xref: /openbmc/linux/tools/perf/util/machine.c (revision 9fa996c5f003beae0d8ca323caf06a2b73e471ec)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include <stdlib.h>
7 #include "callchain.h"
8 #include "debug.h"
9 #include "dso.h"
10 #include "env.h"
11 #include "event.h"
12 #include "evsel.h"
13 #include "hist.h"
14 #include "machine.h"
15 #include "map.h"
16 #include "map_symbol.h"
17 #include "branch.h"
18 #include "mem-events.h"
19 #include "srcline.h"
20 #include "symbol.h"
21 #include "sort.h"
22 #include "strlist.h"
23 #include "target.h"
24 #include "thread.h"
25 #include "util.h"
26 #include "vdso.h"
27 #include <stdbool.h>
28 #include <sys/types.h>
29 #include <sys/stat.h>
30 #include <unistd.h>
31 #include "unwind.h"
32 #include "linux/hash.h"
33 #include "asm/bug.h"
34 #include "bpf-event.h"
35 #include <internal/lib.h> // page_size
36 #include "cgroup.h"
37 
38 #include <linux/ctype.h>
39 #include <symbol/kallsyms.h>
40 #include <linux/mman.h>
41 #include <linux/string.h>
42 #include <linux/zalloc.h>
43 
44 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
45 
46 static struct dso *machine__kernel_dso(struct machine *machine)
47 {
48 	return machine->vmlinux_map->dso;
49 }
50 
51 static void dsos__init(struct dsos *dsos)
52 {
53 	INIT_LIST_HEAD(&dsos->head);
54 	dsos->root = RB_ROOT;
55 	init_rwsem(&dsos->lock);
56 }
57 
58 static void machine__threads_init(struct machine *machine)
59 {
60 	int i;
61 
62 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
63 		struct threads *threads = &machine->threads[i];
64 		threads->entries = RB_ROOT_CACHED;
65 		init_rwsem(&threads->lock);
66 		threads->nr = 0;
67 		INIT_LIST_HEAD(&threads->dead);
68 		threads->last_match = NULL;
69 	}
70 }
71 
72 static int machine__set_mmap_name(struct machine *machine)
73 {
74 	if (machine__is_host(machine))
75 		machine->mmap_name = strdup("[kernel.kallsyms]");
76 	else if (machine__is_default_guest(machine))
77 		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
78 	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
79 			  machine->pid) < 0)
80 		machine->mmap_name = NULL;
81 
82 	return machine->mmap_name ? 0 : -ENOMEM;
83 }
84 
85 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
86 {
87 	int err = -ENOMEM;
88 
89 	memset(machine, 0, sizeof(*machine));
90 	maps__init(&machine->kmaps, machine);
91 	RB_CLEAR_NODE(&machine->rb_node);
92 	dsos__init(&machine->dsos);
93 
94 	machine__threads_init(machine);
95 
96 	machine->vdso_info = NULL;
97 	machine->env = NULL;
98 
99 	machine->pid = pid;
100 
101 	machine->id_hdr_size = 0;
102 	machine->kptr_restrict_warned = false;
103 	machine->comm_exec = false;
104 	machine->kernel_start = 0;
105 	machine->vmlinux_map = NULL;
106 
107 	machine->root_dir = strdup(root_dir);
108 	if (machine->root_dir == NULL)
109 		return -ENOMEM;
110 
111 	if (machine__set_mmap_name(machine))
112 		goto out;
113 
114 	if (pid != HOST_KERNEL_ID) {
115 		struct thread *thread = machine__findnew_thread(machine, -1,
116 								pid);
117 		char comm[64];
118 
119 		if (thread == NULL)
120 			goto out;
121 
122 		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
123 		thread__set_comm(thread, comm, 0);
124 		thread__put(thread);
125 	}
126 
127 	machine->current_tid = NULL;
128 	err = 0;
129 
130 out:
131 	if (err) {
132 		zfree(&machine->root_dir);
133 		zfree(&machine->mmap_name);
134 	}
135 	return 0;
136 }
137 
138 struct machine *machine__new_host(void)
139 {
140 	struct machine *machine = malloc(sizeof(*machine));
141 
142 	if (machine != NULL) {
143 		machine__init(machine, "", HOST_KERNEL_ID);
144 
145 		if (machine__create_kernel_maps(machine) < 0)
146 			goto out_delete;
147 	}
148 
149 	return machine;
150 out_delete:
151 	free(machine);
152 	return NULL;
153 }
154 
155 struct machine *machine__new_kallsyms(void)
156 {
157 	struct machine *machine = machine__new_host();
158 	/*
159 	 * FIXME:
160 	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
161 	 *    ask for not using the kcore parsing code, once this one is fixed
162 	 *    to create a map per module.
163 	 */
164 	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
165 		machine__delete(machine);
166 		machine = NULL;
167 	}
168 
169 	return machine;
170 }
171 
172 static void dsos__purge(struct dsos *dsos)
173 {
174 	struct dso *pos, *n;
175 
176 	down_write(&dsos->lock);
177 
178 	list_for_each_entry_safe(pos, n, &dsos->head, node) {
179 		RB_CLEAR_NODE(&pos->rb_node);
180 		pos->root = NULL;
181 		list_del_init(&pos->node);
182 		dso__put(pos);
183 	}
184 
185 	up_write(&dsos->lock);
186 }
187 
188 static void dsos__exit(struct dsos *dsos)
189 {
190 	dsos__purge(dsos);
191 	exit_rwsem(&dsos->lock);
192 }
193 
194 void machine__delete_threads(struct machine *machine)
195 {
196 	struct rb_node *nd;
197 	int i;
198 
199 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
200 		struct threads *threads = &machine->threads[i];
201 		down_write(&threads->lock);
202 		nd = rb_first_cached(&threads->entries);
203 		while (nd) {
204 			struct thread *t = rb_entry(nd, struct thread, rb_node);
205 
206 			nd = rb_next(nd);
207 			__machine__remove_thread(machine, t, false);
208 		}
209 		up_write(&threads->lock);
210 	}
211 }
212 
213 void machine__exit(struct machine *machine)
214 {
215 	int i;
216 
217 	if (machine == NULL)
218 		return;
219 
220 	machine__destroy_kernel_maps(machine);
221 	maps__exit(&machine->kmaps);
222 	dsos__exit(&machine->dsos);
223 	machine__exit_vdso(machine);
224 	zfree(&machine->root_dir);
225 	zfree(&machine->mmap_name);
226 	zfree(&machine->current_tid);
227 
228 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
229 		struct threads *threads = &machine->threads[i];
230 		struct thread *thread, *n;
231 		/*
232 		 * Forget about the dead, at this point whatever threads were
233 		 * left in the dead lists better have a reference count taken
234 		 * by who is using them, and then, when they drop those references
235 		 * and it finally hits zero, thread__put() will check and see that
236 		 * its not in the dead threads list and will not try to remove it
237 		 * from there, just calling thread__delete() straight away.
238 		 */
239 		list_for_each_entry_safe(thread, n, &threads->dead, node)
240 			list_del_init(&thread->node);
241 
242 		exit_rwsem(&threads->lock);
243 	}
244 }
245 
246 void machine__delete(struct machine *machine)
247 {
248 	if (machine) {
249 		machine__exit(machine);
250 		free(machine);
251 	}
252 }
253 
254 void machines__init(struct machines *machines)
255 {
256 	machine__init(&machines->host, "", HOST_KERNEL_ID);
257 	machines->guests = RB_ROOT_CACHED;
258 }
259 
260 void machines__exit(struct machines *machines)
261 {
262 	machine__exit(&machines->host);
263 	/* XXX exit guest */
264 }
265 
266 struct machine *machines__add(struct machines *machines, pid_t pid,
267 			      const char *root_dir)
268 {
269 	struct rb_node **p = &machines->guests.rb_root.rb_node;
270 	struct rb_node *parent = NULL;
271 	struct machine *pos, *machine = malloc(sizeof(*machine));
272 	bool leftmost = true;
273 
274 	if (machine == NULL)
275 		return NULL;
276 
277 	if (machine__init(machine, root_dir, pid) != 0) {
278 		free(machine);
279 		return NULL;
280 	}
281 
282 	while (*p != NULL) {
283 		parent = *p;
284 		pos = rb_entry(parent, struct machine, rb_node);
285 		if (pid < pos->pid)
286 			p = &(*p)->rb_left;
287 		else {
288 			p = &(*p)->rb_right;
289 			leftmost = false;
290 		}
291 	}
292 
293 	rb_link_node(&machine->rb_node, parent, p);
294 	rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
295 
296 	return machine;
297 }
298 
299 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
300 {
301 	struct rb_node *nd;
302 
303 	machines->host.comm_exec = comm_exec;
304 
305 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
306 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
307 
308 		machine->comm_exec = comm_exec;
309 	}
310 }
311 
312 struct machine *machines__find(struct machines *machines, pid_t pid)
313 {
314 	struct rb_node **p = &machines->guests.rb_root.rb_node;
315 	struct rb_node *parent = NULL;
316 	struct machine *machine;
317 	struct machine *default_machine = NULL;
318 
319 	if (pid == HOST_KERNEL_ID)
320 		return &machines->host;
321 
322 	while (*p != NULL) {
323 		parent = *p;
324 		machine = rb_entry(parent, struct machine, rb_node);
325 		if (pid < machine->pid)
326 			p = &(*p)->rb_left;
327 		else if (pid > machine->pid)
328 			p = &(*p)->rb_right;
329 		else
330 			return machine;
331 		if (!machine->pid)
332 			default_machine = machine;
333 	}
334 
335 	return default_machine;
336 }
337 
338 struct machine *machines__findnew(struct machines *machines, pid_t pid)
339 {
340 	char path[PATH_MAX];
341 	const char *root_dir = "";
342 	struct machine *machine = machines__find(machines, pid);
343 
344 	if (machine && (machine->pid == pid))
345 		goto out;
346 
347 	if ((pid != HOST_KERNEL_ID) &&
348 	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
349 	    (symbol_conf.guestmount)) {
350 		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
351 		if (access(path, R_OK)) {
352 			static struct strlist *seen;
353 
354 			if (!seen)
355 				seen = strlist__new(NULL, NULL);
356 
357 			if (!strlist__has_entry(seen, path)) {
358 				pr_err("Can't access file %s\n", path);
359 				strlist__add(seen, path);
360 			}
361 			machine = NULL;
362 			goto out;
363 		}
364 		root_dir = path;
365 	}
366 
367 	machine = machines__add(machines, pid, root_dir);
368 out:
369 	return machine;
370 }
371 
372 struct machine *machines__find_guest(struct machines *machines, pid_t pid)
373 {
374 	struct machine *machine = machines__find(machines, pid);
375 
376 	if (!machine)
377 		machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID);
378 	return machine;
379 }
380 
381 void machines__process_guests(struct machines *machines,
382 			      machine__process_t process, void *data)
383 {
384 	struct rb_node *nd;
385 
386 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
387 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
388 		process(pos, data);
389 	}
390 }
391 
392 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
393 {
394 	struct rb_node *node;
395 	struct machine *machine;
396 
397 	machines->host.id_hdr_size = id_hdr_size;
398 
399 	for (node = rb_first_cached(&machines->guests); node;
400 	     node = rb_next(node)) {
401 		machine = rb_entry(node, struct machine, rb_node);
402 		machine->id_hdr_size = id_hdr_size;
403 	}
404 
405 	return;
406 }
407 
408 static void machine__update_thread_pid(struct machine *machine,
409 				       struct thread *th, pid_t pid)
410 {
411 	struct thread *leader;
412 
413 	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
414 		return;
415 
416 	th->pid_ = pid;
417 
418 	if (th->pid_ == th->tid)
419 		return;
420 
421 	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
422 	if (!leader)
423 		goto out_err;
424 
425 	if (!leader->maps)
426 		leader->maps = maps__new(machine);
427 
428 	if (!leader->maps)
429 		goto out_err;
430 
431 	if (th->maps == leader->maps)
432 		return;
433 
434 	if (th->maps) {
435 		/*
436 		 * Maps are created from MMAP events which provide the pid and
437 		 * tid.  Consequently there never should be any maps on a thread
438 		 * with an unknown pid.  Just print an error if there are.
