1 #include "callchain.h" 2 #include "debug.h" 3 #include "event.h" 4 #include "evsel.h" 5 #include "hist.h" 6 #include "machine.h" 7 #include "map.h" 8 #include "sort.h" 9 #include "strlist.h" 10 #include "thread.h" 11 #include "vdso.h" 12 #include <stdbool.h> 13 #include <symbol/kallsyms.h> 14 #include "unwind.h" 15 #include "linux/hash.h" 16 17 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock); 18 19 static void dsos__init(struct dsos *dsos) 20 { 21 INIT_LIST_HEAD(&dsos->head); 22 dsos->root = RB_ROOT; 23 pthread_rwlock_init(&dsos->lock, NULL); 24 } 25 26 int machine__init(struct machine *machine, const char *root_dir, pid_t pid) 27 { 28 map_groups__init(&machine->kmaps, machine); 29 RB_CLEAR_NODE(&machine->rb_node); 30 dsos__init(&machine->dsos); 31 32 machine->threads = RB_ROOT; 33 pthread_rwlock_init(&machine->threads_lock, NULL); 34 INIT_LIST_HEAD(&machine->dead_threads); 35 machine->last_match = NULL; 36 37 machine->vdso_info = NULL; 38 machine->env = NULL; 39 40 machine->pid = pid; 41 42 machine->symbol_filter = NULL; 43 machine->id_hdr_size = 0; 44 machine->comm_exec = false; 45 machine->kernel_start = 0; 46 47 machine->root_dir = strdup(root_dir); 48 if (machine->root_dir == NULL) 49 return -ENOMEM; 50 51 if (pid != HOST_KERNEL_ID) { 52 struct thread *thread = machine__findnew_thread(machine, -1, 53 pid); 54 char comm[64]; 55 56 if (thread == NULL) 57 return -ENOMEM; 58 59 snprintf(comm, sizeof(comm), "[guest/%d]", pid); 60 thread__set_comm(thread, comm, 0); 61 thread__put(thread); 62 } 63 64 machine->current_tid = NULL; 65 66 return 0; 67 } 68 69 struct machine *machine__new_host(void) 70 { 71 struct machine *machine = malloc(sizeof(*machine)); 72 73 if (machine != NULL) { 74 machine__init(machine, "", HOST_KERNEL_ID); 75 76 if (machine__create_kernel_maps(machine) < 0) 77 goto out_delete; 78 } 79 80 return machine; 81 out_delete: 82 free(machine); 83 return NULL; 84 } 85 86 static void dsos__purge(struct dsos *dsos) 87 { 88 struct dso *pos, *n; 89 90 pthread_rwlock_wrlock(&dsos->lock); 91 92 list_for_each_entry_safe(pos, n, &dsos->head, node) { 93 RB_CLEAR_NODE(&pos->rb_node); 94 pos->root = NULL; 95 list_del_init(&pos->node); 96 dso__put(pos); 97 } 98 99 pthread_rwlock_unlock(&dsos->lock); 100 } 101 102 static void dsos__exit(struct dsos *dsos) 103 { 104 dsos__purge(dsos); 105 pthread_rwlock_destroy(&dsos->lock); 106 } 107 108 void machine__delete_threads(struct machine *machine) 109 { 110 struct rb_node *nd; 111 112 pthread_rwlock_wrlock(&machine->threads_lock); 113 nd = rb_first(&machine->threads); 114 while (nd) { 115 struct thread *t = rb_entry(nd, struct thread, rb_node); 116 117 nd = rb_next(nd); 118 __machine__remove_thread(machine, t, false); 119 } 120 pthread_rwlock_unlock(&machine->threads_lock); 121 } 122 123 void machine__exit(struct machine *machine) 124 { 125 map_groups__exit(&machine->kmaps); 126 dsos__exit(&machine->dsos); 127 machine__exit_vdso(machine); 128 zfree(&machine->root_dir); 129 zfree(&machine->current_tid); 130 pthread_rwlock_destroy(&machine->threads_lock); 131 } 132 133 void machine__delete(struct machine *machine) 134 { 135 machine__exit(machine); 136 free(machine); 137 } 138 139 void machines__init(struct machines *machines) 140 { 141 machine__init(&machines->host, "", HOST_KERNEL_ID); 142 machines->guests = RB_ROOT; 143 machines->symbol_filter = NULL; 144 } 145 146 void machines__exit(struct machines *machines) 147 { 148 machine__exit(&machines->host); 149 /* XXX exit guest */ 150 } 151 152 struct machine *machines__add(struct machines *machines, pid_t pid, 153 const char *root_dir) 154 { 155 struct rb_node **p = &machines->guests.rb_node; 156 struct rb_node *parent = NULL; 157 struct machine *pos, *machine = malloc(sizeof(*machine)); 158 159 if (machine == NULL) 160 return NULL; 161 162 if (machine__init(machine, root_dir, pid) != 0) { 163 free(machine); 164 return NULL; 165 } 166 167 machine->symbol_filter = machines->symbol_filter; 168 169 while (*p != NULL) { 170 parent = *p; 171 pos = rb_entry(parent, struct machine, rb_node); 172 if (pid < pos->pid) 173 p = &(*p)->rb_left; 174 else 175 p = &(*p)->rb_right; 176 } 177 178 rb_link_node(&machine->rb_node, parent, p); 179 rb_insert_color(&machine->rb_node, &machines->guests); 180 181 return machine; 182 } 183 184 void machines__set_symbol_filter(struct machines *machines, 185 symbol_filter_t symbol_filter) 186 { 187 struct rb_node *nd; 188 189 machines->symbol_filter = symbol_filter; 190 machines->host.symbol_filter = symbol_filter; 191 192 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 193 struct machine *machine = rb_entry(nd, struct machine, rb_node); 194 195 machine->symbol_filter = symbol_filter; 196 } 197 } 198 199 void machines__set_comm_exec(struct machines *machines, bool comm_exec) 200 { 201 struct rb_node *nd; 202 203 machines->host.comm_exec = comm_exec; 204 205 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 206 struct machine *machine = rb_entry(nd, struct machine, rb_node); 207 208 machine->comm_exec = comm_exec; 209 } 210 } 211 212 struct machine *machines__find(struct machines *machines, pid_t pid) 213 { 214 struct rb_node **p = &machines->guests.rb_node; 215 struct rb_node *parent = NULL; 216 struct machine *machine; 217 struct machine *default_machine = NULL; 218 219 if (pid == HOST_KERNEL_ID) 220 return &machines->host; 221 222 while (*p != NULL) { 223 parent = *p; 224 machine = rb_entry(parent, struct machine, rb_node); 225 if (pid < machine->pid) 226 p = &(*p)->rb_left; 227 else if (pid > machine->pid) 228 p = &(*p)->rb_right; 229 else 230 return machine; 231 if (!machine->pid) 232 default_machine = machine; 233 } 234 235 return default_machine; 236 } 237 238 struct machine *machines__findnew(struct machines *machines, pid_t pid) 239 { 240 char path[PATH_MAX]; 241 const char *root_dir = ""; 242 struct machine *machine = machines__find(machines, pid); 243 244 if (machine && (machine->pid == pid)) 245 goto out; 246 247 if ((pid != HOST_KERNEL_ID) && 248 (pid != DEFAULT_GUEST_KERNEL_ID) && 249 (symbol_conf.guestmount)) { 250 sprintf(path, "%s/%d", symbol_conf.guestmount, pid); 251 if (access(path, R_OK)) { 252 static struct strlist *seen; 253 254 if (!seen) 255 seen = strlist__new(NULL, NULL); 256 257 if (!strlist__has_entry(seen, path)) { 258 pr_err("Can't access file %s\n", path); 259 strlist__add(seen, path); 260 } 261 machine = NULL; 262 goto out; 263 } 264 root_dir = path; 265 } 266 267 machine = machines__add(machines, pid, root_dir); 268 out: 269 return machine; 270 } 271 272 void machines__process_guests(struct machines *machines, 273 machine__process_t process, void *data) 274 { 275 struct rb_node *nd; 276 277 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 278 struct machine *pos = rb_entry(nd, struct machine, rb_node); 279 process(pos, data); 280 } 