xref: /openbmc/linux/tools/perf/util/machine.c (revision 826f328e)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include <stdlib.h>
7 #include "callchain.h"
8 #include "debug.h"
9 #include "dso.h"
10 #include "env.h"
11 #include "event.h"
12 #include "evsel.h"
13 #include "hist.h"
14 #include "machine.h"
15 #include "map.h"
16 #include "map_symbol.h"
17 #include "branch.h"
18 #include "mem-events.h"
19 #include "srcline.h"
20 #include "symbol.h"
21 #include "sort.h"
22 #include "strlist.h"
23 #include "target.h"
24 #include "thread.h"
25 #include "util.h"
26 #include "vdso.h"
27 #include <stdbool.h>
28 #include <sys/types.h>
29 #include <sys/stat.h>
30 #include <unistd.h>
31 #include "unwind.h"
32 #include "linux/hash.h"
33 #include "asm/bug.h"
34 #include "bpf-event.h"
35 #include <internal/lib.h> // page_size
36 #include "cgroup.h"
37 
38 #include <linux/ctype.h>
39 #include <symbol/kallsyms.h>
40 #include <linux/mman.h>
41 #include <linux/string.h>
42 #include <linux/zalloc.h>
43 
44 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
45 
46 static struct dso *machine__kernel_dso(struct machine *machine)
47 {
48 	return machine->vmlinux_map->dso;
49 }
50 
51 static void dsos__init(struct dsos *dsos)
52 {
53 	INIT_LIST_HEAD(&dsos->head);
54 	dsos->root = RB_ROOT;
55 	init_rwsem(&dsos->lock);
56 }
57 
58 static void machine__threads_init(struct machine *machine)
59 {
60 	int i;
61 
62 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
63 		struct threads *threads = &machine->threads[i];
64 		threads->entries = RB_ROOT_CACHED;
65 		init_rwsem(&threads->lock);
66 		threads->nr = 0;
67 		INIT_LIST_HEAD(&threads->dead);
68 		threads->last_match = NULL;
69 	}
70 }
71 
72 static int machine__set_mmap_name(struct machine *machine)
73 {
74 	if (machine__is_host(machine))
75 		machine->mmap_name = strdup("[kernel.kallsyms]");
76 	else if (machine__is_default_guest(machine))
77 		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
78 	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
79 			  machine->pid) < 0)
80 		machine->mmap_name = NULL;
81 
82 	return machine->mmap_name ? 0 : -ENOMEM;
83 }
84 
85 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
86 {
87 	int err = -ENOMEM;
88 
89 	memset(machine, 0, sizeof(*machine));
90 	maps__init(&machine->kmaps, machine);
91 	RB_CLEAR_NODE(&machine->rb_node);
92 	dsos__init(&machine->dsos);
93 
94 	machine__threads_init(machine);
95 
96 	machine->vdso_info = NULL;
97 	machine->env = NULL;
98 
99 	machine->pid = pid;
100 
101 	machine->id_hdr_size = 0;
102 	machine->kptr_restrict_warned = false;
103 	machine->comm_exec = false;
104 	machine->kernel_start = 0;
105 	machine->vmlinux_map = NULL;
106 
107 	machine->root_dir = strdup(root_dir);
108 	if (machine->root_dir == NULL)
109 		return -ENOMEM;
110 
111 	if (machine__set_mmap_name(machine))
112 		goto out;
113 
114 	if (pid != HOST_KERNEL_ID) {
115 		struct thread *thread = machine__findnew_thread(machine, -1,
116 								pid);
117 		char comm[64];
118 
119 		if (thread == NULL)
120 			goto out;
121 
122 		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
123 		thread__set_comm(thread, comm, 0);
124 		thread__put(thread);
125 	}
126 
127 	machine->current_tid = NULL;
128 	err = 0;
129 
130 out:
131 	if (err) {
132 		zfree(&machine->root_dir);
133 		zfree(&machine->mmap_name);
134 	}
135 	return 0;
136 }
137 
138 struct machine *machine__new_host(void)
139 {
140 	struct machine *machine = malloc(sizeof(*machine));
141 
142 	if (machine != NULL) {
143 		machine__init(machine, "", HOST_KERNEL_ID);
144 
145 		if (machine__create_kernel_maps(machine) < 0)
146 			goto out_delete;
147 	}
148 
149 	return machine;
150 out_delete:
151 	free(machine);
152 	return NULL;
153 }
154 
155 struct machine *machine__new_kallsyms(void)
156 {
157 	struct machine *machine = machine__new_host();
158 	/*
159 	 * FIXME:
160 	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
161 	 *    ask for not using the kcore parsing code, once this one is fixed
162 	 *    to create a map per module.
163 	 */
164 	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
165 		machine__delete(machine);
166 		machine = NULL;
167 	}
168 
169 	return machine;
170 }
171 
172 static void dsos__purge(struct dsos *dsos)
173 {
174 	struct dso *pos, *n;
175 
176 	down_write(&dsos->lock);
177 
178 	list_for_each_entry_safe(pos, n, &dsos->head, node) {
179 		RB_CLEAR_NODE(&pos->rb_node);
180 		pos->root = NULL;
181 		list_del_init(&pos->node);
182 		dso__put(pos);
183 	}
184 
185 	up_write(&dsos->lock);
186 }
187 
188 static void dsos__exit(struct dsos *dsos)
189 {
190 	dsos__purge(dsos);
191 	exit_rwsem(&dsos->lock);
192 }
193 
194 void machine__delete_threads(struct machine *machine)
195 {
196 	struct rb_node *nd;
197 	int i;
198 
199 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
200 		struct threads *threads = &machine->threads[i];
201 		down_write(&threads->lock);
202 		nd = rb_first_cached(&threads->entries);
203 		while (nd) {
204 			struct thread *t = rb_entry(nd, struct thread, rb_node);
205 
206 			nd = rb_next(nd);
207 			__machine__remove_thread(machine, t, false);
208 		}
209 		up_write(&threads->lock);
210 	}
211 }
212 
213 void machine__exit(struct machine *machine)
214 {
215 	int i;
216 
217 	if (machine == NULL)
218 		return;
219 
220 	machine__destroy_kernel_maps(machine);
221 	maps__exit(&machine->kmaps);
222 	dsos__exit(&machine->dsos);
223 	machine__exit_vdso(machine);
224 	zfree(&machine->root_dir);
225 	zfree(&machine->mmap_name);
226 	zfree(&machine->current_tid);
227 
228 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
229 		struct threads *threads = &machine->threads[i];
230 		struct thread *thread, *n;
231 		/*
232 		 * Forget about the dead, at this point whatever threads were
233 		 * left in the dead lists better have a reference count taken
234 		 * by who is using them, and then, when they drop those references
235 		 * and it finally hits zero, thread__put() will check and see that
236 		 * its not in the dead threads list and will not try to remove it
237 		 * from there, just calling thread__delete() straight away.
238 		 */
239 		list_for_each_entry_safe(thread, n, &threads->dead, node)
240 			list_del_init(&thread->node);
241 
242 		exit_rwsem(&threads->lock);
243 	}
244 }
245 
246 void machine__delete(struct machine *machine)
247 {
248 	if (machine) {
249 		machine__exit(machine);
250 		free(machine);
251 	}
252 }
253 
254 void machines__init(struct machines *machines)
255 {
256 	machine__init(&machines->host, "", HOST_KERNEL_ID);
257 	machines->guests = RB_ROOT_CACHED;
258 }
259 
260 void machines__exit(struct machines *machines)
261 {
262 	machine__exit(&machines->host);
263 	/* XXX exit guest */
264 }
265 
266 struct machine *machines__add(struct machines *machines, pid_t pid,
267 			      const char *root_dir)
268 {
269 	struct rb_node **p = &machines->guests.rb_root.rb_node;
270 	struct rb_node *parent = NULL;
271 	struct machine *pos, *machine = malloc(sizeof(*machine));
272 	bool leftmost = true;
273 
274 	if (machine == NULL)
275 		return NULL;
276 
277 	if (machine__init(machine, root_dir, pid) != 0) {
278 		free(machine);
279 		return NULL;
280 	}
281 
282 	while (*p != NULL) {
283 		parent = *p;
284 		pos = rb_entry(parent, struct machine, rb_node);
285 		if (pid < pos->pid)
286 			p = &(*p)->rb_left;
287 		else {
288 			p = &(*p)->rb_right;
289 			leftmost = false;
290 		}
291 	}
292 
293 	rb_link_node(&machine->rb_node, parent, p);
294 	rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
295 
296 	return machine;
297 }
298 
299 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
300 {
301 	struct rb_node *nd;
302 
303 	machines->host.comm_exec = comm_exec;
304 
305 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
306 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
307 
308 		machine->comm_exec = comm_exec;
309 	}
310 }
311 
312 struct machine *machines__find(struct machines *machines, pid_t pid)
313 {
314 	struct rb_node **p = &machines->guests.rb_root.rb_node;
315 	struct rb_node *parent = NULL;
316 	struct machine *machine;
317 	struct machine *default_machine = NULL;
318 
319 	if (pid == HOST_KERNEL_ID)
320 		return &machines->host;
321 
322 	while (*p != NULL) {
323 		parent = *p;
324 		machine = rb_entry(parent, struct machine, rb_node);
325 		if (pid < machine->pid)
326 			p = &(*p)->rb_left;
327 		else if (pid > machine->pid)
328 			p = &(*p)->rb_right;
329 		else
330 			return machine;
331 		if (!machine->pid)
332 			default_machine = machine;
333 	}
334 
335 	return default_machine;
336 }
337 
338 struct machine *machines__findnew(struct machines *machines, pid_t pid)
339 {
340 	char path[PATH_MAX];
341 	const char *root_dir = "";
342 	struct machine *machine = machines__find(machines, pid);
343 
344 	if (machine && (machine->pid == pid))
345 		goto out;
346 
347 	if ((pid != HOST_KERNEL_ID) &&
348 	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
349 	    (symbol_conf.guestmount)) {
350 		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
351 		if (access(path, R_OK)) {
352 			static struct strlist *seen;
353 
354 			if (!seen)
355 				seen = strlist__new(NULL, NULL);
356 
357 			if (!strlist__has_entry(seen, path)) {
358 				pr_err("Can't access file %s\n", path);
359 				strlist__add(seen, path);
360 			}
361 			machine = NULL;
362 			goto out;
363 		}
364 		root_dir = path;
365 	}
366 
367 	machine = machines__add(machines, pid, root_dir);
368 out:
369 	return machine;
370 }
371 
372 void machines__process_guests(struct machines *machines,
373 			      machine__process_t process, void *data)
374 {
375 	struct rb_node *nd;
376 
377 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
378 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
379 		process(pos, data);
380 	}
381 }
382 
383 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
384 {
385 	struct rb_node *node;
386 	struct machine *machine;
387 
388 	machines->host.id_hdr_size = id_hdr_size;
389 
390 	for (node = rb_first_cached(&machines->guests); node;
391 	     node = rb_next(node)) {
392 		machine = rb_entry(node, struct machine, rb_node);
393 		machine->id_hdr_size = id_hdr_size;
394 	}
395 
396 	return;
397 }
398 
399 static void machine__update_thread_pid(struct machine *machine,
400 				       struct thread *th, pid_t pid)
401 {
402 	struct thread *leader;
403 
404 	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
405 		return;
406 
407 	th->pid_ = pid;
408 
409 	if (th->pid_ == th->tid)
410 		return;
411 
412 	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
413 	if (!leader)
414 		goto out_err;
415 
416 	if (!leader->maps)
417 		leader->maps = maps__new(machine);
418 
419 	if (!leader->maps)
420 		goto out_err;
421 
422 	if (th->maps == leader->maps)
423 		return;
424 
425 	if (th->maps) {
426 		/*
427 		 * Maps are created from MMAP events which provide the pid and
428 		 * tid.  Consequently there never should be any maps on a thread
429 		 * with an unknown pid.  Just print an error if there are.
