xref: /openbmc/linux/tools/perf/util/machine.c (revision 9b9c2cd4)
1 #include "callchain.h"
2 #include "debug.h"
3 #include "event.h"
4 #include "evsel.h"
5 #include "hist.h"
6 #include "machine.h"
7 #include "map.h"
8 #include "sort.h"
9 #include "strlist.h"
10 #include "thread.h"
11 #include "vdso.h"
12 #include <stdbool.h>
13 #include <symbol/kallsyms.h>
14 #include "unwind.h"
15 #include "linux/hash.h"
16 
17 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
18 
19 static void dsos__init(struct dsos *dsos)
20 {
21 	INIT_LIST_HEAD(&dsos->head);
22 	dsos->root = RB_ROOT;
23 	pthread_rwlock_init(&dsos->lock, NULL);
24 }
25 
26 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
27 {
28 	map_groups__init(&machine->kmaps, machine);
29 	RB_CLEAR_NODE(&machine->rb_node);
30 	dsos__init(&machine->dsos);
31 
32 	machine->threads = RB_ROOT;
33 	pthread_rwlock_init(&machine->threads_lock, NULL);
34 	INIT_LIST_HEAD(&machine->dead_threads);
35 	machine->last_match = NULL;
36 
37 	machine->vdso_info = NULL;
38 	machine->env = NULL;
39 
40 	machine->pid = pid;
41 
42 	machine->symbol_filter = NULL;
43 	machine->id_hdr_size = 0;
44 	machine->comm_exec = false;
45 	machine->kernel_start = 0;
46 
47 	machine->root_dir = strdup(root_dir);
48 	if (machine->root_dir == NULL)
49 		return -ENOMEM;
50 
51 	if (pid != HOST_KERNEL_ID) {
52 		struct thread *thread = machine__findnew_thread(machine, -1,
53 								pid);
54 		char comm[64];
55 
56 		if (thread == NULL)
57 			return -ENOMEM;
58 
59 		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
60 		thread__set_comm(thread, comm, 0);
61 		thread__put(thread);
62 	}
63 
64 	machine->current_tid = NULL;
65 
66 	return 0;
67 }
68 
69 struct machine *machine__new_host(void)
70 {
71 	struct machine *machine = malloc(sizeof(*machine));
72 
73 	if (machine != NULL) {
74 		machine__init(machine, "", HOST_KERNEL_ID);
75 
76 		if (machine__create_kernel_maps(machine) < 0)
77 			goto out_delete;
78 	}
79 
80 	return machine;
81 out_delete:
82 	free(machine);
83 	return NULL;
84 }
85 
86 static void dsos__purge(struct dsos *dsos)
87 {
88 	struct dso *pos, *n;
89 
90 	pthread_rwlock_wrlock(&dsos->lock);
91 
92 	list_for_each_entry_safe(pos, n, &dsos->head, node) {
93 		RB_CLEAR_NODE(&pos->rb_node);
94 		pos->root = NULL;
95 		list_del_init(&pos->node);
96 		dso__put(pos);
97 	}
98 
99 	pthread_rwlock_unlock(&dsos->lock);
100 }
101 
102 static void dsos__exit(struct dsos *dsos)
103 {
104 	dsos__purge(dsos);
105 	pthread_rwlock_destroy(&dsos->lock);
106 }
107 
108 void machine__delete_threads(struct machine *machine)
109 {
110 	struct rb_node *nd;
111 
112 	pthread_rwlock_wrlock(&machine->threads_lock);
113 	nd = rb_first(&machine->threads);
114 	while (nd) {
115 		struct thread *t = rb_entry(nd, struct thread, rb_node);
116 
117 		nd = rb_next(nd);
118 		__machine__remove_thread(machine, t, false);
119 	}
120 	pthread_rwlock_unlock(&machine->threads_lock);
121 }
122 
123 void machine__exit(struct machine *machine)
124 {
125 	map_groups__exit(&machine->kmaps);
126 	dsos__exit(&machine->dsos);
127 	machine__exit_vdso(machine);
128 	zfree(&machine->root_dir);
129 	zfree(&machine->current_tid);
130 	pthread_rwlock_destroy(&machine->threads_lock);
131 }
132 
133 void machine__delete(struct machine *machine)
134 {
135 	machine__exit(machine);
136 	free(machine);
137 }
138 
139 void machines__init(struct machines *machines)
140 {
141 	machine__init(&machines->host, "", HOST_KERNEL_ID);
142 	machines->guests = RB_ROOT;
143 	machines->symbol_filter = NULL;
144 }
145 
146 void machines__exit(struct machines *machines)
147 {
148 	machine__exit(&machines->host);
149 	/* XXX exit guest */
150 }
151 
152 struct machine *machines__add(struct machines *machines, pid_t pid,
153 			      const char *root_dir)
154 {
155 	struct rb_node **p = &machines->guests.rb_node;
156 	struct rb_node *parent = NULL;
157 	struct machine *pos, *machine = malloc(sizeof(*machine));
158 
159 	if (machine == NULL)
160 		return NULL;
161 
162 	if (machine__init(machine, root_dir, pid) != 0) {
163 		free(machine);
164 		return NULL;
165 	}
166 
167 	machine->symbol_filter = machines->symbol_filter;
168 
169 	while (*p != NULL) {
170 		parent = *p;
171 		pos = rb_entry(parent, struct machine, rb_node);
172 		if (pid < pos->pid)
173 			p = &(*p)->rb_left;
174 		else
175 			p = &(*p)->rb_right;
176 	}
177 
178 	rb_link_node(&machine->rb_node, parent, p);
179 	rb_insert_color(&machine->rb_node, &machines->guests);
180 
181 	return machine;
182 }
183 
184 void machines__set_symbol_filter(struct machines *machines,
185 				 symbol_filter_t symbol_filter)
186 {
187 	struct rb_node *nd;
188 
189 	machines->symbol_filter = symbol_filter;
190 	machines->host.symbol_filter = symbol_filter;
191 
192 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
193 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
194 
195 		machine->symbol_filter = symbol_filter;
196 	}
197 }
198 
199 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
200 {
201 	struct rb_node *nd;
202 
203 	machines->host.comm_exec = comm_exec;
204 
205 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
206 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
207 
208 		machine->comm_exec = comm_exec;
209 	}
210 }
211 
212 struct machine *machines__find(struct machines *machines, pid_t pid)
213 {
214 	struct rb_node **p = &machines->guests.rb_node;
215 	struct rb_node *parent = NULL;
216 	struct machine *machine;
217 	struct machine *default_machine = NULL;
218 
219 	if (pid == HOST_KERNEL_ID)
220 		return &machines->host;
221 
222 	while (*p != NULL) {
223 		parent = *p;
224 		machine = rb_entry(parent, struct machine, rb_node);
225 		if (pid < machine->pid)
226 			p = &(*p)->rb_left;
227 		else if (pid > machine->pid)
228 			p = &(*p)->rb_right;
229 		else
230 			return machine;
231 		if (!machine->pid)
232 			default_machine = machine;
233 	}
234 
235 	return default_machine;
236 }
237 
238 struct machine *machines__findnew(struct machines *machines, pid_t pid)
239 {
240 	char path[PATH_MAX];
241 	const char *root_dir = "";
242 	struct machine *machine = machines__find(machines, pid);
243 
244 	if (machine && (machine->pid == pid))
245 		goto out;
246 
247 	if ((pid != HOST_KERNEL_ID) &&
248 	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
249 	    (symbol_conf.guestmount)) {
250 		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
251 		if (access(path, R_OK)) {
252 			static struct strlist *seen;
253 
254 			if (!seen)
255 				seen = strlist__new(NULL, NULL);
256 
257 			if (!strlist__has_entry(seen, path)) {
258 				pr_err("Can't access file %s\n", path);
259 				strlist__add(seen, path);
260 			}
261 			machine = NULL;
262 			goto out;
263 		}
264 		root_dir = path;
265 	}
266 
267 	machine = machines__add(machines, pid, root_dir);
268 out:
269 	return machine;
270 }
271 
272 void machines__process_guests(struct machines *machines,
273 			      machine__process_t process, void *data)
274 {
275 	struct rb_node *nd;
276 
277 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
278 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
279 		process(pos, data);
280 	}
281 }
282 
283 char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
284 {
285 	if (machine__is_host(machine))
286 		snprintf(bf, size, "[%s]", "kernel.kallsyms");
287 	else if (machine__is_default_guest(machine))
288 		snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
289 	else {
290 		snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
291 			 machine->pid);
292 	}
293 
294 	return bf;
295 }
296 
297 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
298 {
299 	struct rb_node *node;
300 	struct machine *machine;
301 
302 	machines->host.id_hdr_size = id_hdr_size;
303 
304 	for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
305 		machine = rb_entry(node, struct machine, rb_node);
306 		machine->id_hdr_size = id_hdr_size;
307 	}
308 
309 	return;
310 }
311 
312 static void machine__update_thread_pid(struct machine *machine,
313 				       struct thread *th, pid_t pid)
314 {
315 	struct thread *leader;
316 
317 	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
318 		return;
319 
320 	th->pid_ = pid;
321 
322 	if (th->pid_ == th->tid)
323 		return;
324 
325 	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
326 	if (!leader)
327 		goto out_err;
328 
329 	if (!leader->mg)
330 		leader->mg = map_groups__new(machine);
331 
332 	if (!leader->mg)
333 		goto out_err;
334 
335 	if (th->mg == leader->mg)
336 		return;
337 
338 	if (th->mg) {
339 		/*
340 		 * Maps are created from MMAP events which provide the pid and
341 		 * tid.  Consequently there never should be any maps on a thread
342 		 * with an unknown pid.  Just print an error if there are.
