1 // SPDX-License-Identifier: GPL-2.0 2 #include <dirent.h> 3 #include <errno.h> 4 #include <inttypes.h> 5 #include <regex.h> 6 #include "callchain.h" 7 #include "debug.h" 8 #include "event.h" 9 #include "evsel.h" 10 #include "hist.h" 11 #include "machine.h" 12 #include "map.h" 13 #include "sort.h" 14 #include "strlist.h" 15 #include "thread.h" 16 #include "vdso.h" 17 #include <stdbool.h> 18 #include <sys/types.h> 19 #include <sys/stat.h> 20 #include <unistd.h> 21 #include "unwind.h" 22 #include "linux/hash.h" 23 #include "asm/bug.h" 24 25 #include "sane_ctype.h" 26 #include <symbol/kallsyms.h> 27 28 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock); 29 30 static void dsos__init(struct dsos *dsos) 31 { 32 INIT_LIST_HEAD(&dsos->head); 33 dsos->root = RB_ROOT; 34 init_rwsem(&dsos->lock); 35 } 36 37 static void machine__threads_init(struct machine *machine) 38 { 39 int i; 40 41 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 42 struct threads *threads = &machine->threads[i]; 43 threads->entries = RB_ROOT; 44 init_rwsem(&threads->lock); 45 threads->nr = 0; 46 INIT_LIST_HEAD(&threads->dead); 47 threads->last_match = NULL; 48 } 49 } 50 51 int machine__init(struct machine *machine, const char *root_dir, pid_t pid) 52 { 53 memset(machine, 0, sizeof(*machine)); 54 map_groups__init(&machine->kmaps, machine); 55 RB_CLEAR_NODE(&machine->rb_node); 56 dsos__init(&machine->dsos); 57 58 machine__threads_init(machine); 59 60 machine->vdso_info = NULL; 61 machine->env = NULL; 62 63 machine->pid = pid; 64 65 machine->id_hdr_size = 0; 66 machine->kptr_restrict_warned = false; 67 machine->comm_exec = false; 68 machine->kernel_start = 0; 69 70 memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps)); 71 72 machine->root_dir = strdup(root_dir); 73 if (machine->root_dir == NULL) 74 return -ENOMEM; 75 76 if (pid != HOST_KERNEL_ID) { 77 struct thread *thread = machine__findnew_thread(machine, -1, 78 pid); 79 char comm[64]; 80 81 if (thread == NULL) 82 return -ENOMEM; 83 84 snprintf(comm, sizeof(comm), "[guest/%d]", pid); 85 thread__set_comm(thread, comm, 0); 86 thread__put(thread); 87 } 88 89 machine->current_tid = NULL; 90 91 return 0; 92 } 93 94 struct machine *machine__new_host(void) 95 { 96 struct machine *machine = malloc(sizeof(*machine)); 97 98 if (machine != NULL) { 99 machine__init(machine, "", HOST_KERNEL_ID); 100 101 if (machine__create_kernel_maps(machine) < 0) 102 goto out_delete; 103 } 104 105 return machine; 106 out_delete: 107 free(machine); 108 return NULL; 109 } 110 111 struct machine *machine__new_kallsyms(void) 112 { 113 struct machine *machine = machine__new_host(); 114 /* 115 * FIXME: 116 * 1) MAP__FUNCTION will go away when we stop loading separate maps for 117 * functions and data objects. 118 * 2) We should switch to machine__load_kallsyms(), i.e. not explicitely 119 * ask for not using the kcore parsing code, once this one is fixed 120 * to create a map per module. 121 */ 122 if (machine && __machine__load_kallsyms(machine, "/proc/kallsyms", MAP__FUNCTION, true) <= 0) { 123 machine__delete(machine); 124 machine = NULL; 125 } 126 127 return machine; 128 } 129 130 static void dsos__purge(struct dsos *dsos) 131 { 132 struct dso *pos, *n; 133 134 down_write(&dsos->lock); 135 136 list_for_each_entry_safe(pos, n, &dsos->head, node) { 137 RB_CLEAR_NODE(&pos->rb_node); 138 pos->root = NULL; 139 list_del_init(&pos->node); 140 dso__put(pos); 141 } 142 143 up_write(&dsos->lock); 144 } 145 146 static void dsos__exit(struct dsos *dsos) 147 { 148 dsos__purge(dsos); 149 exit_rwsem(&dsos->lock); 150 } 151 152 void machine__delete_threads(struct machine *machine) 153 { 154 struct rb_node *nd; 155 int i; 156 157 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 158 struct threads *threads = &machine->threads[i]; 159 down_write(&threads->lock); 160 nd = rb_first(&threads->entries); 161 while (nd) { 162 struct thread *t = rb_entry(nd, struct thread, rb_node); 163 164 nd = rb_next(nd); 165 __machine__remove_thread(machine, t, false); 166 } 167 up_write(&threads->lock); 168 } 169 } 170 171 void machine__exit(struct machine *machine) 172 { 173 int i; 174 175 if (machine == NULL) 176 return; 177 178 machine__destroy_kernel_maps(machine); 179 map_groups__exit(&machine->kmaps); 180 dsos__exit(&machine->dsos); 181 machine__exit_vdso(machine); 182 zfree(&machine->root_dir); 183 zfree(&machine->current_tid); 184 185 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 186 struct threads *threads = &machine->threads[i]; 187 exit_rwsem(&threads->lock); 188 } 189 } 190 191 void machine__delete(struct machine *machine) 192 { 193 if (machine) { 194 machine__exit(machine); 195 free(machine); 196 } 197 } 198 199 void machines__init(struct machines *machines) 200 { 201 machine__init(&machines->host, "", HOST_KERNEL_ID); 202 machines->guests = RB_ROOT; 203 } 204 205 void machines__exit(struct machines *machines) 206 { 207 machine__exit(&machines->host); 208 /* XXX exit guest */ 209 } 210 211 struct machine *machines__add(struct machines *machines, pid_t pid, 212 const char *root_dir) 213 { 214 struct rb_node **p = &machines->guests.rb_node; 215 struct rb_node *parent = NULL; 216 struct machine *pos, *machine = malloc(sizeof(*machine)); 217 218 if (machine == NULL) 219 return NULL; 220 221 if (machine__init(machine, root_dir, pid) != 0) { 222 free(machine); 223 return NULL; 224 } 225 226 while (*p != NULL) { 227 parent = *p; 228 pos = rb_entry(parent, struct machine, rb_node); 229 if (pid < pos->pid) 230 p = &(*p)->rb_left; 231 else 232 p = &(*p)->rb_right; 233 } 234 235 rb_link_node(&machine->rb_node, parent, p); 236 rb_insert_color(&machine->rb_node, &machines->guests); 237 238 return machine; 239 } 240 241 void machines__set_comm_exec(struct machines *machines, bool comm_exec) 242 { 243 struct rb_node *nd; 244 245 machines->host.comm_exec = comm_exec; 246 247 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 248 struct machine *machine = rb_entry(nd, struct machine, rb_node); 249 250 machine->comm_exec = comm_exec; 251 } 252 } 253 254 struct machine *machines__find(struct machines *machines, pid_t pid) 255 { 256 struct rb_node **p = &machines->guests.rb_node; 257 struct rb_node *parent = NULL; 258 struct machine *machine; 259 struct machine *default_machine = NULL; 260 261 if (pid == HOST_KERNEL_ID) 262 return &machines->host; 263 264 while (*p != NULL) { 265 parent = *p; 266 machine = rb_entry(parent, struct machine, rb_node); 267 if (pid < machine->pid) 268 p = &(*p)->rb_left; 269 else if (pid > machine->pid) 270 p = &(*p)->rb_right; 271 else 272 return machine; 273 if (!machine->pid) 274 default_machine = machine; 275 } 276 277 return default_machine; 278 } 279 280 struct machine *machines__findnew(struct machines *machines, pid_t pid) 281 { 282 char path[PATH_MAX]; 283 const char *root_dir = ""; 284 struct machine *machine = machines__find(machines, pid); 285 286 if (machine && (machine->pid == pid)) 287 goto out; 288 289 if ((pid != HOST_KERNEL_ID) && 290 (pid != DEFAULT_GUEST_KERNEL_ID) && 291 (symbol_conf.guestmount)) { 292 sprintf(path, "%s/%d", symbol_conf.guestmount, pid); 293 if (access(path, R_OK)) { 294 static struct strlist *seen; 295 296 if (!seen) 297 seen = strlist__new(NULL, NULL); 298 299 if (!strlist__has_entry(seen, path)) { 300 pr_err("Can't access file %s\n", path); 301 strlist__add(seen, path); 302 } 303 machine = NULL; 304 goto out; 305 } 306 root_dir = path; 307 } 308 309 machine = machines__add(machines, pid, root_dir); 310 out: 311 return machine; 312 } 313 314 void machines__process_guests(struct machines *machines, 315 machine__process_t process, void *data) 316 { 317 struct rb_node *nd; 318 319 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 320 struct machine *pos = rb_entry(nd, struct machine, rb_node); 321 process(pos, data); 322 } 323 } 324 325 char *machine__mmap_name(struct machine *machine, char *bf, size_t