430 		 */
431 		if (!maps__empty(th->maps))
432 			pr_err("Discarding thread maps for %d:%d\n",
433 			       th->pid_, th->tid);
434 		maps__put(th->maps);
435 	}
436 
437 	th->maps = maps__get(leader->maps);
438 out_put:
439 	thread__put(leader);
440 	return;
441 out_err:
442 	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
443 	goto out_put;
444 }
445 
446 /*
447  * Front-end cache - TID lookups come in blocks,
448  * so most of the time we dont have to look up
449  * the full rbtree:
450  */
451 static struct thread*
452 __threads__get_last_match(struct threads *threads, struct machine *machine,
453 			  int pid, int tid)
454 {
455 	struct thread *th;
456 
457 	th = threads->last_match;
458 	if (th != NULL) {
459 		if (th->tid == tid) {
460 			machine__update_thread_pid(machine, th, pid);
461 			return thread__get(th);
462 		}
463 
464 		threads->last_match = NULL;
465 	}
466 
467 	return NULL;
468 }
469 
470 static struct thread*
471 threads__get_last_match(struct threads *threads, struct machine *machine,
472 			int pid, int tid)
473 {
474 	struct thread *th = NULL;
475 
476 	if (perf_singlethreaded)
477 		th = __threads__get_last_match(threads, machine, pid, tid);
478 
479 	return th;
480 }
481 
482 static void
483 __threads__set_last_match(struct threads *threads, struct thread *th)
484 {
485 	threads->last_match = th;
486 }
487 
488 static void
489 threads__set_last_match(struct threads *threads, struct thread *th)
490 {
491 	if (perf_singlethreaded)
492 		__threads__set_last_match(threads, th);
493 }
494 
495 /*
496  * Caller must eventually drop thread->refcnt returned with a successful
497  * lookup/new thread inserted.
498  */
499 static struct thread *____machine__findnew_thread(struct machine *machine,
500 						  struct threads *threads,
501 						  pid_t pid, pid_t tid,
502 						  bool create)
503 {
504 	struct rb_node **p = &threads->entries.rb_root.rb_node;
505 	struct rb_node *parent = NULL;
506 	struct thread *th;
507 	bool leftmost = true;
508 
509 	th = threads__get_last_match(threads, machine, pid, tid);
510 	if (th)
511 		return th;
512 
513 	while (*p != NULL) {
514 		parent = *p;
515 		th = rb_entry(parent, struct thread, rb_node);
516 
517 		if (th->tid == tid) {
518 			threads__set_last_match(threads, th);
519 			machine__update_thread_pid(machine, th, pid);
520 			return thread__get(th);
521 		}
522 
523 		if (tid < th->tid)
524 			p = &(*p)->rb_left;
525 		else {
526 			p = &(*p)->rb_right;
527 			leftmost = false;
528 		}
529 	}
530 
531 	if (!create)
532 		return NULL;
533 
534 	th = thread__new(pid, tid);
535 	if (th != NULL) {
536 		rb_link_node(&th->rb_node, parent, p);
537 		rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
538 
539 		/*
540 		 * We have to initialize maps separately after rb tree is updated.
541 		 *
542 		 * The reason is that we call machine__findnew_thread
543 		 * within thread__init_maps to find the thread
544 		 * leader and that would screwed the rb tree.
545 		 */
546 		if (thread__init_maps(th, machine)) {
547 			rb_erase_cached(&th->rb_node, &threads->entries);
548 			RB_CLEAR_NODE(&th->rb_node);
549 			thread__put(th);
550 			return NULL;
551 		}
552 		/*
553 		 * It is now in the rbtree, get a ref
554 		 */
555 		thread__get(th);
556 		threads__set_last_match(threads, th);
557 		++threads->nr;
558 	}
559 
560 	return th;
561 }
562 
563 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
564 {
565 	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
566 }
567 
568 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
569 				       pid_t tid)
570 {
571 	struct threads *threads = machine__threads(machine, tid);
572 	struct thread *th;
573 
574 	down_write(&threads->lock);
575 	th = __machine__findnew_thread(machine, pid, tid);
576 	up_write(&threads->lock);
577 	return th;
578 }
579 
580 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
581 				    pid_t tid)
582 {
583 	struct threads *threads = machine__threads(machine, tid);
584 	struct thread *th;
585 
586 	down_read(&threads->lock);
587 	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
588 	up_read(&threads->lock);
589 	return th;
590 }
591 
592 struct comm *machine__thread_exec_comm(struct machine *machine,
593 				       struct thread *thread)
594 {
595 	if (machine->comm_exec)
596 		return thread__exec_comm(thread);
597 	else
598 		return thread__comm(thread);
599 }
600 
601 int machine__process_comm_event(struct machine *machine, union perf_event *event,
602 				struct perf_sample *sample)
603 {
604 	struct thread *thread = machine__findnew_thread(machine,
605 							event->comm.pid,
606 							event->comm.tid);
607 	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
608 	int err = 0;
609 
610 	if (exec)
611 		machine->comm_exec = true;
612 
613 	if (dump_trace)
614 		perf_event__fprintf_comm(event, stdout);
615 
616 	if (thread == NULL ||
617 	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
618 		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
619 		err = -1;
620 	}
621 
622 	thread__put(thread);
623 
624 	return err;
625 }
626 
627 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
628 				      union perf_event *event,
629 				      struct perf_sample *sample __maybe_unused)
630 {
631 	struct thread *thread = machine__findnew_thread(machine,
632 							event->namespaces.pid,
633 							event->namespaces.tid);
634 	int err = 0;
635 
636 	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
637 		  "\nWARNING: kernel seems to support more namespaces than perf"
638 		  " tool.\nTry updating the perf tool..\n\n");
639 
640 	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
641 		  "\nWARNING: perf tool seems to support more namespaces than"
642 		  " the kernel.\nTry updating the kernel..\n\n");
643 
644 	if (dump_trace)
645 		perf_event__fprintf_namespaces(event, stdout);
646 
647 	if (thread == NULL ||
648 	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
649 		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
650 		err = -1;
651 	}
652 
653 	thread__put(thread);
654 
655 	return err;
656 }
657 
658 int machine__process_cgroup_event(struct machine *machine,
659 				  union perf_event *event,
660 				  struct perf_sample *sample __maybe_unused)
661 {
662 	struct cgroup *cgrp;
663 
664 	if (dump_trace)
665 		perf_event__fprintf_cgroup(event, stdout);
666 
667 	cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
668 	if (cgrp == NULL)
669 		return -ENOMEM;
670 
671 	return 0;
672 }
673 
674 int machine__process_lost_event(struct machine *machine __maybe_unused,
675 				union perf_event *event, struct perf_sample *sample __maybe_unused)
676 {
677 	dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
678 		    event->lost.id, event->lost.lost);
679 	return 0;
680 }
681 
682 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
683 					union perf_event *event, struct perf_sample *sample)
684 {
685 	dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
686 		    sample->id, event->lost_samples.lost);
687 	return 0;
688 }
689 
690 static struct dso *machine__findnew_module_dso(struct machine *machine,
691 					       struct kmod_path *m,
692 					       const char *filename)
693 {
694 	struct dso *dso;
695 
696 	down_write(&machine->dsos.lock);
697 
698 	dso = __dsos__find(&machine->dsos, m->name, true);
699 	if (!dso) {
700 		dso = __dsos__addnew(&machine->dsos, m->name);
701 		if (dso == NULL)
702 			goto out_unlock;
703 
704 		dso__set_module_info(dso, m, machine);
705 		dso__set_long_name(dso, strdup(filename), true);
706 		dso->kernel = DSO_SPACE__KERNEL;
707 	}
708 
709 	dso__get(dso);
710 out_unlock:
711 	up_write(&machine->dsos.lock);
712 	return dso;
713 }
714 
715 int machine__process_aux_event(struct machine *machine __maybe_unused,
716 			       union perf_event *event)
717 {
718 	if (dump_trace)
719 		perf_event__fprintf_aux(event, stdout);
720 	return 0;
721 }
722 
723 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
724 					union perf_event *event)
725 {
726 	if (dump_trace)
727 		perf_event__fprintf_itrace_start(event, stdout);
728 	return 0;
729 }
730 
731 int machine__process_switch_event(struct machine *machine __maybe_unused,
732 				  union perf_event *event)
733 {
734 	if (dump_trace)
735 		perf_event__fprintf_switch(event, stdout);
736 	return 0;
737 }
738 
739 static int machine__process_ksymbol_register(struct machine *machine,
740 					     union perf_event *event,
741 					     struct perf_sample *sample __maybe_unused)
742 {
743 	struct symbol *sym;
744 	struct map *map = maps__find(&machine->kmaps, event->ksymbol.addr);
745 
746 	if (!map) {
747 		struct dso *dso = dso__new(event->ksymbol.name);
748 
749 		if (dso) {
750 			dso->kernel = DSO_SPACE__KERNEL;
751 			map = map__new2(0, dso);
752 		}
753 
754 		if (!dso || !map) {
755 			dso__put(dso);
756 			return -ENOMEM;
757 		}
758 
759 		if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
760 			map->dso->binary_type = DSO_BINARY_TYPE__OOL;
761 			map->dso->data.file_size = event->ksymbol.len;
762 			dso__set_loaded(map->dso);
763 		}
764 
765 		map->start = event->ksymbol.addr;
766 		map->end = map->start + event->ksymbol.len;
767 		maps__insert(&machine->kmaps, map);
768 		dso__set_loaded(dso);
769 
770 		if (is_bpf_image(event->ksymbol.name)) {
771 			dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE;
772 			dso__set_long_name(dso, "", false);
773 		}
774 	}
775 
776 	sym = symbol__new(map->map_ip(map, map->start),
777 			  event->ksymbol.len,
778 			  0, 0, event->ksymbol.name);
779 	if (!sym)
780 		return -ENOMEM;
781 	dso__insert_symbol(map->dso, sym);
782 	return 0;
783 }
784 
785 static int machine__process_ksymbol_unregister(struct machine *machine,
786 					       union perf_event *event,
787 					       struct perf_sample *sample __maybe_unused)
788 {
789 	struct symbol *sym;
790 	struct map *map;
791 
792 	map = maps__find(&machine->kmaps, event->ksymbol.addr);
793 	if (!map)
794 		return 0;
795 
796 	if (map != machine->vmlinux_map)
797 		maps__remove(&machine->kmaps, map);
798 	else {
799 		sym = dso__find_symbol(map->dso, map->map_ip(map, map->start));
800 		if (sym)
801 			dso__delete_symbol(map->dso, sym);
802 	}
803 
804 	return 0;
805 }
806 
807 int machine__process_ksymbol(struct machine *machine __maybe_unused,
808 			     union perf_event *event,
809 			     struct perf_sample *sample)
810 {
811 	if (dump_trace)
812 		perf_event__fprintf_ksymbol(event, stdout);
813 
814 	if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
815 		return machine__process_ksymbol_unregister(machine, event,
816 							   sample);
817 	return machine__process_ksymbol_register(machine, event, sample);
818 }
819 
820 int machine__process_text_poke(struct machine *machine, union perf_event *event,
821 			       struct perf_sample *sample __maybe_unused)
822 {
823 	struct map *map = maps__find(&machine->kmaps, event->text_poke.addr);
824 	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
825 
826 	if (dump_trace)
827 		perf_event__fprintf_text_poke(event, machine, stdout);
828 
829 	if (!event->text_poke.new_len)
830 		return 0;
831 
832 	if (cpumode != PERF_RECORD_MISC_KERNEL) {
833 		pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
834 		return 0;
835 	}
836 
837 	if (map && map->dso) {
838 		u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
839 		int ret;
840 
841 		/*
842 		 * Kernel maps might be changed when loading symbols so loading
843 		 * must be done prior to using kernel maps.
