xref: /openbmc/linux/tools/perf/util/machine.c (revision 83268fa6b43cefb60ee188fd53ed49120d3ae4f4)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include "callchain.h"
7 #include "debug.h"
8 #include "event.h"
9 #include "evsel.h"
10 #include "hist.h"
11 #include "machine.h"
12 #include "map.h"
13 #include "sort.h"
14 #include "strlist.h"
15 #include "thread.h"
16 #include "vdso.h"
17 #include <stdbool.h>
18 #include <sys/types.h>
19 #include <sys/stat.h>
20 #include <unistd.h>
21 #include "unwind.h"
22 #include "linux/hash.h"
23 #include "asm/bug.h"
24 
25 #include "sane_ctype.h"
26 #include <symbol/kallsyms.h>
27 #include <linux/mman.h>
28 
29 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
30 
31 static void dsos__init(struct dsos *dsos)
32 {
33 	INIT_LIST_HEAD(&dsos->head);
34 	dsos->root = RB_ROOT;
35 	init_rwsem(&dsos->lock);
36 }
37 
38 static void machine__threads_init(struct machine *machine)
39 {
40 	int i;
41 
42 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
43 		struct threads *threads = &machine->threads[i];
44 		threads->entries = RB_ROOT;
45 		init_rwsem(&threads->lock);
46 		threads->nr = 0;
47 		INIT_LIST_HEAD(&threads->dead);
48 		threads->last_match = NULL;
49 	}
50 }
51 
52 static int machine__set_mmap_name(struct machine *machine)
53 {
54 	if (machine__is_host(machine))
55 		machine->mmap_name = strdup("[kernel.kallsyms]");
56 	else if (machine__is_default_guest(machine))
57 		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
58 	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
59 			  machine->pid) < 0)
60 		machine->mmap_name = NULL;
61 
62 	return machine->mmap_name ? 0 : -ENOMEM;
63 }
64 
65 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
66 {
67 	int err = -ENOMEM;
68 
69 	memset(machine, 0, sizeof(*machine));
70 	map_groups__init(&machine->kmaps, machine);
71 	RB_CLEAR_NODE(&machine->rb_node);
72 	dsos__init(&machine->dsos);
73 
74 	machine__threads_init(machine);
75 
76 	machine->vdso_info = NULL;
77 	machine->env = NULL;
78 
79 	machine->pid = pid;
80 
81 	machine->id_hdr_size = 0;
82 	machine->kptr_restrict_warned = false;
83 	machine->comm_exec = false;
84 	machine->kernel_start = 0;
85 	machine->vmlinux_map = NULL;
86 
87 	machine->root_dir = strdup(root_dir);
88 	if (machine->root_dir == NULL)
89 		return -ENOMEM;
90 
91 	if (machine__set_mmap_name(machine))
92 		goto out;
93 
94 	if (pid != HOST_KERNEL_ID) {
95 		struct thread *thread = machine__findnew_thread(machine, -1,
96 								pid);
97 		char comm[64];
98 
99 		if (thread == NULL)
100 			goto out;
101 
102 		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
103 		thread__set_comm(thread, comm, 0);
104 		thread__put(thread);
105 	}
106 
107 	machine->current_tid = NULL;
108 	err = 0;
109 
110 out:
111 	if (err) {
112 		zfree(&machine->root_dir);
113 		zfree(&machine->mmap_name);
114 	}
115 	return 0;
116 }
117 
118 struct machine *machine__new_host(void)
119 {
120 	struct machine *machine = malloc(sizeof(*machine));
121 
122 	if (machine != NULL) {
123 		machine__init(machine, "", HOST_KERNEL_ID);
124 
125 		if (machine__create_kernel_maps(machine) < 0)
126 			goto out_delete;
127 	}
128 
129 	return machine;
130 out_delete:
131 	free(machine);
132 	return NULL;
133 }
134 
135 struct machine *machine__new_kallsyms(void)
136 {
137 	struct machine *machine = machine__new_host();
138 	/*
139 	 * FIXME:
140 	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitely
141 	 *    ask for not using the kcore parsing code, once this one is fixed
142 	 *    to create a map per module.
143 	 */
144 	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
145 		machine__delete(machine);
146 		machine = NULL;
147 	}
148 
149 	return machine;
150 }
151 
152 static void dsos__purge(struct dsos *dsos)
153 {
154 	struct dso *pos, *n;
155 
156 	down_write(&dsos->lock);
157 
158 	list_for_each_entry_safe(pos, n, &dsos->head, node) {
159 		RB_CLEAR_NODE(&pos->rb_node);
160 		pos->root = NULL;
161 		list_del_init(&pos->node);
162 		dso__put(pos);
163 	}
164 
165 	up_write(&dsos->lock);
166 }
167 
168 static void dsos__exit(struct dsos *dsos)
169 {
170 	dsos__purge(dsos);
171 	exit_rwsem(&dsos->lock);
172 }
173 
174 void machine__delete_threads(struct machine *machine)
175 {
176 	struct rb_node *nd;
177 	int i;
178 
179 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
180 		struct threads *threads = &machine->threads[i];
181 		down_write(&threads->lock);
182 		nd = rb_first(&threads->entries);
183 		while (nd) {
184 			struct thread *t = rb_entry(nd, struct thread, rb_node);
185 
186 			nd = rb_next(nd);
187 			__machine__remove_thread(machine, t, false);
188 		}
189 		up_write(&threads->lock);
190 	}
191 }
192 
193 void machine__exit(struct machine *machine)
194 {
195 	int i;
196 
197 	if (machine == NULL)
198 		return;
199 
200 	machine__destroy_kernel_maps(machine);
201 	map_groups__exit(&machine->kmaps);
202 	dsos__exit(&machine->dsos);
203 	machine__exit_vdso(machine);
204 	zfree(&machine->root_dir);
205 	zfree(&machine->mmap_name);
206 	zfree(&machine->current_tid);
207 
208 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
209 		struct threads *threads = &machine->threads[i];
210 		exit_rwsem(&threads->lock);
211 	}
212 }
213 
214 void machine__delete(struct machine *machine)
215 {
216 	if (machine) {
217 		machine__exit(machine);
218 		free(machine);
219 	}
220 }
221 
222 void machines__init(struct machines *machines)
223 {
224 	machine__init(&machines->host, "", HOST_KERNEL_ID);
225 	machines->guests = RB_ROOT;
226 }
227 
228 void machines__exit(struct machines *machines)
229 {
230 	machine__exit(&machines->host);
231 	/* XXX exit guest */
232 }
233 
234 struct machine *machines__add(struct machines *machines, pid_t pid,
235 			      const char *root_dir)
236 {
237 	struct rb_node **p = &machines->guests.rb_node;
238 	struct rb_node *parent = NULL;
239 	struct machine *pos, *machine = malloc(sizeof(*machine));
240 
241 	if (machine == NULL)
242 		return NULL;
243 
244 	if (machine__init(machine, root_dir, pid) != 0) {
245 		free(machine);
246 		return NULL;
247 	}
248 
249 	while (*p != NULL) {
250 		parent = *p;
251 		pos = rb_entry(parent, struct machine, rb_node);
252 		if (pid < pos->pid)
253 			p = &(*p)->rb_left;
254 		else
255 			p = &(*p)->rb_right;
256 	}
257 
258 	rb_link_node(&machine->rb_node, parent, p);
259 	rb_insert_color(&machine->rb_node, &machines->guests);
260 
261 	return machine;
262 }
263 
264 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
265 {
266 	struct rb_node *nd;
267 
268 	machines->host.comm_exec = comm_exec;
269 
270 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
271 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
272 
273 		machine->comm_exec = comm_exec;
274 	}
275 }
276 
277 struct machine *machines__find(struct machines *machines, pid_t pid)
278 {
279 	struct rb_node **p = &machines->guests.rb_node;
280 	struct rb_node *parent = NULL;
281 	struct machine *machine;
282 	struct machine *default_machine = NULL;
283 
284 	if (pid == HOST_KERNEL_ID)
285 		return &machines->host;
286 
287 	while (*p != NULL) {
288 		parent = *p;
289 		machine = rb_entry(parent, struct machine, rb_node);
290 		if (pid < machine->pid)
291 			p = &(*p)->rb_left;
292 		else if (pid > machine->pid)
293 			p = &(*p)->rb_right;
294 		else
295 			return machine;
296 		if (!machine->pid)
297 			default_machine = machine;
298 	}
299 
300 	return default_machine;
301 }
302 
303 struct machine *machines__findnew(struct machines *machines, pid_t pid)
304 {
305 	char path[PATH_MAX];
306 	const char *root_dir = "";
307 	struct machine *machine = machines__find(machines, pid);
308 
309 	if (machine && (machine->pid == pid))
310 		goto out;
311 
312 	if ((pid != HOST_KERNEL_ID) &&
313 	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
314 	    (symbol_conf.guestmount)) {
315 		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
316 		if (access(path, R_OK)) {
317 			static struct strlist *seen;
318 
319 			if (!seen)
320 				seen = strlist__new(NULL, NULL);
321 
322 			if (!strlist__has_entry(seen, path)) {
323 				pr_err("Can't access file %s\n", path);
324 				strlist__add(seen, path);
325 			}
326 			machine = NULL;
327 			goto out;
328 		}
329 		root_dir = path;
330 	}
331 
332 	machine = machines__add(machines, pid, root_dir);
333 out:
334 	return machine;
335 }
336 
337 void machines__process_guests(struct machines *machines,
338 			      machine__process_t process, void *data)
339 {
340 	struct rb_node *nd;
341 
342 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
343 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
344 		process(pos, data);
345 	}
346 }
347 
348 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
349 {
350 	struct rb_node *node;
351 	struct machine *machine;
352 
353 	machines->host.id_hdr_size = id_hdr_size;
354 
355 	for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
356 		machine = rb_entry(node, struct machine, rb_node);
357 		machine->id_hdr_size = id_hdr_size;
358 	}
359 
360 	return;
361 }
362 
363 static void machine__update_thread_pid(struct machine *machine,
364 				       struct thread *th, pid_t pid)
365 {
366 	struct thread *leader;
367 
368 	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
369 		return;
370 
371 	th->pid_ = pid;
372 
373 	if (th->pid_ == th->tid)
374 		return;
375 
376 	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
377 	if (!leader)
378 		goto out_err;
379 
380 	if (!leader->mg)
381 		leader->mg = map_groups__new(machine);
382 
383 	if (!leader->mg)
384 		goto out_err;
385 
386 	if (th->mg == leader->mg)
387 		return;
388 
389 	if (th->mg) {
390 		/*
391 		 * Maps are created from MMAP events which provide the pid and
392 		 * tid.  Consequently there never should be any maps on a thread
393 		 * with an unknown pid.  Just print an error if there are.