439 		 */
440 		if (!maps__empty(th->maps))
441 			pr_err("Discarding thread maps for %d:%d\n",
442 			       th->pid_, th->tid);
443 		maps__put(th->maps);
444 	}
445 
446 	th->maps = maps__get(leader->maps);
447 out_put:
448 	thread__put(leader);
449 	return;
450 out_err:
451 	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
452 	goto out_put;
453 }
454 
455 /*
456  * Front-end cache - TID lookups come in blocks,
457  * so most of the time we dont have to look up
458  * the full rbtree:
459  */
460 static struct thread*
461 __threads__get_last_match(struct threads *threads, struct machine *machine,
462 			  int pid, int tid)
463 {
464 	struct thread *th;
465 
466 	th = threads->last_match;
467 	if (th != NULL) {
468 		if (th->tid == tid) {
469 			machine__update_thread_pid(machine, th, pid);
470 			return thread__get(th);
471 		}
472 
473 		threads->last_match = NULL;
474 	}
475 
476 	return NULL;
477 }
478 
479 static struct thread*
480 threads__get_last_match(struct threads *threads, struct machine *machine,
481 			int pid, int tid)
482 {
483 	struct thread *th = NULL;
484 
485 	if (perf_singlethreaded)
486 		th = __threads__get_last_match(threads, machine, pid, tid);
487 
488 	return th;
489 }
490 
491 static void
492 __threads__set_last_match(struct threads *threads, struct thread *th)
493 {
494 	threads->last_match = th;
495 }
496 
497 static void
498 threads__set_last_match(struct threads *threads, struct thread *th)
499 {
500 	if (perf_singlethreaded)
501 		__threads__set_last_match(threads, th);
502 }
503 
504 /*
505  * Caller must eventually drop thread->refcnt returned with a successful
506  * lookup/new thread inserted.
507  */
508 static struct thread *____machine__findnew_thread(struct machine *machine,
509 						  struct threads *threads,
510 						  pid_t pid, pid_t tid,
511 						  bool create)
512 {
513 	struct rb_node **p = &threads->entries.rb_root.rb_node;
514 	struct rb_node *parent = NULL;
515 	struct thread *th;
516 	bool leftmost = true;
517 
518 	th = threads__get_last_match(threads, machine, pid, tid);
519 	if (th)
520 		return th;
521 
522 	while (*p != NULL) {
523 		parent = *p;
524 		th = rb_entry(parent, struct thread, rb_node);
525 
526 		if (th->tid == tid) {
527 			threads__set_last_match(threads, th);
528 			machine__update_thread_pid(machine, th, pid);
529 			return thread__get(th);
530 		}
531 
532 		if (tid < th->tid)
533 			p = &(*p)->rb_left;
534 		else {
535 			p = &(*p)->rb_right;
536 			leftmost = false;
537 		}
538 	}
539 
540 	if (!create)
541 		return NULL;
542 
543 	th = thread__new(pid, tid);
544 	if (th != NULL) {
545 		rb_link_node(&th->rb_node, parent, p);
546 		rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
547 
548 		/*
549 		 * We have to initialize maps separately after rb tree is updated.
550 		 *
551 		 * The reason is that we call machine__findnew_thread
552 		 * within thread__init_maps to find the thread
553 		 * leader and that would screwed the rb tree.
554 		 */
555 		if (thread__init_maps(th, machine)) {
556 			rb_erase_cached(&th->rb_node, &threads->entries);
557 			RB_CLEAR_NODE(&th->rb_node);
558 			thread__put(th);
559 			return NULL;
560 		}
561 		/*
562 		 * It is now in the rbtree, get a ref
563 		 */
564 		thread__get(th);
565 		threads__set_last_match(threads, th);
566 		++threads->nr;
567 	}
568 
569 	return th;
570 }
571 
572 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
573 {
574 	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
575 }
576 
577 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
578 				       pid_t tid)
579 {
580 	struct threads *threads = machine__threads(machine, tid);
581 	struct thread *th;
582 
583 	down_write(&threads->lock);
584 	th = __machine__findnew_thread(machine, pid, tid);
585 	up_write(&threads->lock);
586 	return th;
587 }
588 
589 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
590 				    pid_t tid)
591 {
592 	struct threads *threads = machine__threads(machine, tid);
593 	struct thread *th;
594 
595 	down_read(&threads->lock);
596 	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
597 	up_read(&threads->lock);
598 	return th;
599 }
600 
601 /*
602  * Threads are identified by pid and tid, and the idle task has pid == tid == 0.
603  * So here a single thread is created for that, but actually there is a separate
604  * idle task per cpu, so there should be one 'struct thread' per cpu, but there
605  * is only 1. That causes problems for some tools, requiring workarounds. For
606  * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu().
607  */
608 struct thread *machine__idle_thread(struct machine *machine)
609 {
610 	struct thread *thread = machine__findnew_thread(machine, 0, 0);
611 
612 	if (!thread || thread__set_comm(thread, "swapper", 0) ||
613 	    thread__set_namespaces(thread, 0, NULL))
614 		pr_err("problem inserting idle task for machine pid %d\n", machine->pid);
615 
616 	return thread;
617 }
618 
619 struct comm *machine__thread_exec_comm(struct machine *machine,
620 				       struct thread *thread)
621 {
622 	if (machine->comm_exec)
623 		return thread__exec_comm(thread);
624 	else
625 		return thread__comm(thread);
626 }
627 
628 int machine__process_comm_event(struct machine *machine, union perf_event *event,
629 				struct perf_sample *sample)
630 {
631 	struct thread *thread = machine__findnew_thread(machine,
632 							event->comm.pid,
633 							event->comm.tid);
634 	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
635 	int err = 0;
636 
637 	if (exec)
638 		machine->comm_exec = true;
639 
640 	if (dump_trace)
641 		perf_event__fprintf_comm(event, stdout);
642 
643 	if (thread == NULL ||
644 	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
645 		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
646 		err = -1;
647 	}
648 
649 	thread__put(thread);
650 
651 	return err;
652 }
653 
654 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
655 				      union perf_event *event,
656 				      struct perf_sample *sample __maybe_unused)
657 {
658 	struct thread *thread = machine__findnew_thread(machine,
659 							event->namespaces.pid,
660 							event->namespaces.tid);
661 	int err = 0;
662 
663 	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
664 		  "\nWARNING: kernel seems to support more namespaces than perf"
665 		  " tool.\nTry updating the perf tool..\n\n");
666 
667 	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
668 		  "\nWARNING: perf tool seems to support more namespaces than"
669 		  " the kernel.\nTry updating the kernel..\n\n");
670 
671 	if (dump_trace)
672 		perf_event__fprintf_namespaces(event, stdout);
673 
674 	if (thread == NULL ||
675 	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
676 		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
677 		err = -1;
678 	}
679 
680 	thread__put(thread);
681 
682 	return err;
683 }
684 
685 int machine__process_cgroup_event(struct machine *machine,
686 				  union perf_event *event,
687 				  struct perf_sample *sample __maybe_unused)
688 {
689 	struct cgroup *cgrp;
690 
691 	if (dump_trace)
692 		perf_event__fprintf_cgroup(event, stdout);
693 
694 	cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
695 	if (cgrp == NULL)
696 		return -ENOMEM;
697 
698 	return 0;
699 }
700 
701 int machine__process_lost_event(struct machine *machine __maybe_unused,
702 				union perf_event *event, struct perf_sample *sample __maybe_unused)
703 {
704 	dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
705 		    event->lost.id, event->lost.lost);
706 	return 0;
707 }
708 
709 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
710 					union perf_event *event, struct perf_sample *sample)
711 {
712 	dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
713 		    sample->id, event->lost_samples.lost);
714 	return 0;
715 }
716 
717 static struct dso *machine__findnew_module_dso(struct machine *machine,
718 					       struct kmod_path *m,
719 					       const char *filename)
720 {
721 	struct dso *dso;
722 
723 	down_write(&machine->dsos.lock);
724 
725 	dso = __dsos__find(&machine->dsos, m->name, true);
726 	if (!dso) {
727 		dso = __dsos__addnew(&machine->dsos, m->name);
728 		if (dso == NULL)
729 			goto out_unlock;
730 
731 		dso__set_module_info(dso, m, machine);
732 		dso__set_long_name(dso, strdup(filename), true);
733 		dso->kernel = DSO_SPACE__KERNEL;
734 	}
735 
736 	dso__get(dso);
737 out_unlock:
738 	up_write(&machine->dsos.lock);
739 	return dso;
740 }
741 
742 int machine__process_aux_event(struct machine *machine __maybe_unused,
743 			       union perf_event *event)
744 {
745 	if (dump_trace)
746 		perf_event__fprintf_aux(event, stdout);
747 	return 0;
748 }
749 
750 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
751 					union perf_event *event)
752 {
753 	if (dump_trace)
754 		perf_event__fprintf_itrace_start(event, stdout);
755 	return 0;
756 }
757 
758 int machine__process_switch_event(struct machine *machine __maybe_unused,
759 				  union perf_event *event)
760 {
761 	if (dump_trace)
762 		perf_event__fprintf_switch(event, stdout);
763 	return 0;
764 }
765 
766 static int machine__process_ksymbol_register(struct machine *machine,
767 					     union perf_event *event,
768 					     struct perf_sample *sample __maybe_unused)
769 {
770 	struct symbol *sym;
771 	struct map *map = maps__find(&machine->kmaps, event->ksymbol.addr);
772 
773 	if (!map) {
774 		struct dso *dso = dso__new(event->ksymbol.name);
775 
776 		if (dso) {
777 			dso->kernel = DSO_SPACE__KERNEL;
778 			map = map__new2(0, dso);
779 		}
780 
781 		if (!dso || !map) {
782 			dso__put(dso);
783 			return -ENOMEM;
784 		}
785 
786 		if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
787 			map->dso->binary_type = DSO_BINARY_TYPE__OOL;
788 			map->dso->data.file_size = event->ksymbol.len;
789 			dso__set_loaded(map->dso);
790 		}
791 
792 		map->start = event->ksymbol.addr;
793 		map->end = map->start + event->ksymbol.len;
794 		maps__insert(&machine->kmaps, map);
795 		dso__set_loaded(dso);
796 
797 		if (is_bpf_image(event->ksymbol.name)) {
798 			dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE;
799 			dso__set_long_name(dso, "", false);
800 		}
801 	}
802 
803 	sym = symbol__new(map->map_ip(map, map->start),
804 			  event->ksymbol.len,
805 			  0, 0, event->ksymbol.name);
806 	if (!sym)
807 		return -ENOMEM;
808 	dso__insert_symbol(map->dso, sym);
809 	return 0;
810 }
811 
812 static int machine__process_ksymbol_unregister(struct machine *machine,
813 					       union perf_event *event,
814 					       struct perf_sample *sample __maybe_unused)
815 {
816 	struct symbol *sym;
817 	struct map *map;
818 
819 	map = maps__find(&machine->kmaps, event->ksymbol.addr);
820 	if (!map)
821 		return 0;
822 
823 	if (map != machine->vmlinux_map)
824 		maps__remove(&machine->kmaps, map);
825 	else {
826 		sym = dso__find_symbol(map->dso, map->map_ip(map, map->start));
827 		if (sym)
828 			dso__delete_symbol(map->dso, sym);
829 	}
830 
831 	return 0;
832 }
833 
834 int machine__process_ksymbol(struct machine *machine __maybe_unused,
835 			     union perf_event *event,
836 			     struct perf_sample *sample)
837 {
838 	if (dump_trace)
839 		perf_event__fprintf_ksymbol(event, stdout);
840 
841 	if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
842 		return machine__process_ksymbol_unregister(machine, event,
843 							   sample);
844 	return machine__process_ksymbol_register(machine, event, sample);
845 }
846 
847 int machine__process_text_poke(struct machine *machine, union perf_event *event,
848 			       struct perf_sample *sample __maybe_unused)
849 {
850 	struct map *map = maps__find(&machine->kmaps, event->text_poke.addr);
851 	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
852 
853 	if (dump_trace)
854 		perf_event__fprintf_text_poke(event, machine, stdout);
855 
856 	if (!event->text_poke.new_len)
857 		return 0;
858 
859 	if (cpumode != PERF_RECORD_MISC_KERNEL) {
860 		pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
861 		return 0;
862 	}
863 
864 	if (map && map->dso) {
865 		u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
866 		int ret;
867 
868 		/*
869 		 * Kernel maps might be changed when loading symbols so loading
870 		 * must be done prior to using kernel maps.
