1 // SPDX-License-Identifier: GPL-2.0 2 #include <dirent.h> 3 #include <errno.h> 4 #include <inttypes.h> 5 #include <regex.h> 6 #include "callchain.h" 7 #include "debug.h" 8 #include "event.h" 9 #include "evsel.h" 10 #include "hist.h" 11 #include "machine.h" 12 #include "map.h" 13 #include "sort.h" 14 #include "strlist.h" 15 #include "thread.h" 16 #include "vdso.h" 17 #include <stdbool.h> 18 #include <sys/types.h> 19 #include <sys/stat.h> 20 #include <unistd.h> 21 #include "unwind.h" 22 #include "linux/hash.h" 23 #include "asm/bug.h" 24 25 #include "sane_ctype.h" 26 #include <symbol/kallsyms.h> 27 28 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock); 29 30 static void dsos__init(struct dsos *dsos) 31 { 32 INIT_LIST_HEAD(&dsos->head); 33 dsos->root = RB_ROOT; 34 init_rwsem(&dsos->lock); 35 } 36 37 static void machine__threads_init(struct machine *machine) 38 { 39 int i; 40 41 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 42 struct threads *threads = &machine->threads[i]; 43 threads->entries = RB_ROOT; 44 init_rwsem(&threads->lock); 45 threads->nr = 0; 46 INIT_LIST_HEAD(&threads->dead); 47 threads->last_match = NULL; 48 } 49 } 50 51 static int machine__set_mmap_name(struct machine *machine) 52 { 53 if (machine__is_host(machine)) { 54 if (symbol_conf.vmlinux_name) 55 machine->mmap_name = strdup(symbol_conf.vmlinux_name); 56 else 57 machine->mmap_name = strdup("[kernel.kallsyms]"); 58 } else if (machine__is_default_guest(machine)) { 59 if (symbol_conf.default_guest_vmlinux_name) 60 machine->mmap_name = strdup(symbol_conf.default_guest_vmlinux_name); 61 else 62 machine->mmap_name = strdup("[guest.kernel.kallsyms]"); 63 } else { 64 if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]", 65 machine->pid) < 0) 66 machine->mmap_name = NULL; 67 } 68 69 return machine->mmap_name ? 0 : -ENOMEM; 70 } 71 72 int machine__init(struct machine *machine, const char *root_dir, pid_t pid) 73 { 74 int err = -ENOMEM; 75 76 memset(machine, 0, sizeof(*machine)); 77 map_groups__init(&machine->kmaps, machine); 78 RB_CLEAR_NODE(&machine->rb_node); 79 dsos__init(&machine->dsos); 80 81 machine__threads_init(machine); 82 83 machine->vdso_info = NULL; 84 machine->env = NULL; 85 86 machine->pid = pid; 87 88 machine->id_hdr_size = 0; 89 machine->kptr_restrict_warned = false; 90 machine->comm_exec = false; 91 machine->kernel_start = 0; 92 93 memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps)); 94 95 machine->root_dir = strdup(root_dir); 96 if (machine->root_dir == NULL) 97 return -ENOMEM; 98 99 if (machine__set_mmap_name(machine)) 100 goto out; 101 102 if (pid != HOST_KERNEL_ID) { 103 struct thread *thread = machine__findnew_thread(machine, -1, 104 pid); 105 char comm[64]; 106 107 if (thread == NULL) 108 goto out; 109 110 snprintf(comm, sizeof(comm), "[guest/%d]", pid); 111 thread__set_comm(thread, comm, 0); 112 thread__put(thread); 113 } 114 115 machine->current_tid = NULL; 116 err = 0; 117 118 out: 119 if (err) { 120 zfree(&machine->root_dir); 121 zfree(&machine->mmap_name); 122 } 123 return 0; 124 } 125 126 struct machine *machine__new_host(void) 127 { 128 struct machine *machine = malloc(sizeof(*machine)); 129 130 if (machine != NULL) { 131 machine__init(machine, "", HOST_KERNEL_ID); 132 133 if (machine__create_kernel_maps(machine) < 0) 134 goto out_delete; 135 } 136 137 return machine; 138 out_delete: 139 free(machine); 140 return NULL; 141 } 142 143 struct machine *machine__new_kallsyms(void) 144 { 145 struct machine *machine = machine__new_host(); 146 /* 147 * FIXME: 148 * 1) MAP__FUNCTION will go away when we stop loading separate maps for 149 * functions and data objects. 150 * 2) We should switch to machine__load_kallsyms(), i.e. not explicitely 151 * ask for not using the kcore parsing code, once this one is fixed 152 * to create a map per module. 153 */ 154 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms", MAP__FUNCTION) <= 0) { 155 machine__delete(machine); 156 machine = NULL; 157 } 158 159 return machine; 160 } 161 162 static void dsos__purge(struct dsos *dsos) 163 { 164 struct dso *pos, *n; 165 166 down_write(&dsos->lock); 167 168 list_for_each_entry_safe(pos, n, &dsos->head, node) { 169 RB_CLEAR_NODE(&pos->rb_node); 170 pos->root = NULL; 171 list_del_init(&pos->node); 172 dso__put(pos); 173 } 174 175 up_write(&dsos->lock); 176 } 177 178 static void dsos__exit(struct dsos *dsos) 179 { 180 dsos__purge(dsos); 181 exit_rwsem(&dsos->lock); 182 } 183 184 void machine__delete_threads(struct machine *machine) 185 { 186 struct rb_node *nd; 187 int i; 188 189 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 190 struct threads *threads = &machine->threads[i]; 191 down_write(&threads->lock); 192 nd = rb_first(&threads->entries); 193 while (nd) { 194 struct thread *t = rb_entry(nd, struct thread, rb_node); 195 196 nd = rb_next(nd); 197 __machine__remove_thread(machine, t, false); 198 } 199 up_write(&threads->lock); 200 } 201 } 202 203 void machine__exit(struct machine *machine) 204 { 205 int i; 206 207 if (machine == NULL) 208 return; 209 210 machine__destroy_kernel_maps(machine); 211 map_groups__exit(&machine->kmaps); 212 dsos__exit(&machine->dsos); 213 machine__exit_vdso(machine); 214 zfree(&machine->root_dir); 215 zfree(&machine->mmap_name); 216 zfree(&machine->current_tid); 217 218 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 219 struct threads *threads = &machine->threads[i]; 220 exit_rwsem(&threads->lock); 221 } 222 } 223 224 void machine__delete(struct machine *machine) 225 { 226 if (machine) { 227 machine__exit(machine); 228 free(machine); 229 } 230 } 231 232 void machines__init(struct machines *machines) 233 { 234 machine__init(&machines->host, "", HOST_KERNEL_ID); 235 machines->guests = RB_ROOT; 236 } 237 238 void machines__exit(struct machines *machines) 239 { 240 machine__exit(&machines->host); 241 /* XXX exit guest */ 242 } 243 244 struct machine *machines__add(struct machines *machines, pid_t pid, 245 const char *root_dir) 246 { 247 struct rb_node **p = &machines->guests.rb_node; 248 struct rb_node *parent = NULL; 249 struct machine *pos, *machine = malloc(sizeof(*machine)); 250 251 if (machine == NULL) 252 return NULL; 253 254 if (machine__init(machine, root_dir, pid) != 0) { 255 free(machine); 256 return NULL; 257 } 258 259 while (*p != NULL) { 260 parent = *p; 261 pos = rb_entry(parent, struct machine, rb_node); 262 if (pid < pos->pid) 263 p = &(*p)->rb_left; 264 else 265 p = &(*p)->rb_right; 266 } 267 268 rb_link_node(&machine->rb_node, parent, p); 269 rb_insert_color(&machine->rb_node, &machines->guests); 270 271 return machine; 272 } 273 274 void machines__set_comm_exec(struct machines *machines, bool comm_exec) 275 { 276 struct rb_node *nd; 277 278 machines->host.comm_exec = comm_exec; 279 280 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 281 struct machine *machine = rb_entry(nd, struct machine, rb_node); 282 283 machine->comm_exec = comm_exec; 284 } 285 } 286 287 struct machine *machines__find(struct machines *machines, pid_t pid) 288 { 289 struct rb_node **p = &machines->guests.rb_node; 290 struct rb_node *parent = NULL; 291 struct machine *machine; 292 struct machine *default_machine = NULL; 293 294 if (pid == HOST_KERNEL_ID) 295 return &machines->host; 296 297 while (*p != NULL) { 298 parent = *p; 299 machine = rb_entry(parent, struct machine, rb_node); 300 if (pid < machine->pid) 301 p = &(*p)->rb_left; 302 else if (pid > machine->pid) 303 p = &(*p)->rb_right; 304 else 305 return machine; 306 if (!machine->pid) 307 default_machine = machine; 308 } 309 310 return default_machine; 311 } 312 313 struct machine *machines__findnew(struct machines *machines, pid_t pid) 314 { 315 char path[PATH_MAX]; 316 const char *root_dir = ""; 317 struct machine *machine = machines__find(machines, pid); 318 319 if (machine && (machine->pid == pid)) 320 goto out; 321 322 if ((pid != HOST_KERNEL_ID) && 323 (pid != DEFAULT_GUEST_KERNEL_ID) && 324 (symbol_conf.guestmount)) { 325 sprintf(path, "%s/%d", symbol_conf.guestmount, pid); 326 if (access(path, R_OK)) { 327 static struct strlist *seen; 328 329 if (!seen) 330 seen = strlist__new(NULL, NULL); 331 332 if (!strlist__has_entry(seen, path)) { 333 pr_err("Can't access file %s\n", path); 334 strlist__add(seen, path); 335 } 336 machine = NULL; 337 goto out; 338 } 339 root_dir = path; 340 } 341 342 machine = machines__add(machines, pid, root_dir); 343 out: 344 return machine; 345 } 346 347 void machines__process_guests(struct machines *machines, 348 machine__process_t process, void *data) 349 { 350 struct rb_node *nd; 351 352 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 353 struct machine *pos = rb_entry(nd, struct machine, rb_node); 354 process(pos, data); 355 } 356 } 357 358 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size) 359 { 360 struct rb_node *node; 361 struct machine *machine; 362 363 machines->host.id_hdr_size = id_hdr_size; 364 365 for (node = rb_first(&machines->guests); node; node = rb_next(node)) { 366 machine = rb_entry(node, struct machine, rb_node); 367 machine->id_hdr_size = id_hdr_size; 368 } 369 370 return; 371 } 372 373 static void machine__update_thread_pid(struct machine *machine, 374 struct thread *th, pid_t pid) 375 { 376 struct thread *leader; 377 378 if (pid == th->pid_ || pid == -1 || th->pid_ != -1) 379 return; 380 381 th->pid_ = pid; 382 383 if (th->pid_ == th->tid) 384 return; 385 386 leader = __machine__findnew_thread(machine, th->pid_, th->pid_); 387 if (!leader) 388 goto out_err; 389 390 if (!leader->mg) 391 leader->mg = map_groups__new(machine); 392 393 if (!leader->mg) 394 goto out_err; 395 396 if (th->mg == leader->mg) 397 return; 398 399 if (th->mg) { 400 /* 401 * Maps are created from MMAP events which provide the pid and 402 * tid. Consequently there never should be any maps on a thread 403 * with an unknown pid. Just print an error if there are. 404 */ 405 if (!map_groups__empty(th->mg)) 406 pr_err("Discarding thread maps for %d:%d\n", 407 th->pid_, th->tid); 408 map_groups__put(th->mg); 409 } 410 411 th->mg = map_groups__get(leader->mg); 412 out_put: 413 thread__put(leader); 414 return; 415 out_err: 416 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid); 417 goto out_put; 418 } 419 420 /* 421 * Caller must eventually drop thread->refcnt returned with a successful 422 * lookup/new thread inserted. 423 */ 424 static struct thread *____machine__findnew_thread(struct machine *machine, 425 struct threads *threads, 426 pid_t pid, pid_t tid, 427 bool create) 428 { 429 struct rb_node **p = &threads->entries.rb_node; 430 struct rb_node *parent = NULL; 431 struct thread *th; 432 433 /* 434 * Front-end cache - TID lookups come in blocks, 435 * so most of the time we dont have to look up 436 * the full rbtree: 437 */ 438 th = threads->last_match; 439 if (th != NULL) { 440 if (th->tid == tid) { 441 machine__update_thread_pid(machine, th, pid); 442 return thread__get(th); 443 } 444 445 threads->last_match = NULL; 446 } 447 448 while (*p != NULL) { 449 parent = *p; 450 th = rb_entry(parent, struct thread, rb_node); 451 452 if (th->tid == tid) { 453 threads->last_match = th; 454 machine__update_thread_pid(machine, th, pid); 455 return thread__get(th); 456 } 457 458 if (tid < th->tid) 459 p = &(*p)->rb_left; 460 else 461 p = &(*p)->rb_right; 462 } 463 464 if (!create) 465 return NULL; 466 467 th = thread__new(pid, tid); 468 if (th != NULL) { 469 rb_link_node(&th->rb_node, parent, p); 470 rb_insert_color(&th->rb_node, &threads->entries); 471 472 /* 473 * We have to initialize map_groups separately 474 * after rb tree is updated. 475 * 476 * The reason is that we call machine__findnew_thread 477 * within thread__init_map_groups to find the thread 478 * leader and that would screwed the rb tree. 479 */ 480 if (thread__init_map_groups(th, machine)) { 481 rb_erase_init(&th->rb_node, &threads->entries); 482 RB_CLEAR_NODE(&th->rb_node); 483 thread__put(th); 484 return NULL; 485 } 486 /* 487 * It is now in the rbtree, get a ref 488 */ 489 thread__get(th); 490 threads->last_match = th; 491 ++threads->nr; 492 } 493 494 return th; 495 } 496 497 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid) 498 { 499 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true); 500 } 501 502 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, 503 pid_t tid) 504 { 505 struct threads *threads = machine__threads(machine, tid); 506 struct thread *th; 507 508 down_write(&threads->lock); 509 th = __machine__findnew_thread(machine, pid, tid); 510 up_write(&threads->lock); 511 return th; 512 } 513 514 struct thread *machine__find_thread(struct machine *machine, pid_t pid, 515 pid_t tid) 516 { 517 struct threads *threads = machine__threads(machine, tid); 518 struct thread *th; 519 520 down_read(&threads->lock); 521 th = ____machine__findnew_thread(machine, threads, pid, tid, false); 522 up_read(&threads->lock); 523 return th; 524 } 525 526 struct comm *machine__thread_exec_comm(struct machine *machine, 527 struct thread *thread) 528 { 529 if (machine->comm_exec) 530 return thread__exec_comm(thread); 531 else 532 return thread__comm(thread); 533 } 534 535 int machine__process_comm_event(struct machine *machine, union perf_event *event, 536 struct perf_sample *sample) 537 { 538 struct thread *thread = machine__findnew_thread(machine, 539 event->comm.pid, 540 event->comm.tid); 541 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC; 542 int err = 0; 543 544 if (exec) 545 machine->comm_exec = true; 546 547 if (dump_trace) 548 perf_event__fprintf_comm(event, stdout); 549 550 if (thread == NULL || 551 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) { 552 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n"); 553 err = -1; 554 } 555 556 thread__put(thread); 557 558 return err; 559 } 560 561 int machine__process_namespaces_event(struct machine *machine __maybe_unused, 562 union perf_event *event, 563 struct perf_sample *sample __maybe_unused) 564 { 565 struct thread *thread = machine__findnew_thread(machine, 566 event->namespaces.pid, 567 event->namespaces.tid); 568 int err = 0; 569 570 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES, 571 "\nWARNING: kernel seems to support more namespaces than perf" 572 " tool.\nTry updating the perf tool..\n\n"); 573 574 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES, 575 "\nWARNING: perf tool seems to support more namespaces than" 576 " the kernel.\nTry updating the kernel..\n\n"); 577 578 if (dump_trace) 579 perf_event__fprintf_namespaces(event, stdout); 580 581 if (thread == NULL || 582 thread__set_namespaces(thread, sample->time, &event->namespaces)) { 583 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n"); 584 err = -1; 585 } 586 587 thread__put(thread); 588 589 return err; 590 } 591 592 int machine__process_lost_event(struct machine *machine __maybe_unused, 593 union perf_event *event, struct perf_sample *sample __maybe_unused) 594 { 595 dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n", 596 event->lost.id, event->lost.lost); 597 return 0; 598 } 599 600 int machine__process_lost_samples_event(struct machine *machine __maybe_unused, 601 union perf_event *event, struct perf_sample *sample) 602 { 603 dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n", 604 sample->id, event->lost_samples.lost); 605 return 0; 606 } 607 608 static struct dso *machine__findnew_module_dso(struct machine *machine, 609 struct kmod_path *m, 610 const char *filename) 611 { 612 struct dso *dso; 613 614 down_write(&machine->dsos.lock); 615 616 dso = __dsos__find(&machine->dsos, m->name, true); 617 if (!dso) { 618 dso = __dsos__addnew(&machine->dsos, m->name); 619 if (dso == NULL) 620 goto out_unlock; 621 622 dso__set_module_info(dso, m, machine); 623 dso__set_long_name(dso, strdup(filename), true); 