_long_name(map->dso, filename); 811 goto out; 812 } 813 814 dso = machine__findnew_module_dso(machine, &m, filename); 815 if (dso == NULL) 816 goto out; 817 818 map = map__new2(start, dso); 819 if (map == NULL) 820 goto out; 821 822 map_groups__insert(&machine->kmaps, map); 823 824 /* Put the map here because map_groups__insert alread got it */ 825 map__put(map); 826 out: 827 /* put the dso here, corresponding to machine__findnew_module_dso */ 828 dso__put(dso); 829 zfree(&m.name); 830 return map; 831 } 832 833 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp) 834 { 835 struct rb_node *nd; 836 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp); 837 838 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 839 struct machine *pos = rb_entry(nd, struct machine, rb_node); 840 ret += __dsos__fprintf(&pos->dsos.head, fp); 841 } 842 843 return ret; 844 } 845 846 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp, 847 bool (skip)(struct dso *dso, int parm), int parm) 848 { 849 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm); 850 } 851 852 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp, 853 bool (skip)(struct dso *dso, int parm), int parm) 854 { 855 struct rb_node *nd; 856 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm); 857 858 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 859 struct machine *pos = rb_entry(nd, struct machine, rb_node); 860 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm); 861 } 862 return ret; 863 } 864 865 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp) 866 { 867 int i; 868 size_t printed = 0; 869 struct dso *kdso = machine__kernel_dso(machine); 870 871 if (kdso->has_build_id) { 872 char filename[PATH_MAX]; 873 if (dso__build_id_filename(kdso, filename, sizeof(filename), 874 false)) 875 printed += fprintf(fp, "[0] %s\n", filename); 876 } 877 878 for (i = 0; i < vmlinux_path__nr_entries; ++i) 879 printed += fprintf(fp, "[%d] %s\n", 880 i + kdso->has_build_id, vmlinux_path[i]); 881 882 return printed; 883 } 884 885 size_t machine__fprintf(struct machine *machine, FILE *fp) 886 { 887 struct rb_node *nd; 888 size_t ret; 889 int i; 890 891 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 892 struct threads *threads = &machine->threads[i]; 893 894 down_read(&threads->lock); 895 896 ret = fprintf(fp, "Threads: %u\n", threads->nr); 897 898 for (nd = rb_first_cached(&threads->entries); nd; 899 nd = rb_next(nd)) { 900 struct thread *pos = rb_entry(nd, struct thread, rb_node); 901 902 ret += thread__fprintf(pos, fp); 903 } 904 905 up_read(&threads->lock); 906 } 907 return ret; 908 } 909 910 static struct dso *machine__get_kernel(struct machine *machine) 911 { 912 const char *vmlinux_name = machine->mmap_name; 913 struct dso *kernel; 914 915 if (machine__is_host(machine)) { 916 if (symbol_conf.vmlinux_name) 917 vmlinux_name = symbol_conf.vmlinux_name; 918 919 kernel = machine__findnew_kernel(machine, vmlinux_name, 920 "[kernel]", DSO_TYPE_KERNEL); 921 } else { 922 if (symbol_conf.default_guest_vmlinux_name) 923 vmlinux_name = symbol_conf.default_guest_vmlinux_name; 924 925 kernel = machine__findnew_kernel(machine, vmlinux_name, 926 "[guest.kernel]", 927 DSO_TYPE_GUEST_KERNEL); 928 } 929 930 if (kernel != NULL && (!kernel->has_build_id)) 931 dso__read_running_kernel_build_id(kernel, machine); 932 933 return kernel; 934 } 935 936 struct process_args { 937 u64 start; 938 }; 939 940 void machine__get_kallsyms_filename(struct machine *machine, char *buf, 941 size_t bufsz) 942 { 943 if (machine__is_default_guest(machine)) 944 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms); 945 else 946 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir); 947 } 948 949 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL}; 950 951 /* Figure out the start address of kernel map from /proc/kallsyms. 952 * Returns the name of the start symbol in *symbol_name. Pass in NULL as 953 * symbol_name if it's not that important. 954 */ 955 static int machine__get_running_kernel_start(struct machine *machine, 956 const char **symbol_name, 957 u64 *start, u64 *end) 958 { 959 char filename[PATH_MAX]; 960 int i, err = -1; 961 const char *name; 962 u64 addr = 0; 963 964 machine__get_kallsyms_filename(machine, filename, PATH_MAX); 965 966 if (symbol__restricted_filename(filename, "/proc/kallsyms")) 967 return 0; 968 969 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) { 970 err = kallsyms__get_function_start(filename, name, &addr); 971 if (!err) 972 break; 973 } 974 975 if (err) 976 return -1; 977 978 if (symbol_name) 979 *symbol_name = name; 980 981 *start = addr; 982 983 err = kallsyms__get_function_start(filename, "_etext", &addr); 984 if (!err) 985 *end = addr; 986 987 return 0; 988 } 989 990 int machine__create_extra_kernel_map(struct machine *machine, 991 struct dso *kernel, 992 struct extra_kernel_map *xm) 993 { 994 struct kmap *kmap; 995 struct map *map; 996 997 map = map__new2(xm->start, kernel); 998 if (!map) 999 return -1; 1000 1001 map->end = xm->end; 1002 map->pgoff = xm->pgoff; 1003 1004 kmap = map__kmap(map); 1005 1006 kmap->kmaps = &machine->kmaps; 1007 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN); 1008 1009 map_groups__insert(&machine->kmaps, map); 1010 1011 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n", 1012 kmap->name, map->start, map->end); 1013 1014 map__put(map); 1015 1016 return 0; 1017 } 1018 1019 static u64 find_entry_trampoline(struct dso *dso) 1020 { 1021 /* Duplicates are removed so lookup all aliases */ 1022 const char *syms[] = { 1023 "_entry_trampoline", 1024 "__entry_trampoline_start", 1025 "entry_SYSCALL_64_trampoline", 1026 }; 1027 struct symbol *sym = dso__first_symbol(dso); 1028 unsigned int i; 1029 1030 for (; sym; sym = dso__next_symbol(sym)) { 1031 if (sym->binding != STB_GLOBAL) 1032 continue; 1033 for (i = 0; i < ARRAY_SIZE(syms); i++) { 1034 if (!strcmp(sym->name, syms[i])) 1035 return sym->start; 1036 } 1037 } 1038 1039 return 0; 1040 } 1041 1042 /* 1043 * These values can be used for kernels that do not have symbols for the entry 1044 * trampolines in kallsyms. 1045 */ 1046 #define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL 1047 #define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000 1048 #define X86_64_ENTRY_TRAMPOLINE 0x6000 1049 1050 /* Map x86_64 PTI entry trampolines */ 1051 int machine__map_x86_64_entry_trampolines(struct machine *machine, 1052 struct dso *kernel) 1053 { 1054 struct map_groups *kmaps = &machine->kmaps; 1055 struct maps *maps = &kmaps->maps; 1056 int nr_cpus_avail, cpu; 1057 bool found = false; 1058 struct map *map; 1059 u64 pgoff; 1060 1061 /* 1062 * In the vmlinux case, pgoff is a virtual address which must now be 1063 * mapped to a vmlinux offset. 