871 		 */
872 		map__load(map);
873 		ret = dso__data_write_cache_addr(map->dso, map, machine,
874 						 event->text_poke.addr,
875 						 new_bytes,
876 						 event->text_poke.new_len);
877 		if (ret != event->text_poke.new_len)
878 			pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
879 				 event->text_poke.addr);
880 	} else {
881 		pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
882 			 event->text_poke.addr);
883 	}
884 
885 	return 0;
886 }
887 
888 static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
889 					      const char *filename)
890 {
891 	struct map *map = NULL;
892 	struct kmod_path m;
893 	struct dso *dso;
894 
895 	if (kmod_path__parse_name(&m, filename))
896 		return NULL;
897 
898 	dso = machine__findnew_module_dso(machine, &m, filename);
899 	if (dso == NULL)
900 		goto out;
901 
902 	map = map__new2(start, dso);
903 	if (map == NULL)
904 		goto out;
905 
906 	maps__insert(&machine->kmaps, map);
907 
908 	/* Put the map here because maps__insert already got it */
909 	map__put(map);
910 out:
911 	/* put the dso here, corresponding to  machine__findnew_module_dso */
912 	dso__put(dso);
913 	zfree(&m.name);
914 	return map;
915 }
916 
917 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
918 {
919 	struct rb_node *nd;
920 	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
921 
922 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
923 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
924 		ret += __dsos__fprintf(&pos->dsos.head, fp);
925 	}
926 
927 	return ret;
928 }
929 
930 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
931 				     bool (skip)(struct dso *dso, int parm), int parm)
932 {
933 	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
934 }
935 
936 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
937 				     bool (skip)(struct dso *dso, int parm), int parm)
938 {
939 	struct rb_node *nd;
940 	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
941 
942 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
943 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
944 		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
945 	}
946 	return ret;
947 }
948 
949 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
950 {
951 	int i;
952 	size_t printed = 0;
953 	struct dso *kdso = machine__kernel_dso(machine);
954 
955 	if (kdso->has_build_id) {
956 		char filename[PATH_MAX];
957 		if (dso__build_id_filename(kdso, filename, sizeof(filename),
958 					   false))
959 			printed += fprintf(fp, "[0] %s\n", filename);
960 	}
961 
962 	for (i = 0; i < vmlinux_path__nr_entries; ++i)
963 		printed += fprintf(fp, "[%d] %s\n",
964 				   i + kdso->has_build_id, vmlinux_path[i]);
965 
966 	return printed;
967 }
968 
969 size_t machine__fprintf(struct machine *machine, FILE *fp)
970 {
971 	struct rb_node *nd;
972 	size_t ret;
973 	int i;
974 
975 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
976 		struct threads *threads = &machine->threads[i];
977 
978 		down_read(&threads->lock);
979 
980 		ret = fprintf(fp, "Threads: %u\n", threads->nr);
981 
982 		for (nd = rb_first_cached(&threads->entries); nd;
983 		     nd = rb_next(nd)) {
984 			struct thread *pos = rb_entry(nd, struct thread, rb_node);
985 
986 			ret += thread__fprintf(pos, fp);
987 		}
988 
989 		up_read(&threads->lock);
990 	}
991 	return ret;
992 }
993 
994 static struct dso *machine__get_kernel(struct machine *machine)
995 {
996 	const char *vmlinux_name = machine->mmap_name;
997 	struct dso *kernel;
998 
999 	if (machine__is_host(machine)) {
1000 		if (symbol_conf.vmlinux_name)
1001 			vmlinux_name = symbol_conf.vmlinux_name;
1002 
1003 		kernel = machine__findnew_kernel(machine, vmlinux_name,
1004 						 "[kernel]", DSO_SPACE__KERNEL);
1005 	} else {
1006 		if (symbol_conf.default_guest_vmlinux_name)
1007 			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
1008 
1009 		kernel = machine__findnew_kernel(machine, vmlinux_name,
1010 						 "[guest.kernel]",
1011 						 DSO_SPACE__KERNEL_GUEST);
1012 	}
1013 
1014 	if (kernel != NULL && (!kernel->has_build_id))
1015 		dso__read_running_kernel_build_id(kernel, machine);
1016 
1017 	return kernel;
1018 }
1019 
1020 struct process_args {
1021 	u64 start;
1022 };
1023 
1024 void machine__get_kallsyms_filename(struct machine *machine, char *buf,
1025 				    size_t bufsz)
1026 {
1027 	if (machine__is_default_guest(machine))
1028 		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
1029 	else
1030 		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
1031 }
1032 
1033 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
1034 
1035 /* Figure out the start address of kernel map from /proc/kallsyms.
1036  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
1037  * symbol_name if it's not that important.
1038  */
1039 static int machine__get_running_kernel_start(struct machine *machine,
1040 					     const char **symbol_name,
1041 					     u64 *start, u64 *end)
1042 {
1043 	char filename[PATH_MAX];
1044 	int i, err = -1;
1045 	const char *name;
1046 	u64 addr = 0;
1047 
1048 	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
1049 
1050 	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1051 		return 0;
1052 
1053 	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
1054 		err = kallsyms__get_function_start(filename, name, &addr);
1055 		if (!err)
1056 			break;
1057 	}
1058 
1059 	if (err)
1060 		return -1;
1061 
1062 	if (symbol_name)
1063 		*symbol_name = name;
1064 
1065 	*start = addr;
1066 
1067 	err = kallsyms__get_function_start(filename, "_etext", &addr);
1068 	if (!err)
1069 		*end = addr;
1070 
1071 	return 0;
1072 }
1073 
1074 int machine__create_extra_kernel_map(struct machine *machine,
1075 				     struct dso *kernel,
1076 				     struct extra_kernel_map *xm)
1077 {
1078 	struct kmap *kmap;
1079 	struct map *map;
1080 
1081 	map = map__new2(xm->start, kernel);
1082 	if (!map)
1083 		return -1;
1084 
1085 	map->end   = xm->end;
1086 	map->pgoff = xm->pgoff;
1087 
1088 	kmap = map__kmap(map);
1089 
1090 	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1091 
1092 	maps__insert(&machine->kmaps, map);
1093 
1094 	pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1095 		  kmap->name, map->start, map->end);
1096 
1097 	map__put(map);
1098 
1099 	return 0;
1100 }
1101 
1102 static u64 find_entry_trampoline(struct dso *dso)
1103 {
1104 	/* Duplicates are removed so lookup all aliases */
1105 	const char *syms[] = {
1106 		"_entry_trampoline",
1107 		"__entry_trampoline_start",
1108 		"entry_SYSCALL_64_trampoline",
1109 	};
1110 	struct symbol *sym = dso__first_symbol(dso);
1111 	unsigned int i;
1112 
1113 	for (; sym; sym = dso__next_symbol(sym)) {
1114 		if (sym->binding != STB_GLOBAL)
1115 			continue;
1116 		for (i = 0; i < ARRAY_SIZE(syms); i++) {
1117 			if (!strcmp(sym->name, syms[i]))
1118 				return sym->start;
1119 		}
1120 	}
1121 
1122 	return 0;
1123 }
1124 
1125 /*
1126  * These values can be used for kernels that do not have symbols for the entry
1127  * trampolines in kallsyms.
1128  */
1129 #define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
1130 #define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
1131 #define X86_64_ENTRY_TRAMPOLINE		0x6000
1132 
1133 /* Map x86_64 PTI entry trampolines */
1134 int machine__map_x86_64_entry_trampolines(struct machine *machine,
1135 					  struct dso *kernel)
1136 {
1137 	struct maps *kmaps = &machine->kmaps;
1138 	int nr_cpus_avail, cpu;
1139 	bool found = false;
1140 	struct map *map;
1141 	u64 pgoff;
1142 
1143 	/*
1144 	 * In the vmlinux case, pgoff is a virtual address which must now be
1145 	 * mapped to a vmlinux offset.
1146 	 */
1147 	maps__for_each_entry(kmaps, map) {
1148 		struct kmap *kmap = __map__kmap(map);
1149 		struct map *dest_map;
1150 
1151 		if (!kmap || !is_entry_trampoline(kmap->name))
1152 			continue;
1153 
1154 		dest_map = maps__find(kmaps, map->pgoff);
1155 		if (dest_map != map)
1156 			map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1157 		found = true;
1158 	}
1159 	if (found || machine->trampolines_mapped)
1160 		return 0;
1161 
1162 	pgoff = find_entry_trampoline(kernel);
1163 	if (!pgoff)
1164 		return 0;
1165 
1166 	nr_cpus_avail = machine__nr_cpus_avail(machine);
1167 
1168 	/* Add a 1 page map for each CPU's entry trampoline */
1169 	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1170 		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1171 			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1172 			 X86_64_ENTRY_TRAMPOLINE;
1173 		struct extra_kernel_map xm = {
1174 			.start = va,
1175 			.end   = va + page_size,
1176 			.pgoff = pgoff,
1177 		};
1178 
1179 		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1180 
1181 		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1182 			return -1;
1183 	}
1184 
1185 	machine->trampolines_mapped = nr_cpus_avail;
1186 
1187 	return 0;
1188 }
1189 
1190 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1191 					     struct dso *kernel __maybe_unused)
1192 {
1193 	return 0;
1194 }
1195 
1196 static int
1197 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1198 {
1199 	/* In case of renewal the kernel map, destroy previous one */
1200 	machine__destroy_kernel_maps(machine);
1201 
1202 	machine->vmlinux_map = map__new2(0, kernel);
1203 	if (machine->vmlinux_map == NULL)
1204 		return -1;
1205 
1206 	machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1207 	maps__insert(&machine->kmaps, machine->vmlinux_map);
1208 	return 0;
1209 }
1210 
1211 void machine__destroy_kernel_maps(struct machine *machine)
1212 {
1213 	struct kmap *kmap;
1214 	struct map *map = machine__kernel_map(machine);
1215 
1216 	if (map == NULL)
1217 		return;
1218 
1219 	kmap = map__kmap(map);
1220 	maps__remove(&machine->kmaps, map);
1221 	if (kmap && kmap->ref_reloc_sym) {
1222 		zfree((char **)&kmap->ref_reloc_sym->name);
1223 		zfree(&kmap->ref_reloc_sym);
1224 	}
1225 
1226 	map__zput(machine->vmlinux_map);
1227 }
1228 
1229 int machines__create_guest_kernel_maps(struct machines *machines)
1230 {
1231 	int ret = 0;
1232 	struct dirent **namelist = NULL;
1233 	int i, items = 0;
1234 	char path[PATH_MAX];
1235 	pid_t pid;
1236 	char *endp;
1237 
1238 	if (symbol_conf.default_guest_vmlinux_name ||
1239 	    symbol_conf.default_guest_modules ||
1240 	    symbol_conf.default_guest_kallsyms) {
1241 		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1242 	}
1243 
1244 	if (symbol_conf.guestmount) {
1245 		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1246 		if (items <= 0)
1247 			return -ENOENT;
1248 		for (i = 0; i < items; i++) {
1249 			if (!isdigit(namelist[i]->d_name[0])) {
1250 				/* Filter out . and .. */
1251 				continue;
1252 			}
1253 			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1254 			if ((*endp != '\0') ||
1255 			    (endp == namelist[i]->d_name) ||
1256 			    (errno == ERANGE)) {
1257 				pr_debug("invalid directory (%s). Skipping.\n",
1258 					 namelist[i]->d_name);
1259 				continue;
1260 			}
1261 			sprintf(path, "%s/%s/proc/kallsyms",
1262 				symbol_conf.guestmount,
1263 				namelist[i]->d_name);
1264 			ret = access(path, R_OK);
1265 			if (ret) {
1266 				pr_debug("Can't access file %s\n", path);
1267 				goto failure;
1268 			}
1269 			machines__create_kernel_maps(machines, pid);
1270 		}
1271 failure:
1272 		free(namelist);
1273 	}
1274 
1275 	return ret;
1276 }
1277 
1278 void machines__destroy_kernel_maps(struct machines *machines)
1279 {
1280 	struct rb_node *next = rb_first_cached(&machines->guests);
1281 
1282 	machine__destroy_kernel_maps(&machines->host);
1283 
1284 	while (next) {
1285 		struct machine *pos = rb_entry(next, struct machine, rb_node);
1286 
1287 		next = rb_next(&pos->rb_node);
1288 		rb_erase_cached(&pos->rb_node, &machines->guests);
1289 		machine__delete(pos);
1290 	}
1291 }
1292 
1293 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1294 {
1295 	struct machine *machine = machines__findnew(machines, pid);
1296 
1297 	if (machine == NULL)
1298 		return -1;
1299 
1300 	return machine__create_kernel_maps(machine);
1301 }
1302 
1303 int machine__load_kallsyms(struct machine *machine, const char *filename)
1304 {
1305 	struct map *map = machine__kernel_map(machine);
1306 	int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1307 
1308 	if (ret > 0) {
1309 		dso__set_loaded(map->dso);
1310 		/*
1311 		 * Since /proc/kallsyms will have multiple sessions for the
1312 		 * kernel, with modules between them, fixup the end of all
1313 		 * sections.