844 		 */
845 		map__load(map);
846 		ret = dso__data_write_cache_addr(map->dso, map, machine,
847 						 event->text_poke.addr,
848 						 new_bytes,
849 						 event->text_poke.new_len);
850 		if (ret != event->text_poke.new_len)
851 			pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
852 				 event->text_poke.addr);
853 	} else {
854 		pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
855 			 event->text_poke.addr);
856 	}
857 
858 	return 0;
859 }
860 
861 static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
862 					      const char *filename)
863 {
864 	struct map *map = NULL;
865 	struct kmod_path m;
866 	struct dso *dso;
867 
868 	if (kmod_path__parse_name(&m, filename))
869 		return NULL;
870 
871 	dso = machine__findnew_module_dso(machine, &m, filename);
872 	if (dso == NULL)
873 		goto out;
874 
875 	map = map__new2(start, dso);
876 	if (map == NULL)
877 		goto out;
878 
879 	maps__insert(&machine->kmaps, map);
880 
881 	/* Put the map here because maps__insert alread got it */
882 	map__put(map);
883 out:
884 	/* put the dso here, corresponding to  machine__findnew_module_dso */
885 	dso__put(dso);
886 	zfree(&m.name);
887 	return map;
888 }
889 
890 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
891 {
892 	struct rb_node *nd;
893 	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
894 
895 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
896 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
897 		ret += __dsos__fprintf(&pos->dsos.head, fp);
898 	}
899 
900 	return ret;
901 }
902 
903 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
904 				     bool (skip)(struct dso *dso, int parm), int parm)
905 {
906 	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
907 }
908 
909 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
910 				     bool (skip)(struct dso *dso, int parm), int parm)
911 {
912 	struct rb_node *nd;
913 	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
914 
915 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
916 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
917 		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
918 	}
919 	return ret;
920 }
921 
922 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
923 {
924 	int i;
925 	size_t printed = 0;
926 	struct dso *kdso = machine__kernel_dso(machine);
927 
928 	if (kdso->has_build_id) {
929 		char filename[PATH_MAX];
930 		if (dso__build_id_filename(kdso, filename, sizeof(filename),
931 					   false))
932 			printed += fprintf(fp, "[0] %s\n", filename);
933 	}
934 
935 	for (i = 0; i < vmlinux_path__nr_entries; ++i)
936 		printed += fprintf(fp, "[%d] %s\n",
937 				   i + kdso->has_build_id, vmlinux_path[i]);
938 
939 	return printed;
940 }
941 
942 size_t machine__fprintf(struct machine *machine, FILE *fp)
943 {
944 	struct rb_node *nd;
945 	size_t ret;
946 	int i;
947 
948 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
949 		struct threads *threads = &machine->threads[i];
950 
951 		down_read(&threads->lock);
952 
953 		ret = fprintf(fp, "Threads: %u\n", threads->nr);
954 
955 		for (nd = rb_first_cached(&threads->entries); nd;
956 		     nd = rb_next(nd)) {
957 			struct thread *pos = rb_entry(nd, struct thread, rb_node);
958 
959 			ret += thread__fprintf(pos, fp);
960 		}
961 
962 		up_read(&threads->lock);
963 	}
964 	return ret;
965 }
966 
967 static struct dso *machine__get_kernel(struct machine *machine)
968 {
969 	const char *vmlinux_name = machine->mmap_name;
970 	struct dso *kernel;
971 
972 	if (machine__is_host(machine)) {
973 		if (symbol_conf.vmlinux_name)
974 			vmlinux_name = symbol_conf.vmlinux_name;
975 
976 		kernel = machine__findnew_kernel(machine, vmlinux_name,
977 						 "[kernel]", DSO_SPACE__KERNEL);
978 	} else {
979 		if (symbol_conf.default_guest_vmlinux_name)
980 			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
981 
982 		kernel = machine__findnew_kernel(machine, vmlinux_name,
983 						 "[guest.kernel]",
984 						 DSO_SPACE__KERNEL_GUEST);
985 	}
986 
987 	if (kernel != NULL && (!kernel->has_build_id))
988 		dso__read_running_kernel_build_id(kernel, machine);
989 
990 	return kernel;
991 }
992 
993 struct process_args {
994 	u64 start;
995 };
996 
997 void machine__get_kallsyms_filename(struct machine *machine, char *buf,
998 				    size_t bufsz)
999 {
1000 	if (machine__is_default_guest(machine))
1001 		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
1002 	else
1003 		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
1004 }
1005 
1006 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
1007 
1008 /* Figure out the start address of kernel map from /proc/kallsyms.
1009  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
1010  * symbol_name if it's not that important.
1011  */
1012 static int machine__get_running_kernel_start(struct machine *machine,
1013 					     const char **symbol_name,
1014 					     u64 *start, u64 *end)
1015 {
1016 	char filename[PATH_MAX];
1017 	int i, err = -1;
1018 	const char *name;
1019 	u64 addr = 0;
1020 
1021 	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
1022 
1023 	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1024 		return 0;
1025 
1026 	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
1027 		err = kallsyms__get_function_start(filename, name, &addr);
1028 		if (!err)
1029 			break;
1030 	}
1031 
1032 	if (err)
1033 		return -1;
1034 
1035 	if (symbol_name)
1036 		*symbol_name = name;
1037 
1038 	*start = addr;
1039 
1040 	err = kallsyms__get_function_start(filename, "_etext", &addr);
1041 	if (!err)
1042 		*end = addr;
1043 
1044 	return 0;
1045 }
1046 
1047 int machine__create_extra_kernel_map(struct machine *machine,
1048 				     struct dso *kernel,
1049 				     struct extra_kernel_map *xm)
1050 {
1051 	struct kmap *kmap;
1052 	struct map *map;
1053 
1054 	map = map__new2(xm->start, kernel);
1055 	if (!map)
1056 		return -1;
1057 
1058 	map->end   = xm->end;
1059 	map->pgoff = xm->pgoff;
1060 
1061 	kmap = map__kmap(map);
1062 
1063 	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1064 
1065 	maps__insert(&machine->kmaps, map);
1066 
1067 	pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1068 		  kmap->name, map->start, map->end);
1069 
1070 	map__put(map);
1071 
1072 	return 0;
1073 }
1074 
1075 static u64 find_entry_trampoline(struct dso *dso)
1076 {
1077 	/* Duplicates are removed so lookup all aliases */
1078 	const char *syms[] = {
1079 		"_entry_trampoline",
1080 		"__entry_trampoline_start",
1081 		"entry_SYSCALL_64_trampoline",
1082 	};
1083 	struct symbol *sym = dso__first_symbol(dso);
1084 	unsigned int i;
1085 
1086 	for (; sym; sym = dso__next_symbol(sym)) {
1087 		if (sym->binding != STB_GLOBAL)
1088 			continue;
1089 		for (i = 0; i < ARRAY_SIZE(syms); i++) {
1090 			if (!strcmp(sym->name, syms[i]))
1091 				return sym->start;
1092 		}
1093 	}
1094 
1095 	return 0;
1096 }
1097 
1098 /*
1099  * These values can be used for kernels that do not have symbols for the entry
1100  * trampolines in kallsyms.
1101  */
1102 #define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
1103 #define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
1104 #define X86_64_ENTRY_TRAMPOLINE		0x6000
1105 
1106 /* Map x86_64 PTI entry trampolines */
1107 int machine__map_x86_64_entry_trampolines(struct machine *machine,
1108 					  struct dso *kernel)
1109 {
1110 	struct maps *kmaps = &machine->kmaps;
1111 	int nr_cpus_avail, cpu;
1112 	bool found = false;
1113 	struct map *map;
1114 	u64 pgoff;
1115 
1116 	/*
1117 	 * In the vmlinux case, pgoff is a virtual address which must now be
1118 	 * mapped to a vmlinux offset.