size) 326 { 327 if (machine__is_host(machine)) 328 snprintf(bf, size, "[%s]", "kernel.kallsyms"); 329 else if (machine__is_default_guest(machine)) 330 snprintf(bf, size, "[%s]", "guest.kernel.kallsyms"); 331 else { 332 snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms", 333 machine->pid); 334 } 335 336 return bf; 337 } 338 339 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size) 340 { 341 struct rb_node *node; 342 struct machine *machine; 343 344 machines->host.id_hdr_size = id_hdr_size; 345 346 for (node = rb_first(&machines->guests); node; node = rb_next(node)) { 347 machine = rb_entry(node, struct machine, rb_node); 348 machine->id_hdr_size = id_hdr_size; 349 } 350 351 return; 352 } 353 354 static void machine__update_thread_pid(struct machine *machine, 355 struct thread *th, pid_t pid) 356 { 357 struct thread *leader; 358 359 if (pid == th->pid_ || pid == -1 || th->pid_ != -1) 360 return; 361 362 th->pid_ = pid; 363 364 if (th->pid_ == th->tid) 365 return; 366 367 leader = __machine__findnew_thread(machine, th->pid_, th->pid_); 368 if (!leader) 369 goto out_err; 370 371 if (!leader->mg) 372 leader->mg = map_groups__new(machine); 373 374 if (!leader->mg) 375 goto out_err; 376 377 if (th->mg == leader->mg) 378 return; 379 380 if (th->mg) { 381 /* 382 * Maps are created from MMAP events which provide the pid and 383 * tid. Consequently there never should be any maps on a thread 384 * with an unknown pid. Just print an error if there are. 385 */ 386 if (!map_groups__empty(th->mg)) 387 pr_err("Discarding thread maps for %d:%d\n", 388 th->pid_, th->tid); 389 map_groups__put(th->mg); 390 } 391 392 th->mg = map_groups__get(leader->mg); 393 out_put: 394 thread__put(leader); 395 return; 396 out_err: 397 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid); 398 goto out_put; 399 } 400 401 /* 402 * Caller must eventually drop thread->refcnt returned with a successful 403 * lookup/new thread inserted. 404 */ 405 static struct thread *____machine__findnew_thread(struct machine *machine, 406 struct threads *threads, 407 pid_t pid, pid_t tid, 408 bool create) 409 { 410 struct rb_node **p = &threads->entries.rb_node; 411 struct rb_node *parent = NULL; 412 struct thread *th; 413 414 /* 415 * Front-end cache - TID lookups come in blocks, 416 * so most of the time we dont have to look up 417 * the full rbtree: 418 */ 419 th = threads->last_match; 420 if (th != NULL) { 421 if (th->tid == tid) { 422 machine__update_thread_pid(machine, th, pid); 423 return thread__get(th); 424 } 425 426 threads->last_match = NULL; 427 } 428 429 while (*p != NULL) { 430 parent = *p; 431 th = rb_entry(parent, struct thread, rb_node); 432 433 if (th->tid == tid) { 434 threads->last_match = th; 435 machine__update_thread_pid(machine, th, pid); 436 return thread__get(th); 437 } 438 439 if (tid < th->tid) 440 p = &(*p)->rb_left; 441 else 442 p = &(*p)->rb_right; 443 } 444 445 if (!create) 446 return NULL; 447 448 th = thread__new(pid, tid); 449 if (th != NULL) { 450 rb_link_node(&th->rb_node, parent, p); 451 rb_insert_color(&th->rb_node, &threads->entries); 452 453 /* 454 * We have to initialize map_groups separately 455 * after rb tree is updated. 456 * 457 * The reason is that we call machine__findnew_thread 458 * within thread__init_map_groups to find the thread 459 * leader and that would screwed the rb tree. 460 */ 461 if (thread__init_map_groups(th, machine)) { 462 rb_erase_init(&th->rb_node, &threads->entries); 463 RB_CLEAR_NODE(&th->rb_node); 464 thread__put(th); 465 return NULL; 466 } 467 /* 468 * It is now in the rbtree, get a ref 469 */ 470 thread__get(th); 471 threads->last_match = th; 472 ++threads->nr; 473 } 474 475 return th; 476 } 477 478 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid) 479 { 480 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true); 481 } 482 483 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, 484 pid_t tid) 485 { 486 struct threads *threads = machine__threads(machine, tid); 487 struct thread *th; 488 489 down_write(&threads->lock); 490 th = __machine__findnew_thread(machine, pid, tid); 491 up_write(&threads->lock); 492 return th; 493 } 494 495 struct thread *machine__find_thread(struct machine *machine, pid_t pid, 496 pid_t tid) 497 { 498 struct threads *threads = machine__threads(machine, tid); 499 struct thread *th; 500 501 down_read(&threads->lock); 502 th = ____machine__findnew_thread(machine, threads, pid, tid, false); 503 up_read(&threads->lock); 504 return th; 505 } 506 507 struct comm *machine__thread_exec_comm(struct machine *machine, 508 struct thread *thread) 509 { 510 if (machine->comm_exec) 511 return thread__exec_comm(thread); 512 else 513 return thread__comm(thread); 514 } 515 516 int machine__process_comm_event(struct machine *machine, union perf_event *event, 517 struct perf_sample *sample) 518 { 519 struct thread *thread = machine__findnew_thread(machine, 520 event->comm.pid, 521 event->comm.tid); 522 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC; 523 int err = 0; 524 525 if (exec) 526 machine->comm_exec = true; 527 528 if (dump_trace) 529 perf_event__fprintf_comm(event, stdout); 530 531 if (thread == NULL || 532 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) { 533 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n"); 534 err = -1; 535 } 536 537 thread__put(thread); 538 539 return err; 540 } 541 542 int machine__process_namespaces_event(struct machine *machine __maybe_unused, 543 union perf_event *event, 544 struct perf_sample *sample __maybe_unused) 545 { 546 struct thread *thread = machine__findnew_thread(machine, 547 event->namespaces.pid, 548 event->namespaces.tid); 549 int err = 0; 550 551 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES, 552 "\nWARNING: kernel seems to support more namespaces than perf" 553 " tool.\nTry updating the perf tool..\n\n"); 554 555 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES, 556 "\nWARNING: perf tool seems to support more namespaces than" 557 " the kernel.\nTry updating the kernel..\n\n"); 558 559 if (dump_trace) 560 perf_event__fprintf_namespaces(event, stdout); 561 562 if (thread == NULL || 563 thread__set_namespaces(thread, sample->time, &event->namespaces)) { 564 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n"); 565 err = -1; 566 } 567 568 thread__put(thread); 569 570 return err; 571 } 572 573 int machine__process_lost_event(struct machine *machine __maybe_unused, 574 union perf_event *event, struct perf_sample *sample __maybe_unused) 575 { 576 dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n", 577 event->lost.id, event->lost.lost); 578 return 0; 579 } 580 581 int machine__process_lost_samples_event(struct machine *machine __maybe_unused, 582 union perf_event *event, struct perf_sample *sample) 583 { 584 dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n", 585 sample->id, event->lost_samples.lost); 586 return 0; 587 } 588 589 static struct dso *machine__findnew_module_dso(struct machine *machine, 590 struct kmod_path *m, 591 const char *filename) 592 { 593 struct dso *dso; 594 595 down_write(&machine->dsos.lock); 596 597 dso = __dsos__find(&machine->dsos, m->name, true); 598 if (!dso) { 599 dso = __dsos__addnew(&machine->dsos, m->name); 600 if (dso == NULL) 601 goto out_unlock; 602 603 dso__set_module_info(dso, m, machine); 604 dso__set_long_name(dso, strdup(filename), true); 605 } 606 607 dso__get(dso); 608 out_unlock: 609 up_write(&machine->dsos.lock); 610 return dso; 611 } 612 613 int machine__process_aux_event(struct machine *machine __maybe_unused, 614 union perf_event *event) 615 { 616 if (dump_trace) 617 perf_event__fprintf_aux(event, stdout); 618 return 0; 619 } 620 621 int machine__process_itrace_start_event(struct machine *machine __maybe_unused, 622 union perf_event *event) 623 { 624 if (dump_trace) 625 perf_event__fprintf_itrace_start(event, stdout); 626 return 0; 627 } 628 629 