1 #include "callchain.h" 2 #include "debug.h" 3 #include "event.h" 4 #include "evsel.h" 5 #include "hist.h" 6 #include "machine.h" 7 #include "map.h" 8 #include "sort.h" 9 #include "strlist.h" 10 #include "thread.h" 11 #include "vdso.h" 12 #include <stdbool.h> 13 #include <symbol/kallsyms.h> 14 #include "unwind.h" 15 #include "linux/hash.h" 16 17 static void dsos__init(struct dsos *dsos) 18 { 19 INIT_LIST_HEAD(&dsos->head); 20 dsos->root = RB_ROOT; 21 } 22 23 int machine__init(struct machine *machine, const char *root_dir, pid_t pid) 24 { 25 map_groups__init(&machine->kmaps, machine); 26 RB_CLEAR_NODE(&machine->rb_node); 27 dsos__init(&machine->user_dsos); 28 dsos__init(&machine->kernel_dsos); 29 30 machine->threads = RB_ROOT; 31 INIT_LIST_HEAD(&machine->dead_threads); 32 machine->last_match = NULL; 33 34 machine->vdso_info = NULL; 35 36 machine->pid = pid; 37 38 machine->symbol_filter = NULL; 39 machine->id_hdr_size = 0; 40 machine->comm_exec = false; 41 machine->kernel_start = 0; 42 43 machine->root_dir = strdup(root_dir); 44 if (machine->root_dir == NULL) 45 return -ENOMEM; 46 47 if (pid != HOST_KERNEL_ID) { 48 struct thread *thread = machine__findnew_thread(machine, -1, 49 pid); 50 char comm[64]; 51 52 if (thread == NULL) 53 return -ENOMEM; 54 55 snprintf(comm, sizeof(comm), "[guest/%d]", pid); 56 thread__set_comm(thread, comm, 0); 57 } 58 59 machine->current_tid = NULL; 60 61 return 0; 62 } 63 64 struct machine *machine__new_host(void) 65 { 66 struct machine *machine = malloc(sizeof(*machine)); 67 68 if (machine != NULL) { 69 machine__init(machine, "", HOST_KERNEL_ID); 70 71 if (machine__create_kernel_maps(machine) < 0) 72 goto out_delete; 73 } 74 75 return machine; 76 out_delete: 77 free(machine); 78 return NULL; 79 } 80 81 static void dsos__delete(struct dsos *dsos) 82 { 83 struct dso *pos, *n; 84 85 list_for_each_entry_safe(pos, n, &dsos->head, node) { 86 RB_CLEAR_NODE(&pos->rb_node); 87 list_del(&pos->node); 88 dso__delete(pos); 89 } 90 } 91 92 void machine__delete_dead_threads(struct machine *machine) 93 { 94 struct thread *n, *t; 95 96 list_for_each_entry_safe(t, n, &machine->dead_threads, node) { 97 list_del(&t->node); 98 thread__delete(t); 99 } 100 } 101 102 void machine__delete_threads(struct machine *machine) 103 { 104 struct rb_node *nd = rb_first(&machine->threads); 105 106 while (nd) { 107 struct thread *t = rb_entry(nd, struct thread, rb_node); 108 109 rb_erase(&t->rb_node, &machine->threads); 110 nd = rb_next(nd); 111 thread__delete(t); 112 } 113 } 114 115 void machine__exit(struct machine *machine) 116 { 117 map_groups__exit(&machine->kmaps); 118 dsos__delete(&machine->user_dsos); 119 dsos__delete(&machine->kernel_dsos); 120 vdso__exit(machine); 121 zfree(&machine->root_dir); 122 zfree(&machine->current_tid); 123 } 124 125 void machine__delete(struct machine *machine) 126 { 127 machine__exit(machine); 128 free(machine); 129 } 130 131 void machines__init(struct machines *machines) 132 { 133 machine__init(&machines->host, "", HOST_KERNEL_ID); 134 machines->guests = RB_ROOT; 135 machines->symbol_filter = NULL; 136 } 137 138 void machines__exit(struct machines *machines) 139 { 140 machine__exit(&machines->host); 141 /* XXX exit guest */ 142 } 143 144 struct machine *machines__add(struct machines *machines, pid_t pid, 145 const char *root_dir) 146 { 147 struct rb_node **p = &machines->guests.rb_node; 148 struct rb_node *parent = NULL; 149 struct machine *pos, *machine = malloc(sizeof(*machine)); 150 151 if (machine == NULL) 152 return NULL; 153 154 if (machine__init(machine, root_dir, pid) != 0) { 155 free(machine); 156 return NULL; 157 } 158 159 machine->symbol_filter = machines->symbol_filter; 160 161 while (*p != NULL) { 162 parent = *p; 163 pos = rb_entry(parent, struct machine, rb_node); 164 if (pid < pos->pid) 165 p = &(*p)->rb_left; 166 else 167 p = &(*p)->rb_right; 168 } 169 170 rb_link_node(&machine->rb_node, parent, p); 171 rb_insert_color(&machine->rb_node, &machines->guests); 172 173 return machine; 174 } 175 176 void machines__set_symbol_filter(struct machines *machines, 177 symbol_filter_t symbol_filter) 178 { 179 struct rb_node *nd; 180 181 machines->symbol_filter = symbol_filter; 182 machines->host.symbol_filter = symbol_filter; 183 184 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 185 struct machine *machine = rb_entry(nd, struct machine, rb_node); 186 187 machine->symbol_filter = symbol_filter; 188 } 189 } 190 191 void machines__set_comm_exec(struct machines *machines, bool comm_exec) 192 { 193 struct rb_node *nd; 194 195 machines->host.comm_exec = comm_exec; 196 197 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 198 struct machine *machine = rb_entry(nd, struct machine, rb_node); 199 200 machine->comm_exec = comm_exec; 201 } 202 } 203 204 struct machine *machines__find(struct machines *machines, pid_t pid) 205 { 206 struct rb_node **p = &machines->guests.rb_node; 207 struct rb_node *parent = NULL; 208 struct machine *machine; 209 struct machine *default_machine = NULL; 210 211 if (pid == HOST_KERNEL_ID) 212 return &machines->host; 213 214 while (*p != NULL) { 215 parent = *p; 216 machine = rb_entry(parent, struct machine, rb_node); 217 if (pid < machine->pid) 218 p = &(*p)->rb_left; 219 else if (pid > machine->pid) 220 p = &(*p)->rb_right; 221 else 222 return machine; 223 if (!machine->pid) 224 default_machine = machine; 225 } 226 227 return default_machine; 228 } 229 230 struct machine *machines__findnew(struct machines *machines, pid_t pid) 231 { 232 char path[PATH_MAX]; 233 const char *root_dir = ""; 234 struct machine *machine = machines__find(machines, pid); 235 236 if (machine && (machine->pid == pid)) 237 goto out; 238 239 if ((pid != HOST_KERNEL_ID) && 240 (pid != DEFAULT_GUEST_KERNEL_ID) && 241 (symbol_conf.guestmount)) { 