281 } 282 283 char *machine__mmap_name(struct machine *machine, char *bf, size_t size) 284 { 285 if (machine__is_host(machine)) 286 snprintf(bf, size, "[%s]", "kernel.kallsyms"); 287 else if (machine__is_default_guest(machine)) 288 snprintf(bf, size, "[%s]", "guest.kernel.kallsyms"); 289 else { 290 snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms", 291 machine->pid); 292 } 293 294 return bf; 295 } 296 297 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size) 298 { 299 struct rb_node *node; 300 struct machine *machine; 301 302 machines->host.id_hdr_size = id_hdr_size; 303 304 for (node = rb_first(&machines->guests); node; node = rb_next(node)) { 305 machine = rb_entry(node, struct machine, rb_node); 306 machine->id_hdr_size = id_hdr_size; 307 } 308 309 return; 310 } 311 312 static void machine__update_thread_pid(struct machine *machine, 313 struct thread *th, pid_t pid) 314 { 315 struct thread *leader; 316 317 if (pid == th->pid_ || pid == -1 || th->pid_ != -1) 318 return; 319 320 th->pid_ = pid; 321 322 if (th->pid_ == th->tid) 323 return; 324 325 leader = __machine__findnew_thread(machine, th->pid_, th->pid_); 326 if (!leader) 327 goto out_err; 328 329 if (!leader->mg) 330 leader->mg = map_groups__new(machine); 331 332 if (!leader->mg) 333 goto out_err; 334 335 if (th->mg == leader->mg) 336 return; 337 338 if (th->mg) { 339 /* 340 * Maps are created from MMAP events which provide the pid and 341 * tid. Consequently there never should be any maps on a thread 342 * with an unknown pid. Just print an error if there are. 343 */ 344 if (!map_groups__empty(th->mg)) 345 pr_err("Discarding thread maps for %d:%d\n", 346 th->pid_, th->tid); 347 map_groups__put(th->mg); 348 } 349 350 th->mg = map_groups__get(leader->mg); 351 352 return; 353 354 out_err: 355 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid); 356 } 357 358 static struct thread *____machine__findnew_thread(struct machine *machine, 359 pid_t pid, pid_t tid, 360 bool create) 361 { 362 struct rb_node **p = &machine->threads.rb_node; 363 struct rb_node *parent = NULL; 364 struct thread *th; 365 366 /* 367 * Front-end cache - TID lookups come in blocks, 368 * so most of the time we dont have to look up 369 * the full rbtree: 370 */ 371 th = machine->last_match; 372 if (th != NULL) { 373 if (th->tid == tid) { 374 machine__update_thread_pid(machine, th, pid); 375 return th; 376 } 377 378 machine->last_match = NULL; 379 } 380 381 while (*p != NULL) { 382 parent = *p; 383 th = rb_entry(parent, struct thread, rb_node); 384 385 if (th->tid == tid) { 386 machine->last_match = th; 387 machine__update_thread_pid(machine, th, pid); 388 return th; 389 } 390 391 if (tid < th->tid) 392 p = &(*p)->rb_left; 393 else 394 p = &(*p)->rb_right; 395 } 396 397 if (!create) 398 return NULL; 399 400 th = thread__new(pid, tid); 401 if (th != NULL) { 402 rb_link_node(&th->rb_node, parent, p); 403 rb_insert_color(&th->rb_node, &machine->threads); 404 405 /* 406 * We have to initialize map_groups separately 407 * after rb tree is updated. 408 * 409 * The reason is that we call machine__findnew_thread 410 * within thread__init_map_groups to find the thread 411 * leader and that would screwed the rb tree. 412 */ 413 if (thread__init_map_groups(th, machine)) { 414 rb_erase_init(&th->rb_node, &machine->threads); 415 RB_CLEAR_NODE(&th->rb_node); 416 thread__delete(th); 417 return NULL; 418 } 419 /* 420 * It is now in the rbtree, get a ref 421 */ 422 thread__get(th); 423 machine->last_match = th; 424 } 425 426 return th; 427 } 428 429 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid) 430 { 431 return ____machine__findnew_thread(machine, pid, tid, true); 432 } 433 434 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, 435 pid_t tid) 436 { 437 struct thread *th; 438 439 pthread_rwlock_wrlock(&machine->threads_lock); 440 th = thread__get(__machine__findnew_thread(machine, pid, tid)); 441 pthread_rwlock_unlock(&machine->threads_lock); 442 return th; 443 } 444 445 struct thread *machine__find_thread(struct machine *machine, pid_t pid, 446 pid_t tid) 447 { 448 struct thread *th; 449 pthread_rwlock_rdlock(&machine->threads_lock); 450 th = thread__get(____machine__findnew_thread(machine, pid, tid, false)); 451 pthread_rwlock_unlock(&machine->threads_lock); 452 return th; 453 } 454 455 struct comm *machine__thread_exec_comm(struct machine *machine, 456 struct thread *thread) 457 { 458 if (machine->comm_exec) 459 return thread__exec_comm(thread); 460 else 461 return thread__comm(thread); 462 } 463 464 int machine__process_comm_event(struct machine *machine, union perf_event *event, 465 struct perf_sample *sample) 466 { 467 struct thread *thread = machine__findnew_thread(machine, 468 event->comm.pid, 469 event->comm.tid); 470 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC; 471 int err = 0; 472 473 if (exec) 474 machine->comm_exec = true; 475 476 if (dump_trace) 477 perf_event__fprintf_comm(event, stdout); 478 479 if (thread == NULL || 480 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) { 481 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n"); 482 err = -1; 483 } 484 485 thread__put(thread); 486 487 return err; 488 } 489 490 int machine__process_lost_event(struct machine *machine __maybe_unused, 491 union perf_event *event, struct perf_sample *sample __maybe_unused) 492 { 493 dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n", 494 event->lost.id, event->lost.lost); 495 return 0; 496 } 497 498 int machine__process_lost_samples_event(struct machine *machine __maybe_unused, 499 union perf_event *event, struct perf_sample *sample) 500 { 501 dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n", 502 sample->id, event->lost_samples.lost); 503 return 0; 504 } 505 506 static struct dso *machine__findnew_module_dso(struct machine *machine, 507 struct kmod_path *m, 508 const char *filename) 509 { 510 struct dso *dso; 511 512 pthread_rwlock_wrlock(&machine->dsos.lock); 513 514 dso = __dsos__find(&machine->dsos, m->name, true); 515 if (!dso) { 516 dso = __dsos__addnew(&machine->dsos, m->name); 517 if (dso == NULL) 518 goto out_unlock; 519 520 if (machine__is_host(machine)) 521 dso->symtab_type = DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE; 522 else 523 dso->symtab_type = DSO_BINARY_TYPE__GUEST_KMODULE; 524 525 /* _KMODULE_COMP should be next to _KMODULE */ 526 if (m->kmod && m->comp) 527 dso->symtab_type++; 528 529 dso__set_short_name(dso, strdup(m->name), true); 530 dso__set_long_name(dso, strdup(filename), true); 531 } 532 533 dso__get(dso); 534 out_unlock: 535 pthread_rwlock_unlock(&machine->dsos.lock); 536 return dso; 537 } 538 539 int machine__process_aux_event(struct machine *machine __maybe_unused, 540 union perf_event *event) 541 { 542 if (dump_trace) 543 perf_event__fprintf_aux(event, stdout); 544 return 0; 545 } 546 547 int