1314 		 */
1315 		maps__fixup_end(&machine->kmaps);
1316 	}
1317 
1318 	return ret;
1319 }
1320 
1321 int machine__load_vmlinux_path(struct machine *machine)
1322 {
1323 	struct map *map = machine__kernel_map(machine);
1324 	int ret = dso__load_vmlinux_path(map->dso, map);
1325 
1326 	if (ret > 0)
1327 		dso__set_loaded(map->dso);
1328 
1329 	return ret;
1330 }
1331 
1332 static char *get_kernel_version(const char *root_dir)
1333 {
1334 	char version[PATH_MAX];
1335 	FILE *file;
1336 	char *name, *tmp;
1337 	const char *prefix = "Linux version ";
1338 
1339 	sprintf(version, "%s/proc/version", root_dir);
1340 	file = fopen(version, "r");
1341 	if (!file)
1342 		return NULL;
1343 
1344 	tmp = fgets(version, sizeof(version), file);
1345 	fclose(file);
1346 	if (!tmp)
1347 		return NULL;
1348 
1349 	name = strstr(version, prefix);
1350 	if (!name)
1351 		return NULL;
1352 	name += strlen(prefix);
1353 	tmp = strchr(name, ' ');
1354 	if (tmp)
1355 		*tmp = '\0';
1356 
1357 	return strdup(name);
1358 }
1359 
1360 static bool is_kmod_dso(struct dso *dso)
1361 {
1362 	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1363 	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1364 }
1365 
1366 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1367 {
1368 	char *long_name;
1369 	struct map *map = maps__find_by_name(maps, m->name);
1370 
1371 	if (map == NULL)
1372 		return 0;
1373 
1374 	long_name = strdup(path);
1375 	if (long_name == NULL)
1376 		return -ENOMEM;
1377 
1378 	dso__set_long_name(map->dso, long_name, true);
1379 	dso__kernel_module_get_build_id(map->dso, "");
1380 
1381 	/*
1382 	 * Full name could reveal us kmod compression, so
1383 	 * we need to update the symtab_type if needed.
1384 	 */
1385 	if (m->comp && is_kmod_dso(map->dso)) {
1386 		map->dso->symtab_type++;
1387 		map->dso->comp = m->comp;
1388 	}
1389 
1390 	return 0;
1391 }
1392 
1393 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1394 {
1395 	struct dirent *dent;
1396 	DIR *dir = opendir(dir_name);
1397 	int ret = 0;
1398 
1399 	if (!dir) {
1400 		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1401 		return -1;
1402 	}
1403 
1404 	while ((dent = readdir(dir)) != NULL) {
1405 		char path[PATH_MAX];
1406 		struct stat st;
1407 
1408 		/*sshfs might return bad dent->d_type, so we have to stat*/
1409 		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1410 		if (stat(path, &st))
1411 			continue;
1412 
1413 		if (S_ISDIR(st.st_mode)) {
1414 			if (!strcmp(dent->d_name, ".") ||
1415 			    !strcmp(dent->d_name, ".."))
1416 				continue;
1417 
1418 			/* Do not follow top-level source and build symlinks */
1419 			if (depth == 0) {
1420 				if (!strcmp(dent->d_name, "source") ||
1421 				    !strcmp(dent->d_name, "build"))
1422 					continue;
1423 			}
1424 
1425 			ret = maps__set_modules_path_dir(maps, path, depth + 1);
1426 			if (ret < 0)
1427 				goto out;
1428 		} else {
1429 			struct kmod_path m;
1430 
1431 			ret = kmod_path__parse_name(&m, dent->d_name);
1432 			if (ret)
1433 				goto out;
1434 
1435 			if (m.kmod)
1436 				ret = maps__set_module_path(maps, path, &m);
1437 
1438 			zfree(&m.name);
1439 
1440 			if (ret)
1441 				goto out;
1442 		}
1443 	}
1444 
1445 out:
1446 	closedir(dir);
1447 	return ret;
1448 }
1449 
1450 static int machine__set_modules_path(struct machine *machine)
1451 {
1452 	char *version;
1453 	char modules_path[PATH_MAX];
1454 
1455 	version = get_kernel_version(machine->root_dir);
1456 	if (!version)
1457 		return -1;
1458 
1459 	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1460 		 machine->root_dir, version);
1461 	free(version);
1462 
1463 	return maps__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1464 }
1465 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1466 				u64 *size __maybe_unused,
1467 				const char *name __maybe_unused)
1468 {
1469 	return 0;
1470 }
1471 
1472 static int machine__create_module(void *arg, const char *name, u64 start,
1473 				  u64 size)
1474 {
1475 	struct machine *machine = arg;
1476 	struct map *map;
1477 
1478 	if (arch__fix_module_text_start(&start, &size, name) < 0)
1479 		return -1;
1480 
1481 	map = machine__addnew_module_map(machine, start, name);
1482 	if (map == NULL)
1483 		return -1;
1484 	map->end = start + size;
1485 
1486 	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1487 
1488 	return 0;
1489 }
1490 
1491 static int machine__create_modules(struct machine *machine)
1492 {
1493 	const char *modules;
1494 	char path[PATH_MAX];
1495 
1496 	if (machine__is_default_guest(machine)) {
1497 		modules = symbol_conf.default_guest_modules;
1498 	} else {
1499 		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1500 		modules = path;
1501 	}
1502 
1503 	if (symbol__restricted_filename(modules, "/proc/modules"))
1504 		return -1;
1505 
1506 	if (modules__parse(modules, machine, machine__create_module))
1507 		return -1;
1508 
1509 	if (!machine__set_modules_path(machine))
1510 		return 0;
1511 
1512 	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1513 
1514 	return 0;
1515 }
1516 
1517 static void machine__set_kernel_mmap(struct machine *machine,
1518 				     u64 start, u64 end)
1519 {
1520 	machine->vmlinux_map->start = start;
1521 	machine->vmlinux_map->end   = end;
1522 	/*
1523 	 * Be a bit paranoid here, some perf.data file came with
1524 	 * a zero sized synthesized MMAP event for the kernel.
1525 	 */
1526 	if (start == 0 && end == 0)
1527 		machine->vmlinux_map->end = ~0ULL;
1528 }
1529 
1530 static void machine__update_kernel_mmap(struct machine *machine,
1531 				     u64 start, u64 end)
1532 {
1533 	struct map *map = machine__kernel_map(machine);
1534 
1535 	map__get(map);
1536 	maps__remove(&machine->kmaps, map);
1537 
1538 	machine__set_kernel_mmap(machine, start, end);
1539 
1540 	maps__insert(&machine->kmaps, map);
1541 	map__put(map);
1542 }
1543 
1544 int machine__create_kernel_maps(struct machine *machine)
1545 {
1546 	struct dso *kernel = machine__get_kernel(machine);
1547 	const char *name = NULL;
1548 	struct map *map;
1549 	u64 start = 0, end = ~0ULL;
1550 	int ret;
1551 
1552 	if (kernel == NULL)
1553 		return -1;
1554 
1555 	ret = __machine__create_kernel_maps(machine, kernel);
1556 	if (ret < 0)
1557 		goto out_put;
1558 
1559 	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1560 		if (machine__is_host(machine))
1561 			pr_debug("Problems creating module maps, "
1562 				 "continuing anyway...\n");
1563 		else
1564 			pr_debug("Problems creating module maps for guest %d, "
1565 				 "continuing anyway...\n", machine->pid);
1566 	}
1567 
1568 	if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1569 		if (name &&
1570 		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1571 			machine__destroy_kernel_maps(machine);
1572 			ret = -1;
1573 			goto out_put;
1574 		}
1575 
1576 		/*
1577 		 * we have a real start address now, so re-order the kmaps
1578 		 * assume it's the last in the kmaps
1579 		 */
1580 		machine__update_kernel_mmap(machine, start, end);
1581 	}
1582 
1583 	if (machine__create_extra_kernel_maps(machine, kernel))
1584 		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1585 
1586 	if (end == ~0ULL) {
1587 		/* update end address of the kernel map using adjacent module address */
1588 		map = map__next(machine__kernel_map(machine));
1589 		if (map)
1590 			machine__set_kernel_mmap(machine, start, map->start);
1591 	}
1592 
1593 out_put:
1594 	dso__put(kernel);
1595 	return ret;
1596 }
1597 
1598 static bool machine__uses_kcore(struct machine *machine)
1599 {
1600 	struct dso *dso;
1601 
1602 	list_for_each_entry(dso, &machine->dsos.head, node) {
1603 		if (dso__is_kcore(dso))
1604 			return true;
1605 	}
1606 
1607 	return false;
1608 }
1609 
1610 static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1611 					     struct extra_kernel_map *xm)
1612 {
1613 	return machine__is(machine, "x86_64") &&
1614 	       is_entry_trampoline(xm->name);
1615 }
1616 
1617 static int machine__process_extra_kernel_map(struct machine *machine,
1618 					     struct extra_kernel_map *xm)
1619 {
1620 	struct dso *kernel = machine__kernel_dso(machine);
1621 
1622 	if (kernel == NULL)
1623 		return -1;
1624 
1625 	return machine__create_extra_kernel_map(machine, kernel, xm);
1626 }
1627 
1628 static int machine__process_kernel_mmap_event(struct machine *machine,
1629 					      struct extra_kernel_map *xm,
1630 					      struct build_id *bid)
1631 {
1632 	struct map *map;
1633 	enum dso_space_type dso_space;
1634 	bool is_kernel_mmap;
1635 
1636 	/* If we have maps from kcore then we do not need or want any others */
1637 	if (machine__uses_kcore(machine))
1638 		return 0;
1639 
1640 	if (machine__is_host(machine))
1641 		dso_space = DSO_SPACE__KERNEL;
1642 	else
1643 		dso_space = DSO_SPACE__KERNEL_GUEST;
1644 
1645 	is_kernel_mmap = memcmp(xm->name, machine->mmap_name,
1646 				strlen(machine->mmap_name) - 1) == 0;
1647 	if (xm->name[0] == '/' ||
1648 	    (!is_kernel_mmap && xm->name[0] == '[')) {
1649 		map = machine__addnew_module_map(machine, xm->start,
1650 						 xm->name);
1651 		if (map == NULL)
1652 			goto out_problem;
1653 
1654 		map->end = map->start + xm->end - xm->start;
1655 
1656 		if (build_id__is_defined(bid))
1657 			dso__set_build_id(map->dso, bid);
1658 
1659 	} else if (is_kernel_mmap) {
1660 		const char *symbol_name = (xm->name + strlen(machine->mmap_name));
1661 		/*
1662 		 * Should be there already, from the build-id table in
1663 		 * the header.
1664 		 */
1665 		struct dso *kernel = NULL;
1666 		struct dso *dso;
1667 
1668 		down_read(&machine->dsos.lock);
1669 
1670 		list_for_each_entry(dso, &machine->dsos.head, node) {
1671 
1672 			/*
1673 			 * The cpumode passed to is_kernel_module is not the
1674 			 * cpumode of *this* event. If we insist on passing
1675 			 * correct cpumode to is_kernel_module, we should
1676 			 * record the cpumode when we adding this dso to the
1677 			 * linked list.