242 sprintf(path, "%s/%d", symbol_conf.guestmount, pid); 243 if (access(path, R_OK)) { 244 static struct strlist *seen; 245 246 if (!seen) 247 seen = strlist__new(true, NULL); 248 249 if (!strlist__has_entry(seen, path)) { 250 pr_err("Can't access file %s\n", path); 251 strlist__add(seen, path); 252 } 253 machine = NULL; 254 goto out; 255 } 256 root_dir = path; 257 } 258 259 machine = machines__add(machines, pid, root_dir); 260 out: 261 return machine; 262 } 263 264 void machines__process_guests(struct machines *machines, 265 machine__process_t process, void *data) 266 { 267 struct rb_node *nd; 268 269 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 270 struct machine *pos = rb_entry(nd, struct machine, rb_node); 271 process(pos, data); 272 } 273 } 274 275 char *machine__mmap_name(struct machine *machine, char *bf, size_t size) 276 { 277 if (machine__is_host(machine)) 278 snprintf(bf, size, "[%s]", "kernel.kallsyms"); 279 else if (machine__is_default_guest(machine)) 280 snprintf(bf, size, "[%s]", "guest.kernel.kallsyms"); 281 else { 282 snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms", 283 machine->pid); 284 } 285 286 return bf; 287 } 288 289 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size) 290 { 291 struct rb_node *node; 292 struct machine *machine; 293 294 machines->host.id_hdr_size = id_hdr_size; 295 296 for (node = rb_first(&machines->guests); node; node = rb_next(node)) { 297 machine = rb_entry(node, struct machine, rb_node); 298 machine->id_hdr_size = id_hdr_size; 299 } 300 301 return; 302 } 303 304 static void machine__update_thread_pid(struct machine *machine, 305 struct thread *th, pid_t pid) 306 { 307 struct thread *leader; 308 309 if (pid == th->pid_ || pid == -1 || th->pid_ != -1) 310 return; 311 312 th->pid_ = pid; 313 314 if (th->pid_ == th->tid) 315 return; 316 317 leader = machine__findnew_thread(machine, th->pid_, th->pid_); 318 if (!leader) 319 goto out_err; 320 321 if (!leader->mg) 322 leader->mg = map_groups__new(machine); 323 324 if (!leader->mg) 325 goto out_err; 326 327 if (th->mg == leader->mg) 328 return; 329 330 if (th->mg) { 331 /* 332 * Maps are created from MMAP events which provide the pid and 333 * tid. Consequently there never should be any maps on a thread 334 * with an unknown pid. Just print an error if there are. 335 */ 336 if (!map_groups__empty(th->mg)) 337 pr_err("Discarding thread maps for %d:%d\n", 338 th->pid_, th->tid); 339 map_groups__delete(th->mg); 340 } 341 342 th->mg = map_groups__get(leader->mg); 343 344 return; 345 346 out_err: 347 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid); 348 } 349 350 static struct thread *__machine__findnew_thread(struct machine *machine, 351 pid_t pid, pid_t tid, 352 bool create) 353 { 354 struct rb_node **p = &machine->threads.rb_node; 355 struct rb_node *parent = NULL; 356 struct thread *th; 357 358 /* 359 * Front-end cache - TID lookups come in blocks, 360 * so most of the time we dont have to look up 361 * the full rbtree: 362 */ 363 th = machine->last_match; 364 if (th && th->tid == tid) { 365 machine__update_thread_pid(machine, th, pid); 366 return th; 367 } 368 369 while (*p != NULL) { 370 parent = *p; 371 th = rb_entry(parent, struct thread, rb_node); 372 373 if (th->tid == tid) { 374 machine->last_match = th; 375 machine__update_thread_pid(machine, th, pid); 376 return th; 377 } 378 379 if (tid < th->tid) 380 p = &(*p)->rb_left; 381 else 382 p = &(*p)->rb_right; 383 } 384 385 if (!create) 386 return NULL; 387 388 th = thread__new(pid, tid); 389 if (th != NULL) { 390 rb_link_node(&th->rb_node, parent, p); 391 rb_insert_color(&th->rb_node, &machine->threads); 392 machine->last_match = th; 393 394 /* 395 * We have to initialize map_groups separately 396 * after rb tree is updated. 397 * 398 * The reason is that we call machine__findnew_thread 399 * within thread__init_map_groups to find the thread 400 * leader and that would screwed the rb tree. 401 */ 402 if (thread__init_map_groups(th, machine)) { 403 thread__delete(th); 404 return NULL; 405 } 406 } 407 408 return th; 409 } 410 411 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, 412 pid_t tid) 413 { 414 return __machine__findnew_thread(machine, pid, tid, true); 415 } 416 417 struct thread *machine__find_thread(struct machine *machine, pid_t pid, 418 pid_t tid) 419 { 420 return __machine__findnew_thread(machine, pid, tid, false); 421 } 422 423 struct comm *machine__thread_exec_comm(struct machine *machine, 424 struct thread *thread) 425 { 426 if (machine->comm_exec) 427 return thread__exec_comm(thread); 428 else 429 return thread__comm(thread); 430 } 431 432 int machine__process_comm_event(struct machine *machine, union perf_event *event, 433 struct perf_sample *sample) 434 { 435 struct thread *thread = machine__findnew_thread(machine, 436 event->comm.pid, 437 event->comm.tid); 438 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC; 439 440 if (exec) 441 machine->comm_exec = true; 442 443 if (dump_trace) 444 perf_event__fprintf_comm(event, stdout); 445 446 if (thread == NULL || 447 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) { 448 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n"); 449 return -1; 450 } 451 452 return 0; 453 } 454 455 int machine__process_lost_event(struct machine *machine __maybe_unused, 456 union perf_event *event, struct perf_sample *sample __maybe_unused) 457 { 458 dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n", 459 event->lost.id, event->lost.lost); 460 return 0; 461 } 462 463 struct map *machine__new_module(struct machine *machine, u64 start, 464 const char *filename) 465 { 466 struct map *map; 467 struct dso *dso = __dsos__findnew(&machine->kernel_dsos, filename); 468 bool compressed; 469 470 if (dso == NULL) 471 return NULL; 472 473 map = map__new2(start, dso, MAP__FUNCTION); 474 if (map == NULL) 475 return NULL; 476 477 if (machine__is_host(machine)) 478 dso->symtab_type = DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE; 479 else 480 dso->symtab_type = DSO_BINARY_TYPE__GUEST_KMODULE; 481 482 /* _KMODULE_COMP should be next to _KMODULE */ 483 if (is_kernel_module(filename, &compressed) && compressed) 484 dso->symtab_type++; 485 486 map_groups__insert(&machine->kmaps, map); 487 return map; 488 } 489 490 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp) 491 { 492 struct rb_node *nd; 493 size_t ret = __dsos__fprintf(&machines->host.kernel_dsos.head, fp) + 494 __dsos__fprintf(&machines->host.user_dsos.head, fp); 495 496 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 497 struct machine *pos = rb_entry(nd, struct machine, rb_node); 498 ret += __dsos__fprintf(&pos->kernel_dsos.head, fp); 499 ret += __dsos__fprintf(&pos->user_dsos.head, fp); 500 } 501 502 return ret; 503 } 504 505 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp, 506 bool (skip)(struct dso *dso, int parm), int parm) 507 { 508 return __dsos__fprintf_buildid(&m->kernel_dsos.head, fp, skip, parm) + 509 __dsos__fprintf_buildid(&m->user_dsos.head, fp, skip, parm); 510 } 511 512 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp, 513 bool (skip)(struct dso *dso, int parm), int parm) 514 { 515 struct rb_node *nd; 516 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm); 517 518 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 519 struct machine *pos = rb_entry(nd, struct machine, rb_node); 520 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm); 521 } 522 return ret; 523 } 524 525 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp) 526 { 527 int i; 528 size_t printed = 0; 529 struct dso *kdso = machine->vmlinux_maps[MAP__FUNCTION]->dso; 530 531 if (kdso->has_build_id) { 532 char filename[PATH_MAX]; 533 if (dso__build_id_filename(kdso, filename, sizeof(filename))) 534 printed += fprintf(fp, "[0] %s\n", filename); 535 } 536 537 for (i = 0; i < vmlinux_path__nr_entries; ++i) 538 printed += fprintf(fp, "[%d] %s\n", 539 i + kdso->has_build_id, vmlinux_path[i]); 540 541 return printed; 542 } 543 544 size_t machine__fprintf(struct machine *machine, FILE *fp) 545 { 546 size_t ret = 0; 547 struct rb_node *nd; 548 549 for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) { 550 struct thread *pos = rb_entry(nd, struct thread, rb_node); 551 552 ret += thread__fprintf(pos, fp); 553 } 554 555 return ret; 556 } 557 558 static struct dso *machine__get_kernel(struct machine *machine) 559 { 560 const char *vmlinux_name = NULL; 561 struct dso *kernel; 562 563 if (machine__is_host(machine)) { 564 vmlinux_name = symbol_conf.vmlinux_name; 565 if (!vmlinux_name) 566 vmlinux_name = "[kernel.kallsyms]"; 567 568 kernel = dso__kernel_findnew(machine, vmlinux_name, 569 "[kernel]", 570 DSO_TYPE_KERNEL); 571 } else { 572 char bf[PATH_MAX]; 573 574 if (machine__is_default_guest(machine)) 575 vmlinux_name = symbol_conf.default_guest_vmlinux_name; 576 if (!vmlinux_name) 577 vmlinux_name = machine__mmap_name(machine, bf, 578 sizeof(bf)); 579 580 kernel = dso__kernel_findnew(machine, vmlinux_name, 581 "[guest.kernel]", 582 DSO_TYPE_GUEST_KERNEL); 583 } 584 585 if (kernel != NULL && (!kernel->has_build_id)) 586 dso__read_running_kernel_build_id(kernel, machine); 587 588 return kernel; 589 } 590 591 struct process_args { 592 u64 start; 593 }; 594 595 static void machine__get_kallsyms_filename(struct machine *machine, char *buf, 596 size_t bufsz) 597 { 598 if (machine__is_default_guest(machine)) 599 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms); 600 else 601 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir); 602 } 603 604 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL}; 605 606 /* Figure out the start address of kernel map from /proc/kallsyms. 607 * Returns the name of the start symbol in *symbol_name. Pass in NULL as 608 * symbol_name if it's not that important. 609 */ 610 static u64 machine__get_running_kernel_start(struct machine *machine, 611 const char **symbol_name) 612 { 613 char filename[PATH_MAX]; 614 int i; 615 const char *name; 616 u64 addr = 0; 617 618 machine__get_kallsyms_filename(machine, filename, PATH_MAX); 619 620 if (symbol__restricted_filename(filename, "/proc/kallsyms")) 621 return 0; 622 623 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) { 624 addr = kallsyms__get_function_start(filename, name); 625 if (addr) 626 break; 627 } 628 629 if (symbol_name) 630 *symbol_name = name; 631 632 return addr; 633 } 634 635 int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel) 636 { 637 enum map_type type; 638 u64 start = machine__get_running_kernel_start(machine, NULL); 639 640 for (type = 0; type < MAP__NR_TYPES; ++type) { 641 struct kmap *kmap; 642 643 machine->vmlinux_maps[type] = map__new2(start, kernel, type); 644 if (machine->vmlinux_maps[type] == NULL) 645 return -1; 646 647 machine->vmlinux_maps[type]->map_ip = 648 machine->vmlinux_maps[type]->unmap_ip = 649 identity__map_ip; 650 kmap = map__kmap(machine->vmlinux_maps[type]); 651 kmap->kmaps = &machine->kmaps; 652 map_groups__insert(&machine->kmaps, 653 machine->vmlinux_maps[type]); 654 } 655 656 return 0; 657 } 658 659 void machine__destroy_kernel_maps(struct machine *machine) 660 { 661 enum map_type type; 662 663 for (type = 0; type < MAP__NR_TYPES; ++type) { 664 struct kmap *kmap; 665 666 if (machine->vmlinux_maps[type] == NULL) 667 continue; 668 669 kmap = map__kmap(machine->vmlinux_maps[type]); 670 map_groups__remove(&machine->kmaps, 671 machine->vmlinux_maps[type]); 672 if (kmap->ref_reloc_sym) { 673 /* 674 * ref_reloc_sym is shared among all maps, so free just 675 * on one of them. 676 */ 677 if (type == MAP__FUNCTION) { 678 zfree((char **)&kmap->ref_reloc_sym->name); 679 zfree(&kmap->ref_reloc_sym); 680 } else 681 kmap->ref_reloc_sym = NULL; 682 } 683 684 map__delete(machine->vmlinux_maps[type]); 685 machine->vmlinux_maps[type] = NULL; 686 } 687 } 688 689 int machines__create_guest_kernel_maps(struct machines *machines) 690 { 691 int ret = 0; 692 struct dirent **namelist = NULL; 693 int i, items = 0; 694 char path[PATH_MAX]; 695 pid_t pid; 696 char *endp; 697 698 if (symbol_conf.default_guest_vmlinux_name || 699 symbol_conf.default_guest_modules || 700 symbol_conf.default_guest_kallsyms) { 701 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID); 702 } 703 704 if (symbol_conf.guestmount) { 705 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL); 706 if (items <= 0) 707 return -ENOENT; 708 for (i = 0; i < items; i++) { 709 if (!isdigit(namelist[i]->d_name[0])) { 710 /* Filter out . and .. */ 711 continue; 712 } 713 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10); 714 if ((*endp != '\0') || 715 (endp == namelist[i]->d_name) || 716 (errno == ERANGE)) { 717 pr_debug("invalid directory (%s). Skipping.\n", 718 namelist[i]->d_name); 719 continue; 720 } 721 sprintf(path, "%s/%s/proc/kallsyms", 722 symbol_conf.guestmount, 723 namelist[i]->d_name); 724 ret = access(path, R_OK); 725 if (ret) { 726 pr_debug("Can't access file %s\n", path); 727 goto failure; 728 } 729 machines__create_kernel_maps(machines, pid); 730 } 731 failure: 732 free(namelist); 733 } 734 735 return ret; 736 } 737 738 void machines__destroy_kernel_maps(struct machines *machines) 739 { 740 struct rb_node *next = rb_first(&machines->guests); 741 742 machine__destroy_kernel_maps(&machines->host); 743 744 while (next) { 745 struct machine *pos = rb_entry(next, struct machine, rb_node); 746 747 next = rb_next(&pos->rb_node); 748 rb_erase(&pos->rb_node, &machines->guests); 749 machine__delete(pos); 750 } 751 } 752 753 int machines__create_kernel_maps(struct machines *machines, pid_t pid) 754 { 755 struct machine *machine = machines__findnew(machines, pid); 756 757 if (machine == NULL) 758 return -1; 759 760 return machine__create_kernel_maps(machine); 761 } 762 763 int machine__load_kallsyms(struct machine *machine, const char *filename, 764 enum map_type type, symbol_filter_t filter) 765 { 766 struct map *map = machine->vmlinux_maps[type]; 767 int ret = dso__load_kallsyms(map->dso, filename, map, filter); 768 769 if (ret > 0) { 770 dso__set_loaded(map->dso, type); 771 /* 772 * Since /proc/kallsyms will have multiple sessions for the 773 * kernel, with modules between them, fixup the end of all 774 * sections. 775 */ 776 __map_groups__fixup_end(&machine->kmaps, type); 777 } 778 779 return ret; 780 } 781 782 int machine__load_vmlinux_path(struct machine *machine, enum map_type type, 783 symbol_filter_t filter) 784 { 785 struct map *map = machine->vmlinux_maps[type]; 786 int ret = dso__load_vmlinux_path(map->dso, map, filter); 787 788 if (ret > 0) 789 dso__set_loaded(map->dso, type); 790 791 return ret; 792 } 793 794 static void map_groups__fixup_end(struct map_groups *mg) 795 { 796 int i; 797 for (i = 0; i < MAP__NR_TYPES; ++i) 798 __map_groups__fixup_end(mg, i); 799 } 800 801 static char *get_kernel_version(const char *root_dir) 802 { 803 char version[PATH_MAX]; 804 FILE *file; 805 char *name, *tmp; 806 const char *prefix = "Linux version "; 807 808 sprintf(version, "%s/proc/version", root_dir); 809 file = fopen(version, "r"); 810 if (!file) 811 return NULL; 812 813 version[0] = '\0'; 814 tmp = fgets(version, sizeof(version), file); 815 fclose(file); 816 817 name = strstr(version, prefix); 818 if (!name) 819 return NULL; 820 name += strlen(prefix); 821 tmp = strchr(name, ' '); 822 if (tmp) 823 *tmp = '\0'; 824 825 return strdup(name); 826 } 827 828 static int map_groups__set_modules_path_dir(struct map_groups *mg, 829 const char *dir_name, int depth) 830 { 831 struct dirent *dent; 832 DIR *dir = opendir(dir_name); 833 int ret = 0; 834 835 if (!dir) { 836 pr_debug("%s: cannot open %s dir\n", __func__, dir_name); 837 return -1; 838 } 839 840 while ((dent = readdir(dir)) != NULL) { 841 char path[PATH_MAX]; 842 struct stat st; 843 844 /*sshfs might return bad dent->d_type, so we have to stat*/ 845 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name); 846 if (stat(path, &st)) 847 continue; 848 849 if (S_ISDIR(st.st_mode)) { 850 if (!strcmp(dent->d_name, ".") || 851 !strcmp(dent->d_name, "..")) 852 continue; 853 854 /* Do not follow top-level source and build symlinks */ 855 if (depth == 0) { 856 if (!strcmp(dent->d_name, "source") || 857 !strcmp(dent->d_name, "build")) 858 continue; 859 } 860 861 ret = map_groups__set_modules_path_dir(mg, path, 862 depth + 1); 863 if (ret < 0) 864 goto out; 865 } else { 866 char *dot = strrchr(dent->d_name, '.'), 867 dso_name[PATH_MAX]; 868 struct map *map; 869 char *long_name; 870 871 if (dot == NULL) 872 continue; 873 874 /* On some system, modules are compressed like .ko.gz */ 875 if (is_supported_compression(dot + 1) && 876 is_kmodule_extension(dot - 2)) 877 dot -= 3; 878 879 snprintf(dso_name, sizeof(dso_name), "[%.