machine__process_itrace_start_event(struct machine *machine __maybe_unused, 548 union perf_event *event) 549 { 550 if (dump_trace) 551 perf_event__fprintf_itrace_start(event, stdout); 552 return 0; 553 } 554 555 int machine__process_switch_event(struct machine *machine __maybe_unused, 556 union perf_event *event) 557 { 558 if (dump_trace) 559 perf_event__fprintf_switch(event, stdout); 560 return 0; 561 } 562 563 struct map *machine__findnew_module_map(struct machine *machine, u64 start, 564 const char *filename) 565 { 566 struct map *map = NULL; 567 struct dso *dso; 568 struct kmod_path m; 569 570 if (kmod_path__parse_name(&m, filename)) 571 return NULL; 572 573 map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION, 574 m.name); 575 if (map) 576 goto out; 577 578 dso = machine__findnew_module_dso(machine, &m, filename); 579 if (dso == NULL) 580 goto out; 581 582 map = map__new2(start, dso, MAP__FUNCTION); 583 if (map == NULL) 584 goto out; 585 586 map_groups__insert(&machine->kmaps, map); 587 588 out: 589 free(m.name); 590 return map; 591 } 592 593 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp) 594 { 595 struct rb_node *nd; 596 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp); 597 598 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 599 struct machine *pos = rb_entry(nd, struct machine, rb_node); 600 ret += __dsos__fprintf(&pos->dsos.head, fp); 601 } 602 603 return ret; 604 } 605 606 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp, 607 bool (skip)(struct dso *dso, int parm), int parm) 608 { 609 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm); 610 } 611 612 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp, 613 bool (skip)(struct dso *dso, int parm), int parm) 614 { 615 struct rb_node *nd; 616 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm); 617 618 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 619 struct machine *pos = rb_entry(nd, struct machine, rb_node); 620 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm); 621 } 622 return ret; 623 } 624 625 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp) 626 { 627 int i; 628 size_t printed = 0; 629 struct dso *kdso = machine__kernel_map(machine)->dso; 630 631 if (kdso->has_build_id) { 632 char filename[PATH_MAX]; 633 if (dso__build_id_filename(kdso, filename, sizeof(filename))) 634 printed += fprintf(fp, "[0] %s\n", filename); 635 } 636 637 for (i = 0; i < vmlinux_path__nr_entries; ++i) 638 printed += fprintf(fp, "[%d] %s\n", 639 i + kdso->has_build_id, vmlinux_path[i]); 640 641 return printed; 642 } 643 644 size_t machine__fprintf(struct machine *machine, FILE *fp) 645 { 646 size_t ret = 0; 647 struct rb_node *nd; 648 649 pthread_rwlock_rdlock(&machine->threads_lock); 650 651 for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) { 652 struct thread *pos = rb_entry(nd, struct thread, rb_node); 653 654 ret += thread__fprintf(pos, fp); 655 } 656 657 pthread_rwlock_unlock(&machine->threads_lock); 658 659 return ret; 660 } 661 662 static struct dso *machine__get_kernel(struct machine *machine) 663 { 664 const char *vmlinux_name = NULL; 665 struct dso *kernel; 666 667 if (machine__is_host(machine)) { 668 vmlinux_name = symbol_conf.vmlinux_name; 669 if (!vmlinux_name) 670 vmlinux_name = "[kernel.kallsyms]"; 671 672 kernel = machine__findnew_kernel(machine, vmlinux_name, 673 "[kernel]", DSO_TYPE_KERNEL); 674 } else { 675 char bf[PATH_MAX]; 676 677 if (machine__is_default_guest(machine)) 678 vmlinux_name = symbol_conf.default_guest_vmlinux_name; 679 if (!vmlinux_name) 680 vmlinux_name = machine__mmap_name(machine, bf, 681 sizeof(bf)); 682 683 kernel = machine__findnew_kernel(machine, vmlinux_name, 684 "[guest.kernel]", 685 DSO_TYPE_GUEST_KERNEL); 686 } 687 688 if (kernel != NULL && (!kernel->has_build_id)) 689 dso__read_running_kernel_build_id(kernel, machine); 690 691 return kernel; 692 } 693 694 struct process_args { 695 u64 start; 696 }; 697 698 static void machine__get_kallsyms_filename(struct machine *machine, char *buf, 699 size_t bufsz) 700 { 701 if (machine__is_default_guest(machine)) 702 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms); 703 else 704 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir); 705 } 706 707 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL}; 708 709 /* Figure out the start address of kernel map from /proc/kallsyms. 710 * Returns the name of the start symbol in *symbol_name. Pass in NULL as 711 * symbol_name if it's not that important. 712 */ 713 static u64 machine__get_running_kernel_start(struct machine *machine, 714 const char **symbol_name) 715 { 716 char filename[PATH_MAX]; 717 int i; 718 const char *name; 719 u64 addr = 0; 720 721 machine__get_kallsyms_filename(machine, filename, PATH_MAX); 722 723 if (symbol__restricted_filename(filename, "/proc/kallsyms")) 724 return 0; 725 726 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) { 727 addr = kallsyms__get_function_start(filename, name); 728 if (addr) 729 break; 730 } 731 732 if (symbol_name) 733 *symbol_name = name; 734 735 return addr; 736 } 737 738 int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel) 739 { 740 enum map_type type; 741 u64 start = machine__get_running_kernel_start(machine, NULL); 742 743 for (type = 0; type < MAP__NR_TYPES; ++type) { 744 struct kmap *kmap; 745 struct map *map; 746 747 machine->vmlinux_maps[type] = map__new2(start, kernel, type); 748 if (machine->vmlinux_maps[type] == NULL) 749 return -1; 750 751 machine->vmlinux_maps[type]->map_ip = 752 machine->vmlinux_maps[type]->unmap_ip = 753 identity__map_ip; 754 map = __machine__kernel_map(machine, type); 755 kmap = map__kmap(map); 756 if (!kmap) 757 return -1; 758 759 kmap->kmaps = &machine->kmaps; 760 map_groups__insert(&machine->kmaps, map); 761 } 762 763 return 0; 764 } 765 766 void machine__destroy_kernel_maps(struct machine *machine) 767 { 768 enum map_type type; 769 770 for (type = 0; type < MAP__NR_TYPES; ++type) { 771 struct kmap *kmap; 772 struct map *map = __machine__kernel_map(machine, type); 773 774 if (map == NULL) 775 continue; 776 777 kmap = map__kmap(map); 778 map_groups__remove(&machine->kmaps, map); 779 if (kmap && kmap->ref_reloc_sym) { 780 /* 781 * ref_reloc_sym is shared among all maps, so free just 782 * on one of them. 783 */ 784 if (type == MAP__FUNCTION) { 785 zfree((char **)&kmap->ref_reloc_sym->name); 786 zfree(&kmap->ref_reloc_sym); 787 } else 788 kmap->ref_reloc_sym = NULL; 789 } 790 791 machine->vmlinux_maps[type] = NULL; 792 } 793 } 794 795 int machines__create_guest_kernel_maps(struct machines *machines) 796 { 797 int ret = 0; 798 struct dirent **namelist = NULL; 799 int i, items = 0; 800 char path[PATH_MAX]; 801 pid_t pid; 802 char *endp; 803 804 if (symbol_conf.default_guest_vmlinux_name || 805 symbol_conf.default_guest_modules || 806 symbol_conf.default_guest_kallsyms) { 807 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID); 808 } 809 810 if (symbol_conf.guestmount) { 811 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL); 812 if (items <= 0) 813 return -ENOENT; 814 for (i = 0; i < items; i++) { 815 if (!isdigit(namelist[i]->d_name[0])) { 816 /* Filter out . and .. */ 817 continue; 818 } 819 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10); 820 if ((*endp != '\0') || 821 (endp == namelist[i]->d_name) || 822 (errno == ERANGE)) { 823 pr_debug("invalid directory (%s). Skipping.