343 		 */
344 		if (!map_groups__empty(th->mg))
345 			pr_err("Discarding thread maps for %d:%d\n",
346 			       th->pid_, th->tid);
347 		map_groups__put(th->mg);
348 	}
349 
350 	th->mg = map_groups__get(leader->mg);
351 
352 	return;
353 
354 out_err:
355 	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
356 }
357 
358 static struct thread *____machine__findnew_thread(struct machine *machine,
359 						  pid_t pid, pid_t tid,
360 						  bool create)
361 {
362 	struct rb_node **p = &machine->threads.rb_node;
363 	struct rb_node *parent = NULL;
364 	struct thread *th;
365 
366 	/*
367 	 * Front-end cache - TID lookups come in blocks,
368 	 * so most of the time we dont have to look up
369 	 * the full rbtree:
370 	 */
371 	th = machine->last_match;
372 	if (th != NULL) {
373 		if (th->tid == tid) {
374 			machine__update_thread_pid(machine, th, pid);
375 			return th;
376 		}
377 
378 		machine->last_match = NULL;
379 	}
380 
381 	while (*p != NULL) {
382 		parent = *p;
383 		th = rb_entry(parent, struct thread, rb_node);
384 
385 		if (th->tid == tid) {
386 			machine->last_match = th;
387 			machine__update_thread_pid(machine, th, pid);
388 			return th;
389 		}
390 
391 		if (tid < th->tid)
392 			p = &(*p)->rb_left;
393 		else
394 			p = &(*p)->rb_right;
395 	}
396 
397 	if (!create)
398 		return NULL;
399 
400 	th = thread__new(pid, tid);
401 	if (th != NULL) {
402 		rb_link_node(&th->rb_node, parent, p);
403 		rb_insert_color(&th->rb_node, &machine->threads);
404 
405 		/*
406 		 * We have to initialize map_groups separately
407 		 * after rb tree is updated.
408 		 *
409 		 * The reason is that we call machine__findnew_thread
410 		 * within thread__init_map_groups to find the thread
411 		 * leader and that would screwed the rb tree.
412 		 */
413 		if (thread__init_map_groups(th, machine)) {
414 			rb_erase_init(&th->rb_node, &machine->threads);
415 			RB_CLEAR_NODE(&th->rb_node);
416 			thread__delete(th);
417 			return NULL;
418 		}
419 		/*
420 		 * It is now in the rbtree, get a ref
421 		 */
422 		thread__get(th);
423 		machine->last_match = th;
424 	}
425 
426 	return th;
427 }
428 
429 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
430 {
431 	return ____machine__findnew_thread(machine, pid, tid, true);
432 }
433 
434 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
435 				       pid_t tid)
436 {
437 	struct thread *th;
438 
439 	pthread_rwlock_wrlock(&machine->threads_lock);
440 	th = thread__get(__machine__findnew_thread(machine, pid, tid));
441 	pthread_rwlock_unlock(&machine->threads_lock);
442 	return th;
443 }
444 
445 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
446 				    pid_t tid)
447 {
448 	struct thread *th;
449 	pthread_rwlock_rdlock(&machine->threads_lock);
450 	th =  thread__get(____machine__findnew_thread(machine, pid, tid, false));
451 	pthread_rwlock_unlock(&machine->threads_lock);
452 	return th;
453 }
454 
455 struct comm *machine__thread_exec_comm(struct machine *machine,
456 				       struct thread *thread)
457 {
458 	if (machine->comm_exec)
459 		return thread__exec_comm(thread);
460 	else
461 		return thread__comm(thread);
462 }
463 
464 int machine__process_comm_event(struct machine *machine, union perf_event *event,
465 				struct perf_sample *sample)
466 {
467 	struct thread *thread = machine__findnew_thread(machine,
468 							event->comm.pid,
469 							event->comm.tid);
470 	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
471 	int err = 0;
472 
473 	if (exec)
474 		machine->comm_exec = true;
475 
476 	if (dump_trace)
477 		perf_event__fprintf_comm(event, stdout);
478 
479 	if (thread == NULL ||
480 	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
481 		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
482 		err = -1;
483 	}
484 
485 	thread__put(thread);
486 
487 	return err;
488 }
489 
490 int machine__process_lost_event(struct machine *machine __maybe_unused,
491 				union perf_event *event, struct perf_sample *sample __maybe_unused)
492 {
493 	dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
494 		    event->lost.id, event->lost.lost);
495 	return 0;
496 }
497 
498 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
499 					union perf_event *event, struct perf_sample *sample)
500 {
501 	dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
502 		    sample->id, event->lost_samples.lost);
503 	return 0;
504 }
505 
506 static struct dso *machine__findnew_module_dso(struct machine *machine,
507 					       struct kmod_path *m,
508 					       const char *filename)
509 {
510 	struct dso *dso;
511 
512 	pthread_rwlock_wrlock(&machine->dsos.lock);
513 
514 	dso = __dsos__find(&machine->dsos, m->name, true);
515 	if (!dso) {
516 		dso = __dsos__addnew(&machine->dsos, m->name);
517 		if (dso == NULL)
518 			goto out_unlock;
519 
520 		if (machine__is_host(machine))
521 			dso->symtab_type = DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE;
522 		else
523 			dso->symtab_type = DSO_BINARY_TYPE__GUEST_KMODULE;
524 
525 		/* _KMODULE_COMP should be next to _KMODULE */
526 		if (m->kmod && m->comp)
527 			dso->symtab_type++;
528 
529 		dso__set_short_name(dso, strdup(m->name), true);
530 		dso__set_long_name(dso, strdup(filename), true);
531 	}
532 
533 	dso__get(dso);
534 out_unlock:
535 	pthread_rwlock_unlock(&machine->dsos.lock);
536 	return dso;
537 }
538 
539 int machine__process_aux_event(struct machine *machine __maybe_unused,
540 			       union perf_event *event)
541 {
542 	if (dump_trace)
543 		perf_event__fprintf_aux(event, stdout);
544 	return 0;
545 }
546 
547 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
548 					union perf_event *event)
549 {
550 	if (dump_trace)
551 		perf_event__fprintf_itrace_start(event, stdout);
552 	return 0;
553 }
554 
555 int machine__process_switch_event(struct machine *machine __maybe_unused,
556 				  union perf_event *event)
557 {
558 	if (dump_trace)
559 		perf_event__fprintf_switch(event, stdout);
560 	return 0;
561 }
562 