1064 */ 1065 maps__for_each_entry(maps, map) { 1066 struct kmap *kmap = __map__kmap(map); 1067 struct map *dest_map; 1068 1069 if (!kmap || !is_entry_trampoline(kmap->name)) 1070 continue; 1071 1072 dest_map = map_groups__find(kmaps, map->pgoff); 1073 if (dest_map != map) 1074 map->pgoff = dest_map->map_ip(dest_map, map->pgoff); 1075 found = true; 1076 } 1077 if (found || machine->trampolines_mapped) 1078 return 0; 1079 1080 pgoff = find_entry_trampoline(kernel); 1081 if (!pgoff) 1082 return 0; 1083 1084 nr_cpus_avail = machine__nr_cpus_avail(machine); 1085 1086 /* Add a 1 page map for each CPU's entry trampoline */ 1087 for (cpu = 0; cpu < nr_cpus_avail; cpu++) { 1088 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU + 1089 cpu * X86_64_CPU_ENTRY_AREA_SIZE + 1090 X86_64_ENTRY_TRAMPOLINE; 1091 struct extra_kernel_map xm = { 1092 .start = va, 1093 .end = va + page_size, 1094 .pgoff = pgoff, 1095 }; 1096 1097 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN); 1098 1099 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0) 1100 return -1; 1101 } 1102 1103 machine->trampolines_mapped = nr_cpus_avail; 1104 1105 return 0; 1106 } 1107 1108 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused, 1109 struct dso *kernel __maybe_unused) 1110 { 1111 return 0; 1112 } 1113 1114 static int 1115 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel) 1116 { 1117 struct kmap *kmap; 1118 struct map *map; 1119 1120 /* In case of renewal the kernel map, destroy previous one */ 1121 machine__destroy_kernel_maps(machine); 1122 1123 machine->vmlinux_map = map__new2(0, kernel); 1124 if (machine->vmlinux_map == NULL) 1125 return -1; 1126 1127 machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip; 1128 map = machine__kernel_map(machine); 1129 kmap = map__kmap(map); 1130 if (!kmap) 1131 return -1; 1132 1133 kmap->kmaps = &machine->kmaps; 1134 map_groups__insert(&machine->kmaps, map); 1135 1136 return 0; 1137 } 1138 1139 void machine__destroy_kernel_maps(struct machine *machine) 1140 { 1141 struct kmap *kmap; 1142 struct map *map = machine__kernel_map(machine); 1143 1144 if (map == NULL) 1145 return; 1146 1147 kmap = map__kmap(map); 1148 map_groups__remove(&machine->kmaps, map); 1149 if (kmap && kmap->ref_reloc_sym) { 1150 zfree((char **)&kmap->ref_reloc_sym->name); 1151 zfree(&kmap->ref_reloc_sym); 1152 } 1153 1154 map__zput(machine->vmlinux_map); 1155 } 1156 1157 int machines__create_guest_kernel_maps(struct machines *machines) 1158 { 1159 int ret = 0; 1160 struct dirent **namelist = NULL; 1161 int i, items = 0; 1162 char path[PATH_MAX]; 1163 pid_t pid; 1164 char *endp; 1165 1166 if (symbol_conf.default_guest_vmlinux_name || 1167 symbol_conf.default_guest_modules || 1168 symbol_conf.default_guest_kallsyms) { 1169 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID); 1170 } 1171 1172 if (symbol_conf.guestmount) { 1173 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL); 1174 if (items <= 0) 1175 return -ENOENT; 1176 for (i = 0; i < items; i++) { 1177 if (!isdigit(namelist[i]->d_name[0])) { 1178 /* Filter out . and .. */ 1179 continue; 1180 } 1181 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10); 1182 if ((*endp != '\0') || 1183 (endp == namelist[i]->d_name) || 1184 (errno == ERANGE)) { 1185 pr_debug("invalid directory (%s). Skipping.\n", 1186 namelist[i]->d_name); 1187 continue; 1188 } 1189 sprintf(path, "%s/%s/proc/kallsyms", 1190 symbol_conf.guestmount, 1191 namelist[i]->d_name); 1192 ret = access(path, R_OK); 1193 if (ret) { 1194 pr_debug("Can't access file %s\n", path); 1195 goto failure; 1196 } 1197 machines__create_kernel_maps(machines, pid); 1198 } 1199 failure: 1200 free(namelist); 1201 } 1202 1203 return ret; 1204 } 1205 1206 void machines__destroy_kernel_maps(struct machines *machines) 1207 { 1208 struct rb_node *next = rb_first_cached(&machines->guests); 1209 1210 machine__destroy_kernel_maps(&machines->host); 1211 1212 while (next) { 1213 struct machine *pos = rb_entry(next, struct machine, rb_node); 1214 1215 next = rb_next(&pos->rb_node); 1216 rb_erase_cached(&pos->rb_node, &machines->guests); 1217 machine__delete(pos); 1218 } 1219 } 1220 1221 int machines__create_kernel_maps(struct machines *machines, pid_t pid) 1222 { 1223 struct machine *machine = machines__findnew(machines, pid); 1224 1225 if (machine == NULL) 1226 return -1; 1227 1228 return machine__create_kernel_maps(machine); 1229 } 1230 1231 int machine__load_kallsyms(struct machine *machine, const char *filename) 1232 { 1233 struct map *map = machine__kernel_map(machine); 1234 int ret = __dso__load_kallsyms(map->dso, filename, map, true); 1235 1236 if (ret > 0) { 1237 dso__set_loaded(map->dso); 1238 /* 1239 * Since /proc/kallsyms will have multiple sessions for the 1240 * kernel, with modules between them, fixup the end of all 1241 * sections. 1242 */ 1243 map_groups__fixup_end(&machine->kmaps); 1244 } 1245 1246 return ret; 1247 } 1248 1249 int machine__load_vmlinux_path(struct machine *machine) 1250 { 1251 struct map *map = machine__kernel_map(machine); 1252 int ret = dso__load_vmlinux_path(map->dso, map); 1253 1254 if (ret > 0) 1255 dso__set_loaded(map->dso); 1256 1257 return ret; 1258 } 1259 1260 static char *get_kernel_version(const char *root_dir) 1261 { 1262 char version[PATH_MAX]; 1263 FILE *file; 1264 char *name, *tmp; 1265 const char *prefix = "Linux version "; 1266 1267 sprintf(version, "%s/proc/version", root_dir); 1268 file = fopen(version, "r"); 1269 if (!file) 1270 return NULL; 1271 1272 tmp = fgets(version, sizeof(version), file); 1273 fclose(file); 1274 if (!tmp) 1275 return NULL; 1276 1277 name = strstr(version, prefix); 1278 if (!name) 1279 return NULL; 1280 name += strlen(prefix); 1281 tmp = strchr(name, ' '); 1282 if (tmp) 1283 *tmp = '\0'; 1284 1285 return strdup(name); 1286 } 1287 1288 static bool is_kmod_dso(struct dso *dso) 1289 { 1290 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE || 1291 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE; 1292 } 1293 1294 static int map_groups__set_module_path(struct map_groups *mg, const char *path, 1295 struct kmod_path *m) 1296 { 1297 char *long_name; 1298 struct map *map = map_groups__find_by_name(mg, m->name); 1299 1300 if (map == NULL) 1301 return 0; 1302 1303 long_name = strdup(path); 1304 if (long_name == NULL) 1305 return -ENOMEM; 1306 1307 dso__set_long_name(map->dso, long_name, true); 1308 dso__kernel_module_get_build_id(map->dso, ""); 1309 1310 /* 1311 * Full name could reveal us kmod compression, so 1312 * we need to update the symtab_type if needed. 