1678 			 *
1679 			 * However we don't really need passing correct
1680 			 * cpumode.  We know the correct cpumode must be kernel
1681 			 * mode (if not, we should not link it onto kernel_dsos
1682 			 * list).
1683 			 *
1684 			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1685 			 * is_kernel_module() treats it as a kernel cpumode.
1686 			 */
1687 
1688 			if (!dso->kernel ||
1689 			    is_kernel_module(dso->long_name,
1690 					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1691 				continue;
1692 
1693 
1694 			kernel = dso;
1695 			break;
1696 		}
1697 
1698 		up_read(&machine->dsos.lock);
1699 
1700 		if (kernel == NULL)
1701 			kernel = machine__findnew_dso(machine, machine->mmap_name);
1702 		if (kernel == NULL)
1703 			goto out_problem;
1704 
1705 		kernel->kernel = dso_space;
1706 		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1707 			dso__put(kernel);
1708 			goto out_problem;
1709 		}
1710 
1711 		if (strstr(kernel->long_name, "vmlinux"))
1712 			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1713 
1714 		machine__update_kernel_mmap(machine, xm->start, xm->end);
1715 
1716 		if (build_id__is_defined(bid))
1717 			dso__set_build_id(kernel, bid);
1718 
1719 		/*
1720 		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1721 		 * symbol. Effectively having zero here means that at record
1722 		 * time /proc/sys/kernel/kptr_restrict was non zero.
1723 		 */
1724 		if (xm->pgoff != 0) {
1725 			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1726 							symbol_name,
1727 							xm->pgoff);
1728 		}
1729 
1730 		if (machine__is_default_guest(machine)) {
1731 			/*
1732 			 * preload dso of guest kernel and modules
1733 			 */
1734 			dso__load(kernel, machine__kernel_map(machine));
1735 		}
1736 	} else if (perf_event__is_extra_kernel_mmap(machine, xm)) {
1737 		return machine__process_extra_kernel_map(machine, xm);
1738 	}
1739 	return 0;
1740 out_problem:
1741 	return -1;
1742 }
1743 
1744 int machine__process_mmap2_event(struct machine *machine,
1745 				 union perf_event *event,
1746 				 struct perf_sample *sample)
1747 {
1748 	struct thread *thread;
1749 	struct map *map;
1750 	struct dso_id dso_id = {
1751 		.maj = event->mmap2.maj,
1752 		.min = event->mmap2.min,
1753 		.ino = event->mmap2.ino,
1754 		.ino_generation = event->mmap2.ino_generation,
1755 	};
1756 	struct build_id __bid, *bid = NULL;
1757 	int ret = 0;
1758 
1759 	if (dump_trace)
1760 		perf_event__fprintf_mmap2(event, stdout);
1761 
1762 	if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) {
1763 		bid = &__bid;
1764 		build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size);
1765 	}
1766 
1767 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1768 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1769 		struct extra_kernel_map xm = {
1770 			.start = event->mmap2.start,
1771 			.end   = event->mmap2.start + event->mmap2.len,
1772 			.pgoff = event->mmap2.pgoff,
1773 		};
1774 
1775 		strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN);
1776 		ret = machine__process_kernel_mmap_event(machine, &xm, bid);
1777 		if (ret < 0)
1778 			goto out_problem;
1779 		return 0;
1780 	}
1781 
1782 	thread = machine__findnew_thread(machine, event->mmap2.pid,
1783 					event->mmap2.tid);
1784 	if (thread == NULL)
1785 		goto out_problem;
1786 
1787 	map = map__new(machine, event->mmap2.start,
1788 			event->mmap2.len, event->mmap2.pgoff,
1789 			&dso_id, event->mmap2.prot,
1790 			event->mmap2.flags, bid,
1791 			event->mmap2.filename, thread);
1792 
1793 	if (map == NULL)
1794 		goto out_problem_map;
1795 
1796 	ret = thread__insert_map(thread, map);
1797 	if (ret)
1798 		goto out_problem_insert;
1799 
1800 	thread__put(thread);
1801 	map__put(map);
1802 	return 0;
1803 
1804 out_problem_insert:
1805 	map__put(map);
1806 out_problem_map:
1807 	thread__put(thread);
1808 out_problem:
1809 	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1810 	return 0;
1811 }
1812 
1813 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1814 				struct perf_sample *sample)
1815 {
1816 	struct thread *thread;
1817 	struct map *map;
1818 	u32 prot = 0;
1819 	int ret = 0;
1820 
1821 	if (dump_trace)
1822 		perf_event__fprintf_mmap(event, stdout);
1823 
1824 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1825 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1826 		struct extra_kernel_map xm = {
1827 			.start = event->mmap.start,
1828 			.end   = event->mmap.start + event->mmap.len,
1829 			.pgoff = event->mmap.pgoff,
1830 		};
1831 
1832 		strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1833 		ret = machine__process_kernel_mmap_event(machine, &xm, NULL);
1834 		if (ret < 0)
1835 			goto out_problem;
1836 		return 0;
1837 	}
1838 
1839 	thread = machine__findnew_thread(machine, event->mmap.pid,
1840 					 event->mmap.tid);
1841 	if (thread == NULL)
1842 		goto out_problem;
1843 
1844 	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1845 		prot = PROT_EXEC;
1846 
1847 	map = map__new(machine, event->mmap.start,
1848 			event->mmap.len, event->mmap.pgoff,
1849 			NULL, prot, 0, NULL, event->mmap.filename, thread);
1850 
1851 	if (map == NULL)
1852 		goto out_problem_map;
1853 
1854 	ret = thread__insert_map(thread, map);
1855 	if (ret)
1856 		goto out_problem_insert;
1857 
1858 	thread__put(thread);
1859 	map__put(map);
1860 	return 0;
1861 
1862 out_problem_insert:
1863 	map__put(map);
1864 out_problem_map:
1865 	thread__put(thread);
1866 out_problem:
1867 	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1868 	return 0;
1869 }
1870 
1871 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1872 {
1873 	struct threads *threads = machine__threads(machine, th->tid);
1874 
1875 	if (threads->last_match == th)
1876 		threads__set_last_match(threads, NULL);
1877 
1878 	if (lock)
1879 		down_write(&threads->lock);
1880 
1881 	BUG_ON(refcount_read(&th->refcnt) == 0);
1882 
1883 	rb_erase_cached(&th->rb_node, &threads->entries);
1884 	RB_CLEAR_NODE(&th->rb_node);
1885 	--threads->nr;
1886 	/*
1887 	 * Move it first to the dead_threads list, then drop the reference,
1888 	 * if this is the last reference, then the thread__delete destructor
1889 	 * will be called and we will remove it from the dead_threads list.
1890 	 */
1891 	list_add_tail(&th->node, &threads->dead);
1892 
1893 	/*
1894 	 * We need to do the put here because if this is the last refcount,
1895 	 * then we will be touching the threads->dead head when removing the
1896 	 * thread.
1897 	 */
1898 	thread__put(th);
1899 
1900 	if (lock)
1901 		up_write(&threads->lock);
1902 }
1903 
1904 void machine__remove_thread(struct machine *machine, struct thread *th)
1905 {
1906 	return __machine__remove_thread(machine, th, true);
1907 }
1908 
1909 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1910 				struct perf_sample *sample)
1911 {
1912 	struct thread *thread = machine__find_thread(machine,
1913 						     event->fork.pid,
1914 						     event->fork.tid);
1915 	struct thread *parent = machine__findnew_thread(machine,
1916 							event->fork.ppid,
1917 							event->fork.ptid);
1918 	bool do_maps_clone = true;
1919 	int err = 0;
1920 
1921 	if (dump_trace)
1922 		perf_event__fprintf_task(event, stdout);
1923 
1924 	/*
1925 	 * There may be an existing thread that is not actually the parent,
1926 	 * either because we are processing events out of order, or because the
1927 	 * (fork) event that would have removed the thread was lost. Assume the
1928 	 * latter case and continue on as best we can.
1929 	 */
1930 	if (parent->pid_ != (pid_t)event->fork.ppid) {
1931 		dump_printf("removing erroneous parent thread %d/%d\n",
1932 			    parent->pid_, parent->tid);
1933 		machine__remove_thread(machine, parent);
1934 		thread__put(parent);
1935 		parent = machine__findnew_thread(machine, event->fork.ppid,
1936 						 event->fork.ptid);
1937 	}
1938 
1939 	/* if a thread currently exists for the thread id remove it */
1940 	if (thread != NULL) {
1941 		machine__remove_thread(machine, thread);
1942 		thread__put(thread);
1943 	}
1944 
1945 	thread = machine__findnew_thread(machine, event->fork.pid,
1946 					 event->fork.tid);
1947 	/*
1948 	 * When synthesizing FORK events, we are trying to create thread
1949 	 * objects for the already running tasks on the machine.
1950 	 *
1951 	 * Normally, for a kernel FORK event, we want to clone the parent's
1952 	 * maps because that is what the kernel just did.
1953 	 *
1954 	 * But when synthesizing, this should not be done.  If we do, we end up
1955 	 * with overlapping maps as we process the synthesized MMAP2 events that
1956 	 * get delivered shortly thereafter.
1957 	 *
1958 	 * Use the FORK event misc flags in an internal way to signal this
1959 	 * situation, so we can elide the map clone when appropriate.
1960 	 */
1961 	if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1962 		do_maps_clone = false;
1963 
1964 	if (thread == NULL || parent == NULL ||
1965 	    thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1966 		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1967 		err = -1;
1968 	}
1969 	thread__put(thread);
1970 	thread__put(parent);
1971 
1972 	return err;
1973 }
1974 
1975 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1976 				struct perf_sample *sample __maybe_unused)
1977 {
1978 	struct thread *thread = machine__find_thread(machine,
1979 						     event->fork.pid,
1980 						     event->fork.tid);
1981 
1982 	if (dump_trace)
1983 		perf_event__fprintf_task(event, stdout);
1984 
1985 	if (thread != NULL) {
1986 		thread__exited(thread);
1987 		thread__put(thread);
1988 	}
1989 
1990 	return 0;
1991 }
1992 
1993 int machine__process_event(struct machine *machine, union perf_event *event,
1994 			   struct perf_sample *sample)
1995 {
1996 	int ret;
1997 
1998 	switch (event->header.type) {
1999 	case PERF_RECORD_COMM:
2000 		ret = machine__process_comm_event(machine, event, sample); break;
2001 	case PERF_RECORD_MMAP:
2002 		ret = machine__process_mmap_event(machine, event, sample); break;
2003 	case PERF_RECORD_NAMESPACES:
2004 		ret = machine__process_namespaces_event(machine, event, sample); break;
2005 	case PERF_RECORD_CGROUP:
2006 		ret = machine__process_cgroup_event(machine, event, sample); break;
2007 	case PERF_RECORD_MMAP2:
2008 		ret = machine__process_mmap2_event(machine, event, sample); break;
2009 	case PERF_RECORD_FORK:
2010 		ret = machine__process_fork_event(machine, event, sample); break;
2011 	case PERF_RECORD_EXIT:
2012 		ret = machine__process_exit_event(machine, event, sample); break;
2013 	case PERF_RECORD_LOST:
2014 		ret = machine__process_lost_event(machine, event, sample); break;
2015 	case PERF_RECORD_AUX:
2016 		ret = machine__process_aux_event(machine, event); break;
2017 	case PERF_RECORD_ITRACE_START:
2018 		ret = machine__process_itrace_start_event(machine, event); break;
2019 	case PERF_RECORD_LOST_SAMPLES:
2020 		ret = machine__process_lost_samples_event(machine, event, sample); break;
2021 	case PERF_RECORD_SWITCH:
2022 	case PERF_RECORD_SWITCH_CPU_WIDE:
2023 		ret = machine__process_switch_event(machine, event); break;
2024 	case PERF_RECORD_KSYMBOL:
2025 		ret = machine__process_ksymbol(machine, event, sample); break;
2026 	case PERF_RECORD_BPF_EVENT:
2027 		ret = machine__process_bpf(machine, event, sample); break;
2028 	case PERF_RECORD_TEXT_POKE:
2029 		ret = machine__process_text_poke(machine, event, sample); break;
2030 	default:
2031 		ret = -1;
2032 		break;
2033 	}
2034 
2035 	return ret;
2036 }
2037 
2038 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
2039 {
2040 	if (!regexec(regex, sym->name, 0, NULL, 0))
2041 		return true;
2042 	return false;
2043 }
2044 
2045 static void ip__resolve_ams(struct thread *thread,
2046 			    struct addr_map_symbol *ams,
2047 			    u64 ip)
2048 {
2049 	struct addr_location al;
2050 
2051 	memset(&al, 0, sizeof(al));
2052 	/*
2053 	 * We cannot use the header.misc hint to determine whether a
2054 	 * branch stack address is user, kernel, guest, hypervisor.