1119 	 */
1120 	maps__for_each_entry(kmaps, map) {
1121 		struct kmap *kmap = __map__kmap(map);
1122 		struct map *dest_map;
1123 
1124 		if (!kmap || !is_entry_trampoline(kmap->name))
1125 			continue;
1126 
1127 		dest_map = maps__find(kmaps, map->pgoff);
1128 		if (dest_map != map)
1129 			map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1130 		found = true;
1131 	}
1132 	if (found || machine->trampolines_mapped)
1133 		return 0;
1134 
1135 	pgoff = find_entry_trampoline(kernel);
1136 	if (!pgoff)
1137 		return 0;
1138 
1139 	nr_cpus_avail = machine__nr_cpus_avail(machine);
1140 
1141 	/* Add a 1 page map for each CPU's entry trampoline */
1142 	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1143 		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1144 			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1145 			 X86_64_ENTRY_TRAMPOLINE;
1146 		struct extra_kernel_map xm = {
1147 			.start = va,
1148 			.end   = va + page_size,
1149 			.pgoff = pgoff,
1150 		};
1151 
1152 		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1153 
1154 		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1155 			return -1;
1156 	}
1157 
1158 	machine->trampolines_mapped = nr_cpus_avail;
1159 
1160 	return 0;
1161 }
1162 
1163 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1164 					     struct dso *kernel __maybe_unused)
1165 {
1166 	return 0;
1167 }
1168 
1169 static int
1170 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1171 {
1172 	/* In case of renewal the kernel map, destroy previous one */
1173 	machine__destroy_kernel_maps(machine);
1174 
1175 	machine->vmlinux_map = map__new2(0, kernel);
1176 	if (machine->vmlinux_map == NULL)
1177 		return -1;
1178 
1179 	machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1180 	maps__insert(&machine->kmaps, machine->vmlinux_map);
1181 	return 0;
1182 }
1183 
1184 void machine__destroy_kernel_maps(struct machine *machine)
1185 {
1186 	struct kmap *kmap;
1187 	struct map *map = machine__kernel_map(machine);
1188 
1189 	if (map == NULL)
1190 		return;
1191 
1192 	kmap = map__kmap(map);
1193 	maps__remove(&machine->kmaps, map);
1194 	if (kmap && kmap->ref_reloc_sym) {
1195 		zfree((char **)&kmap->ref_reloc_sym->name);
1196 		zfree(&kmap->ref_reloc_sym);
1197 	}
1198 
1199 	map__zput(machine->vmlinux_map);
1200 }
1201 
1202 int machines__create_guest_kernel_maps(struct machines *machines)
1203 {
1204 	int ret = 0;
1205 	struct dirent **namelist = NULL;
1206 	int i, items = 0;
1207 	char path[PATH_MAX];
1208 	pid_t pid;
1209 	char *endp;
1210 
1211 	if (symbol_conf.default_guest_vmlinux_name ||
1212 	    symbol_conf.default_guest_modules ||
1213 	    symbol_conf.default_guest_kallsyms) {
1214 		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1215 	}
1216 
1217 	if (symbol_conf.guestmount) {
1218 		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1219 		if (items <= 0)
1220 			return -ENOENT;
1221 		for (i = 0; i < items; i++) {
1222 			if (!isdigit(namelist[i]->d_name[0])) {
1223 				/* Filter out . and .. */
1224 				continue;
1225 			}
1226 			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1227 			if ((*endp != '\0') ||
1228 			    (endp == namelist[i]->d_name) ||
1229 			    (errno == ERANGE)) {
1230 				pr_debug("invalid directory (%s). Skipping.\n",
1231 					 namelist[i]->d_name);
1232 				continue;
1233 			}
1234 			sprintf(path, "%s/%s/proc/kallsyms",
1235 				symbol_conf.guestmount,
1236 				namelist[i]->d_name);
1237 			ret = access(path, R_OK);
1238 			if (ret) {
1239 				pr_debug("Can't access file %s\n", path);
1240 				goto failure;
1241 			}
1242 			machines__create_kernel_maps(machines, pid);
1243 		}
1244 failure:
1245 		free(namelist);
1246 	}
1247 
1248 	return ret;
1249 }
1250 
1251 void machines__destroy_kernel_maps(struct machines *machines)
1252 {
1253 	struct rb_node *next = rb_first_cached(&machines->guests);
1254 
1255 	machine__destroy_kernel_maps(&machines->host);
1256 
1257 	while (next) {
1258 		struct machine *pos = rb_entry(next, struct machine, rb_node);
1259 
1260 		next = rb_next(&pos->rb_node);
1261 		rb_erase_cached(&pos->rb_node, &machines->guests);
1262 		machine__delete(pos);
1263 	}
1264 }
1265 
1266 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1267 {
1268 	struct machine *machine = machines__findnew(machines, pid);
1269 
1270 	if (machine == NULL)
1271 		return -1;
1272 
1273 	return machine__create_kernel_maps(machine);
1274 }
1275 
1276 int machine__load_kallsyms(struct machine *machine, const char *filename)
1277 {
1278 	struct map *map = machine__kernel_map(machine);
1279 	int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1280 
1281 	if (ret > 0) {
1282 		dso__set_loaded(map->dso);
1283 		/*
1284 		 * Since /proc/kallsyms will have multiple sessions for the
1285 		 * kernel, with modules between them, fixup the end of all
1286 		 * sections.
1287 		 */
1288 		maps__fixup_end(&machine->kmaps);
1289 	}
1290 
1291 	return ret;
1292 }
1293 
1294 int machine__load_vmlinux_path(struct machine *machine)
1295 {
1296 	struct map *map = machine__kernel_map(machine);
1297 	int ret = dso__load_vmlinux_path(map->dso, map);
1298 
1299 	if (ret > 0)
1300 		dso__set_loaded(map->dso);
1301 
1302 	return ret;
1303 }
1304 
1305 static char *get_kernel_version(const char *root_dir)
1306 {
1307 	char version[PATH_MAX];
1308 	FILE *file;
1309 	char *name, *tmp;
1310 	const char *prefix = "Linux version ";
1311 
1312 	sprintf(version, "%s/proc/version", root_dir);
1313 	file = fopen(version, "r");
1314 	if (!file)
1315 		return NULL;
1316 
1317 	tmp = fgets(version, sizeof(version), file);
1318 	fclose(file);
1319 	if (!tmp)
1320 		return NULL;
1321 
1322 	name = strstr(version, prefix);
1323 	if (!name)
1324 		return NULL;
1325 	name += strlen(prefix);
1326 	tmp = strchr(name, ' ');
1327 	if (tmp)
1328 		*tmp = '\0';
1329 
1330 	return strdup(name);
1331 }
1332 
1333 static bool is_kmod_dso(struct dso *dso)
1334 {
1335 	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1336 	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1337 }
1338 
1339 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1340 {
1341 	char *long_name;
1342 	struct map *map = maps__find_by_name(maps, m->name);
1343 
1344 	if (map == NULL)
1345 		return 0;
1346 
1347 	long_name = strdup(path);
1348 	if (long_name == NULL)
1349 		return -ENOMEM;
1350 
1351 	dso__set_long_name(map->dso, long_name, true);
1352 	dso__kernel_module_get_build_id(map->dso, "");
1353 
1354 	/*
1355 	 * Full name could reveal us kmod compression, so
1356 	 * we need to update the symtab_type if needed.
1357 	 */
1358 	if (m->comp && is_kmod_dso(map->dso)) {
1359 		map->dso->symtab_type++;
1360 		map->dso->comp = m->comp;
1361 	}
1362 
1363 	return 0;
1364 }
1365 
1366 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1367 {
1368 	struct dirent *dent;
1369 	DIR *dir = opendir(dir_name);
1370 	int ret = 0;
1371 
1372 	if (!dir) {
1373 		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1374 		return -1;
1375 	}
1376 
1377 	while ((dent = readdir(dir)) != NULL) {
1378 		char path[PATH_MAX];
1379 		struct stat st;
1380 
1381 		/*sshfs might return bad dent->d_type, so we have to stat*/
1382 		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1383 		if (stat(path, &st))
1384 			continue;
1385 
1386 		if (S_ISDIR(st.st_mode)) {
1387 			if (!strcmp(dent->d_name, ".") ||
1388 			    !strcmp(dent->d_name, ".."))
1389 				continue;
1390 
1391 			/* Do not follow top-level source and build symlinks */
1392 			if (depth == 0) {
1393 				if (!strcmp(dent->d_name, "source") ||
1394 				    !strcmp(dent->d_name, "build"))
1395 					continue;
1396 			}
1397 
1398 			ret = maps__set_modules_path_dir(maps, path, depth + 1);
1399 			if (ret < 0)
1400 				goto out;
1401 		} else {
1402 			struct kmod_path m;
1403 
1404 			ret = kmod_path__parse_name(&m, dent->d_name);
1405 			if (ret)
1406 				goto out;
1407 
1408 			if (m.kmod)
1409 				ret = maps__set_module_path(maps, path, &m);
1410 
1411 			zfree(&m.name);
1412 
1413 			if (ret)
1414 				goto out;
1415 		}
1416 	}
1417 
1418 out:
1419 	closedir(dir);
1420 	return ret;
1421 }
1422 
1423 static int machine__set_modules_path(struct machine *machine)
1424 {
1425 	char *version;
1426 	char modules_path[PATH_MAX];
1427 
1428 	version = get_kernel_version(machine->root_dir);
1429 	if (!version)
1430 		return -1;
1431 
1432 	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1433 		 machine->root_dir, version);
1434 	free(version);
1435 
1436 	return maps__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1437 }
1438 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1439 				u64 *size __maybe_unused,
1440 				const char *name __maybe_unused)
1441 {
1442 	return 0;
1443 }
1444 
1445 static int machine__create_module(void *arg, const char *name, u64 start,
1446 				  u64 size)
1447 {
1448 	struct machine *machine = arg;
1449 	struct map *map;
1450 
1451 	if (arch__fix_module_text_start(&start, &size, name) < 0)
1452 		return -1;
1453 
1454 	map = machine__addnew_module_map(machine, start, name);
1455 	if (map == NULL)
1456 		return -1;
1457 	map->end = start + size;
1458 
1459 	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1460 
1461 	return 0;
1462 }
1463 
1464 static int machine__create_modules(struct machine *machine)
1465 {
1466 	const char *modules;
1467 	char path[PATH_MAX];
1468 
1469 	if (machine__is_default_guest(machine)) {
1470 		modules = symbol_conf.default_guest_modules;
1471 	} else {
1472 		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1473 		modules = path;
1474 	}
1475 
1476 	if (symbol__restricted_filename(modules, "/proc/modules"))
1477 		return -1;
1478 
1479 	if (modules__parse(modules, machine, machine__create_module))
1480 		return -1;
1481 
1482 	if (!machine__set_modules_path(machine))
1483 		return 0;
1484 
1485 	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1486 
1487 	return 0;
1488 }
1489 
1490 static void machine__set_kernel_mmap(struct machine *machine,
1491 				     u64 start, u64 end)
1492 {
1493 	machine->vmlinux_map->start = start;
1494 	machine->vmlinux_map->end   = end;
1495 	/*
1496 	 * Be a bit paranoid here, some perf.data file came with
1497 	 * a zero sized synthesized MMAP event for the kernel.