394 		 */
395 		if (!map_groups__empty(th->mg))
396 			pr_err("Discarding thread maps for %d:%d\n",
397 			       th->pid_, th->tid);
398 		map_groups__put(th->mg);
399 	}
400 
401 	th->mg = map_groups__get(leader->mg);
402 out_put:
403 	thread__put(leader);
404 	return;
405 out_err:
406 	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
407 	goto out_put;
408 }
409 
410 /*
411  * Front-end cache - TID lookups come in blocks,
412  * so most of the time we dont have to look up
413  * the full rbtree:
414  */
415 static struct thread*
416 __threads__get_last_match(struct threads *threads, struct machine *machine,
417 			  int pid, int tid)
418 {
419 	struct thread *th;
420 
421 	th = threads->last_match;
422 	if (th != NULL) {
423 		if (th->tid == tid) {
424 			machine__update_thread_pid(machine, th, pid);
425 			return thread__get(th);
426 		}
427 
428 		threads->last_match = NULL;
429 	}
430 
431 	return NULL;
432 }
433 
434 static struct thread*
435 threads__get_last_match(struct threads *threads, struct machine *machine,
436 			int pid, int tid)
437 {
438 	struct thread *th = NULL;
439 
440 	if (perf_singlethreaded)
441 		th = __threads__get_last_match(threads, machine, pid, tid);
442 
443 	return th;
444 }
445 
446 static void
447 __threads__set_last_match(struct threads *threads, struct thread *th)
448 {
449 	threads->last_match = th;
450 }
451 
452 static void
453 threads__set_last_match(struct threads *threads, struct thread *th)
454 {
455 	if (perf_singlethreaded)
456 		__threads__set_last_match(threads, th);
457 }
458 
459 /*
460  * Caller must eventually drop thread->refcnt returned with a successful
461  * lookup/new thread inserted.
462  */
463 static struct thread *____machine__findnew_thread(struct machine *machine,
464 						  struct threads *threads,
465 						  pid_t pid, pid_t tid,
466 						  bool create)
467 {
468 	struct rb_node **p = &threads->entries.rb_node;
469 	struct rb_node *parent = NULL;
470 	struct thread *th;
471 
472 	th = threads__get_last_match(threads, machine, pid, tid);
473 	if (th)
474 		return th;
475 
476 	while (*p != NULL) {
477 		parent = *p;
478 		th = rb_entry(parent, struct thread, rb_node);
479 
480 		if (th->tid == tid) {
481 			threads__set_last_match(threads, th);
482 			machine__update_thread_pid(machine, th, pid);
483 			return thread__get(th);
484 		}
485 
486 		if (tid < th->tid)
487 			p = &(*p)->rb_left;
488 		else
489 			p = &(*p)->rb_right;
490 	}
491 
492 	if (!create)
493 		return NULL;
494 
495 	th = thread__new(pid, tid);
496 	if (th != NULL) {
497 		rb_link_node(&th->rb_node, parent, p);
498 		rb_insert_color(&th->rb_node, &threads->entries);
499 
500 		/*
501 		 * We have to initialize map_groups separately
502 		 * after rb tree is updated.
503 		 *
504 		 * The reason is that we call machine__findnew_thread
505 		 * within thread__init_map_groups to find the thread
506 		 * leader and that would screwed the rb tree.
507 		 */
508 		if (thread__init_map_groups(th, machine)) {
509 			rb_erase_init(&th->rb_node, &threads->entries);
510 			RB_CLEAR_NODE(&th->rb_node);
511 			thread__put(th);
512 			return NULL;
513 		}
514 		/*
515 		 * It is now in the rbtree, get a ref
516 		 */
517 		thread__get(th);
518 		threads__set_last_match(threads, th);
519 		++threads->nr;
520 	}
521 
522 	return th;
523 }
524 
525 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
526 {
527 	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
528 }
529 
530 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
531 				       pid_t tid)
532 {
533 	struct threads *threads = machine__threads(machine, tid);
534 	struct thread *th;
535 
536 	down_write(&threads->lock);
537 	th = __machine__findnew_thread(machine, pid, tid);
538 	up_write(&threads->lock);
539 	return th;
540 }
541 
542 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
543 				    pid_t tid)
544 {
545 	struct threads *threads = machine__threads(machine, tid);
546 	struct thread *th;
547 
548 	down_read(&threads->lock);
549 	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
550 	up_read(&threads->lock);
551 	return th;
552 }
553 
554 struct comm *machine__thread_exec_comm(struct machine *machine,
555 				       struct thread *thread)
556 {
557 	if (machine->comm_exec)
558 		return thread__exec_comm(thread);
559 	else
560 		return thread__comm(thread);
561 }
562 
563 int machine__process_comm_event(struct machine *machine, union perf_event *event,
564 				struct perf_sample *sample)
565 {
566 	struct thread *thread = machine__findnew_thread(machine,
567 							event->comm.pid,
568 							event->comm.tid);
569 	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
570 	int err = 0;
571 
572 	if (exec)
573 		machine->comm_exec = true;
574 
575 	if (dump_trace)
576 		perf_event__fprintf_comm(event, stdout);
577 
578 	if (thread == NULL ||
579 	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
580 		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
581 		err = -1;
582 	}
583 
584 	thread__put(thread);
585 
586 	return err;
587 }
588 
589 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
590 				      union perf_event *event,
591 				      struct perf_sample *sample __maybe_unused)
592 {
593 	struct thread *thread = machine__findnew_thread(machine,
594 							event->namespaces.pid,
595 							event->namespaces.tid);
596 	int err = 0;
597 
598 	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
599 		  "\nWARNING: kernel seems to support more namespaces than perf"
600 		  " tool.\nTry updating the perf tool..\n\n");
601 
602 	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
603 		  "\nWARNING: perf tool seems to support more namespaces than"
604 		  " the kernel.\nTry updating the kernel..\n\n");
605 
606 	if (dump_trace)
607 		perf_event__fprintf_namespaces(event, stdout);
608 
609 	if (thread == NULL ||
610 	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
611 		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
612 		err = -1;
613 	}
614 
615 	thread__put(thread);
616 
617 	return err;
618 }
619 
620 int machine__process_lost_event(struct machine *machine __maybe_unused,
621 				union perf_event *event, struct perf_sample *sample __maybe_unused)
622 {
623 	dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
624 		    event->lost.id, event->lost.lost);
625 	return 0;
626 }
627 
628 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
629 					union perf_event *event, struct perf_sample *sample)
630 {
631 	dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
632 		    sample->id, event->lost_samples.lost);
633 	return 0;
634 }
635 
636 static struct dso *machine__findnew_module_dso(struct machine *machine,
637 					       struct kmod_path *m,
638 					       const char *filename)
639 {
640 	struct dso *dso;
641 
642 	down_write(&machine->dsos.lock);
643 
644 	dso = __dsos__find(&machine->dsos, m->name, true);
645 	if (!dso) {
646 		dso = __dsos__addnew(&machine->dsos, m->name);
647 		if (dso == NULL)
648 			goto out_unlock;
649 
650 		dso__set_module_info(dso, m, machine);
651 		dso__set_long_name(dso, strdup(filename), true);
652 	}
653 
654 	dso__get(dso);
655 out_unlock:
656 	up_write(&machine->dsos.lock);
657 	return dso;
658 }
659 
660 int machine__process_aux_event(struct machine *machine __maybe_unused,
661 			       union perf_event *event)
662 {
663 	if (dump_trace)
664 		perf_event__fprintf_aux(event, stdout);
665 	return 0;
666 }
667 
668 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
669 					union perf_event *event)
670 {
671 	if (dump_trace)
672 		perf_event__fprintf_itrace_start(event, stdout);
673 	return 0;
674 }
675 
676 int machine__process_switch_event(struct machine *machine __maybe_unused,
677 				  union perf_event *event)
678 {
679 	if (dump_trace)
680 		perf_event__fprintf_switch(event, stdout);
681 	return 0;
682 }
683 
684 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
685 {
686 	const char *dup_filename;
687 
688 	if (!filename || !dso || !dso->long_name)
689 		return;
690 	if (dso->long_name[0] != '[')
691 		return;
692 	if (!strchr(filename, '/'))
693 		return;
694 
695 	dup_filename = strdup(filename);
696 	if (!dup_filename)
697 		return;
698 
699 	dso__set_long_name(dso, dup_filename, true);
700 }
701 
702 struct map *machine__findnew_module_map(struct machine *machine, u64 start,
703 					const char *filename)
704 {
705 	struct map *map = NULL;
706 	struct dso *dso = NULL;
707 	struct kmod_path m;
708 
709 	if (kmod_path__parse_name(&m, filename))
710 		return NULL;
711 
712 	map = map_groups__find_by_name(&machine->kmaps, m.name);
713 	if (map) {
714 		/*
715 		 * If the map's dso is an offline module, give dso__load()
716 		 * a chance to find the file path of that module by fixing
717 		 * long_name.