int machine__process_switch_event(struct machine *machine __maybe_unused, 630 union perf_event *event) 631 { 632 if (dump_trace) 633 perf_event__fprintf_switch(event, stdout); 634 return 0; 635 } 636 637 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename) 638 { 639 const char *dup_filename; 640 641 if (!filename || !dso || !dso->long_name) 642 return; 643 if (dso->long_name[0] != '[') 644 return; 645 if (!strchr(filename, '/')) 646 return; 647 648 dup_filename = strdup(filename); 649 if (!dup_filename) 650 return; 651 652 dso__set_long_name(dso, dup_filename, true); 653 } 654 655 struct map *machine__findnew_module_map(struct machine *machine, u64 start, 656 const char *filename) 657 { 658 struct map *map = NULL; 659 struct dso *dso = NULL; 660 struct kmod_path m; 661 662 if (kmod_path__parse_name(&m, filename)) 663 return NULL; 664 665 map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION, 666 m.name); 667 if (map) { 668 /* 669 * If the map's dso is an offline module, give dso__load() 670 * a chance to find the file path of that module by fixing 671 * long_name. 672 */ 673 dso__adjust_kmod_long_name(map->dso, filename); 674 goto out; 675 } 676 677 dso = machine__findnew_module_dso(machine, &m, filename); 678 if (dso == NULL) 679 goto out; 680 681 map = map__new2(start, dso, MAP__FUNCTION); 682 if (map == NULL) 683 goto out; 684 685 map_groups__insert(&machine->kmaps, map); 686 687 /* Put the map here because map_groups__insert alread got it */ 688 map__put(map); 689 out: 690 /* put the dso here, corresponding to machine__findnew_module_dso */ 691 dso__put(dso); 692 free(m.name); 693 return map; 694 } 695 696 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp) 697 { 698 struct rb_node *nd; 699 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp); 700 701 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 702 struct machine *pos = rb_entry(nd, struct machine, rb_node); 703 ret += __dsos__fprintf(&pos->dsos.head, fp); 704 } 705 706 return ret; 707 } 708 709 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp, 710 bool (skip)(struct dso *dso, int parm), int parm) 711 { 712 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm); 713 } 714 715 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp, 716 bool (skip)(struct dso *dso, int parm), int parm) 717 { 718 struct rb_node *nd; 719 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm); 720 721 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 722 struct machine *pos = rb_entry(nd, struct machine, rb_node); 723 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm); 724 } 725 return ret; 726 } 727 728 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp) 729 { 730 int i; 731 size_t printed = 0; 732 struct dso *kdso = machine__kernel_map(machine)->dso; 733 734 if (kdso->has_build_id) { 735 char filename[PATH_MAX]; 736 if (dso__build_id_filename(kdso, filename, sizeof(filename), 737 false)) 738 printed += fprintf(fp, "[0] %s\n", filename); 739 } 740 741 for (i = 0; i < vmlinux_path__nr_entries; ++i) 742 printed += fprintf(fp, "[%d] %s\n", 743 i + kdso->has_build_id, vmlinux_path[i]); 744 745 return printed; 746 } 747 748 size_t machine__fprintf(struct machine *machine, FILE *fp) 749 { 750 struct rb_node *nd; 751 size_t ret; 752 int i; 753 754 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 755 struct threads *threads = &machine->threads[i]; 756 757 down_read(&threads->lock); 758 759 ret = fprintf(fp, "Threads: %u\n", threads->nr); 760 761 for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) { 762 struct thread *pos = rb_entry(nd, struct thread, rb_node); 763 764 ret += thread__fprintf(pos, fp); 765 } 766 767 up_read(&threads->lock); 768 } 769 return ret; 770 } 771 772 static struct dso *machine__get_kernel(struct machine *machine) 773 { 774 const char *vmlinux_name = NULL; 775 struct dso *kernel; 776 777 if (machine__is_host(machine)) { 778 vmlinux_name = symbol_conf.vmlinux_name; 779 if (!vmlinux_name) 780 vmlinux_name = DSO__NAME_KALLSYMS; 781 782 kernel = machine__findnew_kernel(machine, vmlinux_name, 783 "[kernel]", DSO_TYPE_KERNEL); 784 } else { 785 char bf[PATH_MAX]; 786 787 if (machine__is_default_guest(machine)) 788 vmlinux_name = symbol_conf.default_guest_vmlinux_name; 789 if (!vmlinux_name) 790 vmlinux_name = machine__mmap_name(machine, bf, 791 sizeof(bf)); 792 793 kernel = machine__findnew_kernel(machine, vmlinux_name, 794 "[guest.kernel]", 795 DSO_TYPE_GUEST_KERNEL); 796 } 797 798 if (kernel != NULL && (!kernel->has_build_id)) 799 dso__read_running_kernel_build_id(kernel, machine); 800 801 return kernel; 802 } 803 804 struct process_args { 805 u64 start; 806 }; 807 808 static void machine__get_kallsyms_filename(struct machine *machine, char *buf, 809 size_t bufsz) 810 { 811 if (machine__is_default_guest(machine)) 812 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms); 813 else 814 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir); 815 } 816 817 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL}; 818 819 /* Figure out the start address of kernel map from /proc/kallsyms. 820 * Returns the name of the start symbol in *symbol_name. Pass in NULL as 821 * symbol_name if it's not that important. 822 */ 823 static int machine__get_running_kernel_start(struct machine *machine, 824 const char **symbol_name, u64 *start) 825 { 826 char filename[PATH_MAX]; 827 int i, err = -1; 828 const char *name; 829 u64 addr = 0; 830 831 machine__get_kallsyms_filename(machine, filename, PATH_MAX); 832 833 if (symbol__restricted_filename(filename, "/proc/kallsyms")) 834 return 0; 835 836 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) { 837 err = kallsyms__get_function_start(filename, name, &addr); 838 if (!err) 839 break; 840 } 841 842 if (err) 843 return -1; 844 845 if (symbol_name) 846 *symbol_name = name; 847 848 *start = addr; 849 return 0; 850 } 851 852 int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel) 853 { 854 int type; 855 u64 start = 0; 856 857 if (machine__get_running_kernel_start(machine, NULL, &start)) 858 return -1; 859 860 /* In case of renewal the kernel map, destroy previous one */ 861 machine__destroy_kernel_maps(machine); 862 863 for (type = 0; type < MAP__NR_TYPES; ++type) { 864 struct kmap *kmap; 865 struct map *map; 866 867 machine->vmlinux_maps[type] = map__new2(start, kernel, type); 868 if (machine->vmlinux_maps[type] == NULL) 869 return -1; 870 871 machine->vmlinux_maps[type]->map_ip = 872 machine->vmlinux_maps[type]->unmap_ip = 873 identity__map_ip; 874 map = __machine__kernel_map(machine, type); 875 kmap = map__kmap(map); 876 if (!kmap) 877 return -1; 878 879 kmap->kmaps = &machine->kmaps; 880 map_groups__insert(&machine->kmaps, map); 881 } 882 883 return 0; 884 } 885 886 void machine__destroy_kernel_maps(struct machine *machine) 887 { 888 int type; 889 890 for (type = 0; type < MAP__NR_TYPES; ++type) { 891 struct kmap *kmap; 892 struct map *map = __machine__kernel_map(machine, type); 893 894 if (map == NULL) 895 continue; 896 897 kmap = map__kmap(map); 898 map_groups__remove(&machine->kmaps, map); 899 if (kmap && kmap->ref_reloc_sym) { 900 /* 901 * ref_reloc_sym is shared among all maps, so free just 902 * on one of them. 903 */ 904 if (type == MAP__FUNCTION) { 905 zfree((char **)&kmap->ref_reloc_sym->name); 906 zfree(&kmap->ref_reloc_sym); 907 } else 908 kmap->ref_reloc_sym = NULL; 909 } 910 911 map__put(machine->vmlinux_maps[type]); 912 machine->vmlinux_maps[type] = NULL; 913 } 914 } 915 916 int machines__create_guest_kernel_maps(struct machines *machines) 917 { 918 int ret = 0; 919 struct dirent **namelist = NULL; 920 int i, items = 0; 921 char path[PATH_MAX]; 922 pid_t pid; 923 char *endp; 924 925 if (symbol_conf.default_guest_vmlinux_name || 926 symbol_conf.default_guest_modules || 927 symbol_conf.default_guest_kallsyms) { 928 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID); 929 } 930 931 if (symbol_conf.guestmount) { 932 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL); 933 if (items <= 0) 934 return -ENOENT; 935 for (i = 0; i < items; i++) { 936 if (!isdigit(namelist[i]->d_name[0])) { 937 /* Filter out . and .. */ 938 continue; 939 } 940 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10); 941 if ((*endp != '\0') || 942 (endp == namelist[i]->d_name) || 943 (errno == ERANGE)) { 944 pr_debug("invalid directory (%s). Skipping.