1313 */ 1314 if (m->comp && is_kmod_dso(map->dso)) { 1315 map->dso->symtab_type++; 1316 map->dso->comp = m->comp; 1317 } 1318 1319 return 0; 1320 } 1321 1322 static int map_groups__set_modules_path_dir(struct map_groups *mg, 1323 const char *dir_name, int depth) 1324 { 1325 struct dirent *dent; 1326 DIR *dir = opendir(dir_name); 1327 int ret = 0; 1328 1329 if (!dir) { 1330 pr_debug("%s: cannot open %s dir\n", __func__, dir_name); 1331 return -1; 1332 } 1333 1334 while ((dent = readdir(dir)) != NULL) { 1335 char path[PATH_MAX]; 1336 struct stat st; 1337 1338 /*sshfs might return bad dent->d_type, so we have to stat*/ 1339 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name); 1340 if (stat(path, &st)) 1341 continue; 1342 1343 if (S_ISDIR(st.st_mode)) { 1344 if (!strcmp(dent->d_name, ".") || 1345 !strcmp(dent->d_name, "..")) 1346 continue; 1347 1348 /* Do not follow top-level source and build symlinks */ 1349 if (depth == 0) { 1350 if (!strcmp(dent->d_name, "source") || 1351 !strcmp(dent->d_name, "build")) 1352 continue; 1353 } 1354 1355 ret = map_groups__set_modules_path_dir(mg, path, 1356 depth + 1); 1357 if (ret < 0) 1358 goto out; 1359 } else { 1360 struct kmod_path m; 1361 1362 ret = kmod_path__parse_name(&m, dent->d_name); 1363 if (ret) 1364 goto out; 1365 1366 if (m.kmod) 1367 ret = map_groups__set_module_path(mg, path, &m); 1368 1369 zfree(&m.name); 1370 1371 if (ret) 1372 goto out; 1373 } 1374 } 1375 1376 out: 1377 closedir(dir); 1378 return ret; 1379 } 1380 1381 static int machine__set_modules_path(struct machine *machine) 1382 { 1383 char *version; 1384 char modules_path[PATH_MAX]; 1385 1386 version = get_kernel_version(machine->root_dir); 1387 if (!version) 1388 return -1; 1389 1390 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s", 1391 machine->root_dir, version); 1392 free(version); 1393 1394 return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0); 1395 } 1396 int __weak arch__fix_module_text_start(u64 *start __maybe_unused, 1397 u64 *size __maybe_unused, 1398 const char *name __maybe_unused) 1399 { 1400 return 0; 1401 } 1402 1403 static int machine__create_module(void *arg, const char *name, u64 start, 1404 u64 size) 1405 { 1406 struct machine *machine = arg; 1407 struct map *map; 1408 1409 if (arch__fix_module_text_start(&start, &size, name) < 0) 1410 return -1; 1411 1412 map = machine__findnew_module_map(machine, start, name); 1413 if (map == NULL) 1414 return -1; 1415 map->end = start + size; 1416 1417 dso__kernel_module_get_build_id(map->dso, machine->root_dir); 1418 1419 return 0; 1420 } 1421 1422 static int machine__create_modules(struct machine *machine) 1423 { 1424 const char *modules; 1425 char path[PATH_MAX]; 1426 1427 if (machine__is_default_guest(machine)) { 1428 modules = symbol_conf.default_guest_modules; 1429 } else { 1430 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir); 1431 modules = path; 1432 } 1433 1434 if (symbol__restricted_filename(modules, "/proc/modules")) 1435 return -1; 1436 1437 if (modules__parse(modules, machine, machine__create_module)) 1438 return -1; 1439 1440 if (!machine__set_modules_path(machine)) 1441 return 0; 1442 1443 pr_debug("Problems setting modules path maps, continuing anyway...\n"); 1444 1445 return 0; 1446 } 1447 1448 static void machine__set_kernel_mmap(struct machine *machine, 1449 u64 start, u64 end) 1450 { 1451 machine->vmlinux_map->start = start; 1452 machine->vmlinux_map->end = end; 1453 /* 1454 * Be a bit paranoid here, some perf.data file came with 1455 * a zero sized synthesized MMAP event for the kernel. 1456 */ 1457 if (start == 0 && end == 0) 1458 machine->vmlinux_map->end = ~0ULL; 1459 } 1460 1461 static void machine__update_kernel_mmap(struct machine *machine, 1462 u64 start, u64 end) 1463 { 1464 struct map *map = machine__kernel_map(machine); 1465 1466 map__get(map); 1467 map_groups__remove(&machine->kmaps, map); 1468 1469 machine__set_kernel_mmap(machine, start, end); 1470 1471 map_groups__insert(&machine->kmaps, map); 1472 map__put(map); 1473 } 1474 1475 int machine__create_kernel_maps(struct machine *machine) 1476 { 1477 struct dso *kernel = machine__get_kernel(machine); 1478 const char *name = NULL; 1479 struct map *map; 1480 u64 start = 0, end = ~0ULL; 1481 int ret; 1482 1483 if (kernel == NULL) 1484 return -1; 1485 1486 ret = __machine__create_kernel_maps(machine, kernel); 1487 if (ret < 0) 1488 goto out_put; 1489 1490 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) { 1491 if (machine__is_host(machine)) 1492 pr_debug("Problems creating module maps, " 1493 "continuing anyway...\n"); 1494 else 1495 pr_debug("Problems creating module maps for guest %d, " 1496 "continuing anyway...\n", machine->pid); 1497 } 1498 1499 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) { 1500 if (name && 1501 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) { 1502 machine__destroy_kernel_maps(machine); 1503 ret = -1; 1504 goto out_put; 1505 } 1506 1507 /* 1508 * we have a real start address now, so re-order the kmaps 1509 * assume it's the last in the kmaps 1510 */ 1511 machine__update_kernel_mmap(machine, start, end); 1512 } 1513 1514 if (machine__create_extra_kernel_maps(machine, kernel)) 1515 pr_debug("Problems creating extra kernel maps, continuing anyway...\n"); 1516 1517 if (end == ~0ULL) { 1518 /* update end address of the kernel map using adjacent module address */ 1519 map = map__next(machine__kernel_map(machine)); 1520 if (map) 1521 machine__set_kernel_mmap(machine, start, map->start); 1522 } 1523 1524 out_put: 1525 dso__put(kernel); 1526 return ret; 1527 } 1528 1529 static bool machine__uses_kcore(struct machine *machine) 1530 { 1531 struct dso *dso; 1532 1533 list_for_each_entry(dso, &machine->dsos.head, node) { 1534 if (dso__is_kcore(dso)) 1535 return true; 1536 } 1537 1538 return false; 1539 } 1540 1541 static bool perf_event__is_extra_kernel_mmap(struct machine *machine, 1542 union perf_event *event) 1543 { 1544 return machine__is(machine, "x86_64") && 1545 is_entry_trampoline(event->mmap.filename); 1546 } 1547 1548 static int machine__process_extra_kernel_map(struct machine *machine, 1549 union perf_event *event) 1550 { 1551 struct dso *kernel = machine__kernel_dso(machine); 1552 struct extra_kernel_map xm = { 1553 .start = event->mmap.start, 1554 .end = event->mmap.start + event->mmap.len, 1555 .pgoff = event->mmap.pgoff, 1556 }; 1557 1558 if (kernel == NULL) 1559 return -1; 1560 1561 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN); 1562 1563 return machine__create_extra_kernel_map(machine, kernel, &xm); 1564 } 1565 1566 static int machine__process_kernel_mmap_event(struct