*s]", 880 (int)(dot - dent->d_name), dent->d_name); 881 882 strxfrchar(dso_name, '-', '_'); 883 map = map_groups__find_by_name(mg, MAP__FUNCTION, 884 dso_name); 885 if (map == NULL) 886 continue; 887 888 long_name = strdup(path); 889 if (long_name == NULL) { 890 ret = -1; 891 goto out; 892 } 893 dso__set_long_name(map->dso, long_name, true); 894 dso__kernel_module_get_build_id(map->dso, ""); 895 } 896 } 897 898 out: 899 closedir(dir); 900 return ret; 901 } 902 903 static int machine__set_modules_path(struct machine *machine) 904 { 905 char *version; 906 char modules_path[PATH_MAX]; 907 908 version = get_kernel_version(machine->root_dir); 909 if (!version) 910 return -1; 911 912 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s", 913 machine->root_dir, version); 914 free(version); 915 916 return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0); 917 } 918 919 static int machine__create_module(void *arg, const char *name, u64 start) 920 { 921 struct machine *machine = arg; 922 struct map *map; 923 924 map = machine__new_module(machine, start, name); 925 if (map == NULL) 926 return -1; 927 928 dso__kernel_module_get_build_id(map->dso, machine->root_dir); 929 930 return 0; 931 } 932 933 static int machine__create_modules(struct machine *machine) 934 { 935 const char *modules; 936 char path[PATH_MAX]; 937 938 if (machine__is_default_guest(machine)) { 939 modules = symbol_conf.default_guest_modules; 940 } else { 941 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir); 942 modules = path; 943 } 944 945 if (symbol__restricted_filename(modules, "/proc/modules")) 946 return -1; 947 948 if (modules__parse(modules, machine, machine__create_module)) 949 return -1; 950 951 if (!machine__set_modules_path(machine)) 952 return 0; 953 954 pr_debug("Problems setting modules path maps, continuing anyway...\n"); 955 956 return 0; 957 } 958 959 int machine__create_kernel_maps(struct machine *machine) 960 { 961 struct dso *kernel = machine__get_kernel(machine); 962 const char *name; 963 u64 addr = machine__get_running_kernel_start(machine, &name); 964 if (!addr) 965 return -1; 966 967 if (kernel == NULL || 968 __machine__create_kernel_maps(machine, kernel) < 0) 969 return -1; 970 971 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) { 972 if (machine__is_host(machine)) 973 pr_debug("Problems creating module maps, " 974 "continuing anyway...\n"); 975 else 976 pr_debug("Problems creating module maps for guest %d, " 977 "continuing anyway...\n", machine->pid); 978 } 979 980 /* 981 * Now that we have all the maps created, just set the ->end of them: 982 */ 983 map_groups__fixup_end(&machine->kmaps); 984 985 if (maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name, 986 addr)) { 987 machine__destroy_kernel_maps(machine); 988 return -1; 989 } 990 991 return 0; 992 } 993 994 static void machine__set_kernel_mmap_len(struct machine *machine, 995 union perf_event *event) 996 { 997 int i; 998 999 for (i = 0; i < MAP__NR_TYPES; i++) { 1000 machine->vmlinux_maps[i]->start = event->mmap.start; 1001 machine->vmlinux_maps[i]->end = (event->mmap.start + 1002 event->mmap.len); 1003 /* 1004 * Be a bit paranoid here, some perf.data file came with 1005 * a zero sized synthesized MMAP event for the kernel. 1006 */ 1007 if (machine->vmlinux_maps[i]->end == 0) 1008 machine->vmlinux_maps[i]->end = ~0ULL; 1009 } 1010 } 1011 1012 static bool machine__uses_kcore(struct machine *machine) 1013 { 1014 struct dso *dso; 1015 1016 list_for_each_entry(dso, &machine->kernel_dsos.head, node) { 1017 if (dso__is_kcore(dso)) 1018 return true; 1019 } 1020 1021 return false; 1022 } 1023 1024 static int machine__process_kernel_mmap_event(struct machine *machine, 1025 union perf_event *event) 1026 { 1027 struct map *map; 1028 char kmmap_prefix[PATH_MAX]; 1029 enum dso_kernel_type kernel_type; 1030 bool is_kernel_mmap; 1031 1032 /* If we have maps from kcore then we do not need or want any others */ 1033 if (machine__uses_kcore(machine)) 1034 return 0; 1035 1036 machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix)); 1037 if (machine__is_host(machine)) 1038 kernel_type = DSO_TYPE_KERNEL; 1039 else 1040 kernel_type = DSO_TYPE_GUEST_KERNEL; 1041 1042 is_kernel_mmap = memcmp(event->mmap.filename, 1043 kmmap_prefix, 1044 strlen(kmmap_prefix) - 1) == 0; 1045 if (event->mmap.filename[0] == '/' || 1046 (!is_kernel_mmap && event->mmap.filename[0] == '[')) { 1047 1048 char short_module_name[1024]; 1049 char *name, *dot; 1050 1051 if (event->mmap.filename[0] == '/') { 1052 name = strrchr(event->mmap.filename, '/'); 1053 if (name == NULL) 1054 goto out_problem; 1055 1056 ++name; /* skip / */ 1057 dot = strrchr(name, '.'); 1058 if (dot == NULL) 1059 goto out_problem; 1060 /* On some system, modules are compressed like .ko.gz */ 1061 if (is_supported_compression(dot + 1)) 1062 dot -= 3; 1063 if (!is_kmodule_extension(dot + 1)) 1064 goto out_problem; 1065 snprintf(short_module_name, sizeof(short_module_name), 1066 "[%.*s]", (int)(dot - name), name); 1067 strxfrchar(short_module_name, '-', '_'); 1068 } else 1069 strcpy(short_module_name, event->mmap.filename); 1070 1071 map = machine__new_module(machine, event->mmap.start, 1072 event->mmap.filename); 1073 if (map == NULL) 1074 goto out_problem; 1075 1076 name = strdup(short_module_name); 1077 if (name == NULL) 1078 goto out_problem; 1079 1080 dso__set_short_name(map->dso, name, true); 1081 map->end = map->start + event->mmap.len; 1082 } else if (is_kernel_mmap) { 1083 const char *symbol_name = (event->mmap.filename + 1084 strlen(kmmap_prefix)); 1085 /* 1086 * Should be there already, from the build-id table in 1087 * the header. 