624 } 625 626 dso__get(dso); 627 out_unlock: 628 up_write(&machine->dsos.lock); 629 return dso; 630 } 631 632 int machine__process_aux_event(struct machine *machine __maybe_unused, 633 union perf_event *event) 634 { 635 if (dump_trace) 636 perf_event__fprintf_aux(event, stdout); 637 return 0; 638 } 639 640 int machine__process_itrace_start_event(struct machine *machine __maybe_unused, 641 union perf_event *event) 642 { 643 if (dump_trace) 644 perf_event__fprintf_itrace_start(event, stdout); 645 return 0; 646 } 647 648 int machine__process_switch_event(struct machine *machine __maybe_unused, 649 union perf_event *event) 650 { 651 if (dump_trace) 652 perf_event__fprintf_switch(event, stdout); 653 return 0; 654 } 655 656 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename) 657 { 658 const char *dup_filename; 659 660 if (!filename || !dso || !dso->long_name) 661 return; 662 if (dso->long_name[0] != '[') 663 return; 664 if (!strchr(filename, '/')) 665 return; 666 667 dup_filename = strdup(filename); 668 if (!dup_filename) 669 return; 670 671 dso__set_long_name(dso, dup_filename, true); 672 } 673 674 struct map *machine__findnew_module_map(struct machine *machine, u64 start, 675 const char *filename) 676 { 677 struct map *map = NULL; 678 struct dso *dso = NULL; 679 struct kmod_path m; 680 681 if (kmod_path__parse_name(&m, filename)) 682 return NULL; 683 684 map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION, 685 m.name); 686 if (map) { 687 /* 688 * If the map's dso is an offline module, give dso__load() 689 * a chance to find the file path of that module by fixing 690 * long_name. 691 */ 692 dso__adjust_kmod_long_name(map->dso, filename); 693 goto out; 694 } 695 696 dso = machine__findnew_module_dso(machine, &m, filename); 697 if (dso == NULL) 698 goto out; 699 700 map = map__new2(start, dso, MAP__FUNCTION); 701 if (map == NULL) 702 goto out; 703 704 map_groups__insert(&machine->kmaps, map); 705 706 /* Put the map here because map_groups__insert alread got it */ 707 map__put(map); 708 out: 709 /* put the dso here, corresponding to machine__findnew_module_dso */ 710 dso__put(dso); 711 free(m.name); 712 return map; 713 } 714 715 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp) 716 { 717 struct rb_node *nd; 718 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp); 719 720 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 721 struct machine *pos = rb_entry(nd, struct machine, rb_node); 722 ret += __dsos__fprintf(&pos->dsos.head, fp); 723 } 724 725 return ret; 726 } 727 728 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp, 729 bool (skip)(struct dso *dso, int parm), int parm) 730 { 731 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm); 732 } 733 734 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp, 735 bool (skip)(struct dso *dso, int parm), int parm) 736 { 737 struct rb_node *nd; 738 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm); 739 740 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 741 struct machine *pos = rb_entry(nd, struct machine, rb_node); 742 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm); 743 } 744 return ret; 745 } 746 747 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp) 748 { 749 int i; 750 size_t printed = 0; 751 struct dso *kdso = machine__kernel_map(machine)->dso; 752 753 if (kdso->has_build_id) { 754 char filename[PATH_MAX]; 755 if (dso__build_id_filename(kdso, filename, sizeof(filename), 756 false)) 757 printed += fprintf(fp, "[0] %s\n", filename); 758 } 759 760 for (i = 0; i < vmlinux_path__nr_entries; ++i) 761 printed += fprintf(fp, "[%d] %s\n", 762 i + kdso->has_build_id, vmlinux_path[i]); 763 764 return printed; 765 } 766 767 size_t machine__fprintf(struct machine *machine, FILE *fp) 768 { 769 struct rb_node *nd; 770 size_t ret; 771 int i; 772 773 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 774 struct threads *threads = &machine->threads[i]; 775 776 down_read(&threads->lock); 777 778 ret = fprintf(fp, "Threads: %u\n", threads->nr); 779 780 for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) { 781 struct thread *pos = rb_entry(nd, struct thread, rb_node); 782 783 ret += thread__fprintf(pos, fp); 784 } 785 786 up_read(&threads->lock); 787 } 788 return ret; 789 } 790 791 static struct dso *machine__get_kernel(struct machine *machine) 792 { 793 const char *vmlinux_name = machine->mmap_name; 794 struct dso *kernel; 795 796 if (machine__is_host(machine)) { 797 kernel = machine__findnew_kernel(machine, vmlinux_name, 798 "[kernel]", DSO_TYPE_KERNEL); 799 } else { 800 kernel = machine__findnew_kernel(machine, vmlinux_name, 801 "[guest.kernel]", 802 DSO_TYPE_GUEST_KERNEL); 803 } 804 805 if (kernel != NULL && (!kernel->has_build_id)) 806 dso__read_running_kernel_build_id(kernel, machine); 807 808 return kernel; 809 } 810 811 struct process_args { 812 u64 start; 813 }; 814 815 static void machine__get_kallsyms_filename(struct machine *machine, char *buf, 816 size_t bufsz) 817 { 818 if (machine__is_default_guest(machine)) 819 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms); 820 else 821 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir); 822 } 823 824 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL}; 825 826 /* Figure out the start address of kernel map from /proc/kallsyms. 827 * Returns the name of the start symbol in *symbol_name. Pass in NULL as 828 * symbol_name if it's not that important. 829 */ 830 static int machine__get_running_kernel_start(struct machine *machine, 831 const char **symbol_name, u64 *start) 832 { 833 char filename[PATH_MAX]; 834 int i, err = -1; 835 const char *name; 836 u64 addr = 0; 837 838 machine__get_kallsyms_filename(machine, filename, PATH_MAX); 839 840 if (symbol__restricted_filename(filename, "/proc/kallsyms")) 841 return 0; 842 843 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) { 844 err = kallsyms__get_function_start(filename, name, &addr); 845 if (!err) 846 break; 847 } 848 849 if (err) 850 return -1; 851 852 if (symbol_name) 853 *symbol_name = name; 854 855 *start = addr; 856 return 0; 857 } 858 859 static int 860 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel) 861 { 862 int type; 863 864 /* In case of renewal the kernel map, destroy previous one */ 865 machine__destroy_kernel_maps(machine); 866 867 for (type = 0; type < MAP__NR_TYPES; ++type) { 868 struct kmap *kmap; 869 struct map *map; 870 871 machine->vmlinux_maps[type] = map__new2(0, kernel, type); 872 if (machine->vmlinux_maps[type] == NULL) 873 return -1; 874 875 machine->vmlinux_maps[type]->map_ip = 876 machine->vmlinux_maps[type]->unmap_ip = 877 identity__map_ip; 878 map = __machine__kernel_map(machine, type); 879 kmap = map__kmap(map); 880 if (!kmap) 881 return -1; 882 883 kmap->kmaps = &machine->kmaps; 884 map_groups__insert(&machine->kmaps, map); 885 } 886 887 return 0; 888 } 889 890 void machine__destroy_kernel_maps(struct machine *machine) 891 { 892 int type; 893 894 for (type = 0; type < MAP__NR_TYPES; ++type) { 895 struct kmap *kmap; 896 struct map *map = __machine__kernel_map(machine, type); 897 898 if (map == NULL) 899 continue; 900 901 kmap = map__kmap(map); 902 map_groups__remove(&machine->kmaps, map); 903 if (kmap && kmap->ref_reloc_sym) { 904 /* 905 * ref_reloc_sym is shared among all maps, so free just 906 * on one of them. 907 */ 908 if (type == MAP__FUNCTION) { 909 zfree((char **)&kmap->ref_reloc_sym->name); 910 zfree(&kmap->ref_reloc_sym); 911 } else 912 kmap->ref_reloc_sym = NULL; 913 } 914 915 map__put(machine->vmlinux_maps[type]); 916 machine->vmlinux_maps[type] = NULL; 917 } 918 } 919 920 int machines__create_guest_kernel_maps(struct machines *machines) 921 { 922 int ret = 0; 923 struct dirent **namelist = NULL; 924 int i, items = 0; 925 char path[PATH_MAX]; 926 pid_t pid; 927 char *endp; 928 929 if (symbol_conf.default_guest_vmlinux_name || 930 symbol_conf.default_guest_modules || 931 symbol_conf.default_guest_kallsyms) { 932 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID); 933 } 934 935 if (symbol_conf.guestmount) { 936 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL); 937 if (items <= 0) 938 return -ENOENT; 939 for (i = 0; i < items; i++) { 940 if (!isdigit(namelist[i]->d_name[0])) { 941 /* Filter out . and .. */ 942 continue; 943 } 944 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10); 945 if ((*endp != '\0') || 946 (endp == namelist[i]->d_name) || 947 (errno == ERANGE)) { 948 pr_debug("invalid directory (%s). Skipping.