machine *machine, 1567 union perf_event *event) 1568 { 1569 struct map *map; 1570 enum dso_kernel_type kernel_type; 1571 bool is_kernel_mmap; 1572 1573 /* If we have maps from kcore then we do not need or want any others */ 1574 if (machine__uses_kcore(machine)) 1575 return 0; 1576 1577 if (machine__is_host(machine)) 1578 kernel_type = DSO_TYPE_KERNEL; 1579 else 1580 kernel_type = DSO_TYPE_GUEST_KERNEL; 1581 1582 is_kernel_mmap = memcmp(event->mmap.filename, 1583 machine->mmap_name, 1584 strlen(machine->mmap_name) - 1) == 0; 1585 if (event->mmap.filename[0] == '/' || 1586 (!is_kernel_mmap && event->mmap.filename[0] == '[')) { 1587 map = machine__findnew_module_map(machine, event->mmap.start, 1588 event->mmap.filename); 1589 if (map == NULL) 1590 goto out_problem; 1591 1592 map->end = map->start + event->mmap.len; 1593 } else if (is_kernel_mmap) { 1594 const char *symbol_name = (event->mmap.filename + 1595 strlen(machine->mmap_name)); 1596 /* 1597 * Should be there already, from the build-id table in 1598 * the header. 1599 */ 1600 struct dso *kernel = NULL; 1601 struct dso *dso; 1602 1603 down_read(&machine->dsos.lock); 1604 1605 list_for_each_entry(dso, &machine->dsos.head, node) { 1606 1607 /* 1608 * The cpumode passed to is_kernel_module is not the 1609 * cpumode of *this* event. If we insist on passing 1610 * correct cpumode to is_kernel_module, we should 1611 * record the cpumode when we adding this dso to the 1612 * linked list. 1613 * 1614 * However we don't really need passing correct 1615 * cpumode. We know the correct cpumode must be kernel 1616 * mode (if not, we should not link it onto kernel_dsos 1617 * list). 1618 * 1619 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN. 1620 * is_kernel_module() treats it as a kernel cpumode. 1621 */ 1622 1623 if (!dso->kernel || 1624 is_kernel_module(dso->long_name, 1625 PERF_RECORD_MISC_CPUMODE_UNKNOWN)) 1626 continue; 1627 1628 1629 kernel = dso; 1630 break; 1631 } 1632 1633 up_read(&machine->dsos.lock); 1634 1635 if (kernel == NULL) 1636 kernel = machine__findnew_dso(machine, machine->mmap_name); 1637 if (kernel == NULL) 1638 goto out_problem; 1639 1640 kernel->kernel = kernel_type; 1641 if (__machine__create_kernel_maps(machine, kernel) < 0) { 1642 dso__put(kernel); 1643 goto out_problem; 1644 } 1645 1646 if (strstr(kernel->long_name, "vmlinux")) 1647 dso__set_short_name(kernel, "[kernel.vmlinux]", false); 1648 1649 machine__update_kernel_mmap(machine, event->mmap.start, 1650 event->mmap.start + event->mmap.len); 1651 1652 /* 1653 * Avoid using a zero address (kptr_restrict) for the ref reloc 1654 * symbol. Effectively having zero here means that at record 1655 * time /proc/sys/kernel/kptr_restrict was non zero. 1656 */ 1657 if (event->mmap.pgoff != 0) { 1658 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, 1659 symbol_name, 1660 event->mmap.pgoff); 1661 } 1662 1663 if (machine__is_default_guest(machine)) { 1664 /* 1665 * preload dso of guest kernel and modules 1666 */ 1667 dso__load(kernel, machine__kernel_map(machine)); 1668 } 1669 } else if (perf_event__is_extra_kernel_mmap(machine, event)) { 1670 return machine__process_extra_kernel_map(machine, event); 1671 } 1672 return 0; 1673 out_problem: 1674 return -1; 1675 } 1676 1677 int machine__process_mmap2_event(struct machine *machine, 1678 union perf_event *event, 1679 struct perf_sample *sample) 1680 { 1681 struct thread *thread; 1682 struct map *map; 1683 int ret = 0; 1684 1685 if (dump_trace) 1686 perf_event__fprintf_mmap2(event, stdout); 1687 1688 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1689 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1690 ret = machine__process_kernel_mmap_event(machine, event); 1691 if (ret < 0) 1692 goto out_problem; 1693 return 0; 1694 } 1695 1696 thread = machine__findnew_thread(machine, event->mmap2.pid, 1697 event->mmap2.tid); 1698 if (thread == NULL) 1699 goto out_problem; 1700 1701 map = map__new(machine, event->mmap2.start, 1702 event->mmap2.len, event->mmap2.pgoff, 1703 event->mmap2.maj, 1704 event->mmap2.min, event->mmap2.ino, 1705 event->mmap2.ino_generation, 1706 event->mmap2.prot, 1707 event->mmap2.flags, 1708 event->mmap2.filename, thread); 1709 1710 if (map == NULL) 1711 goto out_problem_map; 1712 1713 ret = thread__insert_map(thread, map); 1714 if (ret) 1715 goto out_problem_insert; 1716 1717 thread__put(thread); 1718 map__put(map); 1719 return 0; 1720 1721 out_problem_insert: 1722 map__put(map); 1723 out_problem_map: 1724 thread__put(thread); 1725 out_problem: 1726 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n"); 1727 return 0; 1728 } 1729 1730 int machine__process_mmap_event(struct machine *machine, union perf_event *event, 1731 struct perf_sample *sample) 1732 { 1733 struct thread *thread; 1734 struct map *map; 1735 u32 prot = 0; 1736 int ret = 0; 1737 1738 if (dump_trace) 1739 perf_event__fprintf_mmap(event, stdout); 1740 1741 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1742 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1743 ret = machine__process_kernel_mmap_event(machine, event); 1744 if (ret < 0) 1745 goto out_problem; 1746 return 0; 1747 } 1748 1749 thread = machine__findnew_thread(machine, event->mmap.pid, 1750 event->mmap.tid); 1751 if (thread == NULL) 1752 goto out_problem; 1753 1754 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA)) 1755 prot = PROT_EXEC; 1756 1757 map = map__new(machine, event->mmap.start, 1758 event->mmap.len, event->mmap.pgoff, 1759 0, 0, 0, 0, prot, 0, 1760 event->mmap.filename, 1761 thread); 1762 1763 if (map == NULL) 1764 goto out_problem_map; 1765 1766 ret = thread__insert_map(thread, map); 1767 if (ret) 1768 goto out_problem_insert; 1769 1770 thread__put(thread); 1771 map__put(map); 1772 return 0; 1773 1774 out_problem_insert: 1775 map__put(map); 1776 out_problem_map: 1777 thread__put(thread); 1778 out_problem: 1779 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n"); 1780 return 0; 1781 } 1782 1783 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock) 1784 { 1785 struct threads *threads = machine__threads(machine, th->tid); 1786 1787 if (threads->last_match == th) 1788 threads__set_last_match(threads, NULL); 1789 1790 if (lock) 1791 down_write(&threads->lock); 1792 1793 BUG_ON(refcount_read(&th->refcnt) == 0); 1794 1795 rb_erase_cached(&th->rb_node, &threads->entries); 1796 RB_CLEAR_NODE(&th->rb_node); 1797 --threads->nr; 1798 /* 1799 * Move it first to the dead_threads list, then drop the reference, 1800 * if this is the last reference, then the thread__delete destructor 1801 * will be called and we will remove it from the dead_threads list. 1802 */ 1803 list_add_tail(&th->node, &threads->dead); 1804 1805 /* 1806 * We need to do the put here because if this is the last refcount, 1807 * then we will be touching the threads->dead head when removing the 1808 * thread. 