\n", 945 namelist[i]->d_name); 946 continue; 947 } 948 sprintf(path, "%s/%s/proc/kallsyms", 949 symbol_conf.guestmount, 950 namelist[i]->d_name); 951 ret = access(path, R_OK); 952 if (ret) { 953 pr_debug("Can't access file %s\n", path); 954 goto failure; 955 } 956 machines__create_kernel_maps(machines, pid); 957 } 958 failure: 959 free(namelist); 960 } 961 962 return ret; 963 } 964 965 void machines__destroy_kernel_maps(struct machines *machines) 966 { 967 struct rb_node *next = rb_first(&machines->guests); 968 969 machine__destroy_kernel_maps(&machines->host); 970 971 while (next) { 972 struct machine *pos = rb_entry(next, struct machine, rb_node); 973 974 next = rb_next(&pos->rb_node); 975 rb_erase(&pos->rb_node, &machines->guests); 976 machine__delete(pos); 977 } 978 } 979 980 int machines__create_kernel_maps(struct machines *machines, pid_t pid) 981 { 982 struct machine *machine = machines__findnew(machines, pid); 983 984 if (machine == NULL) 985 return -1; 986 987 return machine__create_kernel_maps(machine); 988 } 989 990 int __machine__load_kallsyms(struct machine *machine, const char *filename, 991 enum map_type type, bool no_kcore) 992 { 993 struct map *map = machine__kernel_map(machine); 994 int ret = __dso__load_kallsyms(map->dso, filename, map, no_kcore); 995 996 if (ret > 0) { 997 dso__set_loaded(map->dso, type); 998 /* 999 * Since /proc/kallsyms will have multiple sessions for the 1000 * kernel, with modules between them, fixup the end of all 1001 * sections. 1002 */ 1003 __map_groups__fixup_end(&machine->kmaps, type); 1004 } 1005 1006 return ret; 1007 } 1008 1009 int machine__load_kallsyms(struct machine *machine, const char *filename, 1010 enum map_type type) 1011 { 1012 return __machine__load_kallsyms(machine, filename, type, false); 1013 } 1014 1015 int machine__load_vmlinux_path(struct machine *machine, enum map_type type) 1016 { 1017 struct map *map = machine__kernel_map(machine); 1018 int ret = dso__load_vmlinux_path(map->dso, map); 1019 1020 if (ret > 0) 1021 dso__set_loaded(map->dso, type); 1022 1023 return ret; 1024 } 1025 1026 static void map_groups__fixup_end(struct map_groups *mg) 1027 { 1028 int i; 1029 for (i = 0; i < MAP__NR_TYPES; ++i) 1030 __map_groups__fixup_end(mg, i); 1031 } 1032 1033 static char *get_kernel_version(const char *root_dir) 1034 { 1035 char version[PATH_MAX]; 1036 FILE *file; 1037 char *name, *tmp; 1038 const char *prefix = "Linux version "; 1039 1040 sprintf(version, "%s/proc/version", root_dir); 1041 file = fopen(version, "r"); 1042 if (!file) 1043 return NULL; 1044 1045 version[0] = '\0'; 1046 tmp = fgets(version, sizeof(version), file); 1047 fclose(file); 1048 1049 name = strstr(version, prefix); 1050 if (!name) 1051 return NULL; 1052 name += strlen(prefix); 1053 tmp = strchr(name, ' '); 1054 if (tmp) 1055 *tmp = '\0'; 1056 1057 return strdup(name); 1058 } 1059 1060 static bool is_kmod_dso(struct dso *dso) 1061 { 1062 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE || 1063 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE; 1064 } 1065 1066 static int map_groups__set_module_path(struct map_groups *mg, const char *path, 1067 struct kmod_path *m) 1068 { 1069 struct map *map; 1070 char *long_name; 1071 1072 map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name); 1073 if (map == NULL) 1074 return 0; 1075 1076 long_name = strdup(path); 1077 if (long_name == NULL) 1078 return -ENOMEM; 1079 1080 dso__set_long_name(map->dso, long_name, true); 1081 dso__kernel_module_get_build_id(map->dso, ""); 1082 1083 /* 1084 * Full name could reveal us kmod compression, so 1085 * we need to update the symtab_type if needed. 1086 */ 1087 if (m->comp && is_kmod_dso(map->dso)) 1088 map->dso->symtab_type++; 1089 1090 return 0; 1091 } 1092 1093 static int map_groups__set_modules_path_dir(struct map_groups *mg, 1094 const char *dir_name, int depth) 1095 { 1096 struct dirent *dent; 1097 DIR *dir = opendir(dir_name); 1098 int ret = 0; 1099 1100 if (!dir) { 1101 pr_debug("%s: cannot open %s dir\n", __func__, dir_name); 1102 return -1; 1103 } 1104 1105 while ((dent = readdir(dir)) != NULL) { 1106 char path[PATH_MAX]; 1107 struct stat st; 1108 1109 /*sshfs might return bad dent->d_type, so we have to stat*/ 1110 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name); 1111 if (stat(path, &st)) 1112 continue; 1113 1114 if (S_ISDIR(st.st_mode)) { 1115 if (!strcmp(dent->d_name, ".") || 1116 !strcmp(dent->d_name, "..")) 1117 continue; 1118 1119 /* Do not follow top-level source and build symlinks */ 1120 if (depth == 0) { 1121 if (!strcmp(dent->d_name, "source") || 1122 !strcmp(dent->d_name, "build")) 1123 continue; 1124 } 1125 1126 ret = map_groups__set_modules_path_dir(mg, path, 1127 depth + 1); 1128 if (ret < 0) 1129 goto out; 1130 } else { 1131 struct kmod_path m; 1132 1133 ret = kmod_path__parse_name(&m, dent->d_name); 1134 if (ret) 1135 goto out; 1136 1137 if (m.kmod) 1138 ret = map_groups__set_module_path(mg, path, &m); 1139 1140 free(m.name); 1141 1142 if (ret) 1143 goto out; 1144 } 1145 } 1146 1147 out: 1148 closedir(dir); 1149 return ret; 1150 } 1151 1152 static int machine__set_modules_path(struct machine *machine) 1153 { 1154 char *version; 1155 char modules_path[PATH_MAX]; 1156 1157 version = get_kernel_version(machine->root_dir); 1158 if (!version) 1159 return -1; 1160 1161 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s", 1162 machine->root_dir, version); 1163 free(version); 1164 1165 return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0); 1166 } 1167 int __weak arch__fix_module_text_start(u64 *start __maybe_unused, 1168 const char *name __maybe_unused) 1169 { 1170 return 0; 1171 } 1172 1173 static int machine__create_module(void *arg, const char *name, u64 start, 1174 u64 size) 1175 { 1176 struct machine *machine = arg; 1177 struct map *map; 1178 1179 if (arch__fix_module_text_start(&start, name) < 0) 1180 return -1; 1181 1182 map = machine__findnew_module_map(machine, start, name); 1183 if (map == NULL) 1184 return -1; 1185 map->end = start + size; 1186 1187 dso__kernel_module_get_build_id(map->dso, machine->root_dir); 1188 1189 return 0; 1190 } 1191 1192 static int machine__create_modules(struct machine *machine) 1193 { 1194 const char *modules; 1195 char path[PATH_MAX]; 1196 1197 if (machine__is_default_guest(machine)) { 1198 modules = symbol_conf.default_guest_modules; 1199 } else { 1200 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir); 1201 modules = path; 1202 } 1203 1204 if (symbol__restricted_filename(modules, "/proc/modules")) 1205 return -1; 1206 1207 if (modules__parse(modules, machine, machine__create_module)) 1208 return -1; 1209 1210 if (!machine__set_modules_path(machine)) 1211 return 0; 1212 1213 pr_debug("Problems setting modules path maps, continuing anyway...\n"); 1214 1215 return 0; 1216 } 1217 1218 int machine__create_kernel_maps(struct machine *machine) 1219 { 1220 struct dso *kernel = machine__get_kernel(machine); 1221 const char *name = NULL; 1222 u64 addr = 0; 1223 int ret; 1224 1225 if (kernel == NULL) 1226 return -1; 1227 1228 ret = __machine__create_kernel_maps(machine, kernel); 1229 dso__put(kernel); 1230 if (ret < 0) 1231 return -1; 1232 1233 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) { 1234 if (machine__is_host(machine)) 1235 pr_debug("Problems creating module maps, " 1236 "continuing anyway...\n"); 1237 else 1238 pr_debug("Problems creating module maps for guest %d, " 1239 "continuing anyway...