718 		 */
719 		dso__adjust_kmod_long_name(map->dso, filename);
720 		goto out;
721 	}
722 
723 	dso = machine__findnew_module_dso(machine, &m, filename);
724 	if (dso == NULL)
725 		goto out;
726 
727 	map = map__new2(start, dso);
728 	if (map == NULL)
729 		goto out;
730 
731 	map_groups__insert(&machine->kmaps, map);
732 
733 	/* Put the map here because map_groups__insert alread got it */
734 	map__put(map);
735 out:
736 	/* put the dso here, corresponding to  machine__findnew_module_dso */
737 	dso__put(dso);
738 	free(m.name);
739 	return map;
740 }
741 
742 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
743 {
744 	struct rb_node *nd;
745 	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
746 
747 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
748 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
749 		ret += __dsos__fprintf(&pos->dsos.head, fp);
750 	}
751 
752 	return ret;
753 }
754 
755 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
756 				     bool (skip)(struct dso *dso, int parm), int parm)
757 {
758 	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
759 }
760 
761 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
762 				     bool (skip)(struct dso *dso, int parm), int parm)
763 {
764 	struct rb_node *nd;
765 	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
766 
767 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
768 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
769 		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
770 	}
771 	return ret;
772 }
773 
774 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
775 {
776 	int i;
777 	size_t printed = 0;
778 	struct dso *kdso = machine__kernel_map(machine)->dso;
779 
780 	if (kdso->has_build_id) {
781 		char filename[PATH_MAX];
782 		if (dso__build_id_filename(kdso, filename, sizeof(filename),
783 					   false))
784 			printed += fprintf(fp, "[0] %s\n", filename);
785 	}
786 
787 	for (i = 0; i < vmlinux_path__nr_entries; ++i)
788 		printed += fprintf(fp, "[%d] %s\n",
789 				   i + kdso->has_build_id, vmlinux_path[i]);
790 
791 	return printed;
792 }
793 
794 size_t machine__fprintf(struct machine *machine, FILE *fp)
795 {
796 	struct rb_node *nd;
797 	size_t ret;
798 	int i;
799 
800 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
801 		struct threads *threads = &machine->threads[i];
802 
803 		down_read(&threads->lock);
804 
805 		ret = fprintf(fp, "Threads: %u\n", threads->nr);
806 
807 		for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
808 			struct thread *pos = rb_entry(nd, struct thread, rb_node);
809 
810 			ret += thread__fprintf(pos, fp);
811 		}
812 
813 		up_read(&threads->lock);
814 	}
815 	return ret;
816 }
817 
818 static struct dso *machine__get_kernel(struct machine *machine)
819 {
820 	const char *vmlinux_name = machine->mmap_name;
821 	struct dso *kernel;
822 
823 	if (machine__is_host(machine)) {
824 		if (symbol_conf.vmlinux_name)
825 			vmlinux_name = symbol_conf.vmlinux_name;
826 
827 		kernel = machine__findnew_kernel(machine, vmlinux_name,
828 						 "[kernel]", DSO_TYPE_KERNEL);
829 	} else {
830 		if (symbol_conf.default_guest_vmlinux_name)
831 			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
832 
833 		kernel = machine__findnew_kernel(machine, vmlinux_name,
834 						 "[guest.kernel]",
835 						 DSO_TYPE_GUEST_KERNEL);
836 	}
837 
838 	if (kernel != NULL && (!kernel->has_build_id))
839 		dso__read_running_kernel_build_id(kernel, machine);
840 
841 	return kernel;
842 }
843 
844 struct process_args {
845 	u64 start;
846 };
847 
848 void machine__get_kallsyms_filename(struct machine *machine, char *buf,
849 				    size_t bufsz)
850 {
851 	if (machine__is_default_guest(machine))
852 		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
853 	else
854 		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
855 }
856 
857 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
858 
859 /* Figure out the start address of kernel map from /proc/kallsyms.
860  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
861  * symbol_name if it's not that important.
862  */
863 static int machine__get_running_kernel_start(struct machine *machine,
864 					     const char **symbol_name, u64 *start)
865 {
866 	char filename[PATH_MAX];
867 	int i, err = -1;
868 	const char *name;
869 	u64 addr = 0;
870 
871 	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
872 
873 	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
874 		return 0;
875 
876 	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
877 		err = kallsyms__get_function_start(filename, name, &addr);
878 		if (!err)
879 			break;
880 	}
881 
882 	if (err)
883 		return -1;
884 
885 	if (symbol_name)
886 		*symbol_name = name;
887 
888 	*start = addr;
889 	return 0;
890 }
891 
892 int machine__create_extra_kernel_map(struct machine *machine,
893 				     struct dso *kernel,
894 				     struct extra_kernel_map *xm)
895 {
896 	struct kmap *kmap;
897 	struct map *map;
898 
899 	map = map__new2(xm->start, kernel);
900 	if (!map)
901 		return -1;
902 
903 	map->end   = xm->end;
904 	map->pgoff = xm->pgoff;
905 
906 	kmap = map__kmap(map);
907 
908 	kmap->kmaps = &machine->kmaps;
909 	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
910 
911 	map_groups__insert(&machine->kmaps, map);
912 
913 	pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
914 		  kmap->name, map->start, map->end);
915 
916 	map__put(map);
917 
918 	return 0;
919 }
920 
921 static u64 find_entry_trampoline(struct dso *dso)
922 {
923 	/* Duplicates are removed so lookup all aliases */
924 	const char *syms[] = {
925 		"_entry_trampoline",
926 		"__entry_trampoline_start",
927 		"entry_SYSCALL_64_trampoline",
928 	};
929 	struct symbol *sym = dso__first_symbol(dso);
930 	unsigned int i;
931 
932 	for (; sym; sym = dso__next_symbol(sym)) {
933 		if (sym->binding != STB_GLOBAL)
934 			continue;
935 		for (i = 0; i < ARRAY_SIZE(syms); i++) {
936 			if (!strcmp(sym->name, syms[i]))
937 				return sym->start;
938 		}
939 	}
940 
941 	return 0;
942 }
943 
944 /*
945  * These values can be used for kernels that do not have symbols for the entry
946  * trampolines in kallsyms.
947  */
948 #define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
949 #define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
950 #define X86_64_ENTRY_TRAMPOLINE		0x6000
951 
952 /* Map x86_64 PTI entry trampolines */
953 int machine__map_x86_64_entry_trampolines(struct machine *machine,
954 					  struct dso *kernel)
955 {
956 	struct map_groups *kmaps = &machine->kmaps;
957 	struct maps *maps = &kmaps->maps;
958 	int nr_cpus_avail, cpu;
959 	bool found = false;
960 	struct map *map;
961 	u64 pgoff;
962 
963 	/*
964 	 * In the vmlinux case, pgoff is a virtual address which must now be
965 	 * mapped to a vmlinux offset.
966 	 */
967 	for (map = maps__first(maps); map; map = map__next(map)) {
968 		struct kmap *kmap = __map__kmap(map);
969 		struct map *dest_map;
970 
971 		if (!kmap || !is_entry_trampoline(kmap->name))
972 			continue;
973 
974 		dest_map = map_groups__find(kmaps, map->pgoff);
975 		if (dest_map != map)
976 			map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
977 		found = true;
978 	}
979 	if (found || machine->trampolines_mapped)
980 		return 0;
981 
982 	pgoff = find_entry_trampoline(kernel);
983 	if (!pgoff)
984 		return 0;
985 
986 	nr_cpus_avail = machine__nr_cpus_avail(machine);
987 
988 	/* Add a 1 page map for each CPU's entry trampoline */
989 	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
990 		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
991 			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
992 			 X86_64_ENTRY_TRAMPOLINE;
993 		struct extra_kernel_map xm = {
994 			.start = va,
995 			.end   = va + page_size,
996 			.pgoff = pgoff,
997 		};
998 
999 		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1000 
1001 		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1002 			return -1;
1003 	}
1004 
1005 	machine->trampolines_mapped = nr_cpus_avail;
1006 
1007 	return 0;
1008 }
1009 
1010 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1011 					     struct dso *kernel __maybe_unused)
1012 {
1013 	return 0;
1014 }
1015 
1016 static int
1017 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1018 {
1019 	struct kmap *kmap;
1020 	struct map *map;
1021 
1022 	/* In case of renewal the kernel map, destroy previous one */
1023 	machine__destroy_kernel_maps(machine);
1024 
1025 	machine->vmlinux_map = map__new2(0, kernel);
1026 	if (machine->vmlinux_map == NULL)
1027 		return -1;
1028 
1029 	machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1030 	map = machine__kernel_map(machine);
1031 	kmap = map__kmap(map);
1032 	if (!kmap)
1033 		return -1;
1034 
1035 	kmap->kmaps = &machine->kmaps;
1036 	map_groups__insert(&machine->kmaps, map);
1037 
1038 	return 0;
1039 }
1040 
1041 void machine__destroy_kernel_maps(struct machine *machine)
1042 {
1043 	struct kmap *kmap;
1044 	struct map *map = machine__kernel_map(machine);
1045 
1046 	if (map == NULL)
1047 		return;
1048 
1049 	kmap = map__kmap(map);
1050 	map_groups__remove(&machine->kmaps, map);
1051 	if (kmap && kmap->ref_reloc_sym) {
1052 		zfree((char **)&kmap->ref_reloc_sym->name);
1053 		zfree(&kmap->ref_reloc_sym);
1054 	}
1055 
1056 	map__zput(machine->vmlinux_map);
1057 }
1058 
1059 int machines__create_guest_kernel_maps(struct machines *machines)
1060 {
1061 	int ret = 0;
1062 	struct dirent **namelist = NULL;
1063 	int i, items = 0;
1064 	char path[PATH_MAX];
1065 	pid_t pid;
1066 	char *endp;
1067 
1068 	if (symbol_conf.default_guest_vmlinux_name ||
1069 	    symbol_conf.default_guest_modules ||
1070 	    symbol_conf.default_guest_kallsyms) {
1071 		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1072 	}
1073 
1074 	if (symbol_conf.guestmount) {
1075 		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1076 		if (items <= 0)
1077 			return -ENOENT;
1078 		for (i = 0; i < items; i++) {
1079 			if (!isdigit(namelist[i]->d_name[0])) {
1080 				/* Filter out . and .. */
1081 				continue;
1082 			}
1083 			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1084 			if ((*endp != '\0') ||
1085 			    (endp == namelist[i]->d_name) ||
1086 			    (errno == ERANGE)) {
1087 				pr_debug("invalid directory (%s). Skipping.\n",
1088 					 namelist[i]->d_name);
1089 				continue;
1090 			}
1091 			sprintf(path, "%s/%s/proc/kallsyms",
1092 				symbol_conf.guestmount,
1093 				namelist[i]->d_name);
1094 			ret = access(path, R_OK);
1095 			if (ret) {
1096 				pr_debug("Can't access file %s\n", path);
1097 				goto failure;
1098 			}
1099 			machines__create_kernel_maps(machines, pid);
1100 		}
1101 failure:
1102 		free(namelist);
1103 	}
1104 
1105 	return ret;
1106 }
1107 
1108 void machines__destroy_kernel_maps(struct machines *machines)
1109 {
1110 	struct rb_node *next = rb_first(&machines->guests);
1111 
1112 	machine__destroy_kernel_maps(&machines->host);
1113 
1114 	while (next) {
1115 		struct machine *pos = rb_entry(next, struct machine, rb_node);
1116 
1117 		next = rb_next(&pos->rb_node);
1118 		rb_erase(&pos->rb_node, &machines->guests);
1119 		machine__delete(pos);
1120 	}
1121 }
1122 
1123 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1124 {
1125 	struct machine *machine = machines__findnew(machines, pid);
1126 
1127 	if (machine == NULL)
1128 		return -1;
1129 
1130 	return machine__create_kernel_maps(machine);
1131 }
1132 
1133 int machine__load_kallsyms(struct machine *machine, const char *filename)
1134 {
1135 	struct map *map = machine__kernel_map(machine);
1136 	int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1137 
1138 	if (ret > 0) {
1139 		dso__set_loaded(map->dso);
1140 		/*
1141 		 * Since /proc/kallsyms will have multiple sessions for the
1142 		 * kernel, with modules between them, fixup the end of all
1143 		 * sections.