1809 */ 1810 thread__put(th); 1811 1812 if (lock) 1813 up_write(&threads->lock); 1814 } 1815 1816 void machine__remove_thread(struct machine *machine, struct thread *th) 1817 { 1818 return __machine__remove_thread(machine, th, true); 1819 } 1820 1821 int machine__process_fork_event(struct machine *machine, union perf_event *event, 1822 struct perf_sample *sample) 1823 { 1824 struct thread *thread = machine__find_thread(machine, 1825 event->fork.pid, 1826 event->fork.tid); 1827 struct thread *parent = machine__findnew_thread(machine, 1828 event->fork.ppid, 1829 event->fork.ptid); 1830 bool do_maps_clone = true; 1831 int err = 0; 1832 1833 if (dump_trace) 1834 perf_event__fprintf_task(event, stdout); 1835 1836 /* 1837 * There may be an existing thread that is not actually the parent, 1838 * either because we are processing events out of order, or because the 1839 * (fork) event that would have removed the thread was lost. Assume the 1840 * latter case and continue on as best we can. 1841 */ 1842 if (parent->pid_ != (pid_t)event->fork.ppid) { 1843 dump_printf("removing erroneous parent thread %d/%d\n", 1844 parent->pid_, parent->tid); 1845 machine__remove_thread(machine, parent); 1846 thread__put(parent); 1847 parent = machine__findnew_thread(machine, event->fork.ppid, 1848 event->fork.ptid); 1849 } 1850 1851 /* if a thread currently exists for the thread id remove it */ 1852 if (thread != NULL) { 1853 machine__remove_thread(machine, thread); 1854 thread__put(thread); 1855 } 1856 1857 thread = machine__findnew_thread(machine, event->fork.pid, 1858 event->fork.tid); 1859 /* 1860 * When synthesizing FORK events, we are trying to create thread 1861 * objects for the already running tasks on the machine. 1862 * 1863 * Normally, for a kernel FORK event, we want to clone the parent's 1864 * maps because that is what the kernel just did. 1865 * 1866 * But when synthesizing, this should not be done. If we do, we end up 1867 * with overlapping maps as we process the sythesized MMAP2 events that 1868 * get delivered shortly thereafter. 1869 * 1870 * Use the FORK event misc flags in an internal way to signal this 1871 * situation, so we can elide the map clone when appropriate. 1872 */ 1873 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC) 1874 do_maps_clone = false; 1875 1876 if (thread == NULL || parent == NULL || 1877 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) { 1878 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n"); 1879 err = -1; 1880 } 1881 thread__put(thread); 1882 thread__put(parent); 1883 1884 return err; 1885 } 1886 1887 int machine__process_exit_event(struct machine *machine, union perf_event *event, 1888 struct perf_sample *sample __maybe_unused) 1889 { 1890 struct thread *thread = machine__find_thread(machine, 1891 event->fork.pid, 1892 event->fork.tid); 1893 1894 if (dump_trace) 1895 perf_event__fprintf_task(event, stdout); 1896 1897 if (thread != NULL) { 1898 thread__exited(thread); 1899 thread__put(thread); 1900 } 1901 1902 return 0; 1903 } 1904 1905 int machine__process_event(struct machine *machine, union perf_event *event, 1906 struct perf_sample *sample) 1907 { 1908 int ret; 1909 1910 switch (event->header.type) { 1911 case PERF_RECORD_COMM: 1912 ret = machine__process_comm_event(machine, event, sample); break; 1913 case PERF_RECORD_MMAP: 1914 ret = machine__process_mmap_event(machine, event, sample); break; 1915 case PERF_RECORD_NAMESPACES: 1916 ret = machine__process_namespaces_event(machine, event, sample); break; 1917 case PERF_RECORD_MMAP2: 1918 ret = machine__process_mmap2_event(machine, event, sample); break; 1919 case PERF_RECORD_FORK: 1920 ret = machine__process_fork_event(machine, event, sample); break; 1921 case PERF_RECORD_EXIT: 1922 ret = machine__process_exit_event(machine, event, sample); break; 1923 case PERF_RECORD_LOST: 1924 ret = machine__process_lost_event(machine, event, sample); break; 1925 case PERF_RECORD_AUX: 1926 ret = machine__process_aux_event(machine, event); break; 1927 case PERF_RECORD_ITRACE_START: 1928 ret = machine__process_itrace_start_event(machine, event); break; 1929 case PERF_RECORD_LOST_SAMPLES: 1930 ret = machine__process_lost_samples_event(machine, event, sample); break; 1931 case PERF_RECORD_SWITCH: 1932 case PERF_RECORD_SWITCH_CPU_WIDE: 1933 ret = machine__process_switch_event(machine, event); break; 1934 case PERF_RECORD_KSYMBOL: 1935 ret = machine__process_ksymbol(machine, event, sample); break; 1936 case PERF_RECORD_BPF_EVENT: 1937 ret = machine__process_bpf(machine, event, sample); break; 1938 default: 1939 ret = -1; 1940 break; 1941 } 1942 1943 return ret; 1944 } 1945 1946 static bool symbol__match_regex(struct symbol *sym, regex_t *regex) 1947 { 1948 if (!regexec(regex, sym->name, 0, NULL, 0)) 1949 return 1; 1950 return 0; 1951 } 1952 1953 static void ip__resolve_ams(struct thread *thread, 1954 struct addr_map_symbol *ams, 1955 u64 ip) 1956 { 1957 struct addr_location al; 1958 1959 memset(&al, 0, sizeof(al)); 1960 /* 1961 * We cannot use the header.misc hint to determine whether a 1962 * branch stack address is user, kernel, guest, hypervisor. 1963 * Branches may straddle the kernel/user/hypervisor boundaries. 1964 * Thus, we have to try consecutively until we find a match 1965 * or else, the symbol is unknown 1966 */ 1967 thread__find_cpumode_addr_location(thread, ip, &al); 1968 1969 ams->addr = ip; 1970 ams->al_addr = al.addr; 1971 ams->ms.mg = al.mg; 1972 ams->ms.sym = al.sym; 1973 ams->ms.map = al.map; 1974 ams->phys_addr = 0; 1975 } 1976 1977 static void ip__resolve_data(struct thread *thread, 1978 u8 m, struct addr_map_symbol *ams, 1979 u64 addr, u64 phys_addr) 1980 { 1981 struct addr_location al; 1982 1983 memset(&al, 0, sizeof(al)); 1984 1985 thread__find_symbol(thread, m, addr, &al); 1986 1987 ams->addr = addr; 1988 ams->al_addr = al.addr; 1989 ams->ms.mg = al.mg; 1990 ams->ms.sym = al.sym; 1991 ams->ms.map = al.map; 1992 ams->phys_addr = phys_addr; 1993 } 1994 1995 struct mem_info *sample__resolve_mem(struct perf_sample *sample, 1996 struct addr_location *al) 1997 { 1998 struct mem_info *mi = mem_info__new(); 1999 2000 if (!mi) 2001 return NULL; 2002 2003 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip); 2004 ip__resolve_data(al->thread, al->cpumode, &mi->daddr, 2005 sample->addr, sample->phys_addr); 2006 mi->data_src.val = sample->data_src; 2007 2008 return mi; 2009 } 2010 2011 static