563 struct map *machine__findnew_module_map(struct machine *machine, u64 start,
564 					const char *filename)
565 {
566 	struct map *map = NULL;
567 	struct dso *dso;
568 	struct kmod_path m;
569 
570 	if (kmod_path__parse_name(&m, filename))
571 		return NULL;
572 
573 	map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
574 				       m.name);
575 	if (map)
576 		goto out;
577 
578 	dso = machine__findnew_module_dso(machine, &m, filename);
579 	if (dso == NULL)
580 		goto out;
581 
582 	map = map__new2(start, dso, MAP__FUNCTION);
583 	if (map == NULL)
584 		goto out;
585 
586 	map_groups__insert(&machine->kmaps, map);
587 
588 out:
589 	free(m.name);
590 	return map;
591 }
592 
593 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
594 {
595 	struct rb_node *nd;
596 	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
597 
598 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
599 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
600 		ret += __dsos__fprintf(&pos->dsos.head, fp);
601 	}
602 
603 	return ret;
604 }
605 
606 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
607 				     bool (skip)(struct dso *dso, int parm), int parm)
608 {
609 	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
610 }
611 
612 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
613 				     bool (skip)(struct dso *dso, int parm), int parm)
614 {
615 	struct rb_node *nd;
616 	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
617 
618 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
619 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
620 		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
621 	}
622 	return ret;
623 }
624 
625 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
626 {
627 	int i;
628 	size_t printed = 0;
629 	struct dso *kdso = machine__kernel_map(machine)->dso;
630 
631 	if (kdso->has_build_id) {
632 		char filename[PATH_MAX];
633 		if (dso__build_id_filename(kdso, filename, sizeof(filename)))
634 			printed += fprintf(fp, "[0] %s\n", filename);
635 	}
636 
637 	for (i = 0; i < vmlinux_path__nr_entries; ++i)
638 		printed += fprintf(fp, "[%d] %s\n",
639 				   i + kdso->has_build_id, vmlinux_path[i]);
640 
641 	return printed;
642 }
643 
644 size_t machine__fprintf(struct machine *machine, FILE *fp)
645 {
646 	size_t ret = 0;
647 	struct rb_node *nd;
648 
649 	pthread_rwlock_rdlock(&machine->threads_lock);
650 
651 	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
652 		struct thread *pos = rb_entry(nd, struct thread, rb_node);
653 
654 		ret += thread__fprintf(pos, fp);
655 	}
656 
657 	pthread_rwlock_unlock(&machine->threads_lock);
658 
659 	return ret;
660 }
661 
662 static struct dso *machine__get_kernel(struct machine *machine)
663 {
664 	const char *vmlinux_name = NULL;
665 	struct dso *kernel;
666 
667 	if (machine__is_host(machine)) {
668 		vmlinux_name = symbol_conf.vmlinux_name;
669 		if (!vmlinux_name)
670 			vmlinux_name = "[kernel.kallsyms]";
671 
672 		kernel = machine__findnew_kernel(machine, vmlinux_name,
673 						 "[kernel]", DSO_TYPE_KERNEL);
674 	} else {
675 		char bf[PATH_MAX];
676 
677 		if (machine__is_default_guest(machine))
678 			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
679 		if (!vmlinux_name)
680 			vmlinux_name = machine__mmap_name(machine, bf,
681 							  sizeof(bf));
682 
683 		kernel = machine__findnew_kernel(machine, vmlinux_name,
684 						 "[guest.kernel]",
685 						 DSO_TYPE_GUEST_KERNEL);
686 	}
687 
688 	if (kernel != NULL && (!kernel->has_build_id))
689 		dso__read_running_kernel_build_id(kernel, machine);
690 
691 	return kernel;
692 }
693 
694 struct process_args {
695 	u64 start;
696 };
697 
698 static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
699 					   size_t bufsz)
700 {
701 	if (machine__is_default_guest(machine))
702 		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
703 	else
704 		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
705 }
706 
707 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
708 
709 /* Figure out the start address of kernel map from /proc/kallsyms.
710  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
711  * symbol_name if it's not that important.
712  */
713 static u64 machine__get_running_kernel_start(struct machine *machine,
714 					     const char **symbol_name)
715 {
716 	char filename[PATH_MAX];
717 	int i;
718 	const char *name;
719 	u64 addr = 0;
720 
721 	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
722 
723 	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
724 		return 0;
725 
726 	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
727 		addr = kallsyms__get_function_start(filename, name);
728 		if (addr)
729 			break;
730 	}
731 
732 	if (symbol_name)
733 		*symbol_name = name;
734 
735 	return addr;
736 }
737 
738 int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
739 {
740 	enum map_type type;
741 	u64 start = machine__get_running_kernel_start(machine, NULL);
742 
743 	for (type = 0; type < MAP__NR_TYPES; ++type) {
744 		struct kmap *kmap;
745 		struct map *map;
746 
747 		machine->vmlinux_maps[type] = map__new2(start, kernel, type);
748 		if (machine->vmlinux_maps[type] == NULL)
749 			return -1;
750 
751 		machine->vmlinux_maps[type]->map_ip =
752 			machine->vmlinux_maps[type]->unmap_ip =
753 				identity__map_ip;
754 		map = __machine__kernel_map(machine, type);
755 		kmap = map__kmap(map);
756 		if (!kmap)
757 			return -1;
758 
759 		kmap->kmaps = &machine->kmaps;
760 		map_groups__insert(&machine->kmaps, map);
761 	}
762 
763 	return 0;
764 }
765 
766 void machine__destroy_kernel_maps(struct machine *machine)
767 {
768 	enum map_type type;
769 
770 	for (type = 0; type < MAP__NR_TYPES; ++type) {
771 		struct kmap *kmap;
772 		struct map *map = __machine__kernel_map(machine, type);
773 
774 		if (map == NULL)
775 			continue;
776 
777 		kmap = map__kmap(map);
778 		map_groups__remove(&machine->kmaps, map);
779 		if (kmap && kmap->ref_reloc_sym) {
780 			/*
781 			 * ref_reloc_sym is shared among all maps, so free just
782 			 * on one of them.