2055 	 * Branches may straddle the kernel/user/hypervisor boundaries.
2056 	 * Thus, we have to try consecutively until we find a match
2057 	 * or else, the symbol is unknown
2058 	 */
2059 	thread__find_cpumode_addr_location(thread, ip, &al);
2060 
2061 	ams->addr = ip;
2062 	ams->al_addr = al.addr;
2063 	ams->ms.maps = al.maps;
2064 	ams->ms.sym = al.sym;
2065 	ams->ms.map = al.map;
2066 	ams->phys_addr = 0;
2067 	ams->data_page_size = 0;
2068 }
2069 
2070 static void ip__resolve_data(struct thread *thread,
2071 			     u8 m, struct addr_map_symbol *ams,
2072 			     u64 addr, u64 phys_addr, u64 daddr_page_size)
2073 {
2074 	struct addr_location al;
2075 
2076 	memset(&al, 0, sizeof(al));
2077 
2078 	thread__find_symbol(thread, m, addr, &al);
2079 
2080 	ams->addr = addr;
2081 	ams->al_addr = al.addr;
2082 	ams->ms.maps = al.maps;
2083 	ams->ms.sym = al.sym;
2084 	ams->ms.map = al.map;
2085 	ams->phys_addr = phys_addr;
2086 	ams->data_page_size = daddr_page_size;
2087 }
2088 
2089 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2090 				     struct addr_location *al)
2091 {
2092 	struct mem_info *mi = mem_info__new();
2093 
2094 	if (!mi)
2095 		return NULL;
2096 
2097 	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
2098 	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
2099 			 sample->addr, sample->phys_addr,
2100 			 sample->data_page_size);
2101 	mi->data_src.val = sample->data_src;
2102 
2103 	return mi;
2104 }
2105 
2106 static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2107 {
2108 	struct map *map = ms->map;
2109 	char *srcline = NULL;
2110 
2111 	if (!map || callchain_param.key == CCKEY_FUNCTION)
2112 		return srcline;
2113 
2114 	srcline = srcline__tree_find(&map->dso->srclines, ip);
2115 	if (!srcline) {
2116 		bool show_sym = false;
2117 		bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2118 
2119 		srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
2120 				      ms->sym, show_sym, show_addr, ip);
2121 		srcline__tree_insert(&map->dso->srclines, ip, srcline);
2122 	}
2123 
2124 	return srcline;
2125 }
2126 
2127 struct iterations {
2128 	int nr_loop_iter;
2129 	u64 cycles;
2130 };
2131 
2132 static int add_callchain_ip(struct thread *thread,
2133 			    struct callchain_cursor *cursor,
2134 			    struct symbol **parent,
2135 			    struct addr_location *root_al,
2136 			    u8 *cpumode,
2137 			    u64 ip,
2138 			    bool branch,
2139 			    struct branch_flags *flags,
2140 			    struct iterations *iter,
2141 			    u64 branch_from)
2142 {
2143 	struct map_symbol ms;
2144 	struct addr_location al;
2145 	int nr_loop_iter = 0;
2146 	u64 iter_cycles = 0;
2147 	const char *srcline = NULL;
2148 
2149 	al.filtered = 0;
2150 	al.sym = NULL;
2151 	if (!cpumode) {
2152 		thread__find_cpumode_addr_location(thread, ip, &al);
2153 	} else {
2154 		if (ip >= PERF_CONTEXT_MAX) {
2155 			switch (ip) {
2156 			case PERF_CONTEXT_HV:
2157 				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
2158 				break;
2159 			case PERF_CONTEXT_KERNEL:
2160 				*cpumode = PERF_RECORD_MISC_KERNEL;
2161 				break;
2162 			case PERF_CONTEXT_USER:
2163 				*cpumode = PERF_RECORD_MISC_USER;
2164 				break;
2165 			default:
2166 				pr_debug("invalid callchain context: "
2167 					 "%"PRId64"\n", (s64) ip);
2168 				/*
2169 				 * It seems the callchain is corrupted.
2170 				 * Discard all.
2171 				 */
2172 				callchain_cursor_reset(cursor);
2173 				return 1;
2174 			}
2175 			return 0;
2176 		}
2177 		thread__find_symbol(thread, *cpumode, ip, &al);
2178 	}
2179 
2180 	if (al.sym != NULL) {
2181 		if (perf_hpp_list.parent && !*parent &&
2182 		    symbol__match_regex(al.sym, &parent_regex))
2183 			*parent = al.sym;
2184 		else if (have_ignore_callees && root_al &&
2185 		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
2186 			/* Treat this symbol as the root,
2187 			   forgetting its callees. */
2188 			*root_al = al;
2189 			callchain_cursor_reset(cursor);
2190 		}
2191 	}
2192 
2193 	if (symbol_conf.hide_unresolved && al.sym == NULL)
2194 		return 0;
2195 
2196 	if (iter) {
2197 		nr_loop_iter = iter->nr_loop_iter;
2198 		iter_cycles = iter->cycles;
2199 	}
2200 
2201 	ms.maps = al.maps;
2202 	ms.map = al.map;
2203 	ms.sym = al.sym;
2204 	srcline = callchain_srcline(&ms, al.addr);
2205 	return callchain_cursor_append(cursor, ip, &ms,
2206 				       branch, flags, nr_loop_iter,
2207 				       iter_cycles, branch_from, srcline);
2208 }
2209 
2210 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2211 					   struct addr_location *al)
2212 {
2213 	unsigned int i;
2214 	const struct branch_stack *bs = sample->branch_stack;
2215 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2216 	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2217 
2218 	if (!bi)
2219 		return NULL;
2220 
2221 	for (i = 0; i < bs->nr; i++) {
2222 		ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2223 		ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2224 		bi[i].flags = entries[i].flags;
2225 	}
2226 	return bi;
2227 }
2228 
2229 static void save_iterations(struct iterations *iter,
2230 			    struct branch_entry *be, int nr)
2231 {
2232 	int i;
2233 
2234 	iter->nr_loop_iter++;
2235 	iter->cycles = 0;
2236 
2237 	for (i = 0; i < nr; i++)
2238 		iter->cycles += be[i].flags.cycles;
2239 }
2240 
2241 #define CHASHSZ 127
2242 #define CHASHBITS 7
2243 #define NO_ENTRY 0xff
2244 
2245 #define PERF_MAX_BRANCH_DEPTH 127
2246 
2247 /* Remove loops. */
2248 static int remove_loops(struct branch_entry *l, int nr,
2249 			struct iterations *iter)
2250 {
2251 	int i, j, off;
2252 	unsigned char chash[CHASHSZ];
2253 
2254 	memset(chash, NO_ENTRY, sizeof(chash));
2255 
2256 	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2257 
2258 	for (i = 0; i < nr; i++) {
2259 		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2260 
2261 		/* no collision handling for now */
2262 		if (chash[h] == NO_ENTRY) {
2263 			chash[h] = i;
2264 		} else if (l[chash[h]].from == l[i].from) {
2265 			bool is_loop = true;
2266 			/* check if it is a real loop */
2267 			off = 0;
2268 			for (j = chash[h]; j < i && i + off < nr; j++, off++)
2269 				if (l[j].from != l[i + off].from) {
2270 					is_loop = false;
2271 					break;
2272 				}
2273 			if (is_loop) {
2274 				j = nr - (i + off);
2275 				if (j > 0) {
2276 					save_iterations(iter + i + off,
2277 						l + i, off);
2278 
2279 					memmove(iter + i, iter + i + off,
2280 						j * sizeof(*iter));
2281 
2282 					memmove(l + i, l + i + off,
2283 						j * sizeof(*l));
2284 				}
2285 
2286 				nr -= off;
2287 			}
2288 		}
2289 	}
2290 	return nr;
2291 }
2292 
2293 static int lbr_callchain_add_kernel_ip(struct thread *thread,
2294 				       struct callchain_cursor *cursor,
2295 				       struct perf_sample *sample,
2296 				       struct symbol **parent,
2297 				       struct addr_location *root_al,
2298 				       u64 branch_from,
2299 				       bool callee, int end)
2300 {
2301 	struct ip_callchain *chain = sample->callchain;
2302 	u8 cpumode = PERF_RECORD_MISC_USER;
2303 	int err, i;
2304 
2305 	if (callee) {
2306 		for (i = 0; i < end + 1; i++) {
2307 			err = add_callchain_ip(thread, cursor, parent,
2308 					       root_al, &cpumode, chain->ips[i],
2309 					       false, NULL, NULL, branch_from);
2310 			if (err)
2311 				return err;
2312 		}
2313 		return 0;
2314 	}
2315 
2316 	for (i = end; i >= 0; i--) {
2317 		err = add_callchain_ip(thread, cursor, parent,
2318 				       root_al, &cpumode, chain->ips[i],
2319 				       false, NULL, NULL, branch_from);
2320 		if (err)
2321 			return err;
2322 	}
2323 
2324 	return 0;
2325 }
2326 
2327 static void save_lbr_cursor_node(struct thread *thread,
2328 				 struct callchain_cursor *cursor,
2329 				 int idx)
2330 {
2331 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2332 
2333 	if (!lbr_stitch)
2334 		return;
2335 
2336 	if (cursor->pos == cursor->nr) {
2337 		lbr_stitch->prev_lbr_cursor[idx].valid = false;
2338 		return;
2339 	}
2340 
2341 	if (!cursor->curr)
2342 		cursor->curr = cursor->first;
2343 	else
2344 		cursor->curr = cursor->curr->next;
2345 	memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2346 	       sizeof(struct callchain_cursor_node));
2347 
2348 	lbr_stitch->prev_lbr_cursor[idx].valid = true;
2349 	cursor->pos++;
2350 }
2351 
2352 static int lbr_callchain_add_lbr_ip(struct thread *thread,
2353 				    struct callchain_cursor *cursor,
2354 				    struct perf_sample *sample,
2355 				    struct symbol **parent,
2356 				    struct addr_location *root_al,
2357 				    u64 *branch_from,
2358 				    bool callee)
2359 {
2360 	struct branch_stack *lbr_stack = sample->branch_stack;
2361 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2362 	u8 cpumode = PERF_RECORD_MISC_USER;
2363 	int lbr_nr = lbr_stack->nr;
2364 	struct branch_flags *flags;
2365 	int err, i;
2366 	u64 ip;
2367 
2368 	/*
2369 	 * The curr and pos are not used in writing session. They are cleared
2370 	 * in callchain_cursor_commit() when the writing session is closed.
2371 	 * Using curr and pos to track the current cursor node.
2372 	 */
2373 	if (thread->lbr_stitch) {
2374 		cursor->curr = NULL;
2375 		cursor->pos = cursor->nr;
2376 		if (cursor->nr) {
2377 			cursor->curr = cursor->first;
2378 			for (i = 0; i < (int)(cursor->nr - 1); i++)
2379 				cursor->curr = cursor->curr->next;
2380 		}
2381 	}
2382 
2383 	if (callee) {
2384 		/* Add LBR ip from first entries.to */
2385 		ip = entries[0].to;
2386 		flags = &entries[0].flags;
2387 		*branch_from = entries[0].from;
2388 		err = add_callchain_ip(thread, cursor, parent,
2389 				       root_al, &cpumode, ip,
2390 				       true, flags, NULL,
2391 				       *branch_from);
2392 		if (err)
2393 			return err;
2394 
2395 		/*
2396 		 * The number of cursor node increases.
2397 		 * Move the current cursor node.
2398 		 * But does not need to save current cursor node for entry 0.
2399 		 * It's impossible to stitch the whole LBRs of previous sample.