1144 		 */
1145 		map_groups__fixup_end(&machine->kmaps);
1146 	}
1147 
1148 	return ret;
1149 }
1150 
1151 int machine__load_vmlinux_path(struct machine *machine)
1152 {
1153 	struct map *map = machine__kernel_map(machine);
1154 	int ret = dso__load_vmlinux_path(map->dso, map);
1155 
1156 	if (ret > 0)
1157 		dso__set_loaded(map->dso);
1158 
1159 	return ret;
1160 }
1161 
1162 static char *get_kernel_version(const char *root_dir)
1163 {
1164 	char version[PATH_MAX];
1165 	FILE *file;
1166 	char *name, *tmp;
1167 	const char *prefix = "Linux version ";
1168 
1169 	sprintf(version, "%s/proc/version", root_dir);
1170 	file = fopen(version, "r");
1171 	if (!file)
1172 		return NULL;
1173 
1174 	version[0] = '\0';
1175 	tmp = fgets(version, sizeof(version), file);
1176 	fclose(file);
1177 
1178 	name = strstr(version, prefix);
1179 	if (!name)
1180 		return NULL;
1181 	name += strlen(prefix);
1182 	tmp = strchr(name, ' ');
1183 	if (tmp)
1184 		*tmp = '\0';
1185 
1186 	return strdup(name);
1187 }
1188 
1189 static bool is_kmod_dso(struct dso *dso)
1190 {
1191 	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1192 	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1193 }
1194 
1195 static int map_groups__set_module_path(struct map_groups *mg, const char *path,
1196 				       struct kmod_path *m)
1197 {
1198 	char *long_name;
1199 	struct map *map = map_groups__find_by_name(mg, m->name);
1200 
1201 	if (map == NULL)
1202 		return 0;
1203 
1204 	long_name = strdup(path);
1205 	if (long_name == NULL)
1206 		return -ENOMEM;
1207 
1208 	dso__set_long_name(map->dso, long_name, true);
1209 	dso__kernel_module_get_build_id(map->dso, "");
1210 
1211 	/*
1212 	 * Full name could reveal us kmod compression, so
1213 	 * we need to update the symtab_type if needed.
1214 	 */
1215 	if (m->comp && is_kmod_dso(map->dso)) {
1216 		map->dso->symtab_type++;
1217 		map->dso->comp = m->comp;
1218 	}
1219 
1220 	return 0;
1221 }
1222 
1223 static int map_groups__set_modules_path_dir(struct map_groups *mg,
1224 				const char *dir_name, int depth)
1225 {
1226 	struct dirent *dent;
1227 	DIR *dir = opendir(dir_name);
1228 	int ret = 0;
1229 
1230 	if (!dir) {
1231 		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1232 		return -1;
1233 	}
1234 
1235 	while ((dent = readdir(dir)) != NULL) {
1236 		char path[PATH_MAX];
1237 		struct stat st;
1238 
1239 		/*sshfs might return bad dent->d_type, so we have to stat*/
1240 		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1241 		if (stat(path, &st))
1242 			continue;
1243 
1244 		if (S_ISDIR(st.st_mode)) {
1245 			if (!strcmp(dent->d_name, ".") ||
1246 			    !strcmp(dent->d_name, ".."))
1247 				continue;
1248 
1249 			/* Do not follow top-level source and build symlinks */
1250 			if (depth == 0) {
1251 				if (!strcmp(dent->d_name, "source") ||
1252 				    !strcmp(dent->d_name, "build"))
1253 					continue;
1254 			}
1255 
1256 			ret = map_groups__set_modules_path_dir(mg, path,
1257 							       depth + 1);
1258 			if (ret < 0)
1259 				goto out;
1260 		} else {
1261 			struct kmod_path m;
1262 
1263 			ret = kmod_path__parse_name(&m, dent->d_name);
1264 			if (ret)
1265 				goto out;
1266 
1267 			if (m.kmod)
1268 				ret = map_groups__set_module_path(mg, path, &m);
1269 
1270 			free(m.name);
1271 
1272 			if (ret)
1273 				goto out;
1274 		}
1275 	}
1276 
1277 out:
1278 	closedir(dir);
1279 	return ret;
1280 }
1281 
1282 static int machine__set_modules_path(struct machine *machine)
1283 {
1284 	char *version;
1285 	char modules_path[PATH_MAX];
1286 
1287 	version = get_kernel_version(machine->root_dir);
1288 	if (!version)
1289 		return -1;
1290 
1291 	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1292 		 machine->root_dir, version);
1293 	free(version);
1294 
1295 	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1296 }
1297 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1298 				const char *name __maybe_unused)
1299 {
1300 	return 0;
1301 }
1302 
1303 static int machine__create_module(void *arg, const char *name, u64 start,
1304 				  u64 size)
1305 {
1306 	struct machine *machine = arg;
1307 	struct map *map;
1308 
1309 	if (arch__fix_module_text_start(&start, name) < 0)
1310 		return -1;
1311 
1312 	map = machine__findnew_module_map(machine, start, name);
1313 	if (map == NULL)
1314 		return -1;
1315 	map->end = start + size;
1316 
1317 	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1318 
1319 	return 0;
1320 }
1321 
1322 static int machine__create_modules(struct machine *machine)
1323 {
1324 	const char *modules;
1325 	char path[PATH_MAX];
1326 
1327 	if (machine__is_default_guest(machine)) {
1328 		modules = symbol_conf.default_guest_modules;
1329 	} else {
1330 		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1331 		modules = path;
1332 	}
1333 
1334 	if (symbol__restricted_filename(modules, "/proc/modules"))
1335 		return -1;
1336 
1337 	if (modules__parse(modules, machine, machine__create_module))
1338 		return -1;
1339 
1340 	if (!machine__set_modules_path(machine))
1341 		return 0;
1342 
1343 	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1344 
1345 	return 0;
1346 }
1347 
1348 static void machine__set_kernel_mmap(struct machine *machine,
1349 				     u64 start, u64 end)
1350 {
1351 	machine->vmlinux_map->start = start;
1352 	machine->vmlinux_map->end   = end;
1353 	/*
1354 	 * Be a bit paranoid here, some perf.data file came with
1355 	 * a zero sized synthesized MMAP event for the kernel.