783 			 */
784 			if (type == MAP__FUNCTION) {
785 				zfree((char **)&kmap->ref_reloc_sym->name);
786 				zfree(&kmap->ref_reloc_sym);
787 			} else
788 				kmap->ref_reloc_sym = NULL;
789 		}
790 
791 		machine->vmlinux_maps[type] = NULL;
792 	}
793 }
794 
795 int machines__create_guest_kernel_maps(struct machines *machines)
796 {
797 	int ret = 0;
798 	struct dirent **namelist = NULL;
799 	int i, items = 0;
800 	char path[PATH_MAX];
801 	pid_t pid;
802 	char *endp;
803 
804 	if (symbol_conf.default_guest_vmlinux_name ||
805 	    symbol_conf.default_guest_modules ||
806 	    symbol_conf.default_guest_kallsyms) {
807 		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
808 	}
809 
810 	if (symbol_conf.guestmount) {
811 		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
812 		if (items <= 0)
813 			return -ENOENT;
814 		for (i = 0; i < items; i++) {
815 			if (!isdigit(namelist[i]->d_name[0])) {
816 				/* Filter out . and .. */
817 				continue;
818 			}
819 			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
820 			if ((*endp != '\0') ||
821 			    (endp == namelist[i]->d_name) ||
822 			    (errno == ERANGE)) {
823 				pr_debug("invalid directory (%s). Skipping.\n",
824 					 namelist[i]->d_name);
825 				continue;
826 			}
827 			sprintf(path, "%s/%s/proc/kallsyms",
828 				symbol_conf.guestmount,
829 				namelist[i]->d_name);
830 			ret = access(path, R_OK);
831 			if (ret) {
832 				pr_debug("Can't access file %s\n", path);
833 				goto failure;
834 			}
835 			machines__create_kernel_maps(machines, pid);
836 		}
837 failure:
838 		free(namelist);
839 	}
840 
841 	return ret;
842 }
843 
844 void machines__destroy_kernel_maps(struct machines *machines)
845 {
846 	struct rb_node *next = rb_first(&machines->guests);
847 
848 	machine__destroy_kernel_maps(&machines->host);
849 
850 	while (next) {
851 		struct machine *pos = rb_entry(next, struct machine, rb_node);
852 
853 		next = rb_next(&pos->rb_node);
854 		rb_erase(&pos->rb_node, &machines->guests);
855 		machine__delete(pos);
856 	}
857 }
858 
859 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
860 {
861 	struct machine *machine = machines__findnew(machines, pid);
862 
863 	if (machine == NULL)
864 		return -1;
865 
866 	return machine__create_kernel_maps(machine);
867 }
868 
869 int machine__load_kallsyms(struct machine *machine, const char *filename,
870 			   enum map_type type, symbol_filter_t filter)
871 {
872 	struct map *map = machine__kernel_map(machine);
873 	int ret = dso__load_kallsyms(map->dso, filename, map, filter);
874 
875 	if (ret > 0) {
876 		dso__set_loaded(map->dso, type);
877 		/*
878 		 * Since /proc/kallsyms will have multiple sessions for the
879 		 * kernel, with modules between them, fixup the end of all
880 		 * sections.
881 		 */
882 		__map_groups__fixup_end(&machine->kmaps, type);
883 	}
884 
885 	return ret;
886 }
887 
888 int machine__load_vmlinux_path(struct machine *machine, enum map_type type,
889 			       symbol_filter_t filter)
890 {
891 	struct map *map = machine__kernel_map(machine);
892 	int ret = dso__load_vmlinux_path(map->dso, map, filter);
893 
894 	if (ret > 0)
895 		dso__set_loaded(map->dso, type);
896 
897 	return ret;
898 }
899 
900 static void map_groups__fixup_end(struct map_groups *mg)
901 {
902 	int i;
903 	for (i = 0; i < MAP__NR_TYPES; ++i)
904 		__map_groups__fixup_end(mg, i);
905 }
906 
907 static char *get_kernel_version(const char *root_dir)
908 {
909 	char version[PATH_MAX];
910 	FILE *file;
911 	char *name, *tmp;
912 	const char *prefix = "Linux version ";
913 
914 	sprintf(version, "%s/proc/version", root_dir);
915 	file = fopen(version, "r");
916 	if (!file)
917 		return NULL;
918 
919 	version[0] = '\0';
920 	tmp = fgets(version, sizeof(version), file);
921 	fclose(file);
922 
923 	name = strstr(version, prefix);
924 	if (!name)
925 		return NULL;
926 	name += strlen(prefix);
927 	tmp = strchr(name, ' ');
928 	if (tmp)
929 		*tmp = '\0';
930 
931 	return strdup(name);
932 }
933 
934 static bool is_kmod_dso(struct dso *dso)
935 {
936 	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
937 	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
938 }
939 
940 static int map_groups__set_module_path(struct map_groups *mg, const char *path,
941 				       struct kmod_path *m)
942 {
943 	struct map *map;
944 	char *long_name;
945 
946 	map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
947 	if (map == NULL)
948 		return 0;
949 
950 	long_name = strdup(path);
951 	if (long_name == NULL)
952 		return -ENOMEM;
953 
954 	dso__set_long_name(map->dso, long_name, true);
955 	dso__kernel_module_get_build_id(map->dso, "");
956 
957 	/*
958 	 * Full name could reveal us kmod compression, so
959 	 * we need to update the symtab_type if needed.
960 	 */
961 	if (m->comp && is_kmod_dso(map->dso))
962 		map->dso->symtab_type++;
963 
964 	return 0;
965 }
966 
967 static int map_groups__set_modules_path_dir(struct map_groups *mg,
968 				const char *dir_name, int depth)
969 {
970 	struct dirent *dent;
971 	DIR *dir = opendir(dir_name);
972 	int ret = 0;
973 
974 	if (!dir) {
975 		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
976 		return -1;
977 	}
978 
979 	while ((dent = readdir(dir)) != NULL) {
980 		char path[PATH_MAX];
981 		struct stat st;
982 
983 		/*sshfs might return bad dent->d_type, so we have to stat*/
984 		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
985 		if (stat(path, &st))
986 			continue;
987 
988 		if (S_ISDIR(st.st_mode)) {
989 			if (!strcmp(dent->d_name, ".") ||
990 			    !strcmp(dent->d_name, ".."))
991 				continue;
992 
993 			/* Do not follow top-level source and build symlinks */
994 			if (depth == 0) {
995 				if (!strcmp(dent->d_name, "source") ||
996 				    !strcmp(dent->d_name, "build"))
997 					continue;
998 			}
999 
1000 			ret = map_groups__set_modules_path_dir(mg, path,
1001 							       depth + 1);
1002 			if (ret < 0)
1003 				goto out;
1004 		} else {
1005 			struct kmod_path m;
1006 
1007 			ret = kmod_path__parse_name(&m, dent->d_name);
1008 			if (ret)
1009 				goto out;
1010 
1011 			if (m.kmod)
1012 				ret = map_groups__set_module_path(mg, path, &m);
1013 
1014 			free(m.name);
1015 
1016 			if (ret)
1017 				goto out;
1018 		}
1019 	}
1020 
1021 out:
1022 	closedir(dir);
1023 	return ret;
1024 }
1025 
1026 static int machine__set_modules_path(struct machine *machine)
1027 {
1028 	char *version;
1029 	char modules_path[PATH_MAX];
1030 
1031 	version = get_kernel_version(machine->root_dir);
1032 	if (!version)
1033 		return -1;
1034 
1035 	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1036 		 machine->root_dir, version);
1037 	free(version);
1038 
1039 	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1040 }
1041 
1042 static int machine__create_module(void *arg, const char *name, u64 start)
1043 {
1044 	struct machine *machine = arg;
1045 	struct map *map;
1046 
1047 	map = machine__findnew_module_map(machine, start, name);
1048 	if (map == NULL)
1049 		return -1;
1050 
1051 	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1052 
1053 	return 0;
1054 }
1055 
1056 static int machine__create_modules(struct machine *machine)
1057 {
1058 	const char *modules;
1059 	char path[PATH_MAX];
1060 
1061 	if (machine__is_default_guest(machine)) {
1062 		modules = symbol_conf.default_guest_modules;
1063 	} else {
1064 		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1065 		modules = path;
1066 	}
1067 
1068 	if (symbol__restricted_filename(modules, "/proc/modules"))
1069 		return -1;
1070 
1071 	if (modules__parse(modules, machine, machine__create_module))
1072 		return -1;
1073 
1074 	if (!machine__set_modules_path(machine))
1075 		return 0;
1076 
1077 	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1078 
1079 	return 0;
1080 }
1081 
1082 int machine__create_kernel_maps(struct machine *machine)
1083 {
1084 	struct dso *kernel = machine__get_kernel(machine);
1085 	const char *name;
1086 	u64 addr = machine__get_running_kernel_start(machine, &name);
1087 	if (!addr)
1088 		return -1;
1089 
1090 	if (kernel == NULL ||
1091 	    __machine__create_kernel_maps(machine, kernel) < 0)
1092 		return -1;
1093 
1094 	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1095 		if (machine__is_host(machine))
1096 			pr_debug("Problems creating module maps, "
1097 				 "continuing anyway...\n");
1098 		else
1099 			pr_debug("Problems creating module maps for guest %d, "
1100 				 "continuing anyway...\n", machine->pid);
1101 	}
1102 
1103 	/*
1104 	 * Now that we have all the maps created, just set the ->end of them:
1105 	 */
1106 	map_groups__fixup_end(&machine->kmaps);
1107 
1108 	if (maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name,
1109 					     addr)) {
1110 		machine__destroy_kernel_maps(machine);
1111 		return -1;
1112 	}
1113 
1114 	return 0;
1115 }
1116 
1117 static void machine__set_kernel_mmap_len(struct machine *machine,
1118 					 union perf_event *event)
1119 {
1120 	int i;
1121 
1122 	for (i = 0; i < MAP__NR_TYPES; i++) {
1123 		machine->vmlinux_maps[i]->start = event->mmap.start;
1124 		machine->vmlinux_maps[i]->end   = (event->mmap.start +
1125 						   event->mmap.len);
1126 		/*
1127 		 * Be a bit paranoid here, some perf.data file came with
1128 		 * a zero sized synthesized MMAP event for the kernel.