\n", 949 namelist[i]->d_name); 950 continue; 951 } 952 sprintf(path, "%s/%s/proc/kallsyms", 953 symbol_conf.guestmount, 954 namelist[i]->d_name); 955 ret = access(path, R_OK); 956 if (ret) { 957 pr_debug("Can't access file %s\n", path); 958 goto failure; 959 } 960 machines__create_kernel_maps(machines, pid); 961 } 962 failure: 963 free(namelist); 964 } 965 966 return ret; 967 } 968 969 void machines__destroy_kernel_maps(struct machines *machines) 970 { 971 struct rb_node *next = rb_first(&machines->guests); 972 973 machine__destroy_kernel_maps(&machines->host); 974 975 while (next) { 976 struct machine *pos = rb_entry(next, struct machine, rb_node); 977 978 next = rb_next(&pos->rb_node); 979 rb_erase(&pos->rb_node, &machines->guests); 980 machine__delete(pos); 981 } 982 } 983 984 int machines__create_kernel_maps(struct machines *machines, pid_t pid) 985 { 986 struct machine *machine = machines__findnew(machines, pid); 987 988 if (machine == NULL) 989 return -1; 990 991 return machine__create_kernel_maps(machine); 992 } 993 994 int machine__load_kallsyms(struct machine *machine, const char *filename, 995 enum map_type type) 996 { 997 struct map *map = machine__kernel_map(machine); 998 int ret = __dso__load_kallsyms(map->dso, filename, map, true); 999 1000 if (ret > 0) { 1001 dso__set_loaded(map->dso, type); 1002 /* 1003 * Since /proc/kallsyms will have multiple sessions for the 1004 * kernel, with modules between them, fixup the end of all 1005 * sections. 1006 */ 1007 __map_groups__fixup_end(&machine->kmaps, type); 1008 } 1009 1010 return ret; 1011 } 1012 1013 int machine__load_vmlinux_path(struct machine *machine, enum map_type type) 1014 { 1015 struct map *map = machine__kernel_map(machine); 1016 int ret = dso__load_vmlinux_path(map->dso, map); 1017 1018 if (ret > 0) 1019 dso__set_loaded(map->dso, type); 1020 1021 return ret; 1022 } 1023 1024 static void map_groups__fixup_end(struct map_groups *mg) 1025 { 1026 int i; 1027 for (i = 0; i < MAP__NR_TYPES; ++i) 1028 __map_groups__fixup_end(mg, i); 1029 } 1030 1031 static char *get_kernel_version(const char *root_dir) 1032 { 1033 char version[PATH_MAX]; 1034 FILE *file; 1035 char *name, *tmp; 1036 const char *prefix = "Linux version "; 1037 1038 sprintf(version, "%s/proc/version", root_dir); 1039 file = fopen(version, "r"); 1040 if (!file) 1041 return NULL; 1042 1043 version[0] = '\0'; 1044 tmp = fgets(version, sizeof(version), file); 1045 fclose(file); 1046 1047 name = strstr(version, prefix); 1048 if (!name) 1049 return NULL; 1050 name += strlen(prefix); 1051 tmp = strchr(name, ' '); 1052 if (tmp) 1053 *tmp = '\0'; 1054 1055 return strdup(name); 1056 } 1057 1058 static bool is_kmod_dso(struct dso *dso) 1059 { 1060 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE || 1061 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE; 1062 } 1063 1064 static int map_groups__set_module_path(struct map_groups *mg, const char *path, 1065 struct kmod_path *m) 1066 { 1067 struct map *map; 1068 char *long_name; 1069 1070 map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name); 1071 if (map == NULL) 1072 return 0; 1073 1074 long_name = strdup(path); 1075 if (long_name == NULL) 1076 return -ENOMEM; 1077 1078 dso__set_long_name(map->dso, long_name, true); 1079 dso__kernel_module_get_build_id(map->dso, ""); 1080 1081 /* 1082 * Full name could reveal us kmod compression, so 1083 * we need to update the symtab_type if needed. 1084 */ 1085 if (m->comp && is_kmod_dso(map->dso)) 1086 map->dso->symtab_type++; 1087 1088 return 0; 1089 } 1090 1091 static int map_groups__set_modules_path_dir(struct map_groups *mg, 1092 const char *dir_name, int depth) 1093 { 1094 struct dirent *dent; 1095 DIR *dir = opendir(dir_name); 1096 int ret = 0; 1097 1098 if (!dir) { 1099 pr_debug("%s: cannot open %s dir\n", __func__, dir_name); 1100 return -1; 1101 } 1102 1103 while ((dent = readdir(dir)) != NULL) { 1104 char path[PATH_MAX]; 1105 struct stat st; 1106 1107 /*sshfs might return bad dent->d_type, so we have to stat*/ 1108 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name); 1109 if (stat(path, &st)) 1110 continue; 1111 1112 if (S_ISDIR(st.st_mode)) { 1113 if (!strcmp(dent->d_name, ".") || 1114 !strcmp(dent->d_name, "..")) 1115 continue; 1116 1117 /* Do not follow top-level source and build symlinks */ 1118 if (depth == 0) { 1119 if (!strcmp(dent->d_name, "source") || 1120 !strcmp(dent->d_name, "build")) 1121 continue; 1122 } 1123 1124 ret = map_groups__set_modules_path_dir(mg, path, 1125 depth + 1); 1126 if (ret < 0) 1127 goto out; 1128 } else { 1129 struct kmod_path m; 1130 1131 ret = kmod_path__parse_name(&m, dent->d_name); 1132 if (ret) 1133 goto out; 1134 1135 if (m.kmod) 1136 ret = map_groups__set_module_path(mg, path, &m); 1137 1138 free(m.name); 1139 1140 if (ret) 1141 goto out; 1142 } 1143 } 1144 1145 out: 1146 closedir(dir); 1147 return ret; 1148 } 1149 1150 static int machine__set_modules_path(struct machine *machine) 1151 { 1152 char *version; 1153 char modules_path[PATH_MAX]; 1154 1155 version = get_kernel_version(machine->root_dir); 1156 if (!version) 1157 return -1; 1158 1159 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s", 1160 machine->root_dir, version); 1161 free(version); 1162 1163 return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0); 1164 } 1165 int __weak arch__fix_module_text_start(u64 *start __maybe_unused, 1166 const char *name __maybe_unused) 1167 { 1168 return 0; 1169 } 1170 1171 static int machine__create_module(void *arg, const char *name, u64 start, 1172 u64 size) 1173 { 1174 struct machine *machine = arg; 1175 struct map *map; 1176 1177 if (arch__fix_module_text_start(&start, name) < 0) 1178 return -1; 1179 1180 map = machine__findnew_module_map(machine, start, name); 1181 if (map == NULL) 1182 return -1; 1183 map->end = start + size; 1184 1185 dso__kernel_module_get_build_id(map->dso, machine->root_dir); 1186 1187 return 0; 1188 } 1189 1190 static int machine__create_modules(struct machine *machine) 1191 { 1192 const char *modules; 1193 char path[PATH_MAX]; 1194 1195 if (machine__is_default_guest(machine)) { 1196 modules = symbol_conf.default_guest_modules; 1197 } else { 1198 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir); 1199 modules = path; 1200 } 1201 1202 if (symbol__restricted_filename(modules, "/proc/modules")) 1203 return -1; 1204 1205 if (modules__parse(modules, machine, machine__create_module)) 1206 return -1; 1207 1208 if (!machine__set_modules_path(machine)) 1209 return 0; 1210 1211 pr_debug("Problems setting modules path maps, continuing anyway...\n"); 1212 1213 return 0; 1214 } 1215 1216 static void machine__set_kernel_mmap(struct machine *machine, 1217 u64 start, u64 end) 1218 { 1219 int i; 1220 1221 for (i = 0; i < MAP__NR_TYPES; i++) { 1222 machine->vmlinux_maps[i]->start = start; 1223 machine->vmlinux_maps[i]->end = end; 1224 1225 /* 1226 * Be a bit paranoid here, some perf.data file came with 1227 * a zero sized synthesized MMAP event for the kernel. 