1356 	 */
1357 	if (start == 0 && end == 0)
1358 		machine->vmlinux_map->end = ~0ULL;
1359 }
1360 
1361 int machine__create_kernel_maps(struct machine *machine)
1362 {
1363 	struct dso *kernel = machine__get_kernel(machine);
1364 	const char *name = NULL;
1365 	struct map *map;
1366 	u64 addr = 0;
1367 	int ret;
1368 
1369 	if (kernel == NULL)
1370 		return -1;
1371 
1372 	ret = __machine__create_kernel_maps(machine, kernel);
1373 	if (ret < 0)
1374 		goto out_put;
1375 
1376 	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1377 		if (machine__is_host(machine))
1378 			pr_debug("Problems creating module maps, "
1379 				 "continuing anyway...\n");
1380 		else
1381 			pr_debug("Problems creating module maps for guest %d, "
1382 				 "continuing anyway...\n", machine->pid);
1383 	}
1384 
1385 	if (!machine__get_running_kernel_start(machine, &name, &addr)) {
1386 		if (name &&
1387 		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, addr)) {
1388 			machine__destroy_kernel_maps(machine);
1389 			ret = -1;
1390 			goto out_put;
1391 		}
1392 
1393 		/* we have a real start address now, so re-order the kmaps */
1394 		map = machine__kernel_map(machine);
1395 
1396 		map__get(map);
1397 		map_groups__remove(&machine->kmaps, map);
1398 
1399 		/* assume it's the last in the kmaps */
1400 		machine__set_kernel_mmap(machine, addr, ~0ULL);
1401 
1402 		map_groups__insert(&machine->kmaps, map);
1403 		map__put(map);
1404 	}
1405 
1406 	if (machine__create_extra_kernel_maps(machine, kernel))
1407 		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1408 
1409 	/* update end address of the kernel map using adjacent module address */
1410 	map = map__next(machine__kernel_map(machine));
1411 	if (map)
1412 		machine__set_kernel_mmap(machine, addr, map->start);
1413 out_put:
1414 	dso__put(kernel);
1415 	return ret;
1416 }
1417 
1418 static bool machine__uses_kcore(struct machine *machine)
1419 {
1420 	struct dso *dso;
1421 
1422 	list_for_each_entry(dso, &machine->dsos.head, node) {
1423 		if (dso__is_kcore(dso))
1424 			return true;
1425 	}
1426 
1427 	return false;
1428 }
1429 
1430 static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1431 					     union perf_event *event)
1432 {
1433 	return machine__is(machine, "x86_64") &&
1434 	       is_entry_trampoline(event->mmap.filename);
1435 }
1436 
1437 static int machine__process_extra_kernel_map(struct machine *machine,
1438 					     union perf_event *event)
1439 {
1440 	struct map *kernel_map = machine__kernel_map(machine);
1441 	struct dso *kernel = kernel_map ? kernel_map->dso : NULL;
1442 	struct extra_kernel_map xm = {
1443 		.start = event->mmap.start,
1444 		.end   = event->mmap.start + event->mmap.len,
1445 		.pgoff = event->mmap.pgoff,
1446 	};
1447 
1448 	if (kernel == NULL)
1449 		return -1;
1450 
1451 	strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1452 
1453 	return machine__create_extra_kernel_map(machine, kernel, &xm);
1454 }
1455 
1456 static int machine__process_kernel_mmap_event(struct machine *machine,
1457 					      union perf_event *event)
1458 {
1459 	struct map *map;
1460 	enum dso_kernel_type kernel_type;
1461 	bool is_kernel_mmap;
1462 
1463 	/* If we have maps from kcore then we do not need or want any others */
1464 	if (machine__uses_kcore(machine))
1465 		return 0;
1466 
1467 	if (machine__is_host(machine))
1468 		kernel_type = DSO_TYPE_KERNEL;
1469 	else
1470 		kernel_type = DSO_TYPE_GUEST_KERNEL;
1471 
1472 	is_kernel_mmap = memcmp(event->mmap.filename,
1473 				machine->mmap_name,
1474 				strlen(machine->mmap_name) - 1) == 0;
1475 	if (event->mmap.filename[0] == '/' ||
1476 	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1477 		map = machine__findnew_module_map(machine, event->mmap.start,
1478 						  event->mmap.filename);
1479 		if (map == NULL)
1480 			goto out_problem;
1481 
1482 		map->end = map->start + event->mmap.len;
1483 	} else if (is_kernel_mmap) {
1484 		const char *symbol_name = (event->mmap.filename +
1485 				strlen(machine->mmap_name));
1486 		/*
1487 		 * Should be there already, from the build-id table in
1488 		 * the header.
1489 		 */
1490 		struct dso *kernel = NULL;
1491 		struct dso *dso;
1492 
1493 		down_read(&machine->dsos.lock);
1494 
1495 		list_for_each_entry(dso, &machine->dsos.head, node) {
1496 
1497 			/*
1498 			 * The cpumode passed to is_kernel_module is not the
1499 			 * cpumode of *this* event. If we insist on passing
1500 			 * correct cpumode to is_kernel_module, we should
1501 			 * record the cpumode when we adding this dso to the
1502 			 * linked list.
1503 			 *
1504 			 * However we don't really need passing correct
1505 			 * cpumode.  We know the correct cpumode must be kernel
1506 			 * mode (if not, we should not link it onto kernel_dsos
1507 			 * list).
1508 			 *
1509 			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1510 			 * is_kernel_module() treats it as a kernel cpumode.
1511 			 */
1512 
1513 			if (!dso->kernel ||
1514 			    is_kernel_module(dso->long_name,
1515 					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1516 				continue;
1517 
1518 
1519 			kernel = dso;
1520 			break;
1521 		}
1522 
1523 		up_read(&machine->dsos.lock);
1524 
1525 		if (kernel == NULL)
1526 			kernel = machine__findnew_dso(machine, machine->mmap_name);
1527 		if (kernel == NULL)
1528 			goto out_problem;
1529 
1530 		kernel->kernel = kernel_type;
1531 		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1532 			dso__put(kernel);
1533 			goto out_problem;
1534 		}
1535 
1536 		if (strstr(kernel->long_name, "vmlinux"))
1537 			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1538 
1539 		machine__set_kernel_mmap(machine, event->mmap.start,
1540 					 event->mmap.start + event->mmap.len);
1541 
1542 		/*
1543 		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1544 		 * symbol. Effectively having zero here means that at record
1545 		 * time /proc/sys/kernel/kptr_restrict was non zero.
1546 		 */
1547 		if (event->mmap.pgoff != 0) {
1548 			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1549 							symbol_name,
1550 							event->mmap.pgoff);
1551 		}
1552 
1553 		if (machine__is_default_guest(machine)) {
1554 			/*
1555 			 * preload dso of guest kernel and modules
1556 			 */
1557 			dso__load(kernel, machine__kernel_map(machine));
1558 		}
1559 	} else if (perf_event__is_extra_kernel_mmap(machine, event)) {
1560 		return machine__process_extra_kernel_map(machine, event);
1561 	}
1562 	return 0;
1563 out_problem:
1564 	return -1;
1565 }
1566 
1567 int machine__process_mmap2_event(struct machine *machine,
1568 				 union perf_event *event,
1569 				 struct perf_sample *sample)
1570 {
1571 	struct thread *thread;
1572 	struct map *map;
1573 	int ret = 0;
1574 
1575 	if (dump_trace)
1576 		perf_event__fprintf_mmap2(event, stdout);
1577 
1578 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1579 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1580 		ret = machine__process_kernel_mmap_event(machine, event);
1581 		if (ret < 0)
1582 			goto out_problem;
1583 		return 0;
1584 	}
1585 
1586 	thread = machine__findnew_thread(machine, event->mmap2.pid,
1587 					event->mmap2.tid);
1588 	if (thread == NULL)
1589 		goto out_problem;
1590 
1591 	map = map__new(machine, event->mmap2.start,
1592 			event->mmap2.len, event->mmap2.pgoff,
1593 			event->mmap2.maj,
1594 			event->mmap2.min, event->mmap2.ino,
1595 			event->mmap2.ino_generation,
1596 			event->mmap2.prot,
1597 			event->mmap2.flags,
1598 			event->mmap2.filename, thread);
1599 
1600 	if (map == NULL)
1601 		goto out_problem_map;
1602 
1603 	ret = thread__insert_map(thread, map);
1604 	if (ret)
1605 		goto out_problem_insert;
1606 
1607 	thread__put(thread);
1608 	map__put(map);
1609 	return 0;
1610 
1611 out_problem_insert:
1612 	map__put(map);
1613 out_problem_map:
1614 	thread__put(thread);
1615 out_problem:
1616 	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1617 	return 0;
1618 }
1619 
1620 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1621 				struct perf_sample *sample)
1622 {
1623 	struct thread *thread;
1624 	struct map *map;
1625 	u32 prot = 0;
1626 	int ret = 0;
1627 
1628 	if (dump_trace)
1629 		perf_event__fprintf_mmap(event, stdout);
1630 
1631 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1632 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1633 		ret = machine__process_kernel_mmap_event(machine, event);
1634 		if (ret < 0)
1635 			goto out_problem;
1636 		return 0;
1637 	}
1638 
1639 	thread = machine__findnew_thread(machine, event->mmap.pid,
1640 					 event->mmap.tid);
1641 	if (thread == NULL)
1642 		goto out_problem;
1643 
1644 	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1645 		prot = PROT_EXEC;
1646 
1647 	map = map__new(machine, event->mmap.start,
1648 			event->mmap.len, event->mmap.pgoff,
1649 			0, 0, 0, 0, prot, 0,
1650 			event->mmap.filename,
1651 			thread);
1652 
1653 	if (map == NULL)
1654 		goto out_problem_map;
1655 
1656 	ret = thread__insert_map(thread, map);
1657 	if (ret)
1658 		goto out_problem_insert;
1659 
1660 	thread__put(thread);
1661 	map__put(map);
1662 	return 0;
1663 
1664 out_problem_insert:
1665 	map__put(map);
1666 out_problem_map:
1667 	thread__put(thread);
1668 out_problem:
1669 	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1670 	return 0;
1671 }
1672 
1673 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1674 {
1675 	struct threads *threads = machine__threads(machine, th->tid);
1676 
1677 	if (threads->last_match == th)
1678 		threads__set_last_match(threads, NULL);
1679 
1680 	BUG_ON(refcount_read(&th->refcnt) == 0);
1681 	if (lock)
1682 		down_write(&threads->lock);
1683 	rb_erase_init(&th->rb_node, &threads->entries);
1684 	RB_CLEAR_NODE(&th->rb_node);
1685 	--threads->nr;
1686 	/*
1687 	 * Move it first to the dead_threads list, then drop the reference,
1688 	 * if this is the last reference, then the thread__delete destructor
1689 	 * will be called and we will remove it from the dead_threads list.
1690 	 */
1691 	list_add_tail(&th->node, &threads->dead);
1692 	if (lock)
1693 		up_write(&threads->lock);
1694 	thread__put(th);
1695 }
1696 
1697 void machine__remove_thread(struct machine *machine, struct thread *th)
1698 {
1699 	return __machine__remove_thread(machine, th, true);
1700 }
1701 
1702 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1703 				struct perf_sample *sample)
1704 {
1705 	struct thread *thread = machine__find_thread(machine,
1706 						     event->fork.pid,
1707 						     event->fork.tid);
1708 	struct thread *parent = machine__findnew_thread(machine,
1709 							event->fork.ppid,
1710 							event->fork.ptid);
1711 	bool do_maps_clone = true;
1712 	int err = 0;
1713 
1714 	if (dump_trace)
1715 		perf_event__fprintf_task(event, stdout);
1716 
1717 	/*
1718 	 * There may be an existing thread that is not actually the parent,
1719 	 * either because we are processing events out of order, or because the
1720 	 * (fork) event that would have removed the thread was lost. Assume the
1721 	 * latter case and continue on as best we can.