1498 	 */
1499 	if (start == 0 && end == 0)
1500 		machine->vmlinux_map->end = ~0ULL;
1501 }
1502 
1503 static void machine__update_kernel_mmap(struct machine *machine,
1504 				     u64 start, u64 end)
1505 {
1506 	struct map *map = machine__kernel_map(machine);
1507 
1508 	map__get(map);
1509 	maps__remove(&machine->kmaps, map);
1510 
1511 	machine__set_kernel_mmap(machine, start, end);
1512 
1513 	maps__insert(&machine->kmaps, map);
1514 	map__put(map);
1515 }
1516 
1517 int machine__create_kernel_maps(struct machine *machine)
1518 {
1519 	struct dso *kernel = machine__get_kernel(machine);
1520 	const char *name = NULL;
1521 	struct map *map;
1522 	u64 start = 0, end = ~0ULL;
1523 	int ret;
1524 
1525 	if (kernel == NULL)
1526 		return -1;
1527 
1528 	ret = __machine__create_kernel_maps(machine, kernel);
1529 	if (ret < 0)
1530 		goto out_put;
1531 
1532 	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1533 		if (machine__is_host(machine))
1534 			pr_debug("Problems creating module maps, "
1535 				 "continuing anyway...\n");
1536 		else
1537 			pr_debug("Problems creating module maps for guest %d, "
1538 				 "continuing anyway...\n", machine->pid);
1539 	}
1540 
1541 	if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1542 		if (name &&
1543 		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1544 			machine__destroy_kernel_maps(machine);
1545 			ret = -1;
1546 			goto out_put;
1547 		}
1548 
1549 		/*
1550 		 * we have a real start address now, so re-order the kmaps
1551 		 * assume it's the last in the kmaps
1552 		 */
1553 		machine__update_kernel_mmap(machine, start, end);
1554 	}
1555 
1556 	if (machine__create_extra_kernel_maps(machine, kernel))
1557 		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1558 
1559 	if (end == ~0ULL) {
1560 		/* update end address of the kernel map using adjacent module address */
1561 		map = map__next(machine__kernel_map(machine));
1562 		if (map)
1563 			machine__set_kernel_mmap(machine, start, map->start);
1564 	}
1565 
1566 out_put:
1567 	dso__put(kernel);
1568 	return ret;
1569 }
1570 
1571 static bool machine__uses_kcore(struct machine *machine)
1572 {
1573 	struct dso *dso;
1574 
1575 	list_for_each_entry(dso, &machine->dsos.head, node) {
1576 		if (dso__is_kcore(dso))
1577 			return true;
1578 	}
1579 
1580 	return false;
1581 }
1582 
1583 static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1584 					     union perf_event *event)
1585 {
1586 	return machine__is(machine, "x86_64") &&
1587 	       is_entry_trampoline(event->mmap.filename);
1588 }
1589 
1590 static int machine__process_extra_kernel_map(struct machine *machine,
1591 					     union perf_event *event)
1592 {
1593 	struct dso *kernel = machine__kernel_dso(machine);
1594 	struct extra_kernel_map xm = {
1595 		.start = event->mmap.start,
1596 		.end   = event->mmap.start + event->mmap.len,
1597 		.pgoff = event->mmap.pgoff,
1598 	};
1599 
1600 	if (kernel == NULL)
1601 		return -1;
1602 
1603 	strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1604 
1605 	return machine__create_extra_kernel_map(machine, kernel, &xm);
1606 }
1607 
1608 static int machine__process_kernel_mmap_event(struct machine *machine,
1609 					      union perf_event *event)
1610 {
1611 	struct map *map;
1612 	enum dso_space_type dso_space;
1613 	bool is_kernel_mmap;
1614 
1615 	/* If we have maps from kcore then we do not need or want any others */
1616 	if (machine__uses_kcore(machine))
1617 		return 0;
1618 
1619 	if (machine__is_host(machine))
1620 		dso_space = DSO_SPACE__KERNEL;
1621 	else
1622 		dso_space = DSO_SPACE__KERNEL_GUEST;
1623 
1624 	is_kernel_mmap = memcmp(event->mmap.filename,
1625 				machine->mmap_name,
1626 				strlen(machine->mmap_name) - 1) == 0;
1627 	if (event->mmap.filename[0] == '/' ||
1628 	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1629 		map = machine__addnew_module_map(machine, event->mmap.start,
1630 						 event->mmap.filename);
1631 		if (map == NULL)
1632 			goto out_problem;
1633 
1634 		map->end = map->start + event->mmap.len;
1635 	} else if (is_kernel_mmap) {
1636 		const char *symbol_name = (event->mmap.filename +
1637 				strlen(machine->mmap_name));
1638 		/*
1639 		 * Should be there already, from the build-id table in
1640 		 * the header.
1641 		 */
1642 		struct dso *kernel = NULL;
1643 		struct dso *dso;
1644 
1645 		down_read(&machine->dsos.lock);
1646 
1647 		list_for_each_entry(dso, &machine->dsos.head, node) {
1648 
1649 			/*
1650 			 * The cpumode passed to is_kernel_module is not the
1651 			 * cpumode of *this* event. If we insist on passing
1652 			 * correct cpumode to is_kernel_module, we should
1653 			 * record the cpumode when we adding this dso to the
1654 			 * linked list.
1655 			 *
1656 			 * However we don't really need passing correct
1657 			 * cpumode.  We know the correct cpumode must be kernel
1658 			 * mode (if not, we should not link it onto kernel_dsos
1659 			 * list).
1660 			 *
1661 			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1662 			 * is_kernel_module() treats it as a kernel cpumode.
1663 			 */
1664 
1665 			if (!dso->kernel ||
1666 			    is_kernel_module(dso->long_name,
1667 					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1668 				continue;
1669 
1670 
1671 			kernel = dso;
1672 			break;
1673 		}
1674 
1675 		up_read(&machine->dsos.lock);
1676 
1677 		if (kernel == NULL)
1678 			kernel = machine__findnew_dso(machine, machine->mmap_name);
1679 		if (kernel == NULL)
1680 			goto out_problem;
1681 
1682 		kernel->kernel = dso_space;
1683 		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1684 			dso__put(kernel);
1685 			goto out_problem;
1686 		}
1687 
1688 		if (strstr(kernel->long_name, "vmlinux"))
1689 			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1690 
1691 		machine__update_kernel_mmap(machine, event->mmap.start,
1692 					 event->mmap.start + event->mmap.len);
1693 
1694 		/*
1695 		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1696 		 * symbol. Effectively having zero here means that at record
1697 		 * time /proc/sys/kernel/kptr_restrict was non zero.
1698 		 */
1699 		if (event->mmap.pgoff != 0) {
1700 			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1701 							symbol_name,
1702 							event->mmap.pgoff);
1703 		}
1704 
1705 		if (machine__is_default_guest(machine)) {
1706 			/*
1707 			 * preload dso of guest kernel and modules
1708 			 */
1709 			dso__load(kernel, machine__kernel_map(machine));
1710 		}
1711 	} else if (perf_event__is_extra_kernel_mmap(machine, event)) {
1712 		return machine__process_extra_kernel_map(machine, event);
1713 	}
1714 	return 0;
1715 out_problem:
1716 	return -1;
1717 }
1718 
1719 int machine__process_mmap2_event(struct machine *machine,
1720 				 union perf_event *event,
1721 				 struct perf_sample *sample)
1722 {
1723 	struct thread *thread;
1724 	struct map *map;
1725 	struct dso_id dso_id = {
1726 		.maj = event->mmap2.maj,
1727 		.min = event->mmap2.min,
1728 		.ino = event->mmap2.ino,
1729 		.ino_generation = event->mmap2.ino_generation,
1730 	};
1731 	int ret = 0;
1732 
1733 	if (dump_trace)
1734 		perf_event__fprintf_mmap2(event, stdout);
1735 
1736 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1737 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1738 		ret = machine__process_kernel_mmap_event(machine, event);
1739 		if (ret < 0)
1740 			goto out_problem;
1741 		return 0;
1742 	}
1743 
1744 	thread = machine__findnew_thread(machine, event->mmap2.pid,
1745 					event->mmap2.tid);
1746 	if (thread == NULL)
1747 		goto out_problem;
1748 
1749 	map = map__new(machine, event->mmap2.start,
1750 			event->mmap2.len, event->mmap2.pgoff,
1751 			&dso_id, event->mmap2.prot,
1752 			event->mmap2.flags,
1753 			event->mmap2.filename, thread);
1754 
1755 	if (map == NULL)
1756 		goto out_problem_map;
1757 
1758 	ret = thread__insert_map(thread, map);
1759 	if (ret)
1760 		goto out_problem_insert;
1761 
1762 	thread__put(thread);
1763 	map__put(map);
1764 	return 0;
1765 
1766 out_problem_insert:
1767 	map__put(map);
1768 out_problem_map:
1769 	thread__put(thread);
1770 out_problem:
1771 	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1772 	return 0;
1773 }
1774 
1775 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1776 				struct perf_sample *sample)
1777 {
1778 	struct thread *thread;
1779 	struct map *map;
1780 	u32 prot = 0;
1781 	int ret = 0;
1782 
1783 	if (dump_trace)
1784 		perf_event__fprintf_mmap(event, stdout);
1785 
1786 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1787 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1788 		ret = machine__process_kernel_mmap_event(machine, event);
1789 		if (ret < 0)
1790 			goto out_problem;
1791 		return 0;
1792 	}
1793 
1794 	thread = machine__findnew_thread(machine, event->mmap.pid,
1795 					 event->mmap.tid);
1796 	if (thread == NULL)
1797 		goto out_problem;
1798 
1799 	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1800 		prot = PROT_EXEC;
1801 
1802 	map = map__new(machine, event->mmap.start,
1803 			event->mmap.len, event->mmap.pgoff,
1804 			NULL, prot, 0, event->mmap.filename, thread);
1805 
1806 	if (map == NULL)
1807 		goto out_problem_map;
1808 
1809 	ret = thread__insert_map(thread, map);
1810 	if (ret)
1811 		goto out_problem_insert;
1812 
1813 	thread__put(thread);
1814 	map__put(map);
1815 	return 0;
1816 
1817 out_problem_insert:
1818 	map__put(map);
1819 out_problem_map:
1820 	thread__put(thread);
1821 out_problem:
1822 	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1823 	return 0;
1824 }
1825 
1826 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1827 {
1828 	struct threads *threads = machine__threads(machine, th->tid);
1829 
1830 	if (threads->last_match == th)
1831 		threads__set_last_match(threads, NULL);
1832 
1833 	if (lock)
1834 		down_write(&threads->lock);
1835 
1836 	BUG_ON(refcount_read(&th->refcnt) == 0);
1837 
1838 	rb_erase_cached(&th->rb_node, &threads->entries);
1839 	RB_CLEAR_NODE(&th->rb_node);
1840 	--threads->nr;
1841 	/*
1842 	 * Move it first to the dead_threads list, then drop the reference,
1843 	 * if this is the last reference, then the thread__delete destructor
1844 	 * will be called and we will remove it from the dead_threads list.
1845 	 */
1846 	list_add_tail(&th->node, &threads->dead);
1847 
1848 	/*
1849 	 * We need to do the put here because if this is the last refcount,
1850 	 * then we will be touching the threads->dead head when removing the
1851 	 * thread.