1228 */ 1229 if (start == 0 && end == 0) 1230 machine->vmlinux_maps[i]->end = ~0ULL; 1231 } 1232 } 1233 1234 int machine__create_kernel_maps(struct machine *machine) 1235 { 1236 struct dso *kernel = machine__get_kernel(machine); 1237 const char *name = NULL; 1238 u64 addr = 0; 1239 int ret; 1240 1241 if (kernel == NULL) 1242 return -1; 1243 1244 ret = __machine__create_kernel_maps(machine, kernel); 1245 dso__put(kernel); 1246 if (ret < 0) 1247 return -1; 1248 1249 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) { 1250 if (machine__is_host(machine)) 1251 pr_debug("Problems creating module maps, " 1252 "continuing anyway...\n"); 1253 else 1254 pr_debug("Problems creating module maps for guest %d, " 1255 "continuing anyway...\n", machine->pid); 1256 } 1257 1258 if (!machine__get_running_kernel_start(machine, &name, &addr)) { 1259 if (name && 1260 maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name, addr)) { 1261 machine__destroy_kernel_maps(machine); 1262 return -1; 1263 } 1264 machine__set_kernel_mmap(machine, addr, 0); 1265 } 1266 1267 /* 1268 * Now that we have all the maps created, just set the ->end of them: 1269 */ 1270 map_groups__fixup_end(&machine->kmaps); 1271 return 0; 1272 } 1273 1274 static bool machine__uses_kcore(struct machine *machine) 1275 { 1276 struct dso *dso; 1277 1278 list_for_each_entry(dso, &machine->dsos.head, node) { 1279 if (dso__is_kcore(dso)) 1280 return true; 1281 } 1282 1283 return false; 1284 } 1285 1286 static int machine__process_kernel_mmap_event(struct machine *machine, 1287 union perf_event *event) 1288 { 1289 struct map *map; 1290 enum dso_kernel_type kernel_type; 1291 bool is_kernel_mmap; 1292 1293 /* If we have maps from kcore then we do not need or want any others */ 1294 if (machine__uses_kcore(machine)) 1295 return 0; 1296 1297 if (machine__is_host(machine)) 1298 kernel_type = DSO_TYPE_KERNEL; 1299 else 1300 kernel_type = DSO_TYPE_GUEST_KERNEL; 1301 1302 is_kernel_mmap = memcmp(event->mmap.filename, 1303 machine->mmap_name, 1304 strlen(machine->mmap_name) - 1) == 0; 1305 if (event->mmap.filename[0] == '/' || 1306 (!is_kernel_mmap && event->mmap.filename[0] == '[')) { 1307 map = machine__findnew_module_map(machine, event->mmap.start, 1308 event->mmap.filename); 1309 if (map == NULL) 1310 goto out_problem; 1311 1312 map->end = map->start + event->mmap.len; 1313 } else if (is_kernel_mmap) { 1314 const char *symbol_name = (event->mmap.filename + 1315 strlen(machine->mmap_name)); 1316 /* 1317 * Should be there already, from the build-id table in 1318 * the header. 1319 */ 1320 struct dso *kernel = NULL; 1321 struct dso *dso; 1322 1323 down_read(&machine->dsos.lock); 1324 1325 list_for_each_entry(dso, &machine->dsos.head, node) { 1326 1327 /* 1328 * The cpumode passed to is_kernel_module is not the 1329 * cpumode of *this* event. If we insist on passing 1330 * correct cpumode to is_kernel_module, we should 1331 * record the cpumode when we adding this dso to the 1332 * linked list. 1333 * 1334 * However we don't really need passing correct 1335 * cpumode. We know the correct cpumode must be kernel 1336 * mode (if not, we should not link it onto kernel_dsos 1337 * list). 1338 * 1339 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN. 1340 * is_kernel_module() treats it as a kernel cpumode. 1341 */ 1342 1343 if (!dso->kernel || 1344 is_kernel_module(dso->long_name, 1345 PERF_RECORD_MISC_CPUMODE_UNKNOWN)) 1346 continue; 1347 1348 1349 kernel = dso; 1350 break; 1351 } 1352 1353 up_read(&machine->dsos.lock); 1354 1355 if (kernel == NULL) 1356 kernel = machine__findnew_dso(machine, machine->mmap_name); 1357 if (kernel == NULL) 1358 goto out_problem; 1359 1360 kernel->kernel = kernel_type; 1361 if (__machine__create_kernel_maps(machine, kernel) < 0) { 1362 dso__put(kernel); 1363 goto out_problem; 1364 } 1365 1366 if (strstr(kernel->long_name, "vmlinux")) 1367 dso__set_short_name(kernel, "[kernel.vmlinux]", false); 1368 1369 machine__set_kernel_mmap(machine, event->mmap.start, 1370 event->mmap.start + event->mmap.len); 1371 1372 /* 1373 * Avoid using a zero address (kptr_restrict) for the ref reloc 1374 * symbol. Effectively having zero here means that at record 1375 * time /proc/sys/kernel/kptr_restrict was non zero. 1376 */ 1377 if (event->mmap.pgoff != 0) { 1378 maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, 1379 symbol_name, 1380 event->mmap.pgoff); 1381 } 1382 1383 if (machine__is_default_guest(machine)) { 1384 /* 1385 * preload dso of guest kernel and modules 1386 */ 1387 dso__load(kernel, machine__kernel_map(machine)); 1388 } 1389 } 1390 return 0; 1391 out_problem: 1392 return -1; 1393 } 1394 1395 int machine__process_mmap2_event(struct machine *machine, 1396 union perf_event *event, 1397 struct perf_sample *sample) 1398 { 1399 struct thread *thread; 1400 struct map *map; 1401 enum map_type type; 1402 int ret = 0; 1403 1404 if (dump_trace) 1405 perf_event__fprintf_mmap2(event, stdout); 1406 1407 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1408 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1409 ret = machine__process_kernel_mmap_event(machine, event); 1410 if (ret < 0) 1411 goto out_problem; 1412 return 0; 1413 } 1414 1415 thread = machine__findnew_thread(machine, event->mmap2.pid, 1416 event->mmap2.tid); 1417 if (thread == NULL) 1418 goto out_problem; 1419 1420 if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA) 1421 type = MAP__VARIABLE; 1422 else 1423 type = MAP__FUNCTION; 1424 1425 map = map__new(machine, event->mmap2.start, 1426 event->mmap2.len, event->mmap2.pgoff, 1427 event->mmap2.maj, 1428 event->mmap2.min, event->mmap2.ino, 1429 event->mmap2.ino_generation, 1430 event->mmap2.prot, 1431 event->mmap2.flags, 1432 event->mmap2.filename, type, thread); 1433 1434 if (map == NULL) 1435 goto out_problem_map; 1436 1437 ret = thread__insert_map(thread, map); 1438 if (ret) 1439 goto out_problem_insert; 1440 1441 thread__put(thread); 1442 map__put(map); 1443 return 0; 1444 1445 out_problem_insert: 1446 map__put(map); 1447 out_problem_map: 1448 thread__put(thread); 1449 out_problem: 1450 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n"); 1451 return 0; 1452 } 1453 1454 int machine__process_mmap_event(struct machine *machine, union perf_event *event, 1455 struct perf_sample *sample) 1456 { 1457 struct thread *thread; 1458 struct map *map; 1459 enum map_type type; 1460 int ret = 0; 1461 1462 if (dump_trace) 1463 perf_event__fprintf_mmap(event, stdout); 1464 1465 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1466 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1467 ret = machine__process_kernel_mmap_event(machine, event); 1468 if (ret < 0) 1469 goto out_problem; 1470 return 0; 1471 } 1472 1473 thread = machine__findnew_thread(machine, event->mmap.pid, 1474 event->mmap.tid); 1475 if (thread == NULL) 1476 goto out_problem; 1477 1478 if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA) 1479 type = MAP__VARIABLE; 1480 else 1481 type = MAP__FUNCTION; 1482 1483 map = map__new(machine, event->mmap.start, 1484 event->mmap.len, event->mmap.pgoff, 1485 0, 0, 0, 0, 0, 0, 1486 event->mmap.filename, 1487 type, thread); 1488 1489 if (map == NULL) 1490 goto out_problem_map; 1491 1492 ret = thread__insert_map(thread, map); 1493 if (ret) 1494 goto out_problem_insert; 1495 1496 thread__put(thread); 1497 map__put(map); 1498 return 0; 1499 1500 out_problem_insert: 1501 map__put(map); 1502 out_problem_map: 1503 thread__put(thread); 1504 out_problem: 1505 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n"); 1506 return 0; 1507 } 1508 1509 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock) 1510 { 1511 struct threads *threads = machine__threads(machine, th->tid); 1512 1513 if (threads->last_match == th) 1514 threads->last_match = NULL; 1515 1516 BUG_ON(refcount_read(&th->refcnt) == 0); 1517 if (lock) 1518 down_write(&threads->lock); 1519 rb_erase_init(&th->rb_node, &threads->entries); 1520 RB_CLEAR_NODE(&th->rb_node); 1521 --threads->nr; 1522 /* 1523 * Move it first to the dead_threads list, then drop the reference, 1524 * if this is the last reference, then the thread__delete destructor 