1129 		 */
1130 		if (machine->vmlinux_maps[i]->end == 0)
1131 			machine->vmlinux_maps[i]->end = ~0ULL;
1132 	}
1133 }
1134 
1135 static bool machine__uses_kcore(struct machine *machine)
1136 {
1137 	struct dso *dso;
1138 
1139 	list_for_each_entry(dso, &machine->dsos.head, node) {
1140 		if (dso__is_kcore(dso))
1141 			return true;
1142 	}
1143 
1144 	return false;
1145 }
1146 
1147 static int machine__process_kernel_mmap_event(struct machine *machine,
1148 					      union perf_event *event)
1149 {
1150 	struct map *map;
1151 	char kmmap_prefix[PATH_MAX];
1152 	enum dso_kernel_type kernel_type;
1153 	bool is_kernel_mmap;
1154 
1155 	/* If we have maps from kcore then we do not need or want any others */
1156 	if (machine__uses_kcore(machine))
1157 		return 0;
1158 
1159 	machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
1160 	if (machine__is_host(machine))
1161 		kernel_type = DSO_TYPE_KERNEL;
1162 	else
1163 		kernel_type = DSO_TYPE_GUEST_KERNEL;
1164 
1165 	is_kernel_mmap = memcmp(event->mmap.filename,
1166 				kmmap_prefix,
1167 				strlen(kmmap_prefix) - 1) == 0;
1168 	if (event->mmap.filename[0] == '/' ||
1169 	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1170 		map = machine__findnew_module_map(machine, event->mmap.start,
1171 						  event->mmap.filename);
1172 		if (map == NULL)
1173 			goto out_problem;
1174 
1175 		map->end = map->start + event->mmap.len;
1176 	} else if (is_kernel_mmap) {
1177 		const char *symbol_name = (event->mmap.filename +
1178 				strlen(kmmap_prefix));
1179 		/*
1180 		 * Should be there already, from the build-id table in
1181 		 * the header.
1182 		 */
1183 		struct dso *kernel = NULL;
1184 		struct dso *dso;
1185 
1186 		pthread_rwlock_rdlock(&machine->dsos.lock);
1187 
1188 		list_for_each_entry(dso, &machine->dsos.head, node) {
1189 
1190 			/*
1191 			 * The cpumode passed to is_kernel_module is not the
1192 			 * cpumode of *this* event. If we insist on passing
1193 			 * correct cpumode to is_kernel_module, we should
1194 			 * record the cpumode when we adding this dso to the
1195 			 * linked list.
1196 			 *
1197 			 * However we don't really need passing correct
1198 			 * cpumode.  We know the correct cpumode must be kernel
1199 			 * mode (if not, we should not link it onto kernel_dsos
1200 			 * list).
1201 			 *
1202 			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1203 			 * is_kernel_module() treats it as a kernel cpumode.
1204 			 */
1205 
1206 			if (!dso->kernel ||
1207 			    is_kernel_module(dso->long_name,
1208 					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1209 				continue;
1210 
1211 
1212 			kernel = dso;
1213 			break;
1214 		}
1215 
1216 		pthread_rwlock_unlock(&machine->dsos.lock);
1217 
1218 		if (kernel == NULL)
1219 			kernel = machine__findnew_dso(machine, kmmap_prefix);
1220 		if (kernel == NULL)
1221 			goto out_problem;
1222 
1223 		kernel->kernel = kernel_type;
1224 		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1225 			dso__put(kernel);
1226 			goto out_problem;
1227 		}
1228 
1229 		if (strstr(kernel->long_name, "vmlinux"))
1230 			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1231 
1232 		machine__set_kernel_mmap_len(machine, event);
1233 
1234 		/*
1235 		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1236 		 * symbol. Effectively having zero here means that at record
1237 		 * time /proc/sys/kernel/kptr_restrict was non zero.
1238 		 */
1239 		if (event->mmap.pgoff != 0) {
1240 			maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
1241 							 symbol_name,
1242 							 event->mmap.pgoff);
1243 		}
1244 
1245 		if (machine__is_default_guest(machine)) {
1246 			/*
1247 			 * preload dso of guest kernel and modules
1248 			 */
1249 			dso__load(kernel, machine__kernel_map(machine), NULL);
1250 		}
1251 	}
1252 	return 0;
1253 out_problem:
1254 	return -1;
1255 }
1256 
1257 int machine__process_mmap2_event(struct machine *machine,
1258 				 union perf_event *event,
1259 				 struct perf_sample *sample __maybe_unused)
1260 {
1261 	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1262 	struct thread *thread;
1263 	struct map *map;
1264 	enum map_type type;
1265 	int ret = 0;
1266 
1267 	if (dump_trace)
1268 		perf_event__fprintf_mmap2(event, stdout);
1269 
1270 	if (cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1271 	    cpumode == PERF_RECORD_MISC_KERNEL) {
1272 		ret = machine__process_kernel_mmap_event(machine, event);
1273 		if (ret < 0)
1274 			goto out_problem;
1275 		return 0;
1276 	}
1277 
1278 	thread = machine__findnew_thread(machine, event->mmap2.pid,
1279 					event->mmap2.tid);
1280 	if (thread == NULL)
1281 		goto out_problem;
1282 
1283 	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1284 		type = MAP__VARIABLE;
1285 	else
1286 		type = MAP__FUNCTION;
1287 
1288 	map = map__new(machine, event->mmap2.start,
1289 			event->mmap2.len, event->mmap2.pgoff,
1290 			event->mmap2.pid, event->mmap2.maj,
1291 			event->mmap2.min, event->mmap2.ino,
1292 			event->mmap2.ino_generation,
1293 			event->mmap2.prot,
1294 			event->mmap2.flags,
1295 			event->mmap2.filename, type, thread);
1296 
1297 	if (map == NULL)
1298 		goto out_problem_map;
1299 
1300 	thread__insert_map(thread, map);
1301 	thread__put(thread);
1302 	map__put(map);
1303 	return 0;
1304 
1305 out_problem_map:
1306 	thread__put(thread);
1307 out_problem:
1308 	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1309 	return 0;
1310 }
1311 
1312 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1313 				struct perf_sample *sample __maybe_unused)
1314 {
1315 	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1316 	struct thread *thread;
1317 	struct map *map;
1318 	enum map_type type;
1319 	int ret = 0;
1320 
1321 	if (dump_trace)
1322 		perf_event__fprintf_mmap(event, stdout);
1323 
1324 	if (cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1325 	    cpumode == PERF_RECORD_MISC_KERNEL) {
1326 		ret = machine__process_kernel_mmap_event(machine, event);
1327 		if (ret < 0)
1328 			goto out_problem;
1329 		return 0;
1330 	}
1331 
1332 	thread = machine__findnew_thread(machine, event->mmap.pid,
1333 					 event->mmap.tid);
1334 	if (thread == NULL)
1335 		goto out_problem;
1336 
1337 	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1338 		type = MAP__VARIABLE;
1339 	else
1340 		type = MAP__FUNCTION;
1341 
1342 	map = map__new(machine, event->mmap.start,
1343 			event->mmap.len, event->mmap.pgoff,
1344 			event->mmap.pid, 0, 0, 0, 0, 0, 0,
1345 			event->mmap.filename,
1346 			type, thread);
1347 
1348 	if (map == NULL)
1349 		goto out_problem_map;
1350 
1351 	thread__insert_map(thread, map);
1352 	thread__put(thread);
1353 	map__put(map);
1354 	return 0;
1355 
1356 out_problem_map:
1357 	thread__put(thread);
1358 out_problem:
1359 	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1360 	return 0;
1361 }
1362 
1363 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1364 {
1365 	if (machine->last_match == th)
1366 		machine->last_match = NULL;
1367 
1368 	BUG_ON(atomic_read(&th->refcnt) == 0);
1369 	if (lock)
1370 		pthread_rwlock_wrlock(&machine->threads_lock);
1371 	rb_erase_init(&th->rb_node, &machine->threads);
1372 	RB_CLEAR_NODE(&th->rb_node);
1373 	/*
1374 	 * Move it first to the dead_threads list, then drop the reference,
1375 	 * if this is the last reference, then the thread__delete destructor
1376 	 * will be called and we will remove it from the dead_threads list.