\n", machine->pid); 1240 } 1241 1242 /* 1243 * Now that we have all the maps created, just set the ->end of them: 1244 */ 1245 map_groups__fixup_end(&machine->kmaps); 1246 1247 if (!machine__get_running_kernel_start(machine, &name, &addr)) { 1248 if (name && 1249 maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name, addr)) { 1250 machine__destroy_kernel_maps(machine); 1251 return -1; 1252 } 1253 } 1254 1255 return 0; 1256 } 1257 1258 static void machine__set_kernel_mmap_len(struct machine *machine, 1259 union perf_event *event) 1260 { 1261 int i; 1262 1263 for (i = 0; i < MAP__NR_TYPES; i++) { 1264 machine->vmlinux_maps[i]->start = event->mmap.start; 1265 machine->vmlinux_maps[i]->end = (event->mmap.start + 1266 event->mmap.len); 1267 /* 1268 * Be a bit paranoid here, some perf.data file came with 1269 * a zero sized synthesized MMAP event for the kernel. 1270 */ 1271 if (machine->vmlinux_maps[i]->end == 0) 1272 machine->vmlinux_maps[i]->end = ~0ULL; 1273 } 1274 } 1275 1276 static bool machine__uses_kcore(struct machine *machine) 1277 { 1278 struct dso *dso; 1279 1280 list_for_each_entry(dso, &machine->dsos.head, node) { 1281 if (dso__is_kcore(dso)) 1282 return true; 1283 } 1284 1285 return false; 1286 } 1287 1288 static int machine__process_kernel_mmap_event(struct machine *machine, 1289 union perf_event *event) 1290 { 1291 struct map *map; 1292 char kmmap_prefix[PATH_MAX]; 1293 enum dso_kernel_type kernel_type; 1294 bool is_kernel_mmap; 1295 1296 /* If we have maps from kcore then we do not need or want any others */ 1297 if (machine__uses_kcore(machine)) 1298 return 0; 1299 1300 machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix)); 1301 if (machine__is_host(machine)) 1302 kernel_type = DSO_TYPE_KERNEL; 1303 else 1304 kernel_type = DSO_TYPE_GUEST_KERNEL; 1305 1306 is_kernel_mmap = memcmp(event->mmap.filename, 1307 kmmap_prefix, 1308 strlen(kmmap_prefix) - 1) == 0; 1309 if (event->mmap.filename[0] == '/' || 1310 (!is_kernel_mmap && event->mmap.filename[0] == '[')) { 1311 map = machine__findnew_module_map(machine, event->mmap.start, 1312 event->mmap.filename); 1313 if (map == NULL) 1314 goto out_problem; 1315 1316 map->end = map->start + event->mmap.len; 1317 } else if (is_kernel_mmap) { 1318 const char *symbol_name = (event->mmap.filename + 1319 strlen(kmmap_prefix)); 1320 /* 1321 * Should be there already, from the build-id table in 1322 * the header. 1323 */ 1324 struct dso *kernel = NULL; 1325 struct dso *dso; 1326 1327 down_read(&machine->dsos.lock); 1328 1329 list_for_each_entry(dso, &machine->dsos.head, node) { 1330 1331 /* 1332 * The cpumode passed to is_kernel_module is not the 1333 * cpumode of *this* event. If we insist on passing 1334 * correct cpumode to is_kernel_module, we should 1335 * record the cpumode when we adding this dso to the 1336 * linked list. 1337 * 1338 * However we don't really need passing correct 1339 * cpumode. We know the correct cpumode must be kernel 1340 * mode (if not, we should not link it onto kernel_dsos 1341 * list). 1342 * 1343 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN. 1344 * is_kernel_module() treats it as a kernel cpumode. 1345 */ 1346 1347 if (!dso->kernel || 1348 is_kernel_module(dso->long_name, 1349 PERF_RECORD_MISC_CPUMODE_UNKNOWN)) 1350 continue; 1351 1352 1353 kernel = dso; 1354 break; 1355 } 1356 1357 up_read(&machine->dsos.lock); 1358 1359 if (kernel == NULL) 1360 kernel = machine__findnew_dso(machine, kmmap_prefix); 1361 if (kernel == NULL) 1362 goto out_problem; 1363 1364 kernel->kernel = kernel_type; 1365 if (__machine__create_kernel_maps(machine, kernel) < 0) { 1366 dso__put(kernel); 1367 goto out_problem; 1368 } 1369 1370 if (strstr(kernel->long_name, "vmlinux")) 1371 dso__set_short_name(kernel, "[kernel.vmlinux]", false); 1372 1373 machine__set_kernel_mmap_len(machine, event); 1374 1375 /* 1376 * Avoid using a zero address (kptr_restrict) for the ref reloc 1377 * symbol. Effectively having zero here means that at record 1378 * time /proc/sys/kernel/kptr_restrict was non zero. 1379 */ 1380 if (event->mmap.pgoff != 0) { 1381 maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, 1382 symbol_name, 1383 event->mmap.pgoff); 1384 } 1385 1386 if (machine__is_default_guest(machine)) { 1387 /* 1388 * preload dso of guest kernel and modules 1389 */ 1390 dso__load(kernel, machine__kernel_map(machine)); 1391 } 1392 } 1393 return 0; 1394 out_problem: 1395 return -1; 1396 } 1397 1398 int machine__process_mmap2_event(struct machine *machine, 1399 union perf_event *event, 1400 struct perf_sample *sample) 1401 { 1402 struct thread *thread; 1403 struct map *map; 1404 enum map_type type; 1405 int ret = 0; 1406 1407 if (dump_trace) 1408 perf_event__fprintf_mmap2(event, stdout); 1409 1410 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1411 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1412 ret = machine__process_kernel_mmap_event(machine, event); 1413 if (ret < 0) 1414 goto out_problem; 1415 return 0; 1416 } 1417 1418 thread = machine__findnew_thread(machine, event->mmap2.pid, 1419 event->mmap2.tid); 1420 if (thread == NULL) 1421 goto out_problem; 1422 1423 if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA) 1424 type = MAP__VARIABLE; 1425 else 1426 type = MAP__FUNCTION; 1427 1428 map = map__new(machine, event->mmap2.start, 1429 event->mmap2.len, event->mmap2.pgoff, 1430 event->mmap2.maj, 1431 event->mmap2.min, event->mmap2.ino, 1432 event->mmap2.ino_generation, 1433 event->mmap2.prot, 1434 event->mmap2.flags, 1435 event->mmap2.filename, type, thread); 1436 1437 if (map == NULL) 1438 goto out_problem_map; 1439 1440 ret = thread__insert_map(thread, map); 1441 if (ret) 1442 goto out_problem_insert; 1443 1444 thread__put(thread); 1445 map__put(map); 1446 return 0; 1447 1448 out_problem_insert: 1449 map__put(map); 1450 out_problem_map: 1451 thread__put(thread); 1452 out_problem: 1453 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n"); 1454 return 0; 1455 } 1456 1457 int machine__process_mmap_event(struct machine *machine, union perf_event *event, 1458 struct perf_sample *sample) 1459 { 1460 struct thread *thread; 1461 struct map *map; 1462 enum map_type type; 1463 int ret = 0; 1464 1465 if (dump_trace) 1466 perf_event__fprintf_mmap(event, stdout); 1467 1468 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1469 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1470 ret = machine__process_kernel_mmap_event(machine, event); 1471 if (ret < 0) 1472 goto out_problem; 1473 return 0; 1474 } 1475 1476 thread = machine__findnew_thread(machine, event->mmap.pid, 1477 event->mmap.tid); 1478 if (thread == NULL) 1479 goto out_problem; 1480 1481 if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA) 1482 type = MAP__VARIABLE; 1483 else 1484 type = MAP__FUNCTION; 1485 1486 map = map__new(machine, event->mmap.start, 1487 event->mmap.len, event->mmap.pgoff, 1488 0, 0, 0, 0, 0, 0, 1489 event->mmap.filename, 1490 type, thread); 1491 1492 if (map == NULL) 1493 goto out_problem_map; 1494 1495 ret = thread__insert_map(thread, map); 1496 if (ret) 1497 goto out_problem_insert; 1498 1499 thread__put(thread); 1500 map__put(map); 1501 return 0; 1502 1503 out_problem_insert: 1504 map__put(map); 1505 out_problem_map: 1506 thread__put(thread); 1507 out_problem: 1508 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n"); 1509 return 0; 1510 } 1511 1512 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock) 1513 { 1514 struct threads *threads = machine__threads(machine, th->tid); 1515 1516 if (threads->last_match == th) 1517 threads->last_match = NULL; 1518 1519 BUG_ON(refcount_read(&th->refcnt) == 0); 1520 if (lock) 1521 down_write(&threads->lock); 1522 rb_erase_init(&th->rb_node, &threads->entries); 1523 RB_CLEAR_NODE(&th->rb_node); 1524 --threads->nr; 1525 /* 1526 * Move it first to the dead_threads list, then drop the reference, 1527 * if