1525 * will be called and we will remove it from the dead_threads list. 1526 */ 1527 list_add_tail(&th->node, &threads->dead); 1528 if (lock) 1529 up_write(&threads->lock); 1530 thread__put(th); 1531 } 1532 1533 void machine__remove_thread(struct machine *machine, struct thread *th) 1534 { 1535 return __machine__remove_thread(machine, th, true); 1536 } 1537 1538 int machine__process_fork_event(struct machine *machine, union perf_event *event, 1539 struct perf_sample *sample) 1540 { 1541 struct thread *thread = machine__find_thread(machine, 1542 event->fork.pid, 1543 event->fork.tid); 1544 struct thread *parent = machine__findnew_thread(machine, 1545 event->fork.ppid, 1546 event->fork.ptid); 1547 int err = 0; 1548 1549 if (dump_trace) 1550 perf_event__fprintf_task(event, stdout); 1551 1552 /* 1553 * There may be an existing thread that is not actually the parent, 1554 * either because we are processing events out of order, or because the 1555 * (fork) event that would have removed the thread was lost. Assume the 1556 * latter case and continue on as best we can. 1557 */ 1558 if (parent->pid_ != (pid_t)event->fork.ppid) { 1559 dump_printf("removing erroneous parent thread %d/%d\n", 1560 parent->pid_, parent->tid); 1561 machine__remove_thread(machine, parent); 1562 thread__put(parent); 1563 parent = machine__findnew_thread(machine, event->fork.ppid, 1564 event->fork.ptid); 1565 } 1566 1567 /* if a thread currently exists for the thread id remove it */ 1568 if (thread != NULL) { 1569 machine__remove_thread(machine, thread); 1570 thread__put(thread); 1571 } 1572 1573 thread = machine__findnew_thread(machine, event->fork.pid, 1574 event->fork.tid); 1575 1576 if (thread == NULL || parent == NULL || 1577 thread__fork(thread, parent, sample->time) < 0) { 1578 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n"); 1579 err = -1; 1580 } 1581 thread__put(thread); 1582 thread__put(parent); 1583 1584 return err; 1585 } 1586 1587 int machine__process_exit_event(struct machine *machine, union perf_event *event, 1588 struct perf_sample *sample __maybe_unused) 1589 { 1590 struct thread *thread = machine__find_thread(machine, 1591 event->fork.pid, 1592 event->fork.tid); 1593 1594 if (dump_trace) 1595 perf_event__fprintf_task(event, stdout); 1596 1597 if (thread != NULL) { 1598 thread__exited(thread); 1599 thread__put(thread); 1600 } 1601 1602 return 0; 1603 } 1604 1605 int machine__process_event(struct machine *machine, union perf_event *event, 1606 struct perf_sample *sample) 1607 { 1608 int ret; 1609 1610 switch (event->header.type) { 1611 case PERF_RECORD_COMM: 1612 ret = machine__process_comm_event(machine, event, sample); break; 1613 case PERF_RECORD_MMAP: 1614 ret = machine__process_mmap_event(machine, event, sample); break; 1615 case PERF_RECORD_NAMESPACES: 1616 ret = machine__process_namespaces_event(machine, event, sample); break; 1617 case PERF_RECORD_MMAP2: 1618 ret = machine__process_mmap2_event(machine, event, sample); break; 1619 case PERF_RECORD_FORK: 1620 ret = machine__process_fork_event(machine, event, sample); break; 1621 case PERF_RECORD_EXIT: 1622 ret = machine__process_exit_event(machine, event, sample); break; 1623 case PERF_RECORD_LOST: 1624 ret = machine__process_lost_event(machine, event, sample); break; 1625 case PERF_RECORD_AUX: 1626 ret = machine__process_aux_event(machine, event); break; 1627 case PERF_RECORD_ITRACE_START: 1628 ret = machine__process_itrace_start_event(machine, event); break; 1629 case PERF_RECORD_LOST_SAMPLES: 1630 ret = machine__process_lost_samples_event(machine, event, sample); break; 1631 case PERF_RECORD_SWITCH: 1632 case PERF_RECORD_SWITCH_CPU_WIDE: 1633 ret = machine__process_switch_event(machine, event); break; 1634 default: 1635 ret = -1; 1636 break; 1637 } 1638 1639 return ret; 1640 } 1641 1642 static bool symbol__match_regex(struct symbol *sym, regex_t *regex) 1643 { 1644 if (!regexec(regex, sym->name, 0, NULL, 0)) 1645 return 1; 1646 return 0; 1647 } 1648 1649 static void ip__resolve_ams(struct thread *thread, 1650 struct addr_map_symbol *ams, 1651 u64 ip) 1652 { 1653 struct addr_location al; 1654 1655 memset(&al, 0, sizeof(al)); 1656 /* 1657 * We cannot use the header.misc hint to determine whether a 1658 * branch stack address is user, kernel, guest, hypervisor. 1659 * Branches may straddle the kernel/user/hypervisor boundaries. 1660 * Thus, we have to try consecutively until we find a match 1661 * or else, the symbol is unknown 1662 */ 1663 thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al); 1664 1665 ams->addr = ip; 1666 ams->al_addr = al.addr; 1667 ams->sym = al.sym; 1668 ams->map = al.map; 1669 ams->phys_addr = 0; 1670 } 1671 1672 static void ip__resolve_data(struct thread *thread, 1673 u8 m, struct addr_map_symbol *ams, 1674 u64 addr, u64 phys_addr) 1675 { 1676 struct addr_location al; 1677 1678 memset(&al, 0, sizeof(al)); 1679 1680 thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al); 1681 if (al.map == NULL) { 1682 /* 1683 * some shared data regions have execute bit set which puts 1684 * their mapping in the MAP__FUNCTION type array. 1685 * Check there as a fallback option before dropping the sample. 1686 */ 1687 thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al); 1688 } 1689 1690 ams->addr = addr; 1691 ams->al_addr = al.addr; 1692 ams->sym = al.sym; 1693 ams->map = al.map; 1694 ams->phys_addr = phys_addr; 1695 } 1696 1697 struct mem_info *sample__resolve_mem(struct perf_sample *sample, 1698 struct addr_location *al) 1699 { 1700 struct mem_info *mi = mem_info__new(); 1701 1702 if (!mi) 1703 return NULL; 1704 1705 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip); 1706 ip__resolve_data(al->thread, al->cpumode, &mi->daddr, 1707 sample->addr, sample->phys_addr); 1708 mi->data_src.val = sample->data_src; 1709 1710 return mi; 1711 } 1712 1713 static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip) 1714 { 1715 char *srcline = NULL; 1716 1717 if (!map || callchain_param.key == CCKEY_FUNCTION) 1718 return srcline; 1719 1720 srcline = srcline__tree_find(&map->dso->srclines, ip); 1721 if (!srcline) { 1722 bool show_sym = false; 1723 bool show_addr = callchain_param.key == CCKEY_ADDRESS; 1724 1725 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip), 1726 sym, show_sym, show_addr, ip); 1727 srcline__tree_insert(&map->dso->srclines, ip, srcline); 1728 } 1729 1730 return srcline; 1731 } 1732 1733 struct iterations { 1734 int nr_loop_iter; 1735 u64 cycles; 1736 }; 1737 1738 static int add_callchain_ip(struct thread *thread, 1739 struct callchain_cursor *cursor, 1740 struct symbol **parent, 1741 struct addr_location *root_al, 1742 u8 *cpumode, 1743 u64 ip, 1744 bool branch, 1745 struct branch_flags *flags, 1746 struct iterations *iter, 1747 u64 branch_from) 1748 { 1749 struct addr_location al; 1750 int nr_loop_iter = 0; 1751 u64 iter_cycles = 0; 1752 const char *srcline = NULL; 1753 1754 al.filtered = 0; 1755 al.sym = NULL; 1756 if (!cpumode) { 1757 thread__find_cpumode_addr_location(thread, MAP__FUNCTION, 1758 ip, &al); 1759 } else { 1760 if (ip >= PERF_CONTEXT_MAX) { 1761 switch (ip) { 1762 case PERF_CONTEXT_HV: 1763 *cpumode = PERF_RECORD_MISC_HYPERVISOR; 1764 break; 1765 case PERF_CONTEXT_KERNEL: 1766 *cpumode = PERF_RECORD_MISC_KERNEL; 1767 break; 1768 case PERF_CONTEXT_USER: 1769 *cpumode = PERF_RECORD_MISC_USER; 1770 break; 1771 default: 1772 pr_debug("invalid callchain context: " 1773 "%"PRId64"\n", (s64) ip); 1774 /* 1775 * It seems the callchain is corrupted. 1776 * Discard all. 1777 */ 1778 callchain_cursor_reset(cursor); 1779 return 1; 1780 } 1781 return 0; 1782 } 1783 thread__find_addr_location(thread, *cpumode, MAP__FUNCTION, 1784 ip, &al); 1785 } 1786 1787 if (al.sym != NULL) { 1788 if (perf_hpp_list.parent && !