char *callchain_srcline(struct map_symbol *ms, u64 ip) 2012 { 2013 struct map *map = ms->map; 2014 char *srcline = NULL; 2015 2016 if (!map || callchain_param.key == CCKEY_FUNCTION) 2017 return srcline; 2018 2019 srcline = srcline__tree_find(&map->dso->srclines, ip); 2020 if (!srcline) { 2021 bool show_sym = false; 2022 bool show_addr = callchain_param.key == CCKEY_ADDRESS; 2023 2024 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip), 2025 ms->sym, show_sym, show_addr, ip); 2026 srcline__tree_insert(&map->dso->srclines, ip, srcline); 2027 } 2028 2029 return srcline; 2030 } 2031 2032 struct iterations { 2033 int nr_loop_iter; 2034 u64 cycles; 2035 }; 2036 2037 static int add_callchain_ip(struct thread *thread, 2038 struct callchain_cursor *cursor, 2039 struct symbol **parent, 2040 struct addr_location *root_al, 2041 u8 *cpumode, 2042 u64 ip, 2043 bool branch, 2044 struct branch_flags *flags, 2045 struct iterations *iter, 2046 u64 branch_from) 2047 { 2048 struct map_symbol ms; 2049 struct addr_location al; 2050 int nr_loop_iter = 0; 2051 u64 iter_cycles = 0; 2052 const char *srcline = NULL; 2053 2054 al.filtered = 0; 2055 al.sym = NULL; 2056 if (!cpumode) { 2057 thread__find_cpumode_addr_location(thread, ip, &al); 2058 } else { 2059 if (ip >= PERF_CONTEXT_MAX) { 2060 switch (ip) { 2061 case PERF_CONTEXT_HV: 2062 *cpumode = PERF_RECORD_MISC_HYPERVISOR; 2063 break; 2064 case PERF_CONTEXT_KERNEL: 2065 *cpumode = PERF_RECORD_MISC_KERNEL; 2066 break; 2067 case PERF_CONTEXT_USER: 2068 *cpumode = PERF_RECORD_MISC_USER; 2069 break; 2070 default: 2071 pr_debug("invalid callchain context: " 2072 "%"PRId64"\n", (s64) ip); 2073 /* 2074 * It seems the callchain is corrupted. 2075 * Discard all. 2076 */ 2077 callchain_cursor_reset(cursor); 2078 return 1; 2079 } 2080 return 0; 2081 } 2082 thread__find_symbol(thread, *cpumode, ip, &al); 2083 } 2084 2085 if (al.sym != NULL) { 2086 if (perf_hpp_list.parent && !*parent && 2087 symbol__match_regex(al.sym, &parent_regex)) 2088 *parent = al.sym; 2089 else if (have_ignore_callees && root_al && 2090 symbol__match_regex(al.sym, &ignore_callees_regex)) { 2091 /* Treat this symbol as the root, 2092 forgetting its callees. */ 2093 *root_al = al; 2094 callchain_cursor_reset(cursor); 2095 } 2096 } 2097 2098 if (symbol_conf.hide_unresolved && al.sym == NULL) 2099 return 0; 2100 2101 if (iter) { 2102 nr_loop_iter = iter->nr_loop_iter; 2103 iter_cycles = iter->cycles; 2104 } 2105 2106 ms.mg = al.mg; 2107 ms.map = al.map; 2108 ms.sym = al.sym; 2109 srcline = callchain_srcline(&ms, al.addr); 2110 return callchain_cursor_append(cursor, ip, &ms, 2111 branch, flags, nr_loop_iter, 2112 iter_cycles, branch_from, srcline); 2113 } 2114 2115 struct branch_info *sample__resolve_bstack(struct perf_sample *sample, 2116 struct addr_location *al) 2117 { 2118 unsigned int i; 2119 const struct branch_stack *bs = sample->branch_stack; 2120 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info)); 2121 2122 if (!bi) 2123 return NULL; 2124 2125 for (i = 0; i < bs->nr; i++) { 2126 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to); 2127 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from); 2128 bi[i].flags = bs->entries[i].flags; 2129 } 2130 return bi; 2131 } 2132 2133 static void save_iterations(struct iterations *iter, 2134 struct branch_entry *be, int nr) 2135 { 2136 int i; 2137 2138 iter->nr_loop_iter++; 2139 iter->cycles = 0; 2140 2141 for (i = 0; i < nr; i++) 2142 iter->cycles += be[i].flags.cycles; 2143 } 2144 2145 #define CHASHSZ 127 2146 #define CHASHBITS 7 2147 #define NO_ENTRY 0xff 2148 2149 #define PERF_MAX_BRANCH_DEPTH 127 2150 2151 /* Remove loops. */ 2152 static int remove_loops(struct branch_entry *l, int nr, 2153 struct iterations *iter) 2154 { 2155 int i, j, off; 2156 unsigned char chash[CHASHSZ]; 2157 2158 memset(chash, NO_ENTRY, sizeof(chash)); 2159 2160 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255); 2161 2162 for (i = 0; i < nr; i++) { 2163 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ; 2164 2165 /* no collision handling for now */ 2166 if (chash[h] == NO_ENTRY) { 2167 chash[h] = i; 2168 } else if (l[chash[h]].from == l[i].from) { 2169 bool is_loop = true; 2170 /* check if it is a real loop */ 2171 off = 0; 2172 for (j = chash[h]; j < i && i + off < nr; j++, off++) 2173 if (l[j].from != l[i + off].from) { 2174 is_loop = false; 2175 break; 2176 } 2177 if (is_loop) { 2178 j = nr - (i + off); 2179 if (j > 0) { 2180 save_iterations(iter + i + off, 2181 l + i, off); 2182 2183 memmove(iter + i, iter + i + off, 2184 j * sizeof(*iter)); 2185 2186 memmove(l + i, l + i + off, 2187 j * sizeof(*l)); 2188 } 2189 2190 nr -= off; 2191 } 2192 } 2193 } 2194 return nr; 2195 } 2196 2197 /* 2198 * Recolve LBR callstack chain sample 2199 * Return: 2200 * 1 on success get LBR callchain information 2201 * 0 no available LBR callchain information, should try fp 2202 * negative error code on other errors. 2203 */ 2204 static int resolve_lbr_callchain_sample(struct thread *thread, 2205 struct callchain_cursor *cursor, 2206 struct perf_sample *sample, 2207 struct symbol **parent, 2208 struct addr_location *root_al, 2209 int max_stack) 2210 { 2211 struct ip_callchain *chain = sample->callchain; 2212 int chain_nr = min(max_stack, (int)chain->nr), i; 2213 u8 cpumode = PERF_RECORD_MISC_USER; 2214 u64 ip, branch_from = 0; 2215 2216 for (i = 0; i < chain_nr; i++) { 2217 if (chain->ips[i] == PERF_CONTEXT_USER) 2218 break; 2219 } 2220 2221 /* LBR only affects the user callchain */ 2222 if (i != chain_nr) { 2223 struct branch_stack *lbr_stack = sample->branch_stack; 2224 int lbr_nr = lbr_stack->nr, j, k; 2225 bool branch; 2226 struct branch_flags *flags; 2227 /* 2228 * LBR callstack can only get user call chain. 2229 * The mix_chain_nr is kernel call chain 2230 * number plus LBR user call chain number. 2231 * i is kernel call chain number, 2232 * 1 is PERF_CONTEXT_USER, 2233 * lbr_nr + 1 is the user call chain number. 