this is the last reference, then the thread__delete destructor 1528 * will be called and we will remove it from the dead_threads list. 1529 */ 1530 list_add_tail(&th->node, &threads->dead); 1531 if (lock) 1532 up_write(&threads->lock); 1533 thread__put(th); 1534 } 1535 1536 void machine__remove_thread(struct machine *machine, struct thread *th) 1537 { 1538 return __machine__remove_thread(machine, th, true); 1539 } 1540 1541 int machine__process_fork_event(struct machine *machine, union perf_event *event, 1542 struct perf_sample *sample) 1543 { 1544 struct thread *thread = machine__find_thread(machine, 1545 event->fork.pid, 1546 event->fork.tid); 1547 struct thread *parent = machine__findnew_thread(machine, 1548 event->fork.ppid, 1549 event->fork.ptid); 1550 int err = 0; 1551 1552 if (dump_trace) 1553 perf_event__fprintf_task(event, stdout); 1554 1555 /* 1556 * There may be an existing thread that is not actually the parent, 1557 * either because we are processing events out of order, or because the 1558 * (fork) event that would have removed the thread was lost. Assume the 1559 * latter case and continue on as best we can. 1560 */ 1561 if (parent->pid_ != (pid_t)event->fork.ppid) { 1562 dump_printf("removing erroneous parent thread %d/%d\n", 1563 parent->pid_, parent->tid); 1564 machine__remove_thread(machine, parent); 1565 thread__put(parent); 1566 parent = machine__findnew_thread(machine, event->fork.ppid, 1567 event->fork.ptid); 1568 } 1569 1570 /* if a thread currently exists for the thread id remove it */ 1571 if (thread != NULL) { 1572 machine__remove_thread(machine, thread); 1573 thread__put(thread); 1574 } 1575 1576 thread = machine__findnew_thread(machine, event->fork.pid, 1577 event->fork.tid); 1578 1579 if (thread == NULL || parent == NULL || 1580 thread__fork(thread, parent, sample->time) < 0) { 1581 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n"); 1582 err = -1; 1583 } 1584 thread__put(thread); 1585 thread__put(parent); 1586 1587 return err; 1588 } 1589 1590 int machine__process_exit_event(struct machine *machine, union perf_event *event, 1591 struct perf_sample *sample __maybe_unused) 1592 { 1593 struct thread *thread = machine__find_thread(machine, 1594 event->fork.pid, 1595 event->fork.tid); 1596 1597 if (dump_trace) 1598 perf_event__fprintf_task(event, stdout); 1599 1600 if (thread != NULL) { 1601 thread__exited(thread); 1602 thread__put(thread); 1603 } 1604 1605 return 0; 1606 } 1607 1608 int machine__process_event(struct machine *machine, union perf_event *event, 1609 struct perf_sample *sample) 1610 { 1611 int ret; 1612 1613 switch (event->header.type) { 1614 case PERF_RECORD_COMM: 1615 ret = machine__process_comm_event(machine, event, sample); break; 1616 case PERF_RECORD_MMAP: 1617 ret = machine__process_mmap_event(machine, event, sample); break; 1618 case PERF_RECORD_NAMESPACES: 1619 ret = machine__process_namespaces_event(machine, event, sample); break; 1620 case PERF_RECORD_MMAP2: 1621 ret = machine__process_mmap2_event(machine, event, sample); break; 1622 case PERF_RECORD_FORK: 1623 ret = machine__process_fork_event(machine, event, sample); break; 1624 case PERF_RECORD_EXIT: 1625 ret = machine__process_exit_event(machine, event, sample); break; 1626 case PERF_RECORD_LOST: 1627 ret = machine__process_lost_event(machine, event, sample); break; 1628 case PERF_RECORD_AUX: 1629 ret = machine__process_aux_event(machine, event); break; 1630 case PERF_RECORD_ITRACE_START: 1631 ret = machine__process_itrace_start_event(machine, event); break; 1632 case PERF_RECORD_LOST_SAMPLES: 1633 ret = machine__process_lost_samples_event(machine, event, sample); break; 1634 case PERF_RECORD_SWITCH: 1635 case PERF_RECORD_SWITCH_CPU_WIDE: 1636 ret = machine__process_switch_event(machine, event); break; 1637 default: 1638 ret = -1; 1639 break; 1640 } 1641 1642 return ret; 1643 } 1644 1645 static bool symbol__match_regex(struct symbol *sym, regex_t *regex) 1646 { 1647 if (!regexec(regex, sym->name, 0, NULL, 0)) 1648 return 1; 1649 return 0; 1650 } 1651 1652 static void ip__resolve_ams(struct thread *thread, 1653 struct addr_map_symbol *ams, 1654 u64 ip) 1655 { 1656 struct addr_location al; 1657 1658 memset(&al, 0, sizeof(al)); 1659 /* 1660 * We cannot use the header.misc hint to determine whether a 1661 * branch stack address is user, kernel, guest, hypervisor. 1662 * Branches may straddle the kernel/user/hypervisor boundaries. 1663 * Thus, we have to try consecutively until we find a match 1664 * or else, the symbol is unknown 1665 */ 1666 thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al); 1667 1668 ams->addr = ip; 1669 ams->al_addr = al.addr; 1670 ams->sym = al.sym; 1671 ams->map = al.map; 1672 ams->phys_addr = 0; 1673 } 1674 1675 static void ip__resolve_data(struct thread *thread, 1676 u8 m, struct addr_map_symbol *ams, 1677 u64 addr, u64 phys_addr) 1678 { 1679 struct addr_location al; 1680 1681 memset(&al, 0, sizeof(al)); 1682 1683 thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al); 1684 if (al.map == NULL) { 1685 /* 1686 * some shared data regions have execute bit set which puts 1687 * their mapping in the MAP__FUNCTION type array. 1688 * Check there as a fallback option before dropping the sample. 1689 */ 1690 thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al); 1691 } 1692 1693 ams->addr = addr; 1694 ams->al_addr = al.addr; 1695 ams->sym = al.sym; 1696 ams->map = al.map; 1697 ams->phys_addr = phys_addr; 1698 } 1699 1700 struct mem_info *sample__resolve_mem(struct perf_sample *sample, 1701 struct addr_location *al) 1702 { 1703 struct mem_info *mi = zalloc(sizeof(*mi)); 1704 1705 if (!mi) 1706 return NULL; 1707 1708 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip); 1709 ip__resolve_data(al->thread, al->cpumode, &mi->daddr, 1710 sample->addr, sample->phys_addr); 1711 mi->data_src.val = sample->data_src; 1712 1713 return mi; 1714 } 1715 1716 static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip) 1717 { 1718 char *srcline = NULL; 1719 1720 if (!map || callchain_param.key == CCKEY_FUNCTION) 1721 return srcline; 1722 1723 srcline = srcline__tree_find(&map->dso->srclines, ip); 1724 if (!srcline) { 1725 bool show_sym = false; 1726 bool show_addr = callchain_param.key == CCKEY_ADDRESS; 1727 1728 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip), 1729 sym, show_sym, show_addr, ip); 1730 srcline__tree_insert(&map->dso->srclines, ip, srcline); 1731 } 1732 1733 return srcline; 1734 } 1735 1736 struct iterations { 1737 int nr_loop_iter; 1738 u64 cycles; 1739 }; 1740 1741 static int add_callchain_ip(struct thread *thread, 1742 struct callchain_cursor *cursor, 1743 struct symbol **parent, 1744 struct addr_location *root_al, 1745 u8 *cpumode, 1746 u64 ip, 1747 bool branch, 1748 struct branch_flags *flags, 1749 struct iterations *iter, 1750 u64 branch_from) 1751 { 1752 struct addr_location al; 1753 int nr_loop_iter = 0; 1754 u64 iter_cycles = 0; 1755 const char *srcline = NULL; 1756 1757 al.filtered = 0; 1758 al.sym = NULL; 1759 if (!cpumode) { 1760 thread__find_cpumode_addr_location(thread, MAP__FUNCTION, 1761 ip, &al); 1762 } else { 1763 if (ip >= PERF_CONTEXT_MAX) { 1764 switch (ip) { 1765 case PERF_CONTEXT_HV: 1766 *cpumode = PERF_RECORD_MISC_HYPERVISOR; 1767 break; 1768 case PERF_CONTEXT_KERNEL: 1769 *cpumode = PERF_RECORD_MISC_KERNEL; 1770 break; 1771 case PERF_CONTEXT_USER: 1772 *cpumode = PERF_RECORD_MISC_USER; 1773 break; 1774 default: 1775 pr_debug("invalid callchain context: " 1776 "%"PRId64"\n", (s64) ip); 1777 /* 1778 * It seems the callchain is corrupted. 1779 * Discard all. 1780 */ 1781 callchain_cursor_reset(cursor); 1782 return 1; 1783 } 1784 return 0; 1785 } 1786 thread__find_addr_location(thread, *cpumode, MAP__FUNCTION, 1787 ip, &al); 1788 } 1789 1790 if (al.sym != NULL) { 1791 if (perf_hpp_list.parent && !