2400 		 */
2401 		if (thread->lbr_stitch && (cursor->pos != cursor->nr)) {
2402 			if (!cursor->curr)
2403 				cursor->curr = cursor->first;
2404 			else
2405 				cursor->curr = cursor->curr->next;
2406 			cursor->pos++;
2407 		}
2408 
2409 		/* Add LBR ip from entries.from one by one. */
2410 		for (i = 0; i < lbr_nr; i++) {
2411 			ip = entries[i].from;
2412 			flags = &entries[i].flags;
2413 			err = add_callchain_ip(thread, cursor, parent,
2414 					       root_al, &cpumode, ip,
2415 					       true, flags, NULL,
2416 					       *branch_from);
2417 			if (err)
2418 				return err;
2419 			save_lbr_cursor_node(thread, cursor, i);
2420 		}
2421 		return 0;
2422 	}
2423 
2424 	/* Add LBR ip from entries.from one by one. */
2425 	for (i = lbr_nr - 1; i >= 0; i--) {
2426 		ip = entries[i].from;
2427 		flags = &entries[i].flags;
2428 		err = add_callchain_ip(thread, cursor, parent,
2429 				       root_al, &cpumode, ip,
2430 				       true, flags, NULL,
2431 				       *branch_from);
2432 		if (err)
2433 			return err;
2434 		save_lbr_cursor_node(thread, cursor, i);
2435 	}
2436 
2437 	/* Add LBR ip from first entries.to */
2438 	ip = entries[0].to;
2439 	flags = &entries[0].flags;
2440 	*branch_from = entries[0].from;
2441 	err = add_callchain_ip(thread, cursor, parent,
2442 			       root_al, &cpumode, ip,
2443 			       true, flags, NULL,
2444 			       *branch_from);
2445 	if (err)
2446 		return err;
2447 
2448 	return 0;
2449 }
2450 
2451 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2452 					     struct callchain_cursor *cursor)
2453 {
2454 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2455 	struct callchain_cursor_node *cnode;
2456 	struct stitch_list *stitch_node;
2457 	int err;
2458 
2459 	list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2460 		cnode = &stitch_node->cursor;
2461 
2462 		err = callchain_cursor_append(cursor, cnode->ip,
2463 					      &cnode->ms,
2464 					      cnode->branch,
2465 					      &cnode->branch_flags,
2466 					      cnode->nr_loop_iter,
2467 					      cnode->iter_cycles,
2468 					      cnode->branch_from,
2469 					      cnode->srcline);
2470 		if (err)
2471 			return err;
2472 	}
2473 	return 0;
2474 }
2475 
2476 static struct stitch_list *get_stitch_node(struct thread *thread)
2477 {
2478 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2479 	struct stitch_list *stitch_node;
2480 
2481 	if (!list_empty(&lbr_stitch->free_lists)) {
2482 		stitch_node = list_first_entry(&lbr_stitch->free_lists,
2483 					       struct stitch_list, node);
2484 		list_del(&stitch_node->node);
2485 
2486 		return stitch_node;
2487 	}
2488 
2489 	return malloc(sizeof(struct stitch_list));
2490 }
2491 
2492 static bool has_stitched_lbr(struct thread *thread,
2493 			     struct perf_sample *cur,
2494 			     struct perf_sample *prev,
2495 			     unsigned int max_lbr,
2496 			     bool callee)
2497 {
2498 	struct branch_stack *cur_stack = cur->branch_stack;
2499 	struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2500 	struct branch_stack *prev_stack = prev->branch_stack;
2501 	struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2502 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2503 	int i, j, nr_identical_branches = 0;
2504 	struct stitch_list *stitch_node;
2505 	u64 cur_base, distance;
2506 
2507 	if (!cur_stack || !prev_stack)
2508 		return false;
2509 
2510 	/* Find the physical index of the base-of-stack for current sample. */
2511 	cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2512 
2513 	distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2514 						     (max_lbr + prev_stack->hw_idx - cur_base);
2515 	/* Previous sample has shorter stack. Nothing can be stitched. */
2516 	if (distance + 1 > prev_stack->nr)
2517 		return false;
2518 
2519 	/*
2520 	 * Check if there are identical LBRs between two samples.
2521 	 * Identical LBRs must have same from, to and flags values. Also,
2522 	 * they have to be saved in the same LBR registers (same physical
2523 	 * index).
2524 	 *
2525 	 * Starts from the base-of-stack of current sample.
2526 	 */
2527 	for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2528 		if ((prev_entries[i].from != cur_entries[j].from) ||
2529 		    (prev_entries[i].to != cur_entries[j].to) ||
2530 		    (prev_entries[i].flags.value != cur_entries[j].flags.value))
2531 			break;
2532 		nr_identical_branches++;
2533 	}
2534 
2535 	if (!nr_identical_branches)
2536 		return false;
2537 
2538 	/*
2539 	 * Save the LBRs between the base-of-stack of previous sample
2540 	 * and the base-of-stack of current sample into lbr_stitch->lists.
2541 	 * These LBRs will be stitched later.
2542 	 */
2543 	for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2544 
2545 		if (!lbr_stitch->prev_lbr_cursor[i].valid)
2546 			continue;
2547 
2548 		stitch_node = get_stitch_node(thread);
2549 		if (!stitch_node)
2550 			return false;
2551 
2552 		memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2553 		       sizeof(struct callchain_cursor_node));
2554 
2555 		if (callee)
2556 			list_add(&stitch_node->node, &lbr_stitch->lists);
2557 		else
2558 			list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2559 	}
2560 
2561 	return true;
2562 }
2563 
2564 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2565 {
2566 	if (thread->lbr_stitch)
2567 		return true;
2568 
2569 	thread->lbr_stitch = zalloc(sizeof(*thread->lbr_stitch));
2570 	if (!thread->lbr_stitch)
2571 		goto err;
2572 
2573 	thread->lbr_stitch->prev_lbr_cursor = calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2574 	if (!thread->lbr_stitch->prev_lbr_cursor)
2575 		goto free_lbr_stitch;
2576 
2577 	INIT_LIST_HEAD(&thread->lbr_stitch->lists);
2578 	INIT_LIST_HEAD(&thread->lbr_stitch->free_lists);
2579 
2580 	return true;
2581 
2582 free_lbr_stitch:
2583 	zfree(&thread->lbr_stitch);
2584 err:
2585 	pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2586 	thread->lbr_stitch_enable = false;
2587 	return false;
2588 }
2589 
2590 /*
2591  * Resolve LBR callstack chain sample
2592  * Return:
2593  * 1 on success get LBR callchain information
2594  * 0 no available LBR callchain information, should try fp
2595  * negative error code on other errors.
2596  */
2597 static int resolve_lbr_callchain_sample(struct thread *thread,
2598 					struct callchain_cursor *cursor,
2599 					struct perf_sample *sample,
2600 					struct symbol **parent,
2601 					struct addr_location *root_al,
2602 					int max_stack,
2603 					unsigned int max_lbr)
2604 {
2605 	bool callee = (callchain_param.order == ORDER_CALLEE);
2606 	struct ip_callchain *chain = sample->callchain;
2607 	int chain_nr = min(max_stack, (int)chain->nr), i;
2608 	struct lbr_stitch *lbr_stitch;
2609 	bool stitched_lbr = false;
2610 	u64 branch_from = 0;
2611 	int err;
2612 
2613 	for (i = 0; i < chain_nr; i++) {
2614 		if (chain->ips[i] == PERF_CONTEXT_USER)
2615 			break;
2616 	}
2617 
2618 	/* LBR only affects the user callchain */
2619 	if (i == chain_nr)
2620 		return 0;
2621 
2622 	if (thread->lbr_stitch_enable && !sample->no_hw_idx &&
2623 	    (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2624 		lbr_stitch = thread->lbr_stitch;
2625 
2626 		stitched_lbr = has_stitched_lbr(thread, sample,
2627 						&lbr_stitch->prev_sample,
2628 						max_lbr, callee);
2629 
2630 		if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2631 			list_replace_init(&lbr_stitch->lists,
2632 					  &lbr_stitch->free_lists);
2633 		}
2634 		memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2635 	}
2636 
2637 	if (callee) {
2638 		/* Add kernel ip */
2639 		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2640 						  parent, root_al, branch_from,
2641 						  true, i);
2642 		if (err)
2643 			goto error;
2644 
2645 		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2646 					       root_al, &branch_from, true);
2647 		if (err)
2648 			goto error;
2649 
2650 		if (stitched_lbr) {
2651 			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2652 			if (err)
2653 				goto error;
2654 		}
2655 
2656 	} else {
2657 		if (stitched_lbr) {
2658 			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2659 			if (err)
2660 				goto error;
2661 		}
2662 		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2663 					       root_al, &branch_from, false);
2664 		if (err)
2665 			goto error;
2666 
2667 		/* Add kernel ip */
2668 		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2669 						  parent, root_al, branch_from,
2670 						  false, i);
2671 		if (err)
2672 			goto error;
2673 	}
2674 	return 1;
2675 
2676 error:
2677 	return (err < 0) ? err : 0;
2678 }
2679 
2680 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2681 			     struct callchain_cursor *cursor,
2682 			     struct symbol **parent,
2683 			     struct addr_location *root_al,
2684 			     u8 *cpumode, int ent)
2685 {
2686 	int err = 0;
2687 
2688 	while (--ent >= 0) {
2689 		u64 ip = chain->ips[ent];
2690 
2691 		if (ip >= PERF_CONTEXT_MAX) {
2692 			err = add_callchain_ip(thread, cursor, parent,
2693 					       root_al, cpumode, ip,
2694 					       false, NULL, NULL, 0);
2695 			break;
2696 		}
2697 	}
2698 	return err;
2699 }
2700 
2701 static int thread__resolve_callchain_sample(struct thread *thread,
2702 					    struct callchain_cursor *cursor,
2703 					    struct evsel *evsel,
2704 					    struct perf_sample *sample,
2705 					    struct symbol **parent,
2706 					    struct addr_location *root_al,
2707 					    int max_stack)
2708 {
2709 	struct branch_stack *branch = sample->branch_stack;
2710 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2711 	struct ip_callchain *chain = sample->callchain;
2712 	int chain_nr = 0;
2713 	u8 cpumode = PERF_RECORD_MISC_USER;
2714 	int i, j, err, nr_entries;
2715 	int skip_idx = -1;
2716 	int first_call = 0;
2717 
2718 	if (chain)
2719 		chain_nr = chain->nr;
2720 
2721 	if (evsel__has_branch_callstack(evsel)) {
2722 		struct perf_env *env = evsel__env(evsel);
2723 
2724 		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2725 						   root_al, max_stack,
2726 						   !env ? 0 : env->max_branches);
2727 		if (err)
2728 			return (err < 0) ? err : 0;
2729 	}
2730 
2731 	/*
2732 	 * Based on DWARF debug information, some architectures skip
2733 	 * a callchain entry saved by the kernel.
2734 	 */
2735 	skip_idx = arch_skip_callchain_idx(thread, chain);
2736 
2737 	/*
2738 	 * Add branches to call stack for easier browsing. This gives
2739 	 * more context for a sample than just the callers.
2740 	 *
2741 	 * This uses individual histograms of paths compared to the
2742 	 * aggregated histograms the normal LBR mode uses.
2743 	 *
2744 	 * Limitations for now:
2745 	 * - No extra filters
2746 	 * - No annotations (should annotate somehow)
2747 	 */
2748 
2749 	if (branch && callchain_param.branch_callstack) {
2750 		int nr = min(max_stack, (int)branch->nr);
2751 		struct branch_entry be[nr];
2752 		struct iterations iter[nr];
2753 
2754 		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2755 			pr_warning("corrupted branch chain. skipping...\n");
2756 			goto check_calls;
2757 		}
2758 
2759 		for (i = 0; i < nr; i++) {
2760 			if (callchain_param.order == ORDER_CALLEE) {
2761 				be[i] = entries[i];
2762 
2763 				if (chain == NULL)
2764 					continue;
2765 
2766 				/*
2767 				 * Check for overlap into the callchain.
2768 				 * The return address is one off compared to
2769 				 * the branch entry. To adjust for this
2770 				 * assume the calling instruction is not longer
2771 				 * than 8 bytes.