1722 	 */
1723 	if (parent->pid_ != (pid_t)event->fork.ppid) {
1724 		dump_printf("removing erroneous parent thread %d/%d\n",
1725 			    parent->pid_, parent->tid);
1726 		machine__remove_thread(machine, parent);
1727 		thread__put(parent);
1728 		parent = machine__findnew_thread(machine, event->fork.ppid,
1729 						 event->fork.ptid);
1730 	}
1731 
1732 	/* if a thread currently exists for the thread id remove it */
1733 	if (thread != NULL) {
1734 		machine__remove_thread(machine, thread);
1735 		thread__put(thread);
1736 	}
1737 
1738 	thread = machine__findnew_thread(machine, event->fork.pid,
1739 					 event->fork.tid);
1740 	/*
1741 	 * When synthesizing FORK events, we are trying to create thread
1742 	 * objects for the already running tasks on the machine.
1743 	 *
1744 	 * Normally, for a kernel FORK event, we want to clone the parent's
1745 	 * maps because that is what the kernel just did.
1746 	 *
1747 	 * But when synthesizing, this should not be done.  If we do, we end up
1748 	 * with overlapping maps as we process the sythesized MMAP2 events that
1749 	 * get delivered shortly thereafter.
1750 	 *
1751 	 * Use the FORK event misc flags in an internal way to signal this
1752 	 * situation, so we can elide the map clone when appropriate.
1753 	 */
1754 	if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1755 		do_maps_clone = false;
1756 
1757 	if (thread == NULL || parent == NULL ||
1758 	    thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1759 		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1760 		err = -1;
1761 	}
1762 	thread__put(thread);
1763 	thread__put(parent);
1764 
1765 	return err;
1766 }
1767 
1768 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1769 				struct perf_sample *sample __maybe_unused)
1770 {
1771 	struct thread *thread = machine__find_thread(machine,
1772 						     event->fork.pid,
1773 						     event->fork.tid);
1774 
1775 	if (dump_trace)
1776 		perf_event__fprintf_task(event, stdout);
1777 
1778 	if (thread != NULL) {
1779 		thread__exited(thread);
1780 		thread__put(thread);
1781 	}
1782 
1783 	return 0;
1784 }
1785 
1786 int machine__process_event(struct machine *machine, union perf_event *event,
1787 			   struct perf_sample *sample)
1788 {
1789 	int ret;
1790 
1791 	switch (event->header.type) {
1792 	case PERF_RECORD_COMM:
1793 		ret = machine__process_comm_event(machine, event, sample); break;
1794 	case PERF_RECORD_MMAP:
1795 		ret = machine__process_mmap_event(machine, event, sample); break;
1796 	case PERF_RECORD_NAMESPACES:
1797 		ret = machine__process_namespaces_event(machine, event, sample); break;
1798 	case PERF_RECORD_MMAP2:
1799 		ret = machine__process_mmap2_event(machine, event, sample); break;
1800 	case PERF_RECORD_FORK:
1801 		ret = machine__process_fork_event(machine, event, sample); break;
1802 	case PERF_RECORD_EXIT:
1803 		ret = machine__process_exit_event(machine, event, sample); break;
1804 	case PERF_RECORD_LOST:
1805 		ret = machine__process_lost_event(machine, event, sample); break;
1806 	case PERF_RECORD_AUX:
1807 		ret = machine__process_aux_event(machine, event); break;
1808 	case PERF_RECORD_ITRACE_START:
1809 		ret = machine__process_itrace_start_event(machine, event); break;
1810 	case PERF_RECORD_LOST_SAMPLES:
1811 		ret = machine__process_lost_samples_event(machine, event, sample); break;
1812 	case PERF_RECORD_SWITCH:
1813 	case PERF_RECORD_SWITCH_CPU_WIDE:
1814 		ret = machine__process_switch_event(machine, event); break;
1815 	default:
1816 		ret = -1;
1817 		break;
1818 	}
1819 
1820 	return ret;
1821 }
1822 
1823 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1824 {
1825 	if (!regexec(regex, sym->name, 0, NULL, 0))
1826 		return 1;
1827 	return 0;
1828 }
1829 
1830 static void ip__resolve_ams(struct thread *thread,
1831 			    struct addr_map_symbol *ams,
1832 			    u64 ip)
1833 {
1834 	struct addr_location al;
1835 
1836 	memset(&al, 0, sizeof(al));
1837 	/*
1838 	 * We cannot use the header.misc hint to determine whether a
1839 	 * branch stack address is user, kernel, guest, hypervisor.
1840 	 * Branches may straddle the kernel/user/hypervisor boundaries.
1841 	 * Thus, we have to try consecutively until we find a match
1842 	 * or else, the symbol is unknown
1843 	 */
1844 	thread__find_cpumode_addr_location(thread, ip, &al);
1845 
1846 	ams->addr = ip;
1847 	ams->al_addr = al.addr;
1848 	ams->sym = al.sym;
1849 	ams->map = al.map;
1850 	ams->phys_addr = 0;
1851 }
1852 
1853 static void ip__resolve_data(struct thread *thread,
1854 			     u8 m, struct addr_map_symbol *ams,
1855 			     u64 addr, u64 phys_addr)
1856 {
1857 	struct addr_location al;
1858 
1859 	memset(&al, 0, sizeof(al));
1860 
1861 	thread__find_symbol(thread, m, addr, &al);
1862 
1863 	ams->addr = addr;
1864 	ams->al_addr = al.addr;
1865 	ams->sym = al.sym;
1866 	ams->map = al.map;
1867 	ams->phys_addr = phys_addr;
1868 }
1869 
1870 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1871 				     struct addr_location *al)
1872 {
1873 	struct mem_info *mi = mem_info__new();
1874 
1875 	if (!mi)
1876 		return NULL;
1877 
1878 	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1879 	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
1880 			 sample->addr, sample->phys_addr);
1881 	mi->data_src.val = sample->data_src;
1882 
1883 	return mi;
1884 }
1885 
1886 static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
1887 {
1888 	char *srcline = NULL;
1889 
1890 	if (!map || callchain_param.key == CCKEY_FUNCTION)
1891 		return srcline;
1892 
1893 	srcline = srcline__tree_find(&map->dso->srclines, ip);
1894 	if (!srcline) {
1895 		bool show_sym = false;
1896 		bool show_addr = callchain_param.key == CCKEY_ADDRESS;
1897 
1898 		srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
1899 				      sym, show_sym, show_addr, ip);
1900 		srcline__tree_insert(&map->dso->srclines, ip, srcline);
1901 	}
1902 
1903 	return srcline;
1904 }
1905 
1906 struct iterations {
1907 	int nr_loop_iter;
1908 	u64 cycles;
1909 };
1910 
1911 static int add_callchain_ip(struct thread *thread,
1912 			    struct callchain_cursor *cursor,
1913 			    struct symbol **parent,
1914 			    struct addr_location *root_al,
1915 			    u8 *cpumode,
1916 			    u64 ip,
1917 			    bool branch,
1918 			    struct branch_flags *flags,
1919 			    struct iterations *iter,
1920 			    u64 branch_from)
1921 {
1922 	struct addr_location al;
1923 	int nr_loop_iter = 0;
1924 	u64 iter_cycles = 0;
1925 	const char *srcline = NULL;
1926 
1927 	al.filtered = 0;
1928 	al.sym = NULL;
1929 	if (!cpumode) {
1930 		thread__find_cpumode_addr_location(thread, ip, &al);
1931 	} else {
1932 		if (ip >= PERF_CONTEXT_MAX) {
1933 			switch (ip) {
1934 			case PERF_CONTEXT_HV:
1935 				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
1936 				break;
1937 			case PERF_CONTEXT_KERNEL:
1938 				*cpumode = PERF_RECORD_MISC_KERNEL;
1939 				break;
1940 			case PERF_CONTEXT_USER:
1941 				*cpumode = PERF_RECORD_MISC_USER;
1942 				break;
1943 			default:
1944 				pr_debug("invalid callchain context: "
1945 					 "%"PRId64"\n", (s64) ip);
1946 				/*
1947 				 * It seems the callchain is corrupted.
1948 				 * Discard all.