1852 	 */
1853 	thread__put(th);
1854 
1855 	if (lock)
1856 		up_write(&threads->lock);
1857 }
1858 
1859 void machine__remove_thread(struct machine *machine, struct thread *th)
1860 {
1861 	return __machine__remove_thread(machine, th, true);
1862 }
1863 
1864 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1865 				struct perf_sample *sample)
1866 {
1867 	struct thread *thread = machine__find_thread(machine,
1868 						     event->fork.pid,
1869 						     event->fork.tid);
1870 	struct thread *parent = machine__findnew_thread(machine,
1871 							event->fork.ppid,
1872 							event->fork.ptid);
1873 	bool do_maps_clone = true;
1874 	int err = 0;
1875 
1876 	if (dump_trace)
1877 		perf_event__fprintf_task(event, stdout);
1878 
1879 	/*
1880 	 * There may be an existing thread that is not actually the parent,
1881 	 * either because we are processing events out of order, or because the
1882 	 * (fork) event that would have removed the thread was lost. Assume the
1883 	 * latter case and continue on as best we can.
1884 	 */
1885 	if (parent->pid_ != (pid_t)event->fork.ppid) {
1886 		dump_printf("removing erroneous parent thread %d/%d\n",
1887 			    parent->pid_, parent->tid);
1888 		machine__remove_thread(machine, parent);
1889 		thread__put(parent);
1890 		parent = machine__findnew_thread(machine, event->fork.ppid,
1891 						 event->fork.ptid);
1892 	}
1893 
1894 	/* if a thread currently exists for the thread id remove it */
1895 	if (thread != NULL) {
1896 		machine__remove_thread(machine, thread);
1897 		thread__put(thread);
1898 	}
1899 
1900 	thread = machine__findnew_thread(machine, event->fork.pid,
1901 					 event->fork.tid);
1902 	/*
1903 	 * When synthesizing FORK events, we are trying to create thread
1904 	 * objects for the already running tasks on the machine.
1905 	 *
1906 	 * Normally, for a kernel FORK event, we want to clone the parent's
1907 	 * maps because that is what the kernel just did.
1908 	 *
1909 	 * But when synthesizing, this should not be done.  If we do, we end up
1910 	 * with overlapping maps as we process the sythesized MMAP2 events that
1911 	 * get delivered shortly thereafter.
1912 	 *
1913 	 * Use the FORK event misc flags in an internal way to signal this
1914 	 * situation, so we can elide the map clone when appropriate.
1915 	 */
1916 	if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1917 		do_maps_clone = false;
1918 
1919 	if (thread == NULL || parent == NULL ||
1920 	    thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1921 		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1922 		err = -1;
1923 	}
1924 	thread__put(thread);
1925 	thread__put(parent);
1926 
1927 	return err;
1928 }
1929 
1930 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1931 				struct perf_sample *sample __maybe_unused)
1932 {
1933 	struct thread *thread = machine__find_thread(machine,
1934 						     event->fork.pid,
1935 						     event->fork.tid);
1936 
1937 	if (dump_trace)
1938 		perf_event__fprintf_task(event, stdout);
1939 
1940 	if (thread != NULL) {
1941 		thread__exited(thread);
1942 		thread__put(thread);
1943 	}
1944 
1945 	return 0;
1946 }
1947 
1948 int machine__process_event(struct machine *machine, union perf_event *event,
1949 			   struct perf_sample *sample)
1950 {
1951 	int ret;
1952 
1953 	switch (event->header.type) {
1954 	case PERF_RECORD_COMM:
1955 		ret = machine__process_comm_event(machine, event, sample); break;
1956 	case PERF_RECORD_MMAP:
1957 		ret = machine__process_mmap_event(machine, event, sample); break;
1958 	case PERF_RECORD_NAMESPACES:
1959 		ret = machine__process_namespaces_event(machine, event, sample); break;
1960 	case PERF_RECORD_CGROUP:
1961 		ret = machine__process_cgroup_event(machine, event, sample); break;
1962 	case PERF_RECORD_MMAP2:
1963 		ret = machine__process_mmap2_event(machine, event, sample); break;
1964 	case PERF_RECORD_FORK:
1965 		ret = machine__process_fork_event(machine, event, sample); break;
1966 	case PERF_RECORD_EXIT:
1967 		ret = machine__process_exit_event(machine, event, sample); break;
1968 	case PERF_RECORD_LOST:
1969 		ret = machine__process_lost_event(machine, event, sample); break;
1970 	case PERF_RECORD_AUX:
1971 		ret = machine__process_aux_event(machine, event); break;
1972 	case PERF_RECORD_ITRACE_START:
1973 		ret = machine__process_itrace_start_event(machine, event); break;
1974 	case PERF_RECORD_LOST_SAMPLES:
1975 		ret = machine__process_lost_samples_event(machine, event, sample); break;
1976 	case PERF_RECORD_SWITCH:
1977 	case PERF_RECORD_SWITCH_CPU_WIDE:
1978 		ret = machine__process_switch_event(machine, event); break;
1979 	case PERF_RECORD_KSYMBOL:
1980 		ret = machine__process_ksymbol(machine, event, sample); break;
1981 	case PERF_RECORD_BPF_EVENT:
1982 		ret = machine__process_bpf(machine, event, sample); break;
1983 	case PERF_RECORD_TEXT_POKE:
1984 		ret = machine__process_text_poke(machine, event, sample); break;
1985 	default:
1986 		ret = -1;
1987 		break;
1988 	}
1989 
1990 	return ret;
1991 }
1992 
1993 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1994 {
1995 	if (!regexec(regex, sym->name, 0, NULL, 0))
1996 		return 1;
1997 	return 0;
1998 }
1999 
2000 static void ip__resolve_ams(struct thread *thread,
2001 			    struct addr_map_symbol *ams,
2002 			    u64 ip)
2003 {
2004 	struct addr_location al;
2005 
2006 	memset(&al, 0, sizeof(al));
2007 	/*
2008 	 * We cannot use the header.misc hint to determine whether a
2009 	 * branch stack address is user, kernel, guest, hypervisor.
2010 	 * Branches may straddle the kernel/user/hypervisor boundaries.
2011 	 * Thus, we have to try consecutively until we find a match
2012 	 * or else, the symbol is unknown
2013 	 */
2014 	thread__find_cpumode_addr_location(thread, ip, &al);
2015 
2016 	ams->addr = ip;
2017 	ams->al_addr = al.addr;
2018 	ams->ms.maps = al.maps;
2019 	ams->ms.sym = al.sym;
2020 	ams->ms.map = al.map;
2021 	ams->phys_addr = 0;
2022 }
2023 
2024 static void ip__resolve_data(struct thread *thread,
2025 			     u8 m, struct addr_map_symbol *ams,
2026 			     u64 addr, u64 phys_addr)
2027 {
2028 	struct addr_location al;
2029 
2030 	memset(&al, 0, sizeof(al));
2031 
2032 	thread__find_symbol(thread, m, addr, &al);
2033 
2034 	ams->addr = addr;
2035 	ams->al_addr = al.addr;
2036 	ams->ms.maps = al.maps;
2037 	ams->ms.sym = al.sym;
2038 	ams->ms.map = al.map;
2039 	ams->phys_addr = phys_addr;
2040 }
2041 
2042 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2043 				     struct addr_location *al)
2044 {
2045 	struct mem_info *mi = mem_info__new();
2046 
2047 	if (!mi)
2048 		return NULL;
2049 
2050 	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
2051 	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
2052 			 sample->addr, sample->phys_addr);
2053 	mi->data_src.val = sample->data_src;
2054 
2055 	return mi;
2056 }
2057 
2058 static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2059 {
2060 	struct map *map = ms->map;
2061 	char *srcline = NULL;
2062 
2063 	if (!map || callchain_param.key == CCKEY_FUNCTION)
2064 		return srcline;
2065 
2066 	srcline = srcline__tree_find(&map->dso->srclines, ip);
2067 	if (!srcline) {
2068 		bool show_sym = false;
2069 		bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2070 
2071 		srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
2072 				      ms->sym, show_sym, show_addr, ip);
2073 		srcline__tree_insert(&map->dso->srclines, ip, srcline);
2074 	}
2075 
2076 	return srcline;
2077 }
2078 
2079 struct iterations {
2080 	int nr_loop_iter;
2081 	u64 cycles;
2082 };
2083 
2084 static int add_callchain_ip(struct thread *thread,
2085 			    struct callchain_cursor *cursor,
2086 			    struct symbol **parent,
2087 			    struct addr_location *root_al,
2088 			    u8 *cpumode,
2089 			    u64 ip,
2090 			    bool branch,
2091 			    struct branch_flags *flags,
2092 			    struct iterations *iter,
2093 			    u64 branch_from)
2094 {
2095 	struct map_symbol ms;
2096 	struct addr_location al;
2097 	int nr_loop_iter = 0;
2098 	u64 iter_cycles = 0;
2099 	const char *srcline = NULL;
2100 
2101 	al.filtered = 0;
2102 	al.sym = NULL;
2103 	if (!cpumode) {
2104 		thread__find_cpumode_addr_location(thread, ip, &al);
2105 	} else {
2106 		if (ip >= PERF_CONTEXT_MAX) {
2107 			switch (ip) {
2108 			case PERF_CONTEXT_HV:
2109 				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
2110 				break;
2111 			case PERF_CONTEXT_KERNEL:
2112 				*cpumode = PERF_RECORD_MISC_KERNEL;
2113 				break;
2114 			case PERF_CONTEXT_USER:
2115 				*cpumode = PERF_RECORD_MISC_USER;
2116 				break;
2117 			default:
2118 				pr_debug("invalid callchain context: "
2119 					 "%"PRId64"\n", (s64) ip);
2120 				/*
2121 				 * It seems the callchain is corrupted.
2122 				 * Discard all.