1088 */ 1089 struct dso *kernel = NULL; 1090 struct dso *dso; 1091 1092 list_for_each_entry(dso, &machine->kernel_dsos.head, node) { 1093 if (is_kernel_module(dso->long_name, NULL)) 1094 continue; 1095 1096 kernel = dso; 1097 break; 1098 } 1099 1100 if (kernel == NULL) 1101 kernel = __dsos__findnew(&machine->kernel_dsos, 1102 kmmap_prefix); 1103 if (kernel == NULL) 1104 goto out_problem; 1105 1106 kernel->kernel = kernel_type; 1107 if (__machine__create_kernel_maps(machine, kernel) < 0) 1108 goto out_problem; 1109 1110 if (strstr(kernel->long_name, "vmlinux")) 1111 dso__set_short_name(kernel, "[kernel.vmlinux]", false); 1112 1113 machine__set_kernel_mmap_len(machine, event); 1114 1115 /* 1116 * Avoid using a zero address (kptr_restrict) for the ref reloc 1117 * symbol. Effectively having zero here means that at record 1118 * time /proc/sys/kernel/kptr_restrict was non zero. 1119 */ 1120 if (event->mmap.pgoff != 0) { 1121 maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, 1122 symbol_name, 1123 event->mmap.pgoff); 1124 } 1125 1126 if (machine__is_default_guest(machine)) { 1127 /* 1128 * preload dso of guest kernel and modules 1129 */ 1130 dso__load(kernel, machine->vmlinux_maps[MAP__FUNCTION], 1131 NULL); 1132 } 1133 } 1134 return 0; 1135 out_problem: 1136 return -1; 1137 } 1138 1139 int machine__process_mmap2_event(struct machine *machine, 1140 union perf_event *event, 1141 struct perf_sample *sample __maybe_unused) 1142 { 1143 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 1144 struct thread *thread; 1145 struct map *map; 1146 enum map_type type; 1147 int ret = 0; 1148 1149 if (dump_trace) 1150 perf_event__fprintf_mmap2(event, stdout); 1151 1152 if (cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1153 cpumode == PERF_RECORD_MISC_KERNEL) { 1154 ret = machine__process_kernel_mmap_event(machine, event); 1155 if (ret < 0) 1156 goto out_problem; 1157 return 0; 1158 } 1159 1160 thread = machine__findnew_thread(machine, event->mmap2.pid, 1161 event->mmap2.tid); 1162 if (thread == NULL) 1163 goto out_problem; 1164 1165 if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA) 1166 type = MAP__VARIABLE; 1167 else 1168 type = MAP__FUNCTION; 1169 1170 map = map__new(machine, event->mmap2.start, 1171 event->mmap2.len, event->mmap2.pgoff, 1172 event->mmap2.pid, event->mmap2.maj, 1173 event->mmap2.min, event->mmap2.ino, 1174 event->mmap2.ino_generation, 1175 event->mmap2.prot, 1176 event->mmap2.flags, 1177 event->mmap2.filename, type, thread); 1178 1179 if (map == NULL) 1180 goto out_problem; 1181 1182 thread__insert_map(thread, map); 1183 return 0; 1184 1185 out_problem: 1186 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n"); 1187 return 0; 1188 } 1189 1190 int machine__process_mmap_event(struct machine *machine, union perf_event *event, 1191 struct perf_sample *sample __maybe_unused) 1192 { 1193 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 1194 struct thread *thread; 1195 struct map *map; 1196 enum map_type type; 1197 int ret = 0; 1198 1199 if (dump_trace) 1200 perf_event__fprintf_mmap(event, stdout); 1201 1202 if (cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1203 cpumode == PERF_RECORD_MISC_KERNEL) { 1204 ret = machine__process_kernel_mmap_event(machine, event); 1205 if (ret < 0) 1206 goto out_problem; 1207 return 0; 1208 } 1209 1210 thread = machine__findnew_thread(machine, event->mmap.pid, 1211 event->mmap.tid); 1212 if (thread == NULL) 1213 goto out_problem; 1214 1215 if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA) 1216 type = MAP__VARIABLE; 1217 else 1218 type = MAP__FUNCTION; 1219 1220 map = map__new(machine, event->mmap.start, 1221 event->mmap.len, event->mmap.pgoff, 1222 event->mmap.pid, 0, 0, 0, 0, 0, 0, 1223 event->mmap.filename, 1224 type, thread); 1225 1226 if (map == NULL) 1227 goto out_problem; 1228 1229 thread__insert_map(thread, map); 1230 return 0; 1231 1232 out_problem: 1233 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n"); 1234 return 0; 1235 } 1236 1237 static void machine__remove_thread(struct machine *machine, struct thread *th) 1238 { 1239 machine->last_match = NULL; 1240 rb_erase(&th->rb_node, &machine->threads); 1241 /* 1242 * We may have references to this thread, for instance in some hist_entry 1243 * instances, so just move them to a separate list. 1244 */ 1245 list_add_tail(&th->node, &machine->dead_threads); 1246 } 1247 1248 int machine__process_fork_event(struct machine *machine, union perf_event *event, 1249 struct perf_sample *sample) 1250 { 1251 struct thread *thread = machine__find_thread(machine, 1252 event->fork.pid, 1253 event->fork.tid); 1254 struct thread *parent = machine__findnew_thread(machine, 1255 event->fork.ppid, 1256 event->fork.ptid); 1257 1258 /* if a thread currently exists for the thread id remove it */ 1259 if (thread != NULL) 1260 machine__remove_thread(machine, thread); 1261 1262 thread = machine__findnew_thread(machine, event->fork.pid, 1263 event->fork.tid); 1264 if (dump_trace) 1265 perf_event__fprintf_task(event, stdout); 1266 1267 if (thread == NULL || parent == NULL || 1268 thread__fork(thread, parent, sample->time) < 0) { 1269 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n"); 1270 return -1; 1271 } 1272 1273 return 0; 1274 } 1275 1276 int machine__process_exit_event(struct machine *machine, union perf_event *event, 1277 struct perf_sample *sample __maybe_unused) 1278 { 1279 struct thread *thread = machine__find_thread(machine, 1280 event->fork.pid, 1281 event->fork.tid); 1282 1283 if (dump_trace) 1284 perf_event__fprintf_task(event, stdout); 1285 1286 if (thread != NULL) 1287 thread__exited(thread); 1288 1289 return 0; 1290 } 1291 1292 int machine__process_event(struct machine *machine, union perf_event *event, 1293 struct perf_sample *sample) 1294 { 1295 int ret; 1296 1297 switch (event->header.type) { 1298 case PERF_RECORD_COMM: 1299 ret = machine__process_comm_event(machine, event, sample); break; 1300 case PERF_RECORD_MMAP: 1301 ret = machine__process_mmap_event(machine, event, sample); break; 1302 case PERF_RECORD_MMAP2: 1303 ret = machine__process_mmap2_event(machine, event, sample); break; 1304 case PERF_RECORD_FORK: 1305 ret = machine__process_fork_event(machine, event, sample); break; 1306 case PERF_RECORD_EXIT: 1307 ret = machine__process_exit_event(machine, event, sample); break; 1308 case PERF_RECORD_LOST: 1309 ret = machine__process_lost_event(machine, event, sample); break; 1310 default: 1311 ret = -1; 1312 break; 1313 } 1314 1315 return ret; 1316 } 1317 1318 static bool symbol__match_regex(struct symbol *sym, regex_t *regex) 1319 { 1320 if (sym->name && !regexec(regex, sym->name, 0, NULL, 0)) 1321 return 1; 1322 return 0; 1323 } 1324 1325 static void ip__resolve_ams(struct thread *thread, 1326 struct addr_map_symbol *ams, 1327 u64 ip) 1328 { 1329 struct addr_location al; 1330 1331 memset(&al, 0, sizeof(al)); 1332 /* 1333 * We cannot use the header.misc hint to determine whether a 1334 * branch stack address is user, kernel, guest, hypervisor. 