1377 	 */
1378 	list_add_tail(&th->node, &machine->dead_threads);
1379 	if (lock)
1380 		pthread_rwlock_unlock(&machine->threads_lock);
1381 	thread__put(th);
1382 }
1383 
1384 void machine__remove_thread(struct machine *machine, struct thread *th)
1385 {
1386 	return __machine__remove_thread(machine, th, true);
1387 }
1388 
1389 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1390 				struct perf_sample *sample)
1391 {
1392 	struct thread *thread = machine__find_thread(machine,
1393 						     event->fork.pid,
1394 						     event->fork.tid);
1395 	struct thread *parent = machine__findnew_thread(machine,
1396 							event->fork.ppid,
1397 							event->fork.ptid);
1398 	int err = 0;
1399 
1400 	if (dump_trace)
1401 		perf_event__fprintf_task(event, stdout);
1402 
1403 	/*
1404 	 * There may be an existing thread that is not actually the parent,
1405 	 * either because we are processing events out of order, or because the
1406 	 * (fork) event that would have removed the thread was lost. Assume the
1407 	 * latter case and continue on as best we can.
1408 	 */
1409 	if (parent->pid_ != (pid_t)event->fork.ppid) {
1410 		dump_printf("removing erroneous parent thread %d/%d\n",
1411 			    parent->pid_, parent->tid);
1412 		machine__remove_thread(machine, parent);
1413 		thread__put(parent);
1414 		parent = machine__findnew_thread(machine, event->fork.ppid,
1415 						 event->fork.ptid);
1416 	}
1417 
1418 	/* if a thread currently exists for the thread id remove it */
1419 	if (thread != NULL) {
1420 		machine__remove_thread(machine, thread);
1421 		thread__put(thread);
1422 	}
1423 
1424 	thread = machine__findnew_thread(machine, event->fork.pid,
1425 					 event->fork.tid);
1426 
1427 	if (thread == NULL || parent == NULL ||
1428 	    thread__fork(thread, parent, sample->time) < 0) {
1429 		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1430 		err = -1;
1431 	}
1432 	thread__put(thread);
1433 	thread__put(parent);
1434 
1435 	return err;
1436 }
1437 
1438 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1439 				struct perf_sample *sample __maybe_unused)
1440 {
1441 	struct thread *thread = machine__find_thread(machine,
1442 						     event->fork.pid,
1443 						     event->fork.tid);
1444 
1445 	if (dump_trace)
1446 		perf_event__fprintf_task(event, stdout);
1447 
1448 	if (thread != NULL) {
1449 		thread__exited(thread);
1450 		thread__put(thread);
1451 	}
1452 
1453 	return 0;
1454 }
1455 
1456 int machine__process_event(struct machine *machine, union perf_event *event,
1457 			   struct perf_sample *sample)
1458 {
1459 	int ret;
1460 
1461 	switch (event->header.type) {
1462 	case PERF_RECORD_COMM:
1463 		ret = machine__process_comm_event(machine, event, sample); break;
1464 	case PERF_RECORD_MMAP:
1465 		ret = machine__process_mmap_event(machine, event, sample); break;
1466 	case PERF_RECORD_MMAP2:
1467 		ret = machine__process_mmap2_event(machine, event, sample); break;
1468 	case PERF_RECORD_FORK:
1469 		ret = machine__process_fork_event(machine, event, sample); break;
1470 	case PERF_RECORD_EXIT:
1471 		ret = machine__process_exit_event(machine, event, sample); break;
1472 	case PERF_RECORD_LOST:
1473 		ret = machine__process_lost_event(machine, event, sample); break;
1474 	case PERF_RECORD_AUX:
1475 		ret = machine__process_aux_event(machine, event); break;
1476 	case PERF_RECORD_ITRACE_START:
1477 		ret = machine__process_itrace_start_event(machine, event); break;
1478 	case PERF_RECORD_LOST_SAMPLES:
1479 		ret = machine__process_lost_samples_event(machine, event, sample); break;
1480 	case PERF_RECORD_SWITCH:
1481 	case PERF_RECORD_SWITCH_CPU_WIDE:
1482 		ret = machine__process_switch_event(machine, event); break;
1483 	default:
1484 		ret = -1;
1485 		break;
1486 	}
1487 
1488 	return ret;
1489 }
1490 
1491 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1492 {
1493 	if (sym->name && !regexec(regex, sym->name, 0, NULL, 0))
1494 		return 1;
1495 	return 0;
1496 }
1497 
1498 static void ip__resolve_ams(struct thread *thread,
1499 			    struct addr_map_symbol *ams,
1500 			    u64 ip)
1501 {
1502 	struct addr_location al;
1503 
1504 	memset(&al, 0, sizeof(al));
1505 	/*
1506 	 * We cannot use the header.misc hint to determine whether a
1507 	 * branch stack address is user, kernel, guest, hypervisor.
1508 	 * Branches may straddle the kernel/user/hypervisor boundaries.
1509 	 * Thus, we have to try consecutively until we find a match
1510 	 * or else, the symbol is unknown
1511 	 */
1512 	thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1513 
1514 	ams->addr = ip;
1515 	ams->al_addr = al.addr;
1516 	ams->sym = al.sym;
1517 	ams->map = al.map;
1518 }
1519 
1520 static void ip__resolve_data(struct thread *thread,
1521 			     u8 m, struct addr_map_symbol *ams, u64 addr)
1522 {
1523 	struct addr_location al;
1524 
1525 	memset(&al, 0, sizeof(al));
1526 
1527 	thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1528 	if (al.map == NULL) {
1529 		/*
1530 		 * some shared data regions have execute bit set which puts
1531 		 * their mapping in the MAP__FUNCTION type array.
1532 		 * Check there as a fallback option before dropping the sample.
1533 		 */
1534 		thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1535 	}
1536 
1537 	ams->addr = addr;
1538 	ams->al_addr = al.addr;
1539 	ams->sym = al.sym;
1540 	ams->map = al.map;
1541 }
1542 
1543 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1544 				     struct addr_location *al)
1545 {
1546 	struct mem_info *mi = zalloc(sizeof(*mi));
1547 
1548 	if (!mi)
1549 		return NULL;
1550 
1551 	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1552 	ip__resolve_data(al->thread, al->cpumode, &mi->daddr, sample->addr);
1553 	mi->data_src.val = sample->data_src;
1554 
1555 	return mi;
1556 }
1557 
1558 static int add_callchain_ip(struct thread *thread,
1559 			    struct symbol **parent,
1560 			    struct addr_location *root_al,
1561 			    u8 *cpumode,
1562 			    u64 ip)
1563 {
1564 	struct addr_location al;
1565 
1566 	al.filtered = 0;
1567 	al.sym = NULL;
1568 	if (!cpumode) {
1569 		thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
1570 						   ip, &al);
1571 	} else {
1572 		if (ip >= PERF_CONTEXT_MAX) {
1573 			switch (ip) {
1574 			case PERF_CONTEXT_HV:
1575 				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
1576 				break;
1577 			case PERF_CONTEXT_KERNEL:
1578 				*cpumode = PERF_RECORD_MISC_KERNEL;
1579 				break;
1580 			case PERF_CONTEXT_USER:
1581 				*cpumode = PERF_RECORD_MISC_USER;
1582 				break;
1583 			default:
1584 				pr_debug("invalid callchain context: "
1585 					 "%"PRId64"\n", (s64) ip);
1586 				/*
1587 				 * It seems the callchain is corrupted.