\n", 824 namelist[i]->d_name); 825 continue; 826 } 827 sprintf(path, "%s/%s/proc/kallsyms", 828 symbol_conf.guestmount, 829 namelist[i]->d_name); 830 ret = access(path, R_OK); 831 if (ret) { 832 pr_debug("Can't access file %s\n", path); 833 goto failure; 834 } 835 machines__create_kernel_maps(machines, pid); 836 } 837 failure: 838 free(namelist); 839 } 840 841 return ret; 842 } 843 844 void machines__destroy_kernel_maps(struct machines *machines) 845 { 846 struct rb_node *next = rb_first(&machines->guests); 847 848 machine__destroy_kernel_maps(&machines->host); 849 850 while (next) { 851 struct machine *pos = rb_entry(next, struct machine, rb_node); 852 853 next = rb_next(&pos->rb_node); 854 rb_erase(&pos->rb_node, &machines->guests); 855 machine__delete(pos); 856 } 857 } 858 859 int machines__create_kernel_maps(struct machines *machines, pid_t pid) 860 { 861 struct machine *machine = machines__findnew(machines, pid); 862 863 if (machine == NULL) 864 return -1; 865 866 return machine__create_kernel_maps(machine); 867 } 868 869 int machine__load_kallsyms(struct machine *machine, const char *filename, 870 enum map_type type, symbol_filter_t filter) 871 { 872 struct map *map = machine__kernel_map(machine); 873 int ret = dso__load_kallsyms(map->dso, filename, map, filter); 874 875 if (ret > 0) { 876 dso__set_loaded(map->dso, type); 877 /* 878 * Since /proc/kallsyms will have multiple sessions for the 879 * kernel, with modules between them, fixup the end of all 880 * sections. 881 */ 882 __map_groups__fixup_end(&machine->kmaps, type); 883 } 884 885 return ret; 886 } 887 888 int machine__load_vmlinux_path(struct machine *machine, enum map_type type, 889 symbol_filter_t filter) 890 { 891 struct map *map = machine__kernel_map(machine); 892 int ret = dso__load_vmlinux_path(map->dso, map, filter); 893 894 if (ret > 0) 895 dso__set_loaded(map->dso, type); 896 897 return ret; 898 } 899 900 static void map_groups__fixup_end(struct map_groups *mg) 901 { 902 int i; 903 for (i = 0; i < MAP__NR_TYPES; ++i) 904 __map_groups__fixup_end(mg, i); 905 } 906 907 static char *get_kernel_version(const char *root_dir) 908 { 909 char version[PATH_MAX]; 910 FILE *file; 911 char *name, *tmp; 912 const char *prefix = "Linux version "; 913 914 sprintf(version, "%s/proc/version", root_dir); 915 file = fopen(version, "r"); 916 if (!file) 917 return NULL; 918 919 version[0] = '\0'; 920 tmp = fgets(version, sizeof(version), file); 921 fclose(file); 922 923 name = strstr(version, prefix); 924 if (!name) 925 return NULL; 926 name += strlen(prefix); 927 tmp = strchr(name, ' '); 928 if (tmp) 929 *tmp = '\0'; 930 931 return strdup(name); 932 } 933 934 static bool is_kmod_dso(struct dso *dso) 935 { 936 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE || 937 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE; 938 } 939 940 static int map_groups__set_module_path(struct map_groups *mg, const char *path, 941 struct kmod_path *m) 942 { 943 struct map *map; 944 char *long_name; 945 946 map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name); 947 if (map == NULL) 948 return 0; 949 950 long_name = strdup(path); 951 if (long_name == NULL) 952 return -ENOMEM; 953 954 dso__set_long_name(map->dso, long_name, true); 955 dso__kernel_module_get_build_id(map->dso, ""); 956 957 /* 958 * Full name could reveal us kmod compression, so 959 * we need to update the symtab_type if needed. 960 */ 961 if (m->comp && is_kmod_dso(map->dso)) 962 map->dso->symtab_type++; 963 964 return 0; 965 } 966 967 static int map_groups__set_modules_path_dir(struct map_groups *mg, 968 const char *dir_name, int depth) 969 { 970 struct dirent *dent; 971 DIR *dir = opendir(dir_name); 972 int ret = 0; 973 974 if (!dir) { 975 pr_debug("%s: cannot open %s dir\n", __func__, dir_name); 976 return -1; 977 } 978 979 while ((dent = readdir(dir)) != NULL) { 980 char path[PATH_MAX]; 981 struct stat st; 982 983 /*sshfs might return bad dent->d_type, so we have to stat*/ 984 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name); 985 if (stat(path, &st)) 986 continue; 987 988 if (S_ISDIR(st.st_mode)) { 989 if (!strcmp(dent->d_name, ".") || 990 !strcmp(dent->d_name, "..")) 991 continue; 992 993 /* Do not follow top-level source and build symlinks */ 994 if (depth == 0) { 995 if (!strcmp(dent->d_name, "source") || 996 !strcmp(dent->d_name, "build")) 997 continue; 998 } 999 1000 ret = map_groups__set_modules_path_dir(mg, path, 1001 depth + 1); 1002 if (ret < 0) 1003 goto out; 1004 } else { 1005 struct kmod_path m; 1006 1007 ret = kmod_path__parse_name(&m, dent->d_name); 1008 if (ret) 1009 goto out; 1010 1011 if (m.kmod) 1012 ret = map_groups__set_module_path(mg, path, &m); 1013 1014 free(m.name); 1015 1016 if (ret) 1017 goto out; 1018 } 1019 } 1020 1021 out: 1022 closedir(dir); 1023 return ret; 1024 } 1025 1026 static int machine__set_modules_path(struct machine *machine) 1027 { 1028 char *version; 1029 char modules_path[PATH_MAX]; 1030 1031 version = get_kernel_version(machine->root_dir); 1032 if (!version) 1033 return -1; 1034 1035 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s", 1036 machine->root_dir, version); 1037 free(version); 1038 1039 return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0); 1040 } 1041 1042 static int machine__create_module(void *arg, const char *name, u64 start) 1043 { 1044 struct machine *machine = arg; 1045 struct map *map; 1046 1047 map = machine__findnew_module_map(machine, start, name); 1048 if (map == NULL) 1049 return -1; 1050 1051 dso__kernel_module_get_build_id(map->dso, machine->root_dir); 1052 1053 return 0; 1054 } 1055 1056 static int machine__create_modules(struct machine *machine) 1057 { 1058 const char *modules; 1059 char path[PATH_MAX]; 1060 1061 if (machine__is_default_guest(machine)) { 1062 modules = symbol_conf.default_guest_modules; 1063 } else { 1064 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir); 1065 modules = path; 1066 } 1067 1068 if (symbol__restricted_filename(modules, "/proc/modules")) 1069 return -1; 1070 1071 if (modules__parse(modules, machine, machine__create_module)) 1072 return -1; 1073 1074 if (!machine__set_modules_path(machine)) 1075 return 0; 1076 1077 pr_debug("Problems setting modules path maps, continuing anyway...