1949 				 */
1950 				callchain_cursor_reset(cursor);
1951 				return 1;
1952 			}
1953 			return 0;
1954 		}
1955 		thread__find_symbol(thread, *cpumode, ip, &al);
1956 	}
1957 
1958 	if (al.sym != NULL) {
1959 		if (perf_hpp_list.parent && !*parent &&
1960 		    symbol__match_regex(al.sym, &parent_regex))
1961 			*parent = al.sym;
1962 		else if (have_ignore_callees && root_al &&
1963 		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
1964 			/* Treat this symbol as the root,
1965 			   forgetting its callees. */
1966 			*root_al = al;
1967 			callchain_cursor_reset(cursor);
1968 		}
1969 	}
1970 
1971 	if (symbol_conf.hide_unresolved && al.sym == NULL)
1972 		return 0;
1973 
1974 	if (iter) {
1975 		nr_loop_iter = iter->nr_loop_iter;
1976 		iter_cycles = iter->cycles;
1977 	}
1978 
1979 	srcline = callchain_srcline(al.map, al.sym, al.addr);
1980 	return callchain_cursor_append(cursor, ip, al.map, al.sym,
1981 				       branch, flags, nr_loop_iter,
1982 				       iter_cycles, branch_from, srcline);
1983 }
1984 
1985 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1986 					   struct addr_location *al)
1987 {
1988 	unsigned int i;
1989 	const struct branch_stack *bs = sample->branch_stack;
1990 	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1991 
1992 	if (!bi)
1993 		return NULL;
1994 
1995 	for (i = 0; i < bs->nr; i++) {
1996 		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1997 		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1998 		bi[i].flags = bs->entries[i].flags;
1999 	}
2000 	return bi;
2001 }
2002 
2003 static void save_iterations(struct iterations *iter,
2004 			    struct branch_entry *be, int nr)
2005 {
2006 	int i;
2007 
2008 	iter->nr_loop_iter = nr;
2009 	iter->cycles = 0;
2010 
2011 	for (i = 0; i < nr; i++)
2012 		iter->cycles += be[i].flags.cycles;
2013 }
2014 
2015 #define CHASHSZ 127
2016 #define CHASHBITS 7
2017 #define NO_ENTRY 0xff
2018 
2019 #define PERF_MAX_BRANCH_DEPTH 127
2020 
2021 /* Remove loops. */
2022 static int remove_loops(struct branch_entry *l, int nr,
2023 			struct iterations *iter)
2024 {
2025 	int i, j, off;
2026 	unsigned char chash[CHASHSZ];
2027 
2028 	memset(chash, NO_ENTRY, sizeof(chash));
2029 
2030 	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2031 
2032 	for (i = 0; i < nr; i++) {
2033 		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2034 
2035 		/* no collision handling for now */
2036 		if (chash[h] == NO_ENTRY) {
2037 			chash[h] = i;
2038 		} else if (l[chash[h]].from == l[i].from) {
2039 			bool is_loop = true;
2040 			/* check if it is a real loop */
2041 			off = 0;
2042 			for (j = chash[h]; j < i && i + off < nr; j++, off++)
2043 				if (l[j].from != l[i + off].from) {
2044 					is_loop = false;
2045 					break;
2046 				}
2047 			if (is_loop) {
2048 				j = nr - (i + off);
2049 				if (j > 0) {
2050 					save_iterations(iter + i + off,
2051 						l + i, off);
2052 
2053 					memmove(iter + i, iter + i + off,
2054 						j * sizeof(*iter));
2055 
2056 					memmove(l + i, l + i + off,
2057 						j * sizeof(*l));
2058 				}
2059 
2060 				nr -= off;
2061 			}
2062 		}
2063 	}
2064 	return nr;
2065 }
2066 
2067 /*
2068  * Recolve LBR callstack chain sample
2069  * Return:
2070  * 1 on success get LBR callchain information
2071  * 0 no available LBR callchain information, should try fp
2072  * negative error code on other errors.
2073  */
2074 static int resolve_lbr_callchain_sample(struct thread *thread,
2075 					struct callchain_cursor *cursor,
2076 					struct perf_sample *sample,
2077 					struct symbol **parent,
2078 					struct addr_location *root_al,
2079 					int max_stack)
2080 {
2081 	struct ip_callchain *chain = sample->callchain;
2082 	int chain_nr = min(max_stack, (int)chain->nr), i;
2083 	u8 cpumode = PERF_RECORD_MISC_USER;
2084 	u64 ip, branch_from = 0;
2085 
2086 	for (i = 0; i < chain_nr; i++) {
2087 		if (chain->ips[i] == PERF_CONTEXT_USER)
2088 			break;
2089 	}
2090 
2091 	/* LBR only affects the user callchain */
2092 	if (i != chain_nr) {
2093 		struct branch_stack *lbr_stack = sample->branch_stack;
2094 		int lbr_nr = lbr_stack->nr, j, k;
2095 		bool branch;
2096 		struct branch_flags *flags;
2097 		/*
2098 		 * LBR callstack can only get user call chain.
2099 		 * The mix_chain_nr is kernel call chain
2100 		 * number plus LBR user call chain number.
2101 		 * i is kernel call chain number,
2102 		 * 1 is PERF_CONTEXT_USER,
2103 		 * lbr_nr + 1 is the user call chain number.
2104 		 * For details, please refer to the comments
2105 		 * in callchain__printf
2106 		 */
2107 		int mix_chain_nr = i + 1 + lbr_nr + 1;
2108 
2109 		for (j = 0; j < mix_chain_nr; j++) {
2110 			int err;
2111 			branch = false;
2112 			flags = NULL;
2113 
2114 			if (callchain_param.order == ORDER_CALLEE) {
2115 				if (j < i + 1)
2116 					ip = chain->ips[j];
2117 				else if (j > i + 1) {
2118 					k = j - i - 2;
2119 					ip = lbr_stack->entries[k].from;
2120 					branch = true;
2121 					flags = &lbr_stack->entries[k].flags;
2122 				} else {
2123 					ip = lbr_stack->entries[0].to;
2124 					branch = true;
2125 					flags = &lbr_stack->entries[0].flags;
2126 					branch_from =
2127 						lbr_stack->entries[0].from;
2128 				}
2129 			} else {
2130 				if (j < lbr_nr) {
2131 					k = lbr_nr - j - 1;
2132 					ip = lbr_stack->entries[k].from;
2133 					branch = true;
2134 					flags = &lbr_stack->entries[k].flags;
2135 				}
2136 				else if (j > lbr_nr)
2137 					ip = chain->ips[i + 1 - (j - lbr_nr)];
2138 				else {
2139 					ip = lbr_stack->entries[0].to;
2140 					branch = true;
2141 					flags = &lbr_stack->entries[0].flags;
2142 					branch_from =
2143 						lbr_stack->entries[0].from;
2144 				}
2145 			}
2146 
2147 			err = add_callchain_ip(thread, cursor, parent,
2148 					       root_al, &cpumode, ip,
2149 					       branch, flags, NULL,
2150 					       branch_from);
2151 			if (err)
2152 				return (err < 0) ? err : 0;
2153 		}
2154 		return 1;
2155 	}
2156 
2157 	return 0;
2158 }
2159 
2160 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2161 			     struct callchain_cursor *cursor,
2162 			     struct symbol **parent,
2163 			     struct addr_location *root_al,
2164 			     u8 *cpumode, int ent)
2165 {
2166 	int err = 0;
2167 
2168 	while (--ent >= 0) {
2169 		u64 ip = chain->ips[ent];
2170 
2171 		if (ip >= PERF_CONTEXT_MAX) {
2172 			err = add_callchain_ip(thread, cursor, parent,
2173 					       root_al, cpumode, ip,
2174 					       false, NULL, NULL, 0);
2175 			break;
2176 		}
2177 	}
2178 	return err;
2179 }
2180 
2181 static int thread__resolve_callchain_sample(struct thread *thread,
2182 					    struct callchain_cursor *cursor,
2183 					    struct perf_evsel *evsel,
2184 					    struct perf_sample *sample,
2185 					    struct symbol **parent,
2186 					    struct addr_location *root_al,
2187 					    int max_stack)
2188 {
2189 	struct branch_stack *branch = sample->branch_stack;
2190 	struct ip_callchain *chain = sample->callchain;
2191 	int chain_nr = 0;
2192 	u8 cpumode = PERF_RECORD_MISC_USER;
2193 	int i, j, err, nr_entries;
2194 	int skip_idx = -1;
2195 	int first_call = 0;
2196 
2197 	if (chain)
2198 		chain_nr = chain->nr;
2199 
2200 	if (perf_evsel__has_branch_callstack(evsel)) {
2201 		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2202 						   root_al, max_stack);
2203 		if (err)
2204 			return (err < 0) ? err : 0;
2205 	}
2206 
2207 	/*
2208 	 * Based on DWARF debug information, some architectures skip
2209 	 * a callchain entry saved by the kernel.
2210 	 */
2211 	skip_idx = arch_skip_callchain_idx(thread, chain);
2212 
2213 	/*
2214 	 * Add branches to call stack for easier browsing. This gives
2215 	 * more context for a sample than just the callers.
2216 	 *
2217 	 * This uses individual histograms of paths compared to the
2218 	 * aggregated histograms the normal LBR mode uses.
2219 	 *
2220 	 * Limitations for now:
2221 	 * - No extra filters
2222 	 * - No annotations (should annotate somehow)
2223 	 */
2224 
2225 	if (branch && callchain_param.branch_callstack) {
2226 		int nr = min(max_stack, (int)branch->nr);
2227 		struct branch_entry be[nr];
2228 		struct iterations iter[nr];
2229 
2230 		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2231 			pr_warning("corrupted branch chain. skipping...\n");
2232 			goto check_calls;
2233 		}
2234 
2235 		for (i = 0; i < nr; i++) {
2236 			if (callchain_param.order == ORDER_CALLEE) {
2237 				be[i] = branch->entries[i];
2238 
2239 				if (chain == NULL)
2240 					continue;
2241 
2242 				/*
2243 				 * Check for overlap into the callchain.
2244 				 * The return address is one off compared to
2245 				 * the branch entry. To adjust for this
2246 				 * assume the calling instruction is not longer
2247 				 * than 8 bytes.