2234 * For details, please refer to the comments 2235 * in callchain__printf 2236 */ 2237 int mix_chain_nr = i + 1 + lbr_nr + 1; 2238 2239 for (j = 0; j < mix_chain_nr; j++) { 2240 int err; 2241 branch = false; 2242 flags = NULL; 2243 2244 if (callchain_param.order == ORDER_CALLEE) { 2245 if (j < i + 1) 2246 ip = chain->ips[j]; 2247 else if (j > i + 1) { 2248 k = j - i - 2; 2249 ip = lbr_stack->entries[k].from; 2250 branch = true; 2251 flags = &lbr_stack->entries[k].flags; 2252 } else { 2253 ip = lbr_stack->entries[0].to; 2254 branch = true; 2255 flags = &lbr_stack->entries[0].flags; 2256 branch_from = 2257 lbr_stack->entries[0].from; 2258 } 2259 } else { 2260 if (j < lbr_nr) { 2261 k = lbr_nr - j - 1; 2262 ip = lbr_stack->entries[k].from; 2263 branch = true; 2264 flags = &lbr_stack->entries[k].flags; 2265 } 2266 else if (j > lbr_nr) 2267 ip = chain->ips[i + 1 - (j - lbr_nr)]; 2268 else { 2269 ip = lbr_stack->entries[0].to; 2270 branch = true; 2271 flags = &lbr_stack->entries[0].flags; 2272 branch_from = 2273 lbr_stack->entries[0].from; 2274 } 2275 } 2276 2277 err = add_callchain_ip(thread, cursor, parent, 2278 root_al, &cpumode, ip, 2279 branch, flags, NULL, 2280 branch_from); 2281 if (err) 2282 return (err < 0) ? err : 0; 2283 } 2284 return 1; 2285 } 2286 2287 return 0; 2288 } 2289 2290 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread, 2291 struct callchain_cursor *cursor, 2292 struct symbol **parent, 2293 struct addr_location *root_al, 2294 u8 *cpumode, int ent) 2295 { 2296 int err = 0; 2297 2298 while (--ent >= 0) { 2299 u64 ip = chain->ips[ent]; 2300 2301 if (ip >= PERF_CONTEXT_MAX) { 2302 err = add_callchain_ip(thread, cursor, parent, 2303 root_al, cpumode, ip, 2304 false, NULL, NULL, 0); 2305 break; 2306 } 2307 } 2308 return err; 2309 } 2310 2311 static int thread__resolve_callchain_sample(struct thread *thread, 2312 struct callchain_cursor *cursor, 2313 struct evsel *evsel, 2314 struct perf_sample *sample, 2315 struct symbol **parent, 2316 struct addr_location *root_al, 2317 int max_stack) 2318 { 2319 struct branch_stack *branch = sample->branch_stack; 2320 struct ip_callchain *chain = sample->callchain; 2321 int chain_nr = 0; 2322 u8 cpumode = PERF_RECORD_MISC_USER; 2323 int i, j, err, nr_entries; 2324 int skip_idx = -1; 2325 int first_call = 0; 2326 2327 if (chain) 2328 chain_nr = chain->nr; 2329 2330 if (perf_evsel__has_branch_callstack(evsel)) { 2331 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent, 2332 root_al, max_stack); 2333 if (err) 2334 return (err < 0) ? err : 0; 2335 } 2336 2337 /* 2338 * Based on DWARF debug information, some architectures skip 2339 * a callchain entry saved by the kernel. 2340 */ 2341 skip_idx = arch_skip_callchain_idx(thread, chain); 2342 2343 /* 2344 * Add branches to call stack for easier browsing. This gives 2345 * more context for a sample than just the callers. 2346 * 2347 * This uses individual histograms of paths compared to the 2348 * aggregated histograms the normal LBR mode uses. 2349 * 2350 * Limitations for now: 2351 * - No extra filters 2352 * - No annotations (should annotate somehow) 2353 */ 2354 2355 if (branch && callchain_param.branch_callstack) { 2356 int nr = min(max_stack, (int)branch->nr); 2357 struct branch_entry be[nr]; 2358 struct iterations iter[nr]; 2359 2360 if (branch->nr > PERF_MAX_BRANCH_DEPTH) { 2361 pr_warning("corrupted branch chain. skipping...\n"); 2362 goto check_calls; 2363 } 2364 2365 for (i = 0; i < nr; i++) { 2366 if (callchain_param.order == ORDER_CALLEE) { 2367 be[i] = branch->entries[i]; 2368 2369 if (chain == NULL) 2370 continue; 2371 2372 /* 2373 * Check for overlap into the callchain. 2374 * The return address is one off compared to 2375 * the branch entry. To adjust for this 2376 * assume the calling instruction is not longer 2377 * than 8 bytes. 2378 */ 2379 if (i == skip_idx || 2380 chain->ips[first_call] >= PERF_CONTEXT_MAX) 2381 first_call++; 2382 else if (be[i].from < chain->ips[first_call] && 2383 be[i].from >= chain->ips[first_call] - 8) 2384 first_call++; 2385 } else 2386 be[i] = branch->entries[branch->nr - i - 1]; 2387 } 2388 2389 memset(iter, 0, sizeof(struct iterations) * nr); 2390 nr = remove_loops(be, nr, iter); 2391 2392 for (i = 0; i < nr; i++) { 2393 err = add_callchain_ip(thread, cursor, parent, 2394 root_al, 2395 NULL, be[i].to, 2396 true, &be[i].flags, 2397 NULL, be[i].from); 2398 2399 if (!err) 2400 err = add_callchain_ip(thread, cursor, parent, root_al, 2401 NULL, be[i].from, 2402 true, &be[i].flags, 2403 &iter[i], 0); 2404 if (err == -EINVAL) 2405 break; 2406 if (err) 2407 return err; 2408 } 2409 2410 if (chain_nr == 0) 2411 return 0; 2412 2413 chain_nr -= nr; 2414 } 2415 2416 check_calls: 2417 if (callchain_param.order != ORDER_CALLEE) { 2418 err = find_prev_cpumode(chain, thread, cursor, parent, root_al, 2419 &cpumode, chain->nr - first_call); 2420 if (err) 2421 return (err < 0) ? err : 0; 2422 } 2423 for (i = first_call, nr_entries = 0; 2424 i < chain_nr && nr_entries < max_stack; i++) { 2425 u64 ip; 2426 2427 if (callchain_param.order == ORDER_CALLEE) 2428 j = i; 2429 else 2430 j = chain->nr - i - 1; 2431 2432 #ifdef HAVE_SKIP_CALLCHAIN_IDX 2433 if (j == skip_idx) 2434 continue; 2435 #endif 2436 ip = chain->ips[j]; 2437 if (ip < PERF_CONTEXT_MAX) 2438 ++nr_entries; 2439 else if (callchain_param.order != ORDER_CALLEE) { 2440 err = find_prev_cpumode(chain, thread, cursor, parent, 2441 root_al, &cpumode, j); 2442 if (err) 2443 return (err < 0) ? err : 0; 2444 continue; 2445 } 2446 2447 err = add_callchain_ip(thread, cursor, parent, 2448 root_al, &cpumode, ip, 2449 false, NULL, NULL, 0); 2450 2451 if (err) 2452 return (err < 0) ? err : 0; 2453 } 2454 2455 return 0; 2456 } 2457 2458 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip) 2459 { 2460 struct symbol *sym = ms->sym; 2461 struct map *map = ms->map; 2462 struct inline_node *inline_node; 2463 struct inline_list *ilist; 2464 u64 addr; 2465 int ret = 1; 2466 2467 if (!symbol_conf.inline_name || !map || !sym) 2468 return ret; 2469 2470 addr = map__map_ip(map, ip); 2471 addr = map__rip_2objdump(map, addr); 2472 2473 inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr); 2474 if (!inline_node) { 2475 inline_node = dso__parse_addr_inlines(map->dso, addr, sym); 2476 if (!inline_node) 2477 return ret; 2478 inlines__tree_insert(&map->dso->inlined_nodes, inline_node); 2479 } 2480 2481 list_for_each_entry(ilist, &inline_node->val, list) { 2482 struct map_symbol ilist_ms = { 2483 .map = map, 2484 .sym = ilist->symbol, 2485 }; 2486 ret = callchain_cursor_append(cursor, ip, &ilist_ms, false, 2487 NULL, 0, 0, 0, ilist->srcline); 2488 2489 if (ret != 0) 2490 return ret; 2491 } 2492 2493 return ret; 2494 } 2495 2496 static int unwind_entry(struct unwind_entry *entry, void *arg) 2497 { 2498 struct callchain_cursor *cursor = arg; 2499 const char *srcline = NULL; 2500 u64 addr = entry->ip; 2501 2502 if (symbol_conf.hide_unresolved && entry->ms.sym == NULL) 2503 return 0; 2504 2505 if (append_inlines(cursor, &entry->ms, entry->ip) == 0) 2506 return 0; 2507 2508 /* 2509 * Convert entry->ip from a virtual address to an offset in 2510 * its corresponding binary. 