\n"); 1078 1079 return 0; 1080 } 1081 1082 int machine__create_kernel_maps(struct machine *machine) 1083 { 1084 struct dso *kernel = machine__get_kernel(machine); 1085 const char *name; 1086 u64 addr = machine__get_running_kernel_start(machine, &name); 1087 if (!addr) 1088 return -1; 1089 1090 if (kernel == NULL || 1091 __machine__create_kernel_maps(machine, kernel) < 0) 1092 return -1; 1093 1094 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) { 1095 if (machine__is_host(machine)) 1096 pr_debug("Problems creating module maps, " 1097 "continuing anyway...\n"); 1098 else 1099 pr_debug("Problems creating module maps for guest %d, " 1100 "continuing anyway...\n", machine->pid); 1101 } 1102 1103 /* 1104 * Now that we have all the maps created, just set the ->end of them: 1105 */ 1106 map_groups__fixup_end(&machine->kmaps); 1107 1108 if (maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name, 1109 addr)) { 1110 machine__destroy_kernel_maps(machine); 1111 return -1; 1112 } 1113 1114 return 0; 1115 } 1116 1117 static void machine__set_kernel_mmap_len(struct machine *machine, 1118 union perf_event *event) 1119 { 1120 int i; 1121 1122 for (i = 0; i < MAP__NR_TYPES; i++) { 1123 machine->vmlinux_maps[i]->start = event->mmap.start; 1124 machine->vmlinux_maps[i]->end = (event->mmap.start + 1125 event->mmap.len); 1126 /* 1127 * Be a bit paranoid here, some perf.data file came with 1128 * a zero sized synthesized MMAP event for the kernel. 1129 */ 1130 if (machine->vmlinux_maps[i]->end == 0) 1131 machine->vmlinux_maps[i]->end = ~0ULL; 1132 } 1133 } 1134 1135 static bool machine__uses_kcore(struct machine *machine) 1136 { 1137 struct dso *dso; 1138 1139 list_for_each_entry(dso, &machine->dsos.head, node) { 1140 if (dso__is_kcore(dso)) 1141 return true; 1142 } 1143 1144 return false; 1145 } 1146 1147 static int machine__process_kernel_mmap_event(struct machine *machine, 1148 union perf_event *event) 1149 { 1150 struct map *map; 1151 char kmmap_prefix[PATH_MAX]; 1152 enum dso_kernel_type kernel_type; 1153 bool is_kernel_mmap; 1154 1155 /* If we have maps from kcore then we do not need or want any others */ 1156 if (machine__uses_kcore(machine)) 1157 return 0; 1158 1159 machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix)); 1160 if (machine__is_host(machine)) 1161 kernel_type = DSO_TYPE_KERNEL; 1162 else 1163 kernel_type = DSO_TYPE_GUEST_KERNEL; 1164 1165 is_kernel_mmap = memcmp(event->mmap.filename, 1166 kmmap_prefix, 1167 strlen(kmmap_prefix) - 1) == 0; 1168 if (event->mmap.filename[0] == '/' || 1169 (!is_kernel_mmap && event->mmap.filename[0] == '[')) { 1170 map = machine__findnew_module_map(machine, event->mmap.start, 1171 event->mmap.filename); 1172 if (map == NULL) 1173 goto out_problem; 1174 1175 map->end = map->start + event->mmap.len; 1176 } else if (is_kernel_mmap) { 1177 const char *symbol_name = (event->mmap.filename + 1178 strlen(kmmap_prefix)); 1179 /* 1180 * Should be there already, from the build-id table in 1181 * the header. 1182 */ 1183 struct dso *kernel = NULL; 1184 struct dso *dso; 1185 1186 pthread_rwlock_rdlock(&machine->dsos.lock); 1187 1188 list_for_each_entry(dso, &machine->dsos.head, node) { 1189 1190 /* 1191 * The cpumode passed to is_kernel_module is not the 1192 * cpumode of *this* event. If we insist on passing 1193 * correct cpumode to is_kernel_module, we should 1194 * record the cpumode when we adding this dso to the 1195 * linked list. 1196 * 1197 * However we don't really need passing correct 1198 * cpumode. We know the correct cpumode must be kernel 1199 * mode (if not, we should not link it onto kernel_dsos 1200 * list). 1201 * 1202 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN. 1203 * is_kernel_module() treats it as a kernel cpumode. 1204 */ 1205 1206 if (!dso->kernel || 1207 is_kernel_module(dso->long_name, 1208 PERF_RECORD_MISC_CPUMODE_UNKNOWN)) 1209 continue; 1210 1211 1212 kernel = dso; 1213 break; 1214 } 1215 1216 pthread_rwlock_unlock(&machine->dsos.lock); 1217 1218 if (kernel == NULL) 1219 kernel = machine__findnew_dso(machine, kmmap_prefix); 1220 if (kernel == NULL) 1221 goto out_problem; 1222 1223 kernel->kernel = kernel_type; 1224 if (__machine__create_kernel_maps(machine, kernel) < 0) { 1225 dso__put(kernel); 1226 goto out_problem; 1227 } 1228 1229 if (strstr(kernel->long_name, "vmlinux")) 1230 dso__set_short_name(kernel, "[kernel.vmlinux]", false); 1231 1232 machine__set_kernel_mmap_len(machine, event); 1233 1234 /* 1235 * Avoid using a zero address (kptr_restrict) for the ref reloc 1236 * symbol. Effectively having zero here means that at record 1237 * time /proc/sys/kernel/kptr_restrict was non zero. 1238 */ 1239 if (event->mmap.pgoff != 0) { 1240 maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, 1241 symbol_name, 1242 event->mmap.pgoff); 1243 } 1244 1245 if (machine__is_default_guest(machine)) { 1246 /* 1247 * preload dso of guest kernel and modules 1248 */ 1249 dso__load(kernel, machine__kernel_map(machine), NULL); 1250 } 1251 } 1252 return 0; 1253 out_problem: 1254 return -1; 1255 } 1256 1257 int machine__process_mmap2_event(struct machine *machine, 1258 union perf_event *event, 1259 struct perf_sample *sample __maybe_unused) 1260 { 1261 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 1262 struct thread *thread; 1263 struct map *map; 1264 enum map_type type; 1265 int ret = 0; 1266 1267 if (dump_trace) 1268 perf_event__fprintf_mmap2(event, stdout); 1269 1270 if (cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1271 cpumode == PERF_RECORD_MISC_KERNEL) { 1272 ret = machine__process_kernel_mmap_event(machine, event); 1273 if (ret < 0) 1274 goto out_problem; 1275 return 0; 1276 } 1277 1278 thread = machine__findnew_thread(machine, event->mmap2.pid, 1279 event->mmap2.tid); 1280 if (thread == NULL) 1281 goto out_problem; 1282 1283 if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA) 1284 type = MAP__VARIABLE; 1285 else 1286 type = MAP__FUNCTION; 1287 1288 map = map__new(machine, event->mmap2.start, 1289 event->mmap2.len, event->mmap2.pgoff, 1290 event->mmap2.pid, event->mmap2.maj, 1291 event->mmap2.min, event->mmap2.ino, 1292 event->mmap2.ino_generation, 1293 event->mmap2.prot, 1294 event->mmap2.flags, 1295 event->mmap2.filename, type, thread); 1296 1297 if (map == NULL) 1298 goto out_problem_map; 1299 1300 thread__insert_map(thread, map); 1301 thread__put(thread); 1302 map__put(map); 1303 return 0; 1304 1305 out_problem_map: 1306 thread__put(thread); 1307 out_problem: 1308 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n"); 1309 return 0; 1310 } 1311 1312 int machine__process_mmap_event(struct machine *machine, union perf_event *event, 1313 struct perf_sample *sample __maybe_unused) 1314 { 1315 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 1316 struct thread *thread; 1317 struct map *map; 1318 enum map_type type; 1319 int ret = 0; 1320 1321 if (dump_trace) 