*parent && 1792 symbol__match_regex(al.sym, &parent_regex)) 1793 *parent = al.sym; 1794 else if (have_ignore_callees && root_al && 1795 symbol__match_regex(al.sym, &ignore_callees_regex)) { 1796 /* Treat this symbol as the root, 1797 forgetting its callees. */ 1798 *root_al = al; 1799 callchain_cursor_reset(cursor); 1800 } 1801 } 1802 1803 if (symbol_conf.hide_unresolved && al.sym == NULL) 1804 return 0; 1805 1806 if (iter) { 1807 nr_loop_iter = iter->nr_loop_iter; 1808 iter_cycles = iter->cycles; 1809 } 1810 1811 srcline = callchain_srcline(al.map, al.sym, al.addr); 1812 return callchain_cursor_append(cursor, al.addr, al.map, al.sym, 1813 branch, flags, nr_loop_iter, 1814 iter_cycles, branch_from, srcline); 1815 } 1816 1817 struct branch_info *sample__resolve_bstack(struct perf_sample *sample, 1818 struct addr_location *al) 1819 { 1820 unsigned int i; 1821 const struct branch_stack *bs = sample->branch_stack; 1822 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info)); 1823 1824 if (!bi) 1825 return NULL; 1826 1827 for (i = 0; i < bs->nr; i++) { 1828 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to); 1829 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from); 1830 bi[i].flags = bs->entries[i].flags; 1831 } 1832 return bi; 1833 } 1834 1835 static void save_iterations(struct iterations *iter, 1836 struct branch_entry *be, int nr) 1837 { 1838 int i; 1839 1840 iter->nr_loop_iter = nr; 1841 iter->cycles = 0; 1842 1843 for (i = 0; i < nr; i++) 1844 iter->cycles += be[i].flags.cycles; 1845 } 1846 1847 #define CHASHSZ 127 1848 #define CHASHBITS 7 1849 #define NO_ENTRY 0xff 1850 1851 #define PERF_MAX_BRANCH_DEPTH 127 1852 1853 /* Remove loops. */ 1854 static int remove_loops(struct branch_entry *l, int nr, 1855 struct iterations *iter) 1856 { 1857 int i, j, off; 1858 unsigned char chash[CHASHSZ]; 1859 1860 memset(chash, NO_ENTRY, sizeof(chash)); 1861 1862 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255); 1863 1864 for (i = 0; i < nr; i++) { 1865 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ; 1866 1867 /* no collision handling for now */ 1868 if (chash[h] == NO_ENTRY) { 1869 chash[h] = i; 1870 } else if (l[chash[h]].from == l[i].from) { 1871 bool is_loop = true; 1872 /* check if it is a real loop */ 1873 off = 0; 1874 for (j = chash[h]; j < i && i + off < nr; j++, off++) 1875 if (l[j].from != l[i + off].from) { 1876 is_loop = false; 1877 break; 1878 } 1879 if (is_loop) { 1880 j = nr - (i + off); 1881 if (j > 0) { 1882 save_iterations(iter + i + off, 1883 l + i, off); 1884 1885 memmove(iter + i, iter + i + off, 1886 j * sizeof(*iter)); 1887 1888 memmove(l + i, l + i + off, 1889 j * sizeof(*l)); 1890 } 1891 1892 nr -= off; 1893 } 1894 } 1895 } 1896 return nr; 1897 } 1898 1899 /* 1900 * Recolve LBR callstack chain sample 1901 * Return: 1902 * 1 on success get LBR callchain information 1903 * 0 no available LBR callchain information, should try fp 1904 * negative error code on other errors. 1905 */ 1906 static int resolve_lbr_callchain_sample(struct thread *thread, 1907 struct callchain_cursor *cursor, 1908 struct perf_sample *sample, 1909 struct symbol **parent, 1910 struct addr_location *root_al, 1911 int max_stack) 1912 { 1913 struct ip_callchain *chain = sample->callchain; 1914 int chain_nr = min(max_stack, (int)chain->nr), i; 1915 u8 cpumode = PERF_RECORD_MISC_USER; 1916 u64 ip, branch_from = 0; 1917 1918 for (i = 0; i < chain_nr; i++) { 1919 if (chain->ips[i] == PERF_CONTEXT_USER) 1920 break; 1921 } 1922 1923 /* LBR only affects the user callchain */ 1924 if (i != chain_nr) { 1925 struct branch_stack *lbr_stack = sample->branch_stack; 1926 int lbr_nr = lbr_stack->nr, j, k; 1927 bool branch; 1928 struct branch_flags *flags; 1929 /* 1930 * LBR callstack can only get user call chain. 1931 * The mix_chain_nr is kernel call chain 1932 * number plus LBR user call chain number. 1933 * i is kernel call chain number, 1934 * 1 is PERF_CONTEXT_USER, 1935 * lbr_nr + 1 is the user call chain number. 1936 * For details, please refer to the comments 1937 * in callchain__printf 1938 */ 1939 int mix_chain_nr = i + 1 + lbr_nr + 1; 1940 1941 for (j = 0; j < mix_chain_nr; j++) { 1942 int err; 1943 branch = false; 1944 flags = NULL; 1945 1946 if (callchain_param.order == ORDER_CALLEE) { 1947 if (j < i + 1) 1948 ip = chain->ips[j]; 1949 else if (j > i + 1) { 1950 k = j - i - 2; 1951 ip = lbr_stack->entries[k].from; 1952 branch = true; 1953 flags = &lbr_stack->entries[k].flags; 1954 } else { 1955 ip = lbr_stack->entries[0].to; 1956 branch = true; 1957 flags = &lbr_stack->entries[0].flags; 1958 branch_from = 1959 lbr_stack->entries[0].from; 1960 } 1961 } else { 1962 if (j < lbr_nr) { 1963 k = lbr_nr - j - 1; 1964 ip = lbr_stack->entries[k].from; 1965 branch = true; 1966 flags = &lbr_stack->entries[k].flags; 1967 } 1968 else if (j > lbr_nr) 1969 ip = chain->ips[i + 1 - (j - lbr_nr)]; 1970 else { 1971 ip = lbr_stack->entries[0].to; 1972 branch = true; 1973 flags = &lbr_stack->entries[0].flags; 1974 branch_from = 1975 lbr_stack->entries[0].from; 1976 } 1977 } 1978 1979 err = add_callchain_ip(thread, cursor, parent, 1980 root_al, &cpumode, ip, 1981 branch, flags, NULL, 1982 branch_from); 1983 if (err) 1984 return (err < 0) ? err : 0; 1985 } 1986 return 1; 1987 } 1988 1989 return 0; 1990 } 1991 1992 static int thread__resolve_callchain_sample(struct thread *thread, 1993 struct callchain_cursor *cursor, 1994 struct perf_evsel *evsel, 1995 struct perf_sample *sample, 1996 struct symbol **parent, 1997 struct addr_location *root_al, 1998 int max_stack) 1999 { 2000 struct branch_stack *branch = sample->branch_stack; 2001 struct ip_callchain *chain = sample->callchain; 2002 int chain_nr = 0; 2003 u8 cpumode = PERF_RECORD_MISC_USER; 2004 int i, j, err, nr_entries; 2005 int skip_idx = -1; 2006 int first_call = 0; 2007 2008 if (chain) 2009 chain_nr = chain->nr; 2010 2011 if (perf_evsel__has_branch_callstack(evsel)) { 2012 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent, 2013 root_al, max_stack); 2014 if (err) 2015 return (err < 0) ? err : 0; 2016 } 2017 2018 /* 2019 * Based on DWARF debug information, some architectures skip 2020 * a callchain entry saved by the kernel. 2021 */ 2022 skip_idx = arch_skip_callchain_idx(thread, chain); 2023 2024 /* 2025 * Add branches to call stack for easier browsing. This gives 2026 * more context for a sample than just the callers. 2027 * 2028 * This uses individual histograms of paths compared to the 2029 * aggregated histograms the normal LBR mode uses. 2030 * 2031 * Limitations for now: 2032 * - No extra filters 2033 * - No annotations (should annotate somehow) 2034 */ 2035 2036 if (branch && callchain_param.branch_callstack) { 2037 int nr = min(max_stack, (int)branch->nr); 2038 struct branch_entry be[nr]; 2039 struct iterations iter[nr]; 2040 2041 if (branch->nr > PERF_MAX_BRANCH_DEPTH) { 2042 pr_warning("corrupted branch chain. skipping...\n"); 2043 goto check_calls; 2044 } 2045 2046 for (i = 0; i < nr; i++) { 2047 if (callchain_param.order == ORDER_CALLEE) { 2048 be[i] = branch->entries[i]; 2049 2050 if (chain == NULL) 2051 continue; 2052 2053 /* 2054 * Check for overlap into the callchain. 2055 * The return address is one off compared to 2056 * the branch entry. To adjust for this 2057 * assume the calling instruction is not longer 2058 * than 8 bytes. 