1588 				 * Discard all.
1589 				 */
1590 				callchain_cursor_reset(&callchain_cursor);
1591 				return 1;
1592 			}
1593 			return 0;
1594 		}
1595 		thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
1596 					   ip, &al);
1597 	}
1598 
1599 	if (al.sym != NULL) {
1600 		if (sort__has_parent && !*parent &&
1601 		    symbol__match_regex(al.sym, &parent_regex))
1602 			*parent = al.sym;
1603 		else if (have_ignore_callees && root_al &&
1604 		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
1605 			/* Treat this symbol as the root,
1606 			   forgetting its callees. */
1607 			*root_al = al;
1608 			callchain_cursor_reset(&callchain_cursor);
1609 		}
1610 	}
1611 
1612 	return callchain_cursor_append(&callchain_cursor, al.addr, al.map, al.sym);
1613 }
1614 
1615 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1616 					   struct addr_location *al)
1617 {
1618 	unsigned int i;
1619 	const struct branch_stack *bs = sample->branch_stack;
1620 	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1621 
1622 	if (!bi)
1623 		return NULL;
1624 
1625 	for (i = 0; i < bs->nr; i++) {
1626 		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1627 		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1628 		bi[i].flags = bs->entries[i].flags;
1629 	}
1630 	return bi;
1631 }
1632 
1633 #define CHASHSZ 127
1634 #define CHASHBITS 7
1635 #define NO_ENTRY 0xff
1636 
1637 #define PERF_MAX_BRANCH_DEPTH 127
1638 
1639 /* Remove loops. */
1640 static int remove_loops(struct branch_entry *l, int nr)
1641 {
1642 	int i, j, off;
1643 	unsigned char chash[CHASHSZ];
1644 
1645 	memset(chash, NO_ENTRY, sizeof(chash));
1646 
1647 	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
1648 
1649 	for (i = 0; i < nr; i++) {
1650 		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
1651 
1652 		/* no collision handling for now */
1653 		if (chash[h] == NO_ENTRY) {
1654 			chash[h] = i;
1655 		} else if (l[chash[h]].from == l[i].from) {
1656 			bool is_loop = true;
1657 			/* check if it is a real loop */
1658 			off = 0;
1659 			for (j = chash[h]; j < i && i + off < nr; j++, off++)
1660 				if (l[j].from != l[i + off].from) {
1661 					is_loop = false;
1662 					break;
1663 				}
1664 			if (is_loop) {
1665 				memmove(l + i, l + i + off,
1666 					(nr - (i + off)) * sizeof(*l));
1667 				nr -= off;
1668 			}
1669 		}
1670 	}
1671 	return nr;
1672 }
1673 
1674 /*
1675  * Recolve LBR callstack chain sample
1676  * Return:
1677  * 1 on success get LBR callchain information
1678  * 0 no available LBR callchain information, should try fp
1679  * negative error code on other errors.
1680  */
1681 static int resolve_lbr_callchain_sample(struct thread *thread,
1682 					struct perf_sample *sample,
1683 					struct symbol **parent,
1684 					struct addr_location *root_al,
1685 					int max_stack)
1686 {
1687 	struct ip_callchain *chain = sample->callchain;
1688 	int chain_nr = min(max_stack, (int)chain->nr);
1689 	u8 cpumode = PERF_RECORD_MISC_USER;
1690 	int i, j, err;
1691 	u64 ip;
1692 
1693 	for (i = 0; i < chain_nr; i++) {
1694 		if (chain->ips[i] == PERF_CONTEXT_USER)
1695 			break;
1696 	}
1697 
1698 	/* LBR only affects the user callchain */
1699 	if (i != chain_nr) {
1700 		struct branch_stack *lbr_stack = sample->branch_stack;
1701 		int lbr_nr = lbr_stack->nr;
1702 		/*
1703 		 * LBR callstack can only get user call chain.
1704 		 * The mix_chain_nr is kernel call chain
1705 		 * number plus LBR user call chain number.
1706 		 * i is kernel call chain number,
1707 		 * 1 is PERF_CONTEXT_USER,
1708 		 * lbr_nr + 1 is the user call chain number.
1709 		 * For details, please refer to the comments
1710 		 * in callchain__printf
1711 		 */
1712 		int mix_chain_nr = i + 1 + lbr_nr + 1;
1713 
1714 		if (mix_chain_nr > PERF_MAX_STACK_DEPTH + PERF_MAX_BRANCH_DEPTH) {
1715 			pr_warning("corrupted callchain. skipping...\n");
1716 			return 0;
1717 		}
1718 
1719 		for (j = 0; j < mix_chain_nr; j++) {
1720 			if (callchain_param.order == ORDER_CALLEE) {
1721 				if (j < i + 1)
1722 					ip = chain->ips[j];
1723 				else if (j > i + 1)
1724 					ip = lbr_stack->entries[j - i - 2].from;
1725 				else
1726 					ip = lbr_stack->entries[0].to;
1727 			} else {
1728 				if (j < lbr_nr)
1729 					ip = lbr_stack->entries[lbr_nr - j - 1].from;
1730 				else if (j > lbr_nr)
1731 					ip = chain->ips[i + 1 - (j - lbr_nr)];
1732 				else
1733 					ip = lbr_stack->entries[0].to;
1734 			}
1735 
1736 			err = add_callchain_ip(thread, parent, root_al, &cpumode, ip);
1737 			if (err)
1738 				return (err < 0) ? err : 0;
1739 		}
1740 		return 1;
1741 	}
1742 
1743 	return 0;
1744 }
1745 
1746 static int thread__resolve_callchain_sample(struct thread *thread,
1747 					    struct perf_evsel *evsel,
1748 					    struct perf_sample *sample,
1749 					    struct symbol **parent,
1750 					    struct addr_location *root_al,
1751 					    int max_stack)
1752 {
1753 	struct branch_stack *branch = sample->branch_stack;
1754 	struct ip_callchain *chain = sample->callchain;
1755 	int chain_nr = min(max_stack, (int)chain->nr);
1756 	u8 cpumode = PERF_RECORD_MISC_USER;
1757 	int i, j, err;
1758 	int skip_idx = -1;
1759 	int first_call = 0;
1760 
1761 	callchain_cursor_reset(&callchain_cursor);
1762 
1763 	if (has_branch_callstack(evsel)) {
1764 		err = resolve_lbr_callchain_sample(thread, sample, parent,
1765 						   root_al, max_stack);
1766 		if (err)
1767 			return (err < 0) ? err : 0;
1768 	}
1769 
1770 	/*
1771 	 * Based on DWARF debug information, some architectures skip
1772 	 * a callchain entry saved by the kernel.
1773 	 */
1774 	if (chain->nr < PERF_MAX_STACK_DEPTH)
1775 		skip_idx = arch_skip_callchain_idx(thread, chain);
1776 
1777 	/*
1778 	 * Add branches to call stack for easier browsing. This gives
1779 	 * more context for a sample than just the callers.
1780 	 *
1781 	 * This uses individual histograms of paths compared to the
1782 	 * aggregated histograms the normal LBR mode uses.