2772 				 */
2773 				if (i == skip_idx ||
2774 				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2775 					first_call++;
2776 				else if (be[i].from < chain->ips[first_call] &&
2777 				    be[i].from >= chain->ips[first_call] - 8)
2778 					first_call++;
2779 			} else
2780 				be[i] = entries[branch->nr - i - 1];
2781 		}
2782 
2783 		memset(iter, 0, sizeof(struct iterations) * nr);
2784 		nr = remove_loops(be, nr, iter);
2785 
2786 		for (i = 0; i < nr; i++) {
2787 			err = add_callchain_ip(thread, cursor, parent,
2788 					       root_al,
2789 					       NULL, be[i].to,
2790 					       true, &be[i].flags,
2791 					       NULL, be[i].from);
2792 
2793 			if (!err)
2794 				err = add_callchain_ip(thread, cursor, parent, root_al,
2795 						       NULL, be[i].from,
2796 						       true, &be[i].flags,
2797 						       &iter[i], 0);
2798 			if (err == -EINVAL)
2799 				break;
2800 			if (err)
2801 				return err;
2802 		}
2803 
2804 		if (chain_nr == 0)
2805 			return 0;
2806 
2807 		chain_nr -= nr;
2808 	}
2809 
2810 check_calls:
2811 	if (chain && callchain_param.order != ORDER_CALLEE) {
2812 		err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2813 					&cpumode, chain->nr - first_call);
2814 		if (err)
2815 			return (err < 0) ? err : 0;
2816 	}
2817 	for (i = first_call, nr_entries = 0;
2818 	     i < chain_nr && nr_entries < max_stack; i++) {
2819 		u64 ip;
2820 
2821 		if (callchain_param.order == ORDER_CALLEE)
2822 			j = i;
2823 		else
2824 			j = chain->nr - i - 1;
2825 
2826 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2827 		if (j == skip_idx)
2828 			continue;
2829 #endif
2830 		ip = chain->ips[j];
2831 		if (ip < PERF_CONTEXT_MAX)
2832                        ++nr_entries;
2833 		else if (callchain_param.order != ORDER_CALLEE) {
2834 			err = find_prev_cpumode(chain, thread, cursor, parent,
2835 						root_al, &cpumode, j);
2836 			if (err)
2837 				return (err < 0) ? err : 0;
2838 			continue;
2839 		}
2840 
2841 		err = add_callchain_ip(thread, cursor, parent,
2842 				       root_al, &cpumode, ip,
2843 				       false, NULL, NULL, 0);
2844 
2845 		if (err)
2846 			return (err < 0) ? err : 0;
2847 	}
2848 
2849 	return 0;
2850 }
2851 
2852 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
2853 {
2854 	struct symbol *sym = ms->sym;
2855 	struct map *map = ms->map;
2856 	struct inline_node *inline_node;
2857 	struct inline_list *ilist;
2858 	u64 addr;
2859 	int ret = 1;
2860 
2861 	if (!symbol_conf.inline_name || !map || !sym)
2862 		return ret;
2863 
2864 	addr = map__map_ip(map, ip);
2865 	addr = map__rip_2objdump(map, addr);
2866 
2867 	inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2868 	if (!inline_node) {
2869 		inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2870 		if (!inline_node)
2871 			return ret;
2872 		inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2873 	}
2874 
2875 	list_for_each_entry(ilist, &inline_node->val, list) {
2876 		struct map_symbol ilist_ms = {
2877 			.maps = ms->maps,
2878 			.map = map,
2879 			.sym = ilist->symbol,
2880 		};
2881 		ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
2882 					      NULL, 0, 0, 0, ilist->srcline);
2883 
2884 		if (ret != 0)
2885 			return ret;
2886 	}
2887 
2888 	return ret;
2889 }
2890 
2891 static int unwind_entry(struct unwind_entry *entry, void *arg)
2892 {
2893 	struct callchain_cursor *cursor = arg;
2894 	const char *srcline = NULL;
2895 	u64 addr = entry->ip;
2896 
2897 	if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
2898 		return 0;
2899 
2900 	if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
2901 		return 0;
2902 
2903 	/*
2904 	 * Convert entry->ip from a virtual address to an offset in
2905 	 * its corresponding binary.
2906 	 */
2907 	if (entry->ms.map)
2908 		addr = map__map_ip(entry->ms.map, entry->ip);
2909 
2910 	srcline = callchain_srcline(&entry->ms, addr);
2911 	return callchain_cursor_append(cursor, entry->ip, &entry->ms,
2912 				       false, NULL, 0, 0, 0, srcline);
2913 }
2914 
2915 static int thread__resolve_callchain_unwind(struct thread *thread,
2916 					    struct callchain_cursor *cursor,
2917 					    struct evsel *evsel,
2918 					    struct perf_sample *sample,
2919 					    int max_stack)
2920 {
2921 	/* Can we do dwarf post unwind? */
2922 	if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2923 	      (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2924 		return 0;
2925 
2926 	/* Bail out if nothing was captured. */
2927 	if ((!sample->user_regs.regs) ||
2928 	    (!sample->user_stack.size))
2929 		return 0;
2930 
2931 	return unwind__get_entries(unwind_entry, cursor,
2932 				   thread, sample, max_stack);
2933 }
2934 
2935 int thread__resolve_callchain(struct thread *thread,
2936 			      struct callchain_cursor *cursor,
2937 			      struct evsel *evsel,
2938 			      struct perf_sample *sample,
2939 			      struct symbol **parent,
2940 			      struct addr_location *root_al,
2941 			      int max_stack)
2942 {
2943 	int ret = 0;
2944 
2945 	callchain_cursor_reset(cursor);
2946 
2947 	if (callchain_param.order == ORDER_CALLEE) {
2948 		ret = thread__resolve_callchain_sample(thread, cursor,
2949 						       evsel, sample,
2950 						       parent, root_al,
2951 						       max_stack);
2952 		if (ret)
2953 			return ret;
2954 		ret = thread__resolve_callchain_unwind(thread, cursor,
2955 						       evsel, sample,
2956 						       max_stack);
2957 	} else {
2958 		ret = thread__resolve_callchain_unwind(thread, cursor,
2959 						       evsel, sample,
2960 						       max_stack);
2961 		if (ret)
2962 			return ret;
2963 		ret = thread__resolve_callchain_sample(thread, cursor,
2964 						       evsel, sample,
2965 						       parent, root_al,
2966 						       max_stack);
2967 	}
2968 
2969 	return ret;
2970 }
2971 
2972 int machine__for_each_thread(struct machine *machine,
2973 			     int (*fn)(struct thread *thread, void *p),
2974 			     void *priv)
2975 {
2976 	struct threads *threads;
2977 	struct rb_node *nd;
2978 	struct thread *thread;
2979 	int rc = 0;
2980 	int i;
2981 
2982 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2983 		threads = &machine->threads[i];
2984 		for (nd = rb_first_cached(&threads->entries); nd;
2985 		     nd = rb_next(nd)) {
2986 			thread = rb_entry(nd, struct thread, rb_node);
2987 			rc = fn(thread, priv);
2988 			if (rc != 0)
2989 				return rc;
2990 		}
2991 
2992 		list_for_each_entry(thread, &threads->dead, node) {
2993 			rc = fn(thread, priv);
2994 			if (rc != 0)
2995 				return rc;
2996 		}
2997 	}
2998 	return rc;
2999 }
3000 
3001 int machines__for_each_thread(struct machines *machines,
3002 			      int (*fn)(struct thread *thread, void *p),
3003 			      void *priv)
3004 {
3005 	struct rb_node *nd;
3006 	int rc = 0;
3007 
3008 	rc = machine__for_each_thread(&machines->host, fn, priv);
3009 	if (rc != 0)
3010 		return rc;
3011 
3012 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
3013 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
3014 
3015 		rc = machine__for_each_thread(machine, fn, priv);
3016 		if (rc != 0)
3017 			return rc;
3018 	}
3019 	return rc;
3020 }
3021 
3022 pid_t machine__get_current_tid(struct machine *machine, int cpu)
3023 {
3024 	int nr_cpus = min(machine->env->nr_cpus_avail, MAX_NR_CPUS);
3025 
3026 	if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid)
3027 		return -1;
3028 
3029 	return machine->current_tid[cpu];
3030 }
3031 
3032 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
3033 			     pid_t tid)
3034 {
3035 	struct thread *thread;
3036 	int nr_cpus = min(machine->env->nr_cpus_avail, MAX_NR_CPUS);
3037 
3038 	if (cpu < 0)
3039 		return -EINVAL;
3040 
3041 	if (!machine->current_tid) {
3042 		int i;
3043 
3044 		machine->current_tid = calloc(nr_cpus, sizeof(pid_t));
3045 		if (!machine->current_tid)
3046 			return -ENOMEM;
3047 		for (i = 0; i < nr_cpus; i++)
3048 			machine->current_tid[i] = -1;
3049 	}
3050 
3051 	if (cpu >= nr_cpus) {
3052 		pr_err("Requested CPU %d too large. ", cpu);
3053 		pr_err("Consider raising MAX_NR_CPUS\n");
3054 		return -EINVAL;
3055 	}
3056 
3057 	machine->current_tid[cpu] = tid;
3058 
3059 	thread = machine__findnew_thread(machine, pid, tid);
3060 	if (!thread)
3061 		return -ENOMEM;
3062 
3063 	thread->cpu = cpu;
3064 	thread__put(thread);
3065 
3066 	return 0;
3067 }
3068 
3069 /*
3070  * Compares the raw arch string. N.B. see instead perf_env__arch() if a
3071  * normalized arch is needed.
3072  */
3073 bool machine__is(struct machine *machine, const char *arch)
3074 {
3075 	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3076 }
3077 
3078 int machine__nr_cpus_avail(struct machine *machine)
3079 {
3080 	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3081 }
3082 
3083 int machine__get_kernel_start(struct machine *machine)
3084 {
3085 	struct map *map = machine__kernel_map(machine);
3086 	int err = 0;
3087 
3088 	/*
3089 	 * The only addresses above 2^63 are kernel addresses of a 64-bit
3090 	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
3091 	 * all addresses including kernel addresses are less than 2^32.  In
3092 	 * that case (32-bit system), if the kernel mapping is unknown, all
3093 	 * addresses will be assumed to be in user space - see
3094 	 * machine__kernel_ip().
3095 	 */
3096 	machine->kernel_start = 1ULL << 63;
3097 	if (map) {
3098 		err = map__load(map);
3099 		/*
3100 		 * On x86_64, PTI entry trampolines are less than the
3101 		 * start of kernel text, but still above 2^63. So leave
3102 		 * kernel_start = 1ULL << 63 for x86_64.
3103 		 */
3104 		if (!err && !machine__is(machine, "x86_64"))
3105 			machine->kernel_start = map->start;
3106 	}
3107 	return err;
3108 }
3109 
3110 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3111 {
3112 	u8 addr_cpumode = cpumode;
3113 	bool kernel_ip;
3114 
3115 	if (!machine->single_address_space)
3116 		goto out;
3117 
3118 	kernel_ip = machine__kernel_ip(machine, addr);
3119 	switch (cpumode) {
3120 	case PERF_RECORD_MISC_KERNEL:
3121 	case PERF_RECORD_MISC_USER:
3122 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3123 					   PERF_RECORD_MISC_USER;
3124 		break;
3125 	case PERF_RECORD_MISC_GUEST_KERNEL:
3126 	case PERF_RECORD_MISC_GUEST_USER:
3127 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3128 					   PERF_RECORD_MISC_GUEST_USER;
3129 		break;
3130 	default:
3131 		break;
3132 	}
3133 out:
3134 	return addr_cpumode;
3135 }
3136 
3137 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
3138 {
3139 	return dsos__findnew_id(&machine->dsos, filename, id);
3140 }
3141 
3142 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3143 {
3144 	return machine__findnew_dso_id(machine, filename, NULL);
3145 }
3146 
3147 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3148 {
3149 	struct machine *machine = vmachine;
3150 	struct map *map;
3151 	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3152 
3153 	if (sym == NULL)
3154 		return NULL;
3155 
3156 	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
3157 	*addrp = map->unmap_ip(map, sym->start);
3158 	return sym->name;
3159 }
3160 
3161 int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv)
3162 {
3163 	struct dso *pos;
3164 	int err = 0;
3165 
3166 	list_for_each_entry(pos, &machine->dsos.head, node) {
3167 		if (fn(pos, machine, priv))
3168 			err = -1;
3169 	}
3170 	return err;
3171 }
3172