1335 * Branches may straddle the kernel/user/hypervisor boundaries. 1336 * Thus, we have to try consecutively until we find a match 1337 * or else, the symbol is unknown 1338 */ 1339 thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al); 1340 1341 ams->addr = ip; 1342 ams->al_addr = al.addr; 1343 ams->sym = al.sym; 1344 ams->map = al.map; 1345 } 1346 1347 static void ip__resolve_data(struct thread *thread, 1348 u8 m, struct addr_map_symbol *ams, u64 addr) 1349 { 1350 struct addr_location al; 1351 1352 memset(&al, 0, sizeof(al)); 1353 1354 thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al); 1355 if (al.map == NULL) { 1356 /* 1357 * some shared data regions have execute bit set which puts 1358 * their mapping in the MAP__FUNCTION type array. 1359 * Check there as a fallback option before dropping the sample. 1360 */ 1361 thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al); 1362 } 1363 1364 ams->addr = addr; 1365 ams->al_addr = al.addr; 1366 ams->sym = al.sym; 1367 ams->map = al.map; 1368 } 1369 1370 struct mem_info *sample__resolve_mem(struct perf_sample *sample, 1371 struct addr_location *al) 1372 { 1373 struct mem_info *mi = zalloc(sizeof(*mi)); 1374 1375 if (!mi) 1376 return NULL; 1377 1378 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip); 1379 ip__resolve_data(al->thread, al->cpumode, &mi->daddr, sample->addr); 1380 mi->data_src.val = sample->data_src; 1381 1382 return mi; 1383 } 1384 1385 static int add_callchain_ip(struct thread *thread, 1386 struct symbol **parent, 1387 struct addr_location *root_al, 1388 bool branch_history, 1389 u64 ip) 1390 { 1391 struct addr_location al; 1392 1393 al.filtered = 0; 1394 al.sym = NULL; 1395 if (branch_history) 1396 thread__find_cpumode_addr_location(thread, MAP__FUNCTION, 1397 ip, &al); 1398 else { 1399 u8 cpumode = PERF_RECORD_MISC_USER; 1400 1401 if (ip >= PERF_CONTEXT_MAX) { 1402 switch (ip) { 1403 case PERF_CONTEXT_HV: 1404 cpumode = PERF_RECORD_MISC_HYPERVISOR; 1405 break; 1406 case PERF_CONTEXT_KERNEL: 1407 cpumode = PERF_RECORD_MISC_KERNEL; 1408 break; 1409 case PERF_CONTEXT_USER: 1410 cpumode = PERF_RECORD_MISC_USER; 1411 break; 1412 default: 1413 pr_debug("invalid callchain context: " 1414 "%"PRId64"\n", (s64) ip); 1415 /* 1416 * It seems the callchain is corrupted. 1417 * Discard all. 1418 */ 1419 callchain_cursor_reset(&callchain_cursor); 1420 return 1; 1421 } 1422 return 0; 1423 } 1424 thread__find_addr_location(thread, cpumode, MAP__FUNCTION, 1425 ip, &al); 1426 } 1427 1428 if (al.sym != NULL) { 1429 if (sort__has_parent && !*parent && 1430 symbol__match_regex(al.sym, &parent_regex)) 1431 *parent = al.sym; 1432 else if (have_ignore_callees && root_al && 1433 symbol__match_regex(al.sym, &ignore_callees_regex)) { 1434 /* Treat this symbol as the root, 1435 forgetting its callees. */ 1436 *root_al = al; 1437 callchain_cursor_reset(&callchain_cursor); 1438 } 1439 } 1440 1441 return callchain_cursor_append(&callchain_cursor, al.addr, al.map, al.sym); 1442 } 1443 1444 struct branch_info *sample__resolve_bstack(struct perf_sample *sample, 1445 struct addr_location *al) 1446 { 1447 unsigned int i; 1448 const struct branch_stack *bs = sample->branch_stack; 1449 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info)); 1450 1451 if (!bi) 1452 return NULL; 1453 1454 for (i = 0; i < bs->nr; i++) { 1455 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to); 1456 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from); 1457 bi[i].flags = bs->entries[i].flags; 1458 } 1459 return bi; 1460 } 1461 1462 #define CHASHSZ 127 1463 #define CHASHBITS 7 1464 #define NO_ENTRY 0xff 1465 1466 #define PERF_MAX_BRANCH_DEPTH 127 1467 1468 /* Remove loops. */ 1469 static int remove_loops(struct branch_entry *l, int nr) 1470 { 1471 int i, j, off; 1472 unsigned char chash[CHASHSZ]; 1473 1474 memset(chash, NO_ENTRY, sizeof(chash)); 1475 1476 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255); 1477 1478 for (i = 0; i < nr; i++) { 1479 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ; 1480 1481 /* no collision handling for now */ 1482 if (chash[h] == NO_ENTRY) { 1483 chash[h] = i; 1484 } else if (l[chash[h]].from == l[i].from) { 1485 bool is_loop = true; 1486 /* check if it is a real loop */ 1487 off = 0; 1488 for (j = chash[h]; j < i && i + off < nr; j++, off++) 1489 if (l[j].from != l[i + off].from) { 1490 is_loop = false; 1491 break; 1492 } 1493 if (is_loop) { 1494 memmove(l + i, l + i + off, 1495 (nr - (i + off)) * sizeof(*l)); 1496 nr -= off; 1497 } 1498 } 1499 } 1500 return nr; 1501 } 1502 1503 static int thread__resolve_callchain_sample(struct thread *thread, 1504 struct ip_callchain *chain, 1505 struct branch_stack *branch, 1506 struct symbol **parent, 1507 struct addr_location *root_al, 1508 int max_stack) 1509 { 1510 int chain_nr = min(max_stack, (int)chain->nr); 1511 int i, j, err; 1512 int skip_idx = -1; 1513 int first_call = 0; 1514 1515 /* 1516 * Based on DWARF debug information, some architectures skip 1517 * a callchain entry saved by the kernel. 1518 */ 1519 if (chain->nr < PERF_MAX_STACK_DEPTH) 1520 skip_idx = arch_skip_callchain_idx(thread, chain); 1521 1522 callchain_cursor_reset(&callchain_cursor); 1523 1524 /* 1525 * Add branches to call stack for easier browsing. This gives 1526 * more context for a sample than just the callers. 