*parent && 1789 symbol__match_regex(al.sym, &parent_regex)) 1790 *parent = al.sym; 1791 else if (have_ignore_callees && root_al && 1792 symbol__match_regex(al.sym, &ignore_callees_regex)) { 1793 /* Treat this symbol as the root, 1794 forgetting its callees. */ 1795 *root_al = al; 1796 callchain_cursor_reset(cursor); 1797 } 1798 } 1799 1800 if (symbol_conf.hide_unresolved && al.sym == NULL) 1801 return 0; 1802 1803 if (iter) { 1804 nr_loop_iter = iter->nr_loop_iter; 1805 iter_cycles = iter->cycles; 1806 } 1807 1808 srcline = callchain_srcline(al.map, al.sym, al.addr); 1809 return callchain_cursor_append(cursor, al.addr, al.map, al.sym, 1810 branch, flags, nr_loop_iter, 1811 iter_cycles, branch_from, srcline); 1812 } 1813 1814 struct branch_info *sample__resolve_bstack(struct perf_sample *sample, 1815 struct addr_location *al) 1816 { 1817 unsigned int i; 1818 const struct branch_stack *bs = sample->branch_stack; 1819 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info)); 1820 1821 if (!bi) 1822 return NULL; 1823 1824 for (i = 0; i < bs->nr; i++) { 1825 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to); 1826 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from); 1827 bi[i].flags = bs->entries[i].flags; 1828 } 1829 return bi; 1830 } 1831 1832 static void save_iterations(struct iterations *iter, 1833 struct branch_entry *be, int nr) 1834 { 1835 int i; 1836 1837 iter->nr_loop_iter = nr; 1838 iter->cycles = 0; 1839 1840 for (i = 0; i < nr; i++) 1841 iter->cycles += be[i].flags.cycles; 1842 } 1843 1844 #define CHASHSZ 127 1845 #define CHASHBITS 7 1846 #define NO_ENTRY 0xff 1847 1848 #define PERF_MAX_BRANCH_DEPTH 127 1849 1850 /* Remove loops. */ 1851 static int remove_loops(struct branch_entry *l, int nr, 1852 struct iterations *iter) 1853 { 1854 int i, j, off; 1855 unsigned char chash[CHASHSZ]; 1856 1857 memset(chash, NO_ENTRY, sizeof(chash)); 1858 1859 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255); 1860 1861 for (i = 0; i < nr; i++) { 1862 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ; 1863 1864 /* no collision handling for now */ 1865 if (chash[h] == NO_ENTRY) { 1866 chash[h] = i; 1867 } else if (l[chash[h]].from == l[i].from) { 1868 bool is_loop = true; 1869 /* check if it is a real loop */ 1870 off = 0; 1871 for (j = chash[h]; j < i && i + off < nr; j++, off++) 1872 if (l[j].from != l[i + off].from) { 1873 is_loop = false; 1874 break; 1875 } 1876 if (is_loop) { 1877 j = nr - (i + off); 1878 if (j > 0) { 1879 save_iterations(iter + i + off, 1880 l + i, off); 1881 1882 memmove(iter + i, iter + i + off, 1883 j * sizeof(*iter)); 1884 1885 memmove(l + i, l + i + off, 1886 j * sizeof(*l)); 1887 } 1888 1889 nr -= off; 1890 } 1891 } 1892 } 1893 return nr; 1894 } 1895 1896 /* 1897 * Recolve LBR callstack chain sample 1898 * Return: 1899 * 1 on success get LBR callchain information 1900 * 0 no available LBR callchain information, should try fp 1901 * negative error code on other errors. 1902 */ 1903 static int resolve_lbr_callchain_sample(struct thread *thread, 1904 struct callchain_cursor *cursor, 1905 struct perf_sample *sample, 1906 struct symbol **parent, 1907 struct addr_location *root_al, 1908 int max_stack) 1909 { 1910 struct ip_callchain *chain = sample->callchain; 1911 int chain_nr = min(max_stack, (int)chain->nr), i; 1912 u8 cpumode = PERF_RECORD_MISC_USER; 1913 u64 ip, branch_from = 0; 1914 1915 for (i = 0; i < chain_nr; i++) { 1916 if (chain->ips[i] == PERF_CONTEXT_USER) 1917 break; 1918 } 1919 1920 /* LBR only affects the user callchain */ 1921 if (i != chain_nr) { 1922 struct branch_stack *lbr_stack = sample->branch_stack; 1923 int lbr_nr = lbr_stack->nr, j, k; 1924 bool branch; 1925 struct branch_flags *flags; 1926 /* 1927 * LBR callstack can only get user call chain. 1928 * The mix_chain_nr is kernel call chain 1929 * number plus LBR user call chain number. 1930 * i is kernel call chain number, 1931 * 1 is PERF_CONTEXT_USER, 1932 * lbr_nr + 1 is the user call chain number. 1933 * For details, please refer to the comments 1934 * in callchain__printf 1935 */ 1936 int mix_chain_nr = i + 1 + lbr_nr + 1; 1937 1938 for (j = 0; j < mix_chain_nr; j++) { 1939 int err; 1940 branch = false; 1941 flags = NULL; 1942 1943 if (callchain_param.order == ORDER_CALLEE) { 1944 if (j < i + 1) 1945 ip = chain->ips[j]; 1946 else if (j > i + 1) { 1947 k = j - i - 2; 1948 ip = lbr_stack->entries[k].from; 1949 branch = true; 1950 flags = &lbr_stack->entries[k].flags; 1951 } else { 1952 ip = lbr_stack->entries[0].to; 1953 branch = true; 1954 flags = &lbr_stack->entries[0].flags; 1955 branch_from = 1956 lbr_stack->entries[0].from; 1957 } 1958 } else { 1959 if (j < lbr_nr) { 1960 k = lbr_nr - j - 1; 1961 ip = lbr_stack->entries[k].from; 1962 branch = true; 1963 flags = &lbr_stack->entries[k].flags; 1964 } 1965 else if (j > lbr_nr) 1966 ip = chain->ips[i + 1 - (j - lbr_nr)]; 1967 else { 1968 ip = lbr_stack->entries[0].to; 1969 branch = true; 1970 flags = &lbr_stack->entries[0].flags; 1971 branch_from = 1972 lbr_stack->entries[0].from; 1973 } 1974 } 1975 1976 err = add_callchain_ip(thread, cursor, parent, 1977 root_al, &cpumode, ip, 1978 branch, flags, NULL, 1979 branch_from); 1980 if (err) 1981 return (err < 0) ? err : 0; 1982 } 1983 return 1; 1984 } 1985 1986 return 0; 1987 } 1988 1989 static int thread__resolve_callchain_sample(struct thread *thread, 1990 struct callchain_cursor *cursor, 1991 struct perf_evsel *evsel, 1992 struct perf_sample *sample, 1993 struct symbol **parent, 1994 struct addr_location *root_al, 1995 int max_stack) 1996 { 1997 struct branch_stack *branch = sample->branch_stack; 1998 struct ip_callchain *chain = sample->callchain; 1999 int chain_nr = 0; 2000 u8 cpumode = PERF_RECORD_MISC_USER; 2001 int i, j, err, nr_entries; 2002 int skip_idx = -1; 2003 int first_call = 0; 2004 2005 if (chain) 2006 chain_nr = chain->nr; 2007 2008 if (perf_evsel__has_branch_callstack(evsel)) { 2009 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent, 2010 root_al, max_stack); 2011 if (err) 2012 return (err < 0) ? err : 0; 2013 } 2014 2015 /* 2016 * Based on DWARF debug information, some architectures skip 2017 * a callchain entry saved by the kernel. 2018 */ 2019 skip_idx = arch_skip_callchain_idx(thread, chain); 2020 2021 /* 2022 * Add branches to call stack for easier browsing. This gives 2023 * more context for a sample than just the callers. 2024 * 2025 * This uses individual histograms of paths compared to the 2026 * aggregated histograms the normal LBR mode uses. 2027 * 2028 * Limitations for now: 2029 * - No extra filters 2030 * - No annotations (should annotate somehow) 2031 */ 2032 2033 if (branch && callchain_param.branch_callstack) { 2034 int nr = min(max_stack, (int)branch->nr); 2035 struct branch_entry be[nr]; 2036 struct iterations iter[nr]; 2037 2038 if (branch->nr > PERF_MAX_BRANCH_DEPTH) { 2039 pr_warning("corrupted branch chain. skipping...\n"); 2040 goto check_calls; 2041 } 2042 2043 for (i = 0; i < nr; i++) { 2044 if (callchain_param.order == ORDER_CALLEE) { 2045 be[i] = branch->entries[i]; 2046 2047 if (chain == NULL) 2048 continue; 2049 2050 /* 2051 * Check for overlap into the callchain. 2052 * The return address is one off compared to 2053 * the branch entry. To adjust for this 2054 * assume the calling instruction is not longer 2055 * than 8 bytes. 