2123 				 */
2124 				callchain_cursor_reset(cursor);
2125 				return 1;
2126 			}
2127 			return 0;
2128 		}
2129 		thread__find_symbol(thread, *cpumode, ip, &al);
2130 	}
2131 
2132 	if (al.sym != NULL) {
2133 		if (perf_hpp_list.parent && !*parent &&
2134 		    symbol__match_regex(al.sym, &parent_regex))
2135 			*parent = al.sym;
2136 		else if (have_ignore_callees && root_al &&
2137 		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
2138 			/* Treat this symbol as the root,
2139 			   forgetting its callees. */
2140 			*root_al = al;
2141 			callchain_cursor_reset(cursor);
2142 		}
2143 	}
2144 
2145 	if (symbol_conf.hide_unresolved && al.sym == NULL)
2146 		return 0;
2147 
2148 	if (iter) {
2149 		nr_loop_iter = iter->nr_loop_iter;
2150 		iter_cycles = iter->cycles;
2151 	}
2152 
2153 	ms.maps = al.maps;
2154 	ms.map = al.map;
2155 	ms.sym = al.sym;
2156 	srcline = callchain_srcline(&ms, al.addr);
2157 	return callchain_cursor_append(cursor, ip, &ms,
2158 				       branch, flags, nr_loop_iter,
2159 				       iter_cycles, branch_from, srcline);
2160 }
2161 
2162 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2163 					   struct addr_location *al)
2164 {
2165 	unsigned int i;
2166 	const struct branch_stack *bs = sample->branch_stack;
2167 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2168 	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2169 
2170 	if (!bi)
2171 		return NULL;
2172 
2173 	for (i = 0; i < bs->nr; i++) {
2174 		ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2175 		ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2176 		bi[i].flags = entries[i].flags;
2177 	}
2178 	return bi;
2179 }
2180 
2181 static void save_iterations(struct iterations *iter,
2182 			    struct branch_entry *be, int nr)
2183 {
2184 	int i;
2185 
2186 	iter->nr_loop_iter++;
2187 	iter->cycles = 0;
2188 
2189 	for (i = 0; i < nr; i++)
2190 		iter->cycles += be[i].flags.cycles;
2191 }
2192 
2193 #define CHASHSZ 127
2194 #define CHASHBITS 7
2195 #define NO_ENTRY 0xff
2196 
2197 #define PERF_MAX_BRANCH_DEPTH 127
2198 
2199 /* Remove loops. */
2200 static int remove_loops(struct branch_entry *l, int nr,
2201 			struct iterations *iter)
2202 {
2203 	int i, j, off;
2204 	unsigned char chash[CHASHSZ];
2205 
2206 	memset(chash, NO_ENTRY, sizeof(chash));
2207 
2208 	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2209 
2210 	for (i = 0; i < nr; i++) {
2211 		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2212 
2213 		/* no collision handling for now */
2214 		if (chash[h] == NO_ENTRY) {
2215 			chash[h] = i;
2216 		} else if (l[chash[h]].from == l[i].from) {
2217 			bool is_loop = true;
2218 			/* check if it is a real loop */
2219 			off = 0;
2220 			for (j = chash[h]; j < i && i + off < nr; j++, off++)
2221 				if (l[j].from != l[i + off].from) {
2222 					is_loop = false;
2223 					break;
2224 				}
2225 			if (is_loop) {
2226 				j = nr - (i + off);
2227 				if (j > 0) {
2228 					save_iterations(iter + i + off,
2229 						l + i, off);
2230 
2231 					memmove(iter + i, iter + i + off,
2232 						j * sizeof(*iter));
2233 
2234 					memmove(l + i, l + i + off,
2235 						j * sizeof(*l));
2236 				}
2237 
2238 				nr -= off;
2239 			}
2240 		}
2241 	}
2242 	return nr;
2243 }
2244 
2245 static int lbr_callchain_add_kernel_ip(struct thread *thread,
2246 				       struct callchain_cursor *cursor,
2247 				       struct perf_sample *sample,
2248 				       struct symbol **parent,
2249 				       struct addr_location *root_al,
2250 				       u64 branch_from,
2251 				       bool callee, int end)
2252 {
2253 	struct ip_callchain *chain = sample->callchain;
2254 	u8 cpumode = PERF_RECORD_MISC_USER;
2255 	int err, i;
2256 
2257 	if (callee) {
2258 		for (i = 0; i < end + 1; i++) {
2259 			err = add_callchain_ip(thread, cursor, parent,
2260 					       root_al, &cpumode, chain->ips[i],
2261 					       false, NULL, NULL, branch_from);
2262 			if (err)
2263 				return err;
2264 		}
2265 		return 0;
2266 	}
2267 
2268 	for (i = end; i >= 0; i--) {
2269 		err = add_callchain_ip(thread, cursor, parent,
2270 				       root_al, &cpumode, chain->ips[i],
2271 				       false, NULL, NULL, branch_from);
2272 		if (err)
2273 			return err;
2274 	}
2275 
2276 	return 0;
2277 }
2278 
2279 static void save_lbr_cursor_node(struct thread *thread,
2280 				 struct callchain_cursor *cursor,
2281 				 int idx)
2282 {
2283 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2284 
2285 	if (!lbr_stitch)
2286 		return;
2287 
2288 	if (cursor->pos == cursor->nr) {
2289 		lbr_stitch->prev_lbr_cursor[idx].valid = false;
2290 		return;
2291 	}
2292 
2293 	if (!cursor->curr)
2294 		cursor->curr = cursor->first;
2295 	else
2296 		cursor->curr = cursor->curr->next;
2297 	memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2298 	       sizeof(struct callchain_cursor_node));
2299 
2300 	lbr_stitch->prev_lbr_cursor[idx].valid = true;
2301 	cursor->pos++;
2302 }
2303 
2304 static int lbr_callchain_add_lbr_ip(struct thread *thread,
2305 				    struct callchain_cursor *cursor,
2306 				    struct perf_sample *sample,
2307 				    struct symbol **parent,
2308 				    struct addr_location *root_al,
2309 				    u64 *branch_from,
2310 				    bool callee)
2311 {
2312 	struct branch_stack *lbr_stack = sample->branch_stack;
2313 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2314 	u8 cpumode = PERF_RECORD_MISC_USER;
2315 	int lbr_nr = lbr_stack->nr;
2316 	struct branch_flags *flags;
2317 	int err, i;
2318 	u64 ip;
2319 
2320 	/*
2321 	 * The curr and pos are not used in writing session. They are cleared
2322 	 * in callchain_cursor_commit() when the writing session is closed.
2323 	 * Using curr and pos to track the current cursor node.
2324 	 */
2325 	if (thread->lbr_stitch) {
2326 		cursor->curr = NULL;
2327 		cursor->pos = cursor->nr;
2328 		if (cursor->nr) {
2329 			cursor->curr = cursor->first;
2330 			for (i = 0; i < (int)(cursor->nr - 1); i++)
2331 				cursor->curr = cursor->curr->next;
2332 		}
2333 	}
2334 
2335 	if (callee) {
2336 		/* Add LBR ip from first entries.to */
2337 		ip = entries[0].to;
2338 		flags = &entries[0].flags;
2339 		*branch_from = entries[0].from;
2340 		err = add_callchain_ip(thread, cursor, parent,
2341 				       root_al, &cpumode, ip,
2342 				       true, flags, NULL,
2343 				       *branch_from);
2344 		if (err)
2345 			return err;
2346 
2347 		/*
2348 		 * The number of cursor node increases.
2349 		 * Move the current cursor node.
2350 		 * But does not need to save current cursor node for entry 0.
2351 		 * It's impossible to stitch the whole LBRs of previous sample.
2352 		 */
2353 		if (thread->lbr_stitch && (cursor->pos != cursor->nr)) {
2354 			if (!cursor->curr)
2355 				cursor->curr = cursor->first;
2356 			else
2357 				cursor->curr = cursor->curr->next;
2358 			cursor->pos++;
2359 		}
2360 
2361 		/* Add LBR ip from entries.from one by one. */
2362 		for (i = 0; i < lbr_nr; i++) {
2363 			ip = entries[i].from;
2364 			flags = &entries[i].flags;
2365 			err = add_callchain_ip(thread, cursor, parent,
2366 					       root_al, &cpumode, ip,
2367 					       true, flags, NULL,
2368 					       *branch_from);
2369 			if (err)
2370 				return err;
2371 			save_lbr_cursor_node(thread, cursor, i);
2372 		}
2373 		return 0;
2374 	}
2375 
2376 	/* Add LBR ip from entries.from one by one. */
2377 	for (i = lbr_nr - 1; i >= 0; i--) {
2378 		ip = entries[i].from;
2379 		flags = &entries[i].flags;
2380 		err = add_callchain_ip(thread, cursor, parent,
2381 				       root_al, &cpumode, ip,
2382 				       true, flags, NULL,
2383 				       *branch_from);
2384 		if (err)
2385 			return err;
2386 		save_lbr_cursor_node(thread, cursor, i);
2387 	}
2388 
2389 	/* Add LBR ip from first entries.to */
2390 	ip = entries[0].to;
2391 	flags = &entries[0].flags;
2392 	*branch_from = entries[0].from;
2393 	err = add_callchain_ip(thread, cursor, parent,
2394 			       root_al, &cpumode, ip,
2395 			       true, flags, NULL,
2396 			       *branch_from);
2397 	if (err)
2398 		return err;
2399 
2400 	return 0;
2401 }
2402 
2403 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2404 					     struct callchain_cursor *cursor)
2405 {
2406 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2407 	struct callchain_cursor_node *cnode;
2408 	struct stitch_list *stitch_node;
2409 	int err;
2410 
2411 	list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2412 		cnode = &stitch_node->cursor;
2413 
2414 		err = callchain_cursor_append(cursor, cnode->ip,
2415 					      &cnode->ms,
2416 					      cnode->branch,
2417 					      &cnode->branch_flags,
2418 					      cnode->nr_loop_iter,
2419 					      cnode->iter_cycles,
2420 					      cnode->branch_from,
2421 					      cnode->srcline);
2422 		if (err)
2423 			return err;
2424 	}
2425 	return 0;
2426 }
2427 
2428 static struct stitch_list *get_stitch_node(struct thread *thread)
2429 {
2430 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2431 	struct stitch_list *stitch_node;
2432 
2433 	if (!list_empty(&lbr_stitch->free_lists)) {
2434 		stitch_node = list_first_entry(&lbr_stitch->free_lists,
2435 					       struct stitch_list, node);
2436 		list_del(&stitch_node->node);
2437 
2438 		return stitch_node;
2439 	}
2440 
2441 	return malloc(sizeof(struct stitch_list));
2442 }
2443 
2444 static bool has_stitched_lbr(struct thread *thread,
2445 			     struct perf_sample *cur,
2446 			     struct perf_sample *prev,
2447 			     unsigned int max_lbr,
2448 			     bool callee)
2449 {
2450 	struct branch_stack *cur_stack = cur->branch_stack;
2451 	struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2452 	struct branch_stack *prev_stack = prev->branch_stack;
2453 	struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2454 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2455 	int i, j, nr_identical_branches = 0;
2456 	struct stitch_list *stitch_node;
2457 	u64 cur_base, distance;
2458 
2459 	if (!cur_stack || !prev_stack)
2460 		return false;
2461 
2462 	/* Find the physical index of the base-of-stack for current sample. */
2463 	cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2464 
2465 	distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2466 						     (max_lbr + prev_stack->hw_idx - cur_base);
2467 	/* Previous sample has shorter stack. Nothing can be stitched. */
2468 	if (distance + 1 > prev_stack->nr)
2469 		return false;
2470 
2471 	/*
2472 	 * Check if there are identical LBRs between two samples.
2473 	 * Identicall LBRs must have same from, to and flags values. Also,
2474 	 * they have to be saved in the same LBR registers (same physical
2475 	 * index).