1527 * 1528 * This uses individual histograms of paths compared to the 1529 * aggregated histograms the normal LBR mode uses. 1530 * 1531 * Limitations for now: 1532 * - No extra filters 1533 * - No annotations (should annotate somehow) 1534 */ 1535 1536 if (branch && callchain_param.branch_callstack) { 1537 int nr = min(max_stack, (int)branch->nr); 1538 struct branch_entry be[nr]; 1539 1540 if (branch->nr > PERF_MAX_BRANCH_DEPTH) { 1541 pr_warning("corrupted branch chain. skipping...\n"); 1542 goto check_calls; 1543 } 1544 1545 for (i = 0; i < nr; i++) { 1546 if (callchain_param.order == ORDER_CALLEE) { 1547 be[i] = branch->entries[i]; 1548 /* 1549 * Check for overlap into the callchain. 1550 * The return address is one off compared to 1551 * the branch entry. To adjust for this 1552 * assume the calling instruction is not longer 1553 * than 8 bytes. 1554 */ 1555 if (i == skip_idx || 1556 chain->ips[first_call] >= PERF_CONTEXT_MAX) 1557 first_call++; 1558 else if (be[i].from < chain->ips[first_call] && 1559 be[i].from >= chain->ips[first_call] - 8) 1560 first_call++; 1561 } else 1562 be[i] = branch->entries[branch->nr - i - 1]; 1563 } 1564 1565 nr = remove_loops(be, nr); 1566 1567 for (i = 0; i < nr; i++) { 1568 err = add_callchain_ip(thread, parent, root_al, 1569 true, be[i].to); 1570 if (!err) 1571 err = add_callchain_ip(thread, parent, root_al, 1572 true, be[i].from); 1573 if (err == -EINVAL) 1574 break; 1575 if (err) 1576 return err; 1577 } 1578 chain_nr -= nr; 1579 } 1580 1581 check_calls: 1582 if (chain->nr > PERF_MAX_STACK_DEPTH) { 1583 pr_warning("corrupted callchain. skipping...\n"); 1584 return 0; 1585 } 1586 1587 for (i = first_call; i < chain_nr; i++) { 1588 u64 ip; 1589 1590 if (callchain_param.order == ORDER_CALLEE) 1591 j = i; 1592 else 1593 j = chain->nr - i - 1; 1594 1595 #ifdef HAVE_SKIP_CALLCHAIN_IDX 1596 if (j == skip_idx) 1597 continue; 1598 #endif 1599 ip = chain->ips[j]; 1600 1601 err = add_callchain_ip(thread, parent, root_al, false, ip); 1602 1603 if (err) 1604 return (err < 0) ? err : 0; 1605 } 1606 1607 return 0; 1608 } 1609 1610 static int unwind_entry(struct unwind_entry *entry, void *arg) 1611 { 1612 struct callchain_cursor *cursor = arg; 1613 return callchain_cursor_append(cursor, entry->ip, 1614 entry->map, entry->sym); 1615 } 1616 1617 int thread__resolve_callchain(struct thread *thread, 1618 struct perf_evsel *evsel, 1619 struct perf_sample *sample, 1620 struct symbol **parent, 1621 struct addr_location *root_al, 1622 int max_stack) 1623 { 1624 int ret = thread__resolve_callchain_sample(thread, sample->callchain, 1625 sample->branch_stack, 1626 parent, root_al, max_stack); 1627 if (ret) 1628 return ret; 1629 1630 /* Can we do dwarf post unwind? */ 1631 if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) && 1632 (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER))) 1633 return 0; 1634 1635 /* Bail out if nothing was captured. */ 1636 if ((!sample->user_regs.regs) || 1637 (!sample->user_stack.size)) 1638 return 0; 1639 1640 return unwind__get_entries(unwind_entry, &callchain_cursor, 1641 thread, sample, max_stack); 1642 1643 } 1644 1645 int machine__for_each_thread(struct machine *machine, 1646 int (*fn)(struct thread *thread, void *p), 1647 void *priv) 1648 { 1649 struct rb_node *nd; 1650 struct thread *thread; 1651 int rc = 0; 1652 1653 for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) { 1654 thread = rb_entry(nd, struct thread, rb_node); 1655 rc = fn(thread, priv); 1656 if (rc != 0) 1657 return rc; 1658 } 1659 1660 list_for_each_entry(thread, &machine->dead_threads, node) { 1661 rc = fn(thread, priv); 1662 if (rc != 0) 1663 return rc; 1664 } 1665 return rc; 1666 } 1667 1668 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool, 1669 struct target *target, struct thread_map *threads, 1670 perf_event__handler_t process, bool data_mmap) 1671 { 1672 if (target__has_task(target)) 1673 return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap); 1674 else if (target__has_cpu(target)) 1675 return perf_event__synthesize_threads(tool, process, machine, data_mmap); 1676 /* command specified */ 1677 return 0; 1678 } 1679 1680 pid_t machine__get_current_tid(struct machine *machine, int cpu) 1681 { 1682 if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid) 1683 return -1; 1684 1685 return machine->current_tid[cpu]; 1686 } 1687 1688 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid, 1689 pid_t tid) 1690 { 1691 struct thread *thread; 1692 1693 if (cpu < 0) 1694 return -EINVAL; 1695 1696 if (!machine->current_tid) { 1697 int i; 1698 1699 machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t)); 1700 if (!machine->current_tid) 1701 return -ENOMEM; 1702 for (i = 0; i < MAX_NR_CPUS; i++) 1703 machine->current_tid[i] = -1; 1704 } 1705 1706 if (cpu >= MAX_NR_CPUS) { 1707 pr_err("Requested CPU %d too large. ", cpu); 1708 pr_err("Consider raising MAX_NR_CPUS\n"); 1709 return -EINVAL; 1710 } 1711 1712 machine->current_tid[cpu] = tid; 1713 1714 thread = machine__findnew_thread(machine, pid, tid); 1715 if (!thread) 1716 return -ENOMEM; 1717 1718 thread->cpu = cpu; 1719 1720 return 0; 1721 } 1722 1723 int machine__get_kernel_start(struct machine *machine) 1724 { 1725 struct map *map = machine__kernel_map(machine, MAP__FUNCTION); 1726 int err = 0; 1727 1728 /* 1729 * The only addresses above 2^63 are kernel addresses of a 64-bit 1730 * kernel. Note that addresses are unsigned so that on a 32-bit system 1731 * all addresses including kernel addresses are less than 2^32. In 1732 * that case (32-bit system), if the kernel mapping is unknown, all 1733 * addresses will be assumed to be in user space - see 1734 * machine__kernel_ip(). 1735 */ 1736 machine->kernel_start = 1ULL << 63; 1737 if (map) { 1738 err = map__load(map, machine->symbol_filter); 1739 if (map->start) 1740 machine->kernel_start = map->start; 1741 } 1742 return err; 1743 } 1744