1322 perf_event__fprintf_mmap(event, stdout); 1323 1324 if (cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1325 cpumode == PERF_RECORD_MISC_KERNEL) { 1326 ret = machine__process_kernel_mmap_event(machine, event); 1327 if (ret < 0) 1328 goto out_problem; 1329 return 0; 1330 } 1331 1332 thread = machine__findnew_thread(machine, event->mmap.pid, 1333 event->mmap.tid); 1334 if (thread == NULL) 1335 goto out_problem; 1336 1337 if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA) 1338 type = MAP__VARIABLE; 1339 else 1340 type = MAP__FUNCTION; 1341 1342 map = map__new(machine, event->mmap.start, 1343 event->mmap.len, event->mmap.pgoff, 1344 event->mmap.pid, 0, 0, 0, 0, 0, 0, 1345 event->mmap.filename, 1346 type, thread); 1347 1348 if (map == NULL) 1349 goto out_problem_map; 1350 1351 thread__insert_map(thread, map); 1352 thread__put(thread); 1353 map__put(map); 1354 return 0; 1355 1356 out_problem_map: 1357 thread__put(thread); 1358 out_problem: 1359 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n"); 1360 return 0; 1361 } 1362 1363 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock) 1364 { 1365 if (machine->last_match == th) 1366 machine->last_match = NULL; 1367 1368 BUG_ON(atomic_read(&th->refcnt) == 0); 1369 if (lock) 1370 pthread_rwlock_wrlock(&machine->threads_lock); 1371 rb_erase_init(&th->rb_node, &machine->threads); 1372 RB_CLEAR_NODE(&th->rb_node); 1373 /* 1374 * Move it first to the dead_threads list, then drop the reference, 1375 * if this is the last reference, then the thread__delete destructor 1376 * will be called and we will remove it from the dead_threads list. 1377 */ 1378 list_add_tail(&th->node, &machine->dead_threads); 1379 if (lock) 1380 pthread_rwlock_unlock(&machine->threads_lock); 1381 thread__put(th); 1382 } 1383 1384 void machine__remove_thread(struct machine *machine, struct thread *th) 1385 { 1386 return __machine__remove_thread(machine, th, true); 1387 } 1388 1389 int machine__process_fork_event(struct machine *machine, union perf_event *event, 1390 struct perf_sample *sample) 1391 { 1392 struct thread *thread = machine__find_thread(machine, 1393 event->fork.pid, 1394 event->fork.tid); 1395 struct thread *parent = machine__findnew_thread(machine, 1396 event->fork.ppid, 1397 event->fork.ptid); 1398 int err = 0; 1399 1400 if (dump_trace) 1401 perf_event__fprintf_task(event, stdout); 1402 1403 /* 1404 * There may be an existing thread that is not actually the parent, 1405 * either because we are processing events out of order, or because the 1406 * (fork) event that would have removed the thread was lost. Assume the 1407 * latter case and continue on as best we can. 1408 */ 1409 if (parent->pid_ != (pid_t)event->fork.ppid) { 1410 dump_printf("removing erroneous parent thread %d/%d\n", 1411 parent->pid_, parent->tid); 1412 machine__remove_thread(machine, parent); 1413 thread__put(parent); 1414 parent = machine__findnew_thread(machine, event->fork.ppid, 1415 event->fork.ptid); 1416 } 1417 1418 /* if a thread currently exists for the thread id remove it */ 1419 if (thread != NULL) { 1420 machine__remove_thread(machine, thread); 1421 thread__put(thread); 1422 } 1423 1424 thread = machine__findnew_thread(machine, event->fork.pid, 1425 event->fork.tid); 1426 1427 if (thread == NULL || parent == NULL || 1428 thread__fork(thread, parent, sample->time) < 0) { 1429 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n"); 1430 err = -1; 1431 } 1432 thread__put(thread); 1433 thread__put(parent); 1434 1435 return err; 1436 } 1437 1438 int machine__process_exit_event(struct machine *machine, union perf_event *event, 1439 struct perf_sample *sample __maybe_unused) 1440 { 1441 struct thread *thread = machine__find_thread(machine, 1442 event->fork.pid, 1443 event->fork.tid); 1444 1445 if (dump_trace) 1446 perf_event__fprintf_task(event, stdout); 1447 1448 if (thread != NULL) { 1449 thread__exited(thread); 1450 thread__put(thread); 1451 } 1452 1453 return 0; 1454 } 1455 1456 int machine__process_event(struct machine *machine, union perf_event *event, 1457 struct perf_sample *sample) 1458 { 1459 int ret; 1460 1461 switch (event->header.type) { 1462 case PERF_RECORD_COMM: 1463 ret = machine__process_comm_event(machine, event, sample); break; 1464 case PERF_RECORD_MMAP: 1465 ret = machine__process_mmap_event(machine, event, sample); break; 1466 case PERF_RECORD_MMAP2: 1467 ret = machine__process_mmap2_event(machine, event, sample); break; 1468 case PERF_RECORD_FORK: 1469 ret = machine__process_fork_event(machine, event, sample); break; 1470 case PERF_RECORD_EXIT: 1471 ret = machine__process_exit_event(machine, event, sample); break; 1472 case PERF_RECORD_LOST: 1473 ret = machine__process_lost_event(machine, event, sample); break; 1474 case PERF_RECORD_AUX: 1475 ret = machine__process_aux_event(machine, event); break; 1476 case PERF_RECORD_ITRACE_START: 1477 ret = machine__process_itrace_start_event(machine, event); break; 1478 case PERF_RECORD_LOST_SAMPLES: 1479 ret = machine__process_lost_samples_event(machine, event, sample); break; 1480 case PERF_RECORD_SWITCH: 1481 case PERF_RECORD_SWITCH_CPU_WIDE: 1482 ret = machine__process_switch_event(machine, event); break; 1483 default: 1484 ret = -1; 1485 break; 1486 } 1487 1488 return ret; 1489 } 1490 1491 static bool symbol__match_regex(struct symbol *sym, regex_t *regex) 1492 { 1493 if (sym->name && !regexec(regex, sym->name, 0, NULL, 0)) 1494 return 1; 1495 return 0; 1496 } 1497 1498 static void ip__resolve_ams(struct thread *thread, 1499 struct addr_map_symbol *ams, 1500 u64 ip) 1501 { 1502 struct addr_location al; 1503 1504 memset(&al, 0, sizeof(al)); 1505 /* 1506 * We cannot use the header.misc hint to determine whether a 1507 * branch stack address is user, kernel, guest, hypervisor. 1508 * Branches may straddle the kernel/user/hypervisor boundaries. 1509 * Thus, we have to try consecutively until we find a match 1510 * or else, the symbol is unknown 1511 */ 1512 thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al); 1513 1514 ams->addr = ip; 1515 ams->al_addr = al.addr; 1516 ams->sym = al.sym; 1517 ams->map = al.map; 1518 } 1519 1520 static void ip__resolve_data(struct thread *thread, 1521 u8 m, struct addr_map_symbol *ams, u64 addr) 1522 { 1523 struct addr_location al; 1524 1525 memset(&al, 0, sizeof(al)); 1526 1527 thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al); 1528 if (al.map == NULL) { 1529 /* 1530 * some shared data regions have execute bit set which puts 1531 * their mapping in the MAP__FUNCTION type array. 1532 * Check there as a fallback option before dropping the sample. 