2511 */ 2512 if (entry->ms.map) 2513 addr = map__map_ip(entry->ms.map, entry->ip); 2514 2515 srcline = callchain_srcline(&entry->ms, addr); 2516 return callchain_cursor_append(cursor, entry->ip, &entry->ms, 2517 false, NULL, 0, 0, 0, srcline); 2518 } 2519 2520 static int thread__resolve_callchain_unwind(struct thread *thread, 2521 struct callchain_cursor *cursor, 2522 struct evsel *evsel, 2523 struct perf_sample *sample, 2524 int max_stack) 2525 { 2526 /* Can we do dwarf post unwind? */ 2527 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) && 2528 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER))) 2529 return 0; 2530 2531 /* Bail out if nothing was captured. */ 2532 if ((!sample->user_regs.regs) || 2533 (!sample->user_stack.size)) 2534 return 0; 2535 2536 return unwind__get_entries(unwind_entry, cursor, 2537 thread, sample, max_stack); 2538 } 2539 2540 int thread__resolve_callchain(struct thread *thread, 2541 struct callchain_cursor *cursor, 2542 struct evsel *evsel, 2543 struct perf_sample *sample, 2544 struct symbol **parent, 2545 struct addr_location *root_al, 2546 int max_stack) 2547 { 2548 int ret = 0; 2549 2550 callchain_cursor_reset(cursor); 2551 2552 if (callchain_param.order == ORDER_CALLEE) { 2553 ret = thread__resolve_callchain_sample(thread, cursor, 2554 evsel, sample, 2555 parent, root_al, 2556 max_stack); 2557 if (ret) 2558 return ret; 2559 ret = thread__resolve_callchain_unwind(thread, cursor, 2560 evsel, sample, 2561 max_stack); 2562 } else { 2563 ret = thread__resolve_callchain_unwind(thread, cursor, 2564 evsel, sample, 2565 max_stack); 2566 if (ret) 2567 return ret; 2568 ret = thread__resolve_callchain_sample(thread, cursor, 2569 evsel, sample, 2570 parent, root_al, 2571 max_stack); 2572 } 2573 2574 return ret; 2575 } 2576 2577 int machine__for_each_thread(struct machine *machine, 2578 int (*fn)(struct thread *thread, void *p), 2579 void *priv) 2580 { 2581 struct threads *threads; 2582 struct rb_node *nd; 2583 struct thread *thread; 2584 int rc = 0; 2585 int i; 2586 2587 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 2588 threads = &machine->threads[i]; 2589 for (nd = rb_first_cached(&threads->entries); nd; 2590 nd = rb_next(nd)) { 2591 thread = rb_entry(nd, struct thread, rb_node); 2592 rc = fn(thread, priv); 2593 if (rc != 0) 2594 return rc; 2595 } 2596 2597 list_for_each_entry(thread, &threads->dead, node) { 2598 rc = fn(thread, priv); 2599 if (rc != 0) 2600 return rc; 2601 } 2602 } 2603 return rc; 2604 } 2605 2606 int machines__for_each_thread(struct machines *machines, 2607 int (*fn)(struct thread *thread, void *p), 2608 void *priv) 2609 { 2610 struct rb_node *nd; 2611 int rc = 0; 2612 2613 rc = machine__for_each_thread(&machines->host, fn, priv); 2614 if (rc != 0) 2615 return rc; 2616 2617 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 2618 struct machine *machine = rb_entry(nd, struct machine, rb_node); 2619 2620 rc = machine__for_each_thread(machine, fn, priv); 2621 if (rc != 0) 2622 return rc; 2623 } 2624 return rc; 2625 } 2626 2627 pid_t machine__get_current_tid(struct machine *machine, int cpu) 2628 { 2629 int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS); 2630 2631 if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid) 2632 return -1; 2633 2634 return machine->current_tid[cpu]; 2635 } 2636 2637 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid, 2638 pid_t tid) 2639 { 2640 struct thread *thread; 2641 int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS); 2642 2643 if (cpu < 0) 2644 return -EINVAL; 2645 2646 if (!machine->current_tid) { 2647 int i; 2648 2649 machine->current_tid = calloc(nr_cpus, sizeof(pid_t)); 2650 if (!machine->current_tid) 2651 return -ENOMEM; 2652 for (i = 0; i < nr_cpus; i++) 2653 machine->current_tid[i] = -1; 2654 } 2655 2656 if (cpu >= nr_cpus) { 2657 pr_err("Requested CPU %d too large. ", cpu); 2658 pr_err("Consider raising MAX_NR_CPUS\n"); 2659 return -EINVAL; 2660 } 2661 2662 machine->current_tid[cpu] = tid; 2663 2664 thread = machine__findnew_thread(machine, pid, tid); 2665 if (!thread) 2666 return -ENOMEM; 2667 2668 thread->cpu = cpu; 2669 thread__put(thread); 2670 2671 return 0; 2672 } 2673 2674 /* 2675 * Compares the raw arch string. N.B. see instead perf_env__arch() if a 2676 * normalized arch is needed. 2677 */ 2678 bool machine__is(struct machine *machine, const char *arch) 2679 { 2680 return machine && !strcmp(perf_env__raw_arch(machine->env), arch); 2681 } 2682 2683 int machine__nr_cpus_avail(struct machine *machine) 2684 { 2685 return machine ? perf_env__nr_cpus_avail(machine->env) : 0; 2686 } 2687 2688 int machine__get_kernel_start(struct machine *machine) 2689 { 2690 struct map *map = machine__kernel_map(machine); 2691 int err = 0; 2692 2693 /* 2694 * The only addresses above 2^63 are kernel addresses of a 64-bit 2695 * kernel. Note that addresses are unsigned so that on a 32-bit system 2696 * all addresses including kernel addresses are less than 2^32. In 2697 * that case (32-bit system), if the kernel mapping is unknown, all 2698 * addresses will be assumed to be in user space - see 2699 * machine__kernel_ip(). 2700 */ 2701 machine->kernel_start = 1ULL << 63; 2702 if (map) { 2703 err = map__load(map); 2704 /* 2705 * On x86_64, PTI entry trampolines are less than the 2706 * start of kernel text, but still above 2^63. So leave 2707 * kernel_start = 1ULL << 63 for x86_64. 2708 */ 2709 if (!err && !machine__is(machine, "x86_64")) 2710 machine->kernel_start = map->start; 2711 } 2712 return err; 2713 } 2714 2715 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr) 2716 { 2717 u8 addr_cpumode = cpumode; 2718 bool kernel_ip; 2719 2720 if (!machine->single_address_space) 2721 goto out; 2722 2723 kernel_ip = machine__kernel_ip(machine, addr); 2724 switch (cpumode) { 2725 case PERF_RECORD_MISC_KERNEL: 2726 case PERF_RECORD_MISC_USER: 2727 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL : 2728 PERF_RECORD_MISC_USER; 2729 break; 2730 case PERF_RECORD_MISC_GUEST_KERNEL: 2731 case PERF_RECORD_MISC_GUEST_USER: 2732 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL : 2733 PERF_RECORD_MISC_GUEST_USER; 2734 break; 2735 default: 2736 break; 2737 } 2738 out: 2739 return addr_cpumode; 2740 } 2741 2742 struct dso *machine__findnew_dso(struct machine *machine, const char *filename) 2743 { 2744 return dsos__findnew(&machine->dsos, filename); 2745 } 2746 2747 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp) 2748 { 2749 struct machine *machine = vmachine; 2750 struct map *map; 2751 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map); 2752 2753 if (sym == NULL) 2754 return NULL; 2755 2756 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL; 2757 *addrp = map->unmap_ip(map, sym->start); 2758 return sym->name; 2759 } 2760