2059 */ 2060 if (i == skip_idx || 2061 chain->ips[first_call] >= PERF_CONTEXT_MAX) 2062 first_call++; 2063 else if (be[i].from < chain->ips[first_call] && 2064 be[i].from >= chain->ips[first_call] - 8) 2065 first_call++; 2066 } else 2067 be[i] = branch->entries[branch->nr - i - 1]; 2068 } 2069 2070 memset(iter, 0, sizeof(struct iterations) * nr); 2071 nr = remove_loops(be, nr, iter); 2072 2073 for (i = 0; i < nr; i++) { 2074 err = add_callchain_ip(thread, cursor, parent, 2075 root_al, 2076 NULL, be[i].to, 2077 true, &be[i].flags, 2078 NULL, be[i].from); 2079 2080 if (!err) 2081 err = add_callchain_ip(thread, cursor, parent, root_al, 2082 NULL, be[i].from, 2083 true, &be[i].flags, 2084 &iter[i], 0); 2085 if (err == -EINVAL) 2086 break; 2087 if (err) 2088 return err; 2089 } 2090 2091 if (chain_nr == 0) 2092 return 0; 2093 2094 chain_nr -= nr; 2095 } 2096 2097 check_calls: 2098 for (i = first_call, nr_entries = 0; 2099 i < chain_nr && nr_entries < max_stack; i++) { 2100 u64 ip; 2101 2102 if (callchain_param.order == ORDER_CALLEE) 2103 j = i; 2104 else 2105 j = chain->nr - i - 1; 2106 2107 #ifdef HAVE_SKIP_CALLCHAIN_IDX 2108 if (j == skip_idx) 2109 continue; 2110 #endif 2111 ip = chain->ips[j]; 2112 2113 if (ip < PERF_CONTEXT_MAX) 2114 ++nr_entries; 2115 2116 err = add_callchain_ip(thread, cursor, parent, 2117 root_al, &cpumode, ip, 2118 false, NULL, NULL, 0); 2119 2120 if (err) 2121 return (err < 0) ? err : 0; 2122 } 2123 2124 return 0; 2125 } 2126 2127 static int append_inlines(struct callchain_cursor *cursor, 2128 struct map *map, struct symbol *sym, u64 ip) 2129 { 2130 struct inline_node *inline_node; 2131 struct inline_list *ilist; 2132 u64 addr; 2133 int ret = 1; 2134 2135 if (!symbol_conf.inline_name || !map || !sym) 2136 return ret; 2137 2138 addr = map__rip_2objdump(map, ip); 2139 2140 inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr); 2141 if (!inline_node) { 2142 inline_node = dso__parse_addr_inlines(map->dso, addr, sym); 2143 if (!inline_node) 2144 return ret; 2145 inlines__tree_insert(&map->dso->inlined_nodes, inline_node); 2146 } 2147 2148 list_for_each_entry(ilist, &inline_node->val, list) { 2149 ret = callchain_cursor_append(cursor, ip, map, 2150 ilist->symbol, false, 2151 NULL, 0, 0, 0, ilist->srcline); 2152 2153 if (ret != 0) 2154 return ret; 2155 } 2156 2157 return ret; 2158 } 2159 2160 static int unwind_entry(struct unwind_entry *entry, void *arg) 2161 { 2162 struct callchain_cursor *cursor = arg; 2163 const char *srcline = NULL; 2164 2165 if (symbol_conf.hide_unresolved && entry->sym == NULL) 2166 return 0; 2167 2168 if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0) 2169 return 0; 2170 2171 srcline = callchain_srcline(entry->map, entry->sym, entry->ip); 2172 return callchain_cursor_append(cursor, entry->ip, 2173 entry->map, entry->sym, 2174 false, NULL, 0, 0, 0, srcline); 2175 } 2176 2177 static int thread__resolve_callchain_unwind(struct thread *thread, 2178 struct callchain_cursor *cursor, 2179 struct perf_evsel *evsel, 2180 struct perf_sample *sample, 2181 int max_stack) 2182 { 2183 /* Can we do dwarf post unwind? */ 2184 if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) && 2185 (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER))) 2186 return 0; 2187 2188 /* Bail out if nothing was captured. */ 2189 if ((!sample->user_regs.regs) || 2190 (!sample->user_stack.size)) 2191 return 0; 2192 2193 return unwind__get_entries(unwind_entry, cursor, 2194 thread, sample, max_stack); 2195 } 2196 2197 int thread__resolve_callchain(struct thread *thread, 2198 struct callchain_cursor *cursor, 2199 struct perf_evsel *evsel, 2200 struct perf_sample *sample, 2201 struct symbol **parent, 2202 struct addr_location *root_al, 2203 int max_stack) 2204 { 2205 int ret = 0; 2206 2207 callchain_cursor_reset(cursor); 2208 2209 if (callchain_param.order == ORDER_CALLEE) { 2210 ret = thread__resolve_callchain_sample(thread, cursor, 2211 evsel, sample, 2212 parent, root_al, 2213 max_stack); 2214 if (ret) 2215 return ret; 2216 ret = thread__resolve_callchain_unwind(thread, cursor, 2217 evsel, sample, 2218 max_stack); 2219 } else { 2220 ret = thread__resolve_callchain_unwind(thread, cursor, 2221 evsel, sample, 2222 max_stack); 2223 if (ret) 2224 return ret; 2225 ret = thread__resolve_callchain_sample(thread, cursor, 2226 evsel, sample, 2227 parent, root_al, 2228 max_stack); 2229 } 2230 2231 return ret; 2232 } 2233 2234 int machine__for_each_thread(struct machine *machine, 2235 int (*fn)(struct thread *thread, void *p), 2236 void *priv) 2237 { 2238 struct threads *threads; 2239 struct rb_node *nd; 2240 struct thread *thread; 2241 int rc = 0; 2242 int i; 2243 2244 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 2245 threads = &machine->threads[i]; 2246 for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) { 2247 thread = rb_entry(nd, struct thread, rb_node); 2248 rc = fn(thread, priv); 2249 if (rc != 0) 2250 return rc; 2251 } 2252 2253 list_for_each_entry(thread, &threads->dead, node) { 2254 rc = fn(thread, priv); 2255 if (rc != 0) 2256 return rc; 2257 } 2258 } 2259 return rc; 2260 } 2261 2262 int machines__for_each_thread(struct machines *machines, 2263 int (*fn)(struct thread *thread, void *p), 2264 void *priv) 2265 { 2266 struct rb_node *nd; 2267 int rc = 0; 2268 2269 rc = machine__for_each_thread(&machines->host, fn, priv); 2270 if (rc != 0) 2271 return rc; 2272 2273 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 2274 struct machine *machine = rb_entry(nd, struct machine, rb_node); 2275 2276 rc = machine__for_each_thread(machine, fn, priv); 2277 if (rc != 0) 2278 return rc; 2279 } 2280 return rc; 2281 } 2282 2283 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool, 2284 struct target *target, struct thread_map *threads, 2285 perf_event__handler_t process, bool data_mmap, 2286 unsigned int proc_map_timeout, 2287 unsigned int nr_threads_synthesize) 2288 { 2289 if (target__has_task(target)) 2290 return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout); 2291 else if (target__has_cpu(target)) 2292 return perf_event__synthesize_threads(tool, process, 2293 machine, data_mmap, 2294 proc_map_timeout, 2295 nr_threads_synthesize); 2296 /* command specified */ 2297 return 0; 2298 } 2299 2300 pid_t machine__get_current_tid(struct machine *machine, int cpu) 2301 { 2302 if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid) 2303 return -1; 2304 2305 return machine->current_tid[cpu]; 2306 } 2307 2308 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid, 2309 pid_t tid) 2310 { 2311 struct thread *thread; 2312 2313 if (cpu < 0) 2314 return -EINVAL; 2315 2316 if (!machine->current_tid) { 2317 int i; 2318 2319 machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t)); 2320 if (!machine->current_tid) 2321 return -ENOMEM; 2322 for (i = 0; i < MAX_NR_CPUS; i++) 2323 machine->current_tid[i] = -1; 2324 } 2325 2326 if (cpu >= MAX_NR_CPUS) { 2327 pr_err("Requested CPU %d too large. ", cpu); 2328 pr_err("Consider raising MAX_NR_CPUS\n"); 2329 return -EINVAL; 2330 } 2331 2332 machine->current_tid[cpu] = tid; 2333 2334 thread = machine__findnew_thread(machine, pid, tid); 2335 if (!thread) 2336 return -ENOMEM; 2337 2338 thread->cpu = cpu; 2339 thread__put(thread); 2340 2341 return 0; 2342 } 2343 2344 int machine__get_kernel_start(struct machine *machine) 2345 { 2346 struct map *map = machine__kernel_map(machine); 2347 int err = 0; 2348 2349 /* 2350 * The only addresses above 2^63 are kernel addresses of a 64-bit 2351 * kernel. Note that addresses are unsigned so that on a 32-bit system 2352 * all addresses including kernel addresses are less than 2^32. In 2353 * that case (32-bit system), if the kernel mapping is unknown, all 2354 * addresses will be assumed to be in user space - see 2355 * machine__kernel_ip(). 2356 */ 2357 machine->kernel_start = 1ULL << 63; 2358 if (map) { 2359 err = map__load(map); 2360 if (!err) 2361 machine->kernel_start = map->start; 2362 } 2363 return err; 2364 } 2365 2366 struct dso *machine__findnew_dso(struct machine *machine, const char *filename) 2367 { 2368 return dsos__findnew(&machine->dsos, filename); 2369 } 2370 2371 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp) 2372 { 2373 struct machine *machine = vmachine; 2374 struct map *map; 2375 struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map); 2376 2377 if (sym == NULL) 2378 return NULL; 2379 2380 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL; 2381 *addrp = map->unmap_ip(map, sym->start); 2382 return sym->name; 2383 } 2384