1533 */ 1534 thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al); 1535 } 1536 1537 ams->addr = addr; 1538 ams->al_addr = al.addr; 1539 ams->sym = al.sym; 1540 ams->map = al.map; 1541 } 1542 1543 struct mem_info *sample__resolve_mem(struct perf_sample *sample, 1544 struct addr_location *al) 1545 { 1546 struct mem_info *mi = zalloc(sizeof(*mi)); 1547 1548 if (!mi) 1549 return NULL; 1550 1551 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip); 1552 ip__resolve_data(al->thread, al->cpumode, &mi->daddr, sample->addr); 1553 mi->data_src.val = sample->data_src; 1554 1555 return mi; 1556 } 1557 1558 static int add_callchain_ip(struct thread *thread, 1559 struct symbol **parent, 1560 struct addr_location *root_al, 1561 u8 *cpumode, 1562 u64 ip) 1563 { 1564 struct addr_location al; 1565 1566 al.filtered = 0; 1567 al.sym = NULL; 1568 if (!cpumode) { 1569 thread__find_cpumode_addr_location(thread, MAP__FUNCTION, 1570 ip, &al); 1571 } else { 1572 if (ip >= PERF_CONTEXT_MAX) { 1573 switch (ip) { 1574 case PERF_CONTEXT_HV: 1575 *cpumode = PERF_RECORD_MISC_HYPERVISOR; 1576 break; 1577 case PERF_CONTEXT_KERNEL: 1578 *cpumode = PERF_RECORD_MISC_KERNEL; 1579 break; 1580 case PERF_CONTEXT_USER: 1581 *cpumode = PERF_RECORD_MISC_USER; 1582 break; 1583 default: 1584 pr_debug("invalid callchain context: " 1585 "%"PRId64"\n", (s64) ip); 1586 /* 1587 * It seems the callchain is corrupted. 1588 * Discard all. 1589 */ 1590 callchain_cursor_reset(&callchain_cursor); 1591 return 1; 1592 } 1593 return 0; 1594 } 1595 thread__find_addr_location(thread, *cpumode, MAP__FUNCTION, 1596 ip, &al); 1597 } 1598 1599 if (al.sym != NULL) { 1600 if (sort__has_parent && !*parent && 1601 symbol__match_regex(al.sym, &parent_regex)) 1602 *parent = al.sym; 1603 else if (have_ignore_callees && root_al && 1604 symbol__match_regex(al.sym, &ignore_callees_regex)) { 1605 /* Treat this symbol as the root, 1606 forgetting its callees. */ 1607 *root_al = al; 1608 callchain_cursor_reset(&callchain_cursor); 1609 } 1610 } 1611 1612 return callchain_cursor_append(&callchain_cursor, al.addr, al.map, al.sym); 1613 } 1614 1615 struct branch_info *sample__resolve_bstack(struct perf_sample *sample, 1616 struct addr_location *al) 1617 { 1618 unsigned int i; 1619 const struct branch_stack *bs = sample->branch_stack; 1620 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info)); 1621 1622 if (!bi) 1623 return NULL; 1624 1625 for (i = 0; i < bs->nr; i++) { 1626 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to); 1627 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from); 1628 bi[i].flags = bs->entries[i].flags; 1629 } 1630 return bi; 1631 } 1632 1633 #define CHASHSZ 127 1634 #define CHASHBITS 7 1635 #define NO_ENTRY 0xff 1636 1637 #define PERF_MAX_BRANCH_DEPTH 127 1638 1639 /* Remove loops. */ 1640 static int remove_loops(struct branch_entry *l, int nr) 1641 { 1642 int i, j, off; 1643 unsigned char chash[CHASHSZ]; 1644 1645 memset(chash, NO_ENTRY, sizeof(chash)); 1646 1647 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255); 1648 1649 for (i = 0; i < nr; i++) { 1650 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ; 1651 1652 /* no collision handling for now */ 1653 if (chash[h] == NO_ENTRY) { 1654 chash[h] = i; 1655 } else if (l[chash[h]].from == l[i].from) { 1656 bool is_loop = true; 1657 /* check if it is a real loop */ 1658 off = 0; 1659 for (j = chash[h]; j < i && i + off < nr; j++, off++) 1660 if (l[j].from != l[i + off].from) { 1661 is_loop = false; 1662 break; 1663 } 1664 if (is_loop) { 1665 memmove(l + i, l + i + off, 1666 (nr - (i + off)) * sizeof(*l)); 1667 nr -= off; 1668 } 1669 } 1670 } 1671 return nr; 1672 } 1673 1674 /* 1675 * Recolve LBR callstack chain sample 1676 * Return: 1677 * 1 on success get LBR callchain information 1678 * 0 no available LBR callchain information, should try fp 1679 * negative error code on other errors. 1680 */ 1681 static int resolve_lbr_callchain_sample(struct thread *thread, 1682 struct perf_sample *sample, 1683 struct symbol **parent, 1684 struct addr_location *root_al, 1685 int max_stack) 1686 { 1687 struct ip_callchain *chain = sample->callchain; 1688 int chain_nr = min(max_stack, (int)chain->nr); 1689 u8 cpumode = PERF_RECORD_MISC_USER; 1690 int i, j, err; 1691 u64 ip; 1692 1693 for (i = 0; i < chain_nr; i++) { 1694 if (chain->ips[i] == PERF_CONTEXT_USER) 1695 break; 1696 } 1697 1698 /* LBR only affects the user callchain */ 1699 if (i != chain_nr) { 1700 struct branch_stack *lbr_stack = sample->branch_stack; 1701 int lbr_nr = lbr_stack->nr; 1702 /* 1703 * LBR callstack can only get user call chain. 1704 * The mix_chain_nr is kernel call chain 1705 * number plus LBR user call chain number. 1706 * i is kernel call chain number, 1707 * 1 is PERF_CONTEXT_USER, 1708 * lbr_nr + 1 is the user call chain number. 1709 * For details, please refer to the comments 1710 * in callchain__printf 1711 */ 1712 int mix_chain_nr = i + 1 + lbr_nr + 1; 1713 1714 if (mix_chain_nr > PERF_MAX_STACK_DEPTH + PERF_MAX_BRANCH_DEPTH) { 1715 pr_warning("corrupted callchain. skipping...\n"); 1716 return 0; 1717 } 1718 1719 for (j = 0; j < mix_chain_nr; j++) { 1720 if (callchain_param.order == ORDER_CALLEE) { 1721 if (j < i + 1) 1722 ip = chain->ips[j]; 1723 else if (j > i + 1) 1724 ip = lbr_stack->entries[j - i - 2].from; 1725 else 1726 ip = lbr_stack->entries[0].to; 1727 } else { 1728 if (j < lbr_nr) 1729 ip = lbr_stack->entries[lbr_nr - j - 1].from; 1730 else if (j > lbr_nr) 1731 ip = chain->ips[i + 1 - (j - lbr_nr)]; 1732 else 1733 ip = lbr_stack->entries[0].to; 1734 } 1735 1736 err = add_callchain_ip(thread, parent, root_al, &cpumode, ip); 1737 if (err) 1738 return (err < 0) ? err : 0; 1739 } 1740 return 1; 1741 } 1742 1743 return 0; 1744 } 1745 1746 static int thread__resolve_callchain_sample(struct thread *thread, 1747 struct perf_evsel *evsel, 1748 struct perf_sample *sample, 1749 struct symbol **parent, 1750 struct addr_location *root_al, 1751 int max_stack) 1752 { 1753 struct branch_stack *branch = sample->branch_stack; 1754 struct ip_callchain *chain = sample->callchain; 1755 int chain_nr = min(max_stack, (int)chain->nr); 1756 u8 cpumode = PERF_RECORD_MISC_USER; 1757 int i, j, err; 1758 int skip_idx = -1; 1759 int first_call = 0; 1760 1761 callchain_cursor_reset(&callchain_cursor); 1762 1763 if (has_branch_callstack(evsel)) { 1764 err = resolve_lbr_callchain_sample(thread, sample, parent, 1765 root_al, max_stack); 1766 if (err) 1767 return (err < 0) ? err : 0; 1768 } 1769 1770 /* 1771 * Based on DWARF debug information, some architectures skip 1772 * a callchain entry saved by the kernel. 1773 */ 1774 if (chain->nr < PERF_MAX_STACK_DEPTH) 1775 skip_idx = arch_skip_callchain_idx(thread, chain); 1776 1777 /* 1778 * Add branches to call stack for easier browsing. This gives 1779 * more context for a sample than just the callers. 