2248 				 */
2249 				if (i == skip_idx ||
2250 				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2251 					first_call++;
2252 				else if (be[i].from < chain->ips[first_call] &&
2253 				    be[i].from >= chain->ips[first_call] - 8)
2254 					first_call++;
2255 			} else
2256 				be[i] = branch->entries[branch->nr - i - 1];
2257 		}
2258 
2259 		memset(iter, 0, sizeof(struct iterations) * nr);
2260 		nr = remove_loops(be, nr, iter);
2261 
2262 		for (i = 0; i < nr; i++) {
2263 			err = add_callchain_ip(thread, cursor, parent,
2264 					       root_al,
2265 					       NULL, be[i].to,
2266 					       true, &be[i].flags,
2267 					       NULL, be[i].from);
2268 
2269 			if (!err)
2270 				err = add_callchain_ip(thread, cursor, parent, root_al,
2271 						       NULL, be[i].from,
2272 						       true, &be[i].flags,
2273 						       &iter[i], 0);
2274 			if (err == -EINVAL)
2275 				break;
2276 			if (err)
2277 				return err;
2278 		}
2279 
2280 		if (chain_nr == 0)
2281 			return 0;
2282 
2283 		chain_nr -= nr;
2284 	}
2285 
2286 check_calls:
2287 	if (callchain_param.order != ORDER_CALLEE) {
2288 		err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2289 					&cpumode, chain->nr - first_call);
2290 		if (err)
2291 			return (err < 0) ? err : 0;
2292 	}
2293 	for (i = first_call, nr_entries = 0;
2294 	     i < chain_nr && nr_entries < max_stack; i++) {
2295 		u64 ip;
2296 
2297 		if (callchain_param.order == ORDER_CALLEE)
2298 			j = i;
2299 		else
2300 			j = chain->nr - i - 1;
2301 
2302 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2303 		if (j == skip_idx)
2304 			continue;
2305 #endif
2306 		ip = chain->ips[j];
2307 		if (ip < PERF_CONTEXT_MAX)
2308                        ++nr_entries;
2309 		else if (callchain_param.order != ORDER_CALLEE) {
2310 			err = find_prev_cpumode(chain, thread, cursor, parent,
2311 						root_al, &cpumode, j);
2312 			if (err)
2313 				return (err < 0) ? err : 0;
2314 			continue;
2315 		}
2316 
2317 		err = add_callchain_ip(thread, cursor, parent,
2318 				       root_al, &cpumode, ip,
2319 				       false, NULL, NULL, 0);
2320 
2321 		if (err)
2322 			return (err < 0) ? err : 0;
2323 	}
2324 
2325 	return 0;
2326 }
2327 
2328 static int append_inlines(struct callchain_cursor *cursor,
2329 			  struct map *map, struct symbol *sym, u64 ip)
2330 {
2331 	struct inline_node *inline_node;
2332 	struct inline_list *ilist;
2333 	u64 addr;
2334 	int ret = 1;
2335 
2336 	if (!symbol_conf.inline_name || !map || !sym)
2337 		return ret;
2338 
2339 	addr = map__map_ip(map, ip);
2340 	addr = map__rip_2objdump(map, addr);
2341 
2342 	inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2343 	if (!inline_node) {
2344 		inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2345 		if (!inline_node)
2346 			return ret;
2347 		inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2348 	}
2349 
2350 	list_for_each_entry(ilist, &inline_node->val, list) {
2351 		ret = callchain_cursor_append(cursor, ip, map,
2352 					      ilist->symbol, false,
2353 					      NULL, 0, 0, 0, ilist->srcline);
2354 
2355 		if (ret != 0)
2356 			return ret;
2357 	}
2358 
2359 	return ret;
2360 }
2361 
2362 static int unwind_entry(struct unwind_entry *entry, void *arg)
2363 {
2364 	struct callchain_cursor *cursor = arg;
2365 	const char *srcline = NULL;
2366 	u64 addr = entry->ip;
2367 
2368 	if (symbol_conf.hide_unresolved && entry->sym == NULL)
2369 		return 0;
2370 
2371 	if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
2372 		return 0;
2373 
2374 	/*
2375 	 * Convert entry->ip from a virtual address to an offset in
2376 	 * its corresponding binary.
2377 	 */
2378 	if (entry->map)
2379 		addr = map__map_ip(entry->map, entry->ip);
2380 
2381 	srcline = callchain_srcline(entry->map, entry->sym, addr);
2382 	return callchain_cursor_append(cursor, entry->ip,
2383 				       entry->map, entry->sym,
2384 				       false, NULL, 0, 0, 0, srcline);
2385 }
2386 
2387 static int thread__resolve_callchain_unwind(struct thread *thread,
2388 					    struct callchain_cursor *cursor,
2389 					    struct perf_evsel *evsel,
2390 					    struct perf_sample *sample,
2391 					    int max_stack)
2392 {
2393 	/* Can we do dwarf post unwind? */
2394 	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2395 	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
2396 		return 0;
2397 
2398 	/* Bail out if nothing was captured. */
2399 	if ((!sample->user_regs.regs) ||
2400 	    (!sample->user_stack.size))
2401 		return 0;
2402 
2403 	return unwind__get_entries(unwind_entry, cursor,
2404 				   thread, sample, max_stack);
2405 }
2406 
2407 int thread__resolve_callchain(struct thread *thread,
2408 			      struct callchain_cursor *cursor,
2409 			      struct perf_evsel *evsel,
2410 			      struct perf_sample *sample,
2411 			      struct symbol **parent,
2412 			      struct addr_location *root_al,
2413 			      int max_stack)
2414 {
2415 	int ret = 0;
2416 
2417 	callchain_cursor_reset(cursor);
2418 
2419 	if (callchain_param.order == ORDER_CALLEE) {
2420 		ret = thread__resolve_callchain_sample(thread, cursor,
2421 						       evsel, sample,
2422 						       parent, root_al,
2423 						       max_stack);
2424 		if (ret)
2425 			return ret;
2426 		ret = thread__resolve_callchain_unwind(thread, cursor,
2427 						       evsel, sample,
2428 						       max_stack);
2429 	} else {
2430 		ret = thread__resolve_callchain_unwind(thread, cursor,
2431 						       evsel, sample,
2432 						       max_stack);
2433 		if (ret)
2434 			return ret;
2435 		ret = thread__resolve_callchain_sample(thread, cursor,
2436 						       evsel, sample,
2437 						       parent, root_al,
2438 						       max_stack);
2439 	}
2440 
2441 	return ret;
2442 }
2443 
2444 int machine__for_each_thread(struct machine *machine,
2445 			     int (*fn)(struct thread *thread, void *p),
2446 			     void *priv)
2447 {
2448 	struct threads *threads;
2449 	struct rb_node *nd;
2450 	struct thread *thread;
2451 	int rc = 0;
2452 	int i;
2453 
2454 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2455 		threads = &machine->threads[i];
2456 		for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
2457 			thread = rb_entry(nd, struct thread, rb_node);
2458 			rc = fn(thread, priv);
2459 			if (rc != 0)
2460 				return rc;
2461 		}
2462 
2463 		list_for_each_entry(thread, &threads->dead, node) {
2464 			rc = fn(thread, priv);
2465 			if (rc != 0)
2466 				return rc;
2467 		}
2468 	}
2469 	return rc;
2470 }
2471 
2472 int machines__for_each_thread(struct machines *machines,
2473 			      int (*fn)(struct thread *thread, void *p),
2474 			      void *priv)
2475 {
2476 	struct rb_node *nd;
2477 	int rc = 0;
2478 
2479 	rc = machine__for_each_thread(&machines->host, fn, priv);
2480 	if (rc != 0)
2481 		return rc;
2482 
2483 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
2484 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
2485 
2486 		rc = machine__for_each_thread(machine, fn, priv);
2487 		if (rc != 0)
2488 			return rc;
2489 	}
2490 	return rc;
2491 }
2492 
2493 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2494 				  struct target *target, struct thread_map *threads,
2495 				  perf_event__handler_t process, bool data_mmap,
2496 				  unsigned int proc_map_timeout,
2497 				  unsigned int nr_threads_synthesize)
2498 {
2499 	if (target__has_task(target))
2500 		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
2501 	else if (target__has_cpu(target))
2502 		return perf_event__synthesize_threads(tool, process,
2503 						      machine, data_mmap,
2504 						      proc_map_timeout,
2505 						      nr_threads_synthesize);
2506 	/* command specified */
2507 	return 0;
2508 }
2509 
2510 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2511 {
2512 	if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
2513 		return -1;
2514 
2515 	return machine->current_tid[cpu];
2516 }
2517 
2518 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2519 			     pid_t tid)
2520 {
2521 	struct thread *thread;
2522 
2523 	if (cpu < 0)
2524 		return -EINVAL;
2525 
2526 	if (!machine->current_tid) {
2527 		int i;
2528 
2529 		machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
2530 		if (!machine->current_tid)
2531 			return -ENOMEM;
2532 		for (i = 0; i < MAX_NR_CPUS; i++)
2533 			machine->current_tid[i] = -1;
2534 	}
2535 
2536 	if (cpu >= MAX_NR_CPUS) {
2537 		pr_err("Requested CPU %d too large. ", cpu);
2538 		pr_err("Consider raising MAX_NR_CPUS\n");
2539 		return -EINVAL;
2540 	}
2541 
2542 	machine->current_tid[cpu] = tid;
2543 
2544 	thread = machine__findnew_thread(machine, pid, tid);
2545 	if (!thread)
2546 		return -ENOMEM;
2547 
2548 	thread->cpu = cpu;
2549 	thread__put(thread);
2550 
2551 	return 0;
2552 }
2553 
2554 /*
2555  * Compares the raw arch string. N.B. see instead perf_env__arch() if a
2556  * normalized arch is needed.
2557  */
2558 bool machine__is(struct machine *machine, const char *arch)
2559 {
2560 	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
2561 }
2562 
2563 int machine__nr_cpus_avail(struct machine *machine)
2564 {
2565 	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
2566 }
2567 
2568 int machine__get_kernel_start(struct machine *machine)
2569 {
2570 	struct map *map = machine__kernel_map(machine);
2571 	int err = 0;
2572 
2573 	/*
2574 	 * The only addresses above 2^63 are kernel addresses of a 64-bit
2575 	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
2576 	 * all addresses including kernel addresses are less than 2^32.  In
2577 	 * that case (32-bit system), if the kernel mapping is unknown, all
2578 	 * addresses will be assumed to be in user space - see
2579 	 * machine__kernel_ip().
2580 	 */
2581 	machine->kernel_start = 1ULL << 63;
2582 	if (map) {
2583 		err = map__load(map);
2584 		/*
2585 		 * On x86_64, PTI entry trampolines are less than the
2586 		 * start of kernel text, but still above 2^63. So leave
2587 		 * kernel_start = 1ULL << 63 for x86_64.
2588 		 */
2589 		if (!err && !machine__is(machine, "x86_64"))
2590 			machine->kernel_start = map->start;
2591 	}
2592 	return err;
2593 }
2594 
2595 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2596 {
2597 	return dsos__findnew(&machine->dsos, filename);
2598 }
2599 
2600 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2601 {
2602 	struct machine *machine = vmachine;
2603 	struct map *map;
2604 	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
2605 
2606 	if (sym == NULL)
2607 		return NULL;
2608 
2609 	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2610 	*addrp = map->unmap_ip(map, sym->start);
2611 	return sym->name;
2612 }
2613