2056 */ 2057 if (i == skip_idx || 2058 chain->ips[first_call] >= PERF_CONTEXT_MAX) 2059 first_call++; 2060 else if (be[i].from < chain->ips[first_call] && 2061 be[i].from >= chain->ips[first_call] - 8) 2062 first_call++; 2063 } else 2064 be[i] = branch->entries[branch->nr - i - 1]; 2065 } 2066 2067 memset(iter, 0, sizeof(struct iterations) * nr); 2068 nr = remove_loops(be, nr, iter); 2069 2070 for (i = 0; i < nr; i++) { 2071 err = add_callchain_ip(thread, cursor, parent, 2072 root_al, 2073 NULL, be[i].to, 2074 true, &be[i].flags, 2075 NULL, be[i].from); 2076 2077 if (!err) 2078 err = add_callchain_ip(thread, cursor, parent, root_al, 2079 NULL, be[i].from, 2080 true, &be[i].flags, 2081 &iter[i], 0); 2082 if (err == -EINVAL) 2083 break; 2084 if (err) 2085 return err; 2086 } 2087 2088 if (chain_nr == 0) 2089 return 0; 2090 2091 chain_nr -= nr; 2092 } 2093 2094 check_calls: 2095 for (i = first_call, nr_entries = 0; 2096 i < chain_nr && nr_entries < max_stack; i++) { 2097 u64 ip; 2098 2099 if (callchain_param.order == ORDER_CALLEE) 2100 j = i; 2101 else 2102 j = chain->nr - i - 1; 2103 2104 #ifdef HAVE_SKIP_CALLCHAIN_IDX 2105 if (j == skip_idx) 2106 continue; 2107 #endif 2108 ip = chain->ips[j]; 2109 2110 if (ip < PERF_CONTEXT_MAX) 2111 ++nr_entries; 2112 2113 err = add_callchain_ip(thread, cursor, parent, 2114 root_al, &cpumode, ip, 2115 false, NULL, NULL, 0); 2116 2117 if (err) 2118 return (err < 0) ? err : 0; 2119 } 2120 2121 return 0; 2122 } 2123 2124 static int append_inlines(struct callchain_cursor *cursor, 2125 struct map *map, struct symbol *sym, u64 ip) 2126 { 2127 struct inline_node *inline_node; 2128 struct inline_list *ilist; 2129 u64 addr; 2130 int ret = 1; 2131 2132 if (!symbol_conf.inline_name || !map || !sym) 2133 return ret; 2134 2135 addr = map__rip_2objdump(map, ip); 2136 2137 inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr); 2138 if (!inline_node) { 2139 inline_node = dso__parse_addr_inlines(map->dso, addr, sym); 2140 if (!inline_node) 2141 return ret; 2142 inlines__tree_insert(&map->dso->inlined_nodes, inline_node); 2143 } 2144 2145 list_for_each_entry(ilist, &inline_node->val, list) { 2146 ret = callchain_cursor_append(cursor, ip, map, 2147 ilist->symbol, false, 2148 NULL, 0, 0, 0, ilist->srcline); 2149 2150 if (ret != 0) 2151 return ret; 2152 } 2153 2154 return ret; 2155 } 2156 2157 static int unwind_entry(struct unwind_entry *entry, void *arg) 2158 { 2159 struct callchain_cursor *cursor = arg; 2160 const char *srcline = NULL; 2161 2162 if (symbol_conf.hide_unresolved && entry->sym == NULL) 2163 return 0; 2164 2165 if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0) 2166 return 0; 2167 2168 srcline = callchain_srcline(entry->map, entry->sym, entry->ip); 2169 return callchain_cursor_append(cursor, entry->ip, 2170 entry->map, entry->sym, 2171 false, NULL, 0, 0, 0, srcline); 2172 } 2173 2174 static int thread__resolve_callchain_unwind(struct thread *thread, 2175 struct callchain_cursor *cursor, 2176 struct perf_evsel *evsel, 2177 struct perf_sample *sample, 2178 int max_stack) 2179 { 2180 /* Can we do dwarf post unwind? */ 2181 if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) && 2182 (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER))) 2183 return 0; 2184 2185 /* Bail out if nothing was captured. */ 2186 if ((!sample->user_regs.regs) || 2187 (!sample->user_stack.size)) 2188 return 0; 2189 2190 return unwind__get_entries(unwind_entry, cursor, 2191 thread, sample, max_stack); 2192 } 2193 2194 int thread__resolve_callchain(struct thread *thread, 2195 struct callchain_cursor *cursor, 2196 struct perf_evsel *evsel, 2197 struct perf_sample *sample, 2198 struct symbol **parent, 2199 struct addr_location *root_al, 2200 int max_stack) 2201 { 2202 int ret = 0; 2203 2204 callchain_cursor_reset(cursor); 2205 2206 if (callchain_param.order == ORDER_CALLEE) { 2207 ret = thread__resolve_callchain_sample(thread, cursor, 2208 evsel, sample, 2209 parent, root_al, 2210 max_stack); 2211 if (ret) 2212 return ret; 2213 ret = thread__resolve_callchain_unwind(thread, cursor, 2214 evsel, sample, 2215 max_stack); 2216 } else { 2217 ret = thread__resolve_callchain_unwind(thread, cursor, 2218 evsel, sample, 2219 max_stack); 2220 if (ret) 2221 return ret; 2222 ret = thread__resolve_callchain_sample(thread, cursor, 2223 evsel, sample, 2224 parent, root_al, 2225 max_stack); 2226 } 2227 2228 return ret; 2229 } 2230 2231 int machine__for_each_thread(struct machine *machine, 2232 int (*fn)(struct thread *thread, void *p), 2233 void *priv) 2234 { 2235 struct threads *threads; 2236 struct rb_node *nd; 2237 struct thread *thread; 2238 int rc = 0; 2239 int i; 2240 2241 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 2242 threads = &machine->threads[i]; 2243 for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) { 2244 thread = rb_entry(nd, struct thread, rb_node); 2245 rc = fn(thread, priv); 2246 if (rc != 0) 2247 return rc; 2248 } 2249 2250 list_for_each_entry(thread, &threads->dead, node) { 2251 rc = fn(thread, priv); 2252 if (rc != 0) 2253 return rc; 2254 } 2255 } 2256 return rc; 2257 } 2258 2259 int machines__for_each_thread(struct machines *machines, 2260 int (*fn)(struct thread *thread, void *p), 2261 void *priv) 2262 { 2263 struct rb_node *nd; 2264 int rc = 0; 2265 2266 rc = machine__for_each_thread(&machines->host, fn, priv); 2267 if (rc != 0) 2268 return rc; 2269 2270 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 2271 struct machine *machine = rb_entry(nd, struct machine, rb_node); 2272 2273 rc = machine__for_each_thread(machine, fn, priv); 2274 if (rc != 0) 2275 return rc; 2276 } 2277 return rc; 2278 } 2279 2280 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool, 2281 struct target *target, struct thread_map *threads, 2282 perf_event__handler_t process, bool data_mmap, 2283 unsigned int proc_map_timeout, 2284 unsigned int nr_threads_synthesize) 2285 { 2286 if (target__has_task(target)) 2287 return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout); 2288 else if (target__has_cpu(target)) 2289 return perf_event__synthesize_threads(tool, process, 2290 machine, data_mmap, 2291 proc_map_timeout, 2292 nr_threads_synthesize); 2293 /* command specified */ 2294 return 0; 2295 } 2296 2297 pid_t machine__get_current_tid(struct machine *machine, int cpu) 2298 { 2299 if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid) 2300 return -1; 2301 2302 return machine->current_tid[cpu]; 2303 } 2304 2305 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid, 2306 pid_t tid) 2307 { 2308 struct thread *thread; 2309 2310 if (cpu < 0) 2311 return -EINVAL; 2312 2313 if (!machine->current_tid) { 2314 int i; 2315 2316 machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t)); 2317 if (!machine->current_tid) 2318 return -ENOMEM; 2319 for (i = 0; i < MAX_NR_CPUS; i++) 2320 machine->current_tid[i] = -1; 2321 } 2322 2323 if (cpu >= MAX_NR_CPUS) { 2324 pr_err("Requested CPU %d too large. ", cpu); 2325 pr_err("Consider raising MAX_NR_CPUS\n"); 2326 return -EINVAL; 2327 } 2328 2329 machine->current_tid[cpu] = tid; 2330 2331 thread = machine__findnew_thread(machine, pid, tid); 2332 if (!thread) 2333 return -ENOMEM; 2334 2335 thread->cpu = cpu; 2336 thread__put(thread); 2337 2338 return 0; 2339 } 2340 2341 int machine__get_kernel_start(struct machine *machine) 2342 { 2343 struct map *map = machine__kernel_map(machine); 2344 int err = 0; 2345 2346 /* 2347 * The only addresses above 2^63 are kernel addresses of a 64-bit 2348 * kernel. Note that addresses are unsigned so that on a 32-bit system 2349 * all addresses including kernel addresses are less than 2^32. In 2350 * that case (32-bit system), if the kernel mapping is unknown, all 2351 * addresses will be assumed to be in user space - see 2352 * machine__kernel_ip(). 2353 */ 2354 machine->kernel_start = 1ULL << 63; 2355 if (map) { 2356 err = map__load(map); 2357 if (!err) 2358 machine->kernel_start = map->start; 2359 } 2360 return err; 2361 } 2362 2363 struct dso *machine__findnew_dso(struct machine *machine, const char *filename) 2364 { 2365 return dsos__findnew(&machine->dsos, filename); 2366 } 2367 2368 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp) 2369 { 2370 struct machine *machine = vmachine; 2371 struct map *map; 2372 struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map); 2373 2374 if (sym == NULL) 2375 return NULL; 2376 2377 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL; 2378 *addrp = map->unmap_ip(map, sym->start); 2379 return sym->name; 2380 } 2381