1780 * 1781 * This uses individual histograms of paths compared to the 1782 * aggregated histograms the normal LBR mode uses. 1783 * 1784 * Limitations for now: 1785 * - No extra filters 1786 * - No annotations (should annotate somehow) 1787 */ 1788 1789 if (branch && callchain_param.branch_callstack) { 1790 int nr = min(max_stack, (int)branch->nr); 1791 struct branch_entry be[nr]; 1792 1793 if (branch->nr > PERF_MAX_BRANCH_DEPTH) { 1794 pr_warning("corrupted branch chain. skipping...\n"); 1795 goto check_calls; 1796 } 1797 1798 for (i = 0; i < nr; i++) { 1799 if (callchain_param.order == ORDER_CALLEE) { 1800 be[i] = branch->entries[i]; 1801 /* 1802 * Check for overlap into the callchain. 1803 * The return address is one off compared to 1804 * the branch entry. To adjust for this 1805 * assume the calling instruction is not longer 1806 * than 8 bytes. 1807 */ 1808 if (i == skip_idx || 1809 chain->ips[first_call] >= PERF_CONTEXT_MAX) 1810 first_call++; 1811 else if (be[i].from < chain->ips[first_call] && 1812 be[i].from >= chain->ips[first_call] - 8) 1813 first_call++; 1814 } else 1815 be[i] = branch->entries[branch->nr - i - 1]; 1816 } 1817 1818 nr = remove_loops(be, nr); 1819 1820 for (i = 0; i < nr; i++) { 1821 err = add_callchain_ip(thread, parent, root_al, 1822 NULL, be[i].to); 1823 if (!err) 1824 err = add_callchain_ip(thread, parent, root_al, 1825 NULL, be[i].from); 1826 if (err == -EINVAL) 1827 break; 1828 if (err) 1829 return err; 1830 } 1831 chain_nr -= nr; 1832 } 1833 1834 check_calls: 1835 if (chain->nr > PERF_MAX_STACK_DEPTH && (int)chain->nr > max_stack) { 1836 pr_warning("corrupted callchain. skipping...\n"); 1837 return 0; 1838 } 1839 1840 for (i = first_call; i < chain_nr; i++) { 1841 u64 ip; 1842 1843 if (callchain_param.order == ORDER_CALLEE) 1844 j = i; 1845 else 1846 j = chain->nr - i - 1; 1847 1848 #ifdef HAVE_SKIP_CALLCHAIN_IDX 1849 if (j == skip_idx) 1850 continue; 1851 #endif 1852 ip = chain->ips[j]; 1853 1854 err = add_callchain_ip(thread, parent, root_al, &cpumode, ip); 1855 1856 if (err) 1857 return (err < 0) ? err : 0; 1858 } 1859 1860 return 0; 1861 } 1862 1863 static int unwind_entry(struct unwind_entry *entry, void *arg) 1864 { 1865 struct callchain_cursor *cursor = arg; 1866 return callchain_cursor_append(cursor, entry->ip, 1867 entry->map, entry->sym); 1868 } 1869 1870 int thread__resolve_callchain(struct thread *thread, 1871 struct perf_evsel *evsel, 1872 struct perf_sample *sample, 1873 struct symbol **parent, 1874 struct addr_location *root_al, 1875 int max_stack) 1876 { 1877 int ret = thread__resolve_callchain_sample(thread, evsel, 1878 sample, parent, 1879 root_al, max_stack); 1880 if (ret) 1881 return ret; 1882 1883 /* Can we do dwarf post unwind? */ 1884 if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) && 1885 (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER))) 1886 return 0; 1887 1888 /* Bail out if nothing was captured. */ 1889 if ((!sample->user_regs.regs) || 1890 (!sample->user_stack.size)) 1891 return 0; 1892 1893 return unwind__get_entries(unwind_entry, &callchain_cursor, 1894 thread, sample, max_stack); 1895 1896 } 1897 1898 int machine__for_each_thread(struct machine *machine, 1899 int (*fn)(struct thread *thread, void *p), 1900 void *priv) 1901 { 1902 struct rb_node *nd; 1903 struct thread *thread; 1904 int rc = 0; 1905 1906 for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) { 1907 thread = rb_entry(nd, struct thread, rb_node); 1908 rc = fn(thread, priv); 1909 if (rc != 0) 1910 return rc; 1911 } 1912 1913 list_for_each_entry(thread, &machine->dead_threads, node) { 1914 rc = fn(thread, priv); 1915 if (rc != 0) 1916 return rc; 1917 } 1918 return rc; 1919 } 1920 1921 int machines__for_each_thread(struct machines *machines, 1922 int (*fn)(struct thread *thread, void *p), 1923 void *priv) 1924 { 1925 struct rb_node *nd; 1926 int rc = 0; 1927 1928 rc = machine__for_each_thread(&machines->host, fn, priv); 1929 if (rc != 0) 1930 return rc; 1931 1932 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 1933 struct machine *machine = rb_entry(nd, struct machine, rb_node); 1934 1935 rc = machine__for_each_thread(machine, fn, priv); 1936 if (rc != 0) 1937 return rc; 1938 } 1939 return rc; 1940 } 1941 1942 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool, 1943 struct target *target, struct thread_map *threads, 1944 perf_event__handler_t process, bool data_mmap, 1945 unsigned int proc_map_timeout) 1946 { 1947 if (target__has_task(target)) 1948 return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout); 1949 else if (target__has_cpu(target)) 1950 return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout); 1951 /* command specified */ 1952 return 0; 1953 } 1954 1955 pid_t machine__get_current_tid(struct machine *machine, int cpu) 1956 { 1957 if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid) 1958 return -1; 1959 1960 return machine->current_tid[cpu]; 1961 } 1962 1963 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid, 1964 pid_t tid) 1965 { 1966 struct thread *thread; 1967 1968 if (cpu < 0) 1969 return -EINVAL; 1970 1971 if (!machine->current_tid) { 1972 int i; 1973 1974 machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t)); 1975 if (!machine->current_tid) 1976 return -ENOMEM; 1977 for (i = 0; i < MAX_NR_CPUS; i++) 1978 machine->current_tid[i] = -1; 1979 } 1980 1981 if (cpu >= MAX_NR_CPUS) { 1982 pr_err("Requested CPU %d too large. ", cpu); 1983 pr_err("Consider raising MAX_NR_CPUS\n"); 1984 return -EINVAL; 1985 } 1986 1987 machine->current_tid[cpu] = tid; 1988 1989 thread = machine__findnew_thread(machine, pid, tid); 1990 if (!thread) 1991 return -ENOMEM; 1992 1993 thread->cpu = cpu; 1994 thread__put(thread); 1995 1996 return 0; 1997 } 1998 1999 int machine__get_kernel_start(struct machine *machine) 2000 { 2001 struct map *map = machine__kernel_map(machine); 2002 int err = 0; 2003 2004 /* 2005 * The only addresses above 2^63 are kernel addresses of a 64-bit 2006 * kernel. Note that addresses are unsigned so that on a 32-bit system 2007 * all addresses including kernel addresses are less than 2^32. In 2008 * that case (32-bit system), if the kernel mapping is unknown, all 2009 * addresses will be assumed to be in user space - see 2010 * machine__kernel_ip(). 2011 */ 2012 machine->kernel_start = 1ULL << 63; 2013 if (map) { 2014 err = map__load(map, machine->symbol_filter); 2015 if (map->start) 2016 machine->kernel_start = map->start; 2017 } 2018 return err; 2019 } 2020 2021 struct dso *machine__findnew_dso(struct machine *machine, const char *filename) 2022 { 2023 return dsos__findnew(&machine->dsos, filename); 2024 } 2025 2026 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp) 2027 { 2028 struct machine *machine = vmachine; 2029 struct map *map; 2030 struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map, NULL); 2031 2032 if (sym == NULL) 2033 return NULL; 2034 2035 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL; 2036 *addrp = map->unmap_ip(map, sym->start); 2037 return sym->name; 2038 } 2039