1783 	 *
1784 	 * Limitations for now:
1785 	 * - No extra filters
1786 	 * - No annotations (should annotate somehow)
1787 	 */
1788 
1789 	if (branch && callchain_param.branch_callstack) {
1790 		int nr = min(max_stack, (int)branch->nr);
1791 		struct branch_entry be[nr];
1792 
1793 		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
1794 			pr_warning("corrupted branch chain. skipping...\n");
1795 			goto check_calls;
1796 		}
1797 
1798 		for (i = 0; i < nr; i++) {
1799 			if (callchain_param.order == ORDER_CALLEE) {
1800 				be[i] = branch->entries[i];
1801 				/*
1802 				 * Check for overlap into the callchain.
1803 				 * The return address is one off compared to
1804 				 * the branch entry. To adjust for this
1805 				 * assume the calling instruction is not longer
1806 				 * than 8 bytes.
1807 				 */
1808 				if (i == skip_idx ||
1809 				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
1810 					first_call++;
1811 				else if (be[i].from < chain->ips[first_call] &&
1812 				    be[i].from >= chain->ips[first_call] - 8)
1813 					first_call++;
1814 			} else
1815 				be[i] = branch->entries[branch->nr - i - 1];
1816 		}
1817 
1818 		nr = remove_loops(be, nr);
1819 
1820 		for (i = 0; i < nr; i++) {
1821 			err = add_callchain_ip(thread, parent, root_al,
1822 					       NULL, be[i].to);
1823 			if (!err)
1824 				err = add_callchain_ip(thread, parent, root_al,
1825 						       NULL, be[i].from);
1826 			if (err == -EINVAL)
1827 				break;
1828 			if (err)
1829 				return err;
1830 		}
1831 		chain_nr -= nr;
1832 	}
1833 
1834 check_calls:
1835 	if (chain->nr > PERF_MAX_STACK_DEPTH && (int)chain->nr > max_stack) {
1836 		pr_warning("corrupted callchain. skipping...\n");
1837 		return 0;
1838 	}
1839 
1840 	for (i = first_call; i < chain_nr; i++) {
1841 		u64 ip;
1842 
1843 		if (callchain_param.order == ORDER_CALLEE)
1844 			j = i;
1845 		else
1846 			j = chain->nr - i - 1;
1847 
1848 #ifdef HAVE_SKIP_CALLCHAIN_IDX
1849 		if (j == skip_idx)
1850 			continue;
1851 #endif
1852 		ip = chain->ips[j];
1853 
1854 		err = add_callchain_ip(thread, parent, root_al, &cpumode, ip);
1855 
1856 		if (err)
1857 			return (err < 0) ? err : 0;
1858 	}
1859 
1860 	return 0;
1861 }
1862 
1863 static int unwind_entry(struct unwind_entry *entry, void *arg)
1864 {
1865 	struct callchain_cursor *cursor = arg;
1866 	return callchain_cursor_append(cursor, entry->ip,
1867 				       entry->map, entry->sym);
1868 }
1869 
1870 int thread__resolve_callchain(struct thread *thread,
1871 			      struct perf_evsel *evsel,
1872 			      struct perf_sample *sample,
1873 			      struct symbol **parent,
1874 			      struct addr_location *root_al,
1875 			      int max_stack)
1876 {
1877 	int ret = thread__resolve_callchain_sample(thread, evsel,
1878 						   sample, parent,
1879 						   root_al, max_stack);
1880 	if (ret)
1881 		return ret;
1882 
1883 	/* Can we do dwarf post unwind? */
1884 	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
1885 	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
1886 		return 0;
1887 
1888 	/* Bail out if nothing was captured. */
1889 	if ((!sample->user_regs.regs) ||
1890 	    (!sample->user_stack.size))
1891 		return 0;
1892 
1893 	return unwind__get_entries(unwind_entry, &callchain_cursor,
1894 				   thread, sample, max_stack);
1895 
1896 }
1897 
1898 int machine__for_each_thread(struct machine *machine,
1899 			     int (*fn)(struct thread *thread, void *p),
1900 			     void *priv)
1901 {
1902 	struct rb_node *nd;
1903 	struct thread *thread;
1904 	int rc = 0;
1905 
1906 	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
1907 		thread = rb_entry(nd, struct thread, rb_node);
1908 		rc = fn(thread, priv);
1909 		if (rc != 0)
1910 			return rc;
1911 	}
1912 
1913 	list_for_each_entry(thread, &machine->dead_threads, node) {
1914 		rc = fn(thread, priv);
1915 		if (rc != 0)
1916 			return rc;
1917 	}
1918 	return rc;
1919 }
1920 
1921 int machines__for_each_thread(struct machines *machines,
1922 			      int (*fn)(struct thread *thread, void *p),
1923 			      void *priv)
1924 {
1925 	struct rb_node *nd;
1926 	int rc = 0;
1927 
1928 	rc = machine__for_each_thread(&machines->host, fn, priv);
1929 	if (rc != 0)
1930 		return rc;
1931 
1932 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
1933 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
1934 
1935 		rc = machine__for_each_thread(machine, fn, priv);
1936 		if (rc != 0)
1937 			return rc;
1938 	}
1939 	return rc;
1940 }
1941 
1942 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
1943 				  struct target *target, struct thread_map *threads,
1944 				  perf_event__handler_t process, bool data_mmap,
1945 				  unsigned int proc_map_timeout)
1946 {
1947 	if (target__has_task(target))
1948 		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
1949 	else if (target__has_cpu(target))
1950 		return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout);
1951 	/* command specified */
1952 	return 0;
1953 }
1954 
1955 pid_t machine__get_current_tid(struct machine *machine, int cpu)
1956 {
1957 	if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
1958 		return -1;
1959 
1960 	return machine->current_tid[cpu];
1961 }
1962 
1963 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
1964 			     pid_t tid)
1965 {
1966 	struct thread *thread;
1967 
1968 	if (cpu < 0)
1969 		return -EINVAL;
1970 
1971 	if (!machine->current_tid) {
1972 		int i;
1973 
1974 		machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
1975 		if (!machine->current_tid)
1976 			return -ENOMEM;
1977 		for (i = 0; i < MAX_NR_CPUS; i++)
1978 			machine->current_tid[i] = -1;
1979 	}
1980 
1981 	if (cpu >= MAX_NR_CPUS) {
1982 		pr_err("Requested CPU %d too large. ", cpu);
1983 		pr_err("Consider raising MAX_NR_CPUS\n");
1984 		return -EINVAL;
1985 	}
1986 
1987 	machine->current_tid[cpu] = tid;
1988 
1989 	thread = machine__findnew_thread(machine, pid, tid);
1990 	if (!thread)
1991 		return -ENOMEM;
1992 
1993 	thread->cpu = cpu;
1994 	thread__put(thread);
1995 
1996 	return 0;
1997 }
1998 
1999 int machine__get_kernel_start(struct machine *machine)
2000 {
2001 	struct map *map = machine__kernel_map(machine);
2002 	int err = 0;
2003 
2004 	/*
2005 	 * The only addresses above 2^63 are kernel addresses of a 64-bit
2006 	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
2007 	 * all addresses including kernel addresses are less than 2^32.  In
2008 	 * that case (32-bit system), if the kernel mapping is unknown, all
2009 	 * addresses will be assumed to be in user space - see
2010 	 * machine__kernel_ip().
2011 	 */
2012 	machine->kernel_start = 1ULL << 63;
2013 	if (map) {
2014 		err = map__load(map, machine->symbol_filter);
2015 		if (map->start)
2016 			machine->kernel_start = map->start;
2017 	}
2018 	return err;
2019 }
2020 
2021 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2022 {
2023 	return dsos__findnew(&machine->dsos, filename);
2024 }
2025 
2026 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2027 {
2028 	struct machine *machine = vmachine;
2029 	struct map *map;
2030 	struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map,  NULL);
2031 
2032 	if (sym == NULL)
2033 		return NULL;
2034 
2035 	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2036 	*addrp = map->unmap_ip(map, sym->start);
2037 	return sym->name;
2038 }
2039