2476 	 *
2477 	 * Starts from the base-of-stack of current sample.
2478 	 */
2479 	for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2480 		if ((prev_entries[i].from != cur_entries[j].from) ||
2481 		    (prev_entries[i].to != cur_entries[j].to) ||
2482 		    (prev_entries[i].flags.value != cur_entries[j].flags.value))
2483 			break;
2484 		nr_identical_branches++;
2485 	}
2486 
2487 	if (!nr_identical_branches)
2488 		return false;
2489 
2490 	/*
2491 	 * Save the LBRs between the base-of-stack of previous sample
2492 	 * and the base-of-stack of current sample into lbr_stitch->lists.
2493 	 * These LBRs will be stitched later.
2494 	 */
2495 	for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2496 
2497 		if (!lbr_stitch->prev_lbr_cursor[i].valid)
2498 			continue;
2499 
2500 		stitch_node = get_stitch_node(thread);
2501 		if (!stitch_node)
2502 			return false;
2503 
2504 		memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2505 		       sizeof(struct callchain_cursor_node));
2506 
2507 		if (callee)
2508 			list_add(&stitch_node->node, &lbr_stitch->lists);
2509 		else
2510 			list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2511 	}
2512 
2513 	return true;
2514 }
2515 
2516 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2517 {
2518 	if (thread->lbr_stitch)
2519 		return true;
2520 
2521 	thread->lbr_stitch = zalloc(sizeof(*thread->lbr_stitch));
2522 	if (!thread->lbr_stitch)
2523 		goto err;
2524 
2525 	thread->lbr_stitch->prev_lbr_cursor = calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2526 	if (!thread->lbr_stitch->prev_lbr_cursor)
2527 		goto free_lbr_stitch;
2528 
2529 	INIT_LIST_HEAD(&thread->lbr_stitch->lists);
2530 	INIT_LIST_HEAD(&thread->lbr_stitch->free_lists);
2531 
2532 	return true;
2533 
2534 free_lbr_stitch:
2535 	zfree(&thread->lbr_stitch);
2536 err:
2537 	pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2538 	thread->lbr_stitch_enable = false;
2539 	return false;
2540 }
2541 
2542 /*
2543  * Recolve LBR callstack chain sample
2544  * Return:
2545  * 1 on success get LBR callchain information
2546  * 0 no available LBR callchain information, should try fp
2547  * negative error code on other errors.
2548  */
2549 static int resolve_lbr_callchain_sample(struct thread *thread,
2550 					struct callchain_cursor *cursor,
2551 					struct perf_sample *sample,
2552 					struct symbol **parent,
2553 					struct addr_location *root_al,
2554 					int max_stack,
2555 					unsigned int max_lbr)
2556 {
2557 	bool callee = (callchain_param.order == ORDER_CALLEE);
2558 	struct ip_callchain *chain = sample->callchain;
2559 	int chain_nr = min(max_stack, (int)chain->nr), i;
2560 	struct lbr_stitch *lbr_stitch;
2561 	bool stitched_lbr = false;
2562 	u64 branch_from = 0;
2563 	int err;
2564 
2565 	for (i = 0; i < chain_nr; i++) {
2566 		if (chain->ips[i] == PERF_CONTEXT_USER)
2567 			break;
2568 	}
2569 
2570 	/* LBR only affects the user callchain */
2571 	if (i == chain_nr)
2572 		return 0;
2573 
2574 	if (thread->lbr_stitch_enable && !sample->no_hw_idx &&
2575 	    (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2576 		lbr_stitch = thread->lbr_stitch;
2577 
2578 		stitched_lbr = has_stitched_lbr(thread, sample,
2579 						&lbr_stitch->prev_sample,
2580 						max_lbr, callee);
2581 
2582 		if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2583 			list_replace_init(&lbr_stitch->lists,
2584 					  &lbr_stitch->free_lists);
2585 		}
2586 		memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2587 	}
2588 
2589 	if (callee) {
2590 		/* Add kernel ip */
2591 		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2592 						  parent, root_al, branch_from,
2593 						  true, i);
2594 		if (err)
2595 			goto error;
2596 
2597 		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2598 					       root_al, &branch_from, true);
2599 		if (err)
2600 			goto error;
2601 
2602 		if (stitched_lbr) {
2603 			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2604 			if (err)
2605 				goto error;
2606 		}
2607 
2608 	} else {
2609 		if (stitched_lbr) {
2610 			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2611 			if (err)
2612 				goto error;
2613 		}
2614 		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2615 					       root_al, &branch_from, false);
2616 		if (err)
2617 			goto error;
2618 
2619 		/* Add kernel ip */
2620 		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2621 						  parent, root_al, branch_from,
2622 						  false, i);
2623 		if (err)
2624 			goto error;
2625 	}
2626 	return 1;
2627 
2628 error:
2629 	return (err < 0) ? err : 0;
2630 }
2631 
2632 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2633 			     struct callchain_cursor *cursor,
2634 			     struct symbol **parent,
2635 			     struct addr_location *root_al,
2636 			     u8 *cpumode, int ent)
2637 {
2638 	int err = 0;
2639 
2640 	while (--ent >= 0) {
2641 		u64 ip = chain->ips[ent];
2642 
2643 		if (ip >= PERF_CONTEXT_MAX) {
2644 			err = add_callchain_ip(thread, cursor, parent,
2645 					       root_al, cpumode, ip,
2646 					       false, NULL, NULL, 0);
2647 			break;
2648 		}
2649 	}
2650 	return err;
2651 }
2652 
2653 static int thread__resolve_callchain_sample(struct thread *thread,
2654 					    struct callchain_cursor *cursor,
2655 					    struct evsel *evsel,
2656 					    struct perf_sample *sample,
2657 					    struct symbol **parent,
2658 					    struct addr_location *root_al,
2659 					    int max_stack)
2660 {
2661 	struct branch_stack *branch = sample->branch_stack;
2662 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2663 	struct ip_callchain *chain = sample->callchain;
2664 	int chain_nr = 0;
2665 	u8 cpumode = PERF_RECORD_MISC_USER;
2666 	int i, j, err, nr_entries;
2667 	int skip_idx = -1;
2668 	int first_call = 0;
2669 
2670 	if (chain)
2671 		chain_nr = chain->nr;
2672 
2673 	if (evsel__has_branch_callstack(evsel)) {
2674 		struct perf_env *env = evsel__env(evsel);
2675 
2676 		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2677 						   root_al, max_stack,
2678 						   !env ? 0 : env->max_branches);
2679 		if (err)
2680 			return (err < 0) ? err : 0;
2681 	}
2682 
2683 	/*
2684 	 * Based on DWARF debug information, some architectures skip
2685 	 * a callchain entry saved by the kernel.
2686 	 */
2687 	skip_idx = arch_skip_callchain_idx(thread, chain);
2688 
2689 	/*
2690 	 * Add branches to call stack for easier browsing. This gives
2691 	 * more context for a sample than just the callers.
2692 	 *
2693 	 * This uses individual histograms of paths compared to the
2694 	 * aggregated histograms the normal LBR mode uses.
2695 	 *
2696 	 * Limitations for now:
2697 	 * - No extra filters
2698 	 * - No annotations (should annotate somehow)
2699 	 */
2700 
2701 	if (branch && callchain_param.branch_callstack) {
2702 		int nr = min(max_stack, (int)branch->nr);
2703 		struct branch_entry be[nr];
2704 		struct iterations iter[nr];
2705 
2706 		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2707 			pr_warning("corrupted branch chain. skipping...\n");
2708 			goto check_calls;
2709 		}
2710 
2711 		for (i = 0; i < nr; i++) {
2712 			if (callchain_param.order == ORDER_CALLEE) {
2713 				be[i] = entries[i];
2714 
2715 				if (chain == NULL)
2716 					continue;
2717 
2718 				/*
2719 				 * Check for overlap into the callchain.
2720 				 * The return address is one off compared to
2721 				 * the branch entry. To adjust for this
2722 				 * assume the calling instruction is not longer
2723 				 * than 8 bytes.
2724 				 */
2725 				if (i == skip_idx ||
2726 				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2727 					first_call++;
2728 				else if (be[i].from < chain->ips[first_call] &&
2729 				    be[i].from >= chain->ips[first_call] - 8)
2730 					first_call++;
2731 			} else
2732 				be[i] = entries[branch->nr - i - 1];
2733 		}
2734 
2735 		memset(iter, 0, sizeof(struct iterations) * nr);
2736 		nr = remove_loops(be, nr, iter);
2737 
2738 		for (i = 0; i < nr; i++) {
2739 			err = add_callchain_ip(thread, cursor, parent,
2740 					       root_al,
2741 					       NULL, be[i].to,
2742 					       true, &be[i].flags,
2743 					       NULL, be[i].from);
2744 
2745 			if (!err)
2746 				err = add_callchain_ip(thread, cursor, parent, root_al,
2747 						       NULL, be[i].from,
2748 						       true, &be[i].flags,
2749 						       &iter[i], 0);
2750 			if (err == -EINVAL)
2751 				break;
2752 			if (err)
2753 				return err;
2754 		}
2755 
2756 		if (chain_nr == 0)
2757 			return 0;
2758 
2759 		chain_nr -= nr;
2760 	}
2761 
2762 check_calls:
2763 	if (chain && callchain_param.order != ORDER_CALLEE) {
2764 		err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2765 					&cpumode, chain->nr - first_call);
2766 		if (err)
2767 			return (err < 0) ? err : 0;
2768 	}
2769 	for (i = first_call, nr_entries = 0;
2770 	     i < chain_nr && nr_entries < max_stack; i++) {
2771 		u64 ip;
2772 
2773 		if (callchain_param.order == ORDER_CALLEE)
2774 			j = i;
2775 		else
2776 			j = chain->nr - i - 1;
2777 
2778 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2779 		if (j == skip_idx)
2780 			continue;
2781 #endif
2782 		ip = chain->ips[j];
2783 		if (ip < PERF_CONTEXT_MAX)
2784                        ++nr_entries;
2785 		else if (callchain_param.order != ORDER_CALLEE) {
2786 			err = find_prev_cpumode(chain, thread, cursor, parent,
2787 						root_al, &cpumode, j);
2788 			if (err)
2789 				return (err < 0) ? err : 0;
2790 			continue;
2791 		}
2792 
2793 		err = add_callchain_ip(thread, cursor, parent,
2794 				       root_al, &cpumode, ip,
2795 				       false, NULL, NULL, 0);
2796 
2797 		if (err)
2798 			return (err < 0) ? err : 0;
2799 	}
2800 
2801 	return 0;
2802 }
2803 
2804 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
2805 {
2806 	struct symbol *sym = ms->sym;
2807 	struct map *map = ms->map;
2808 	struct inline_node *inline_node;
2809 	struct inline_list *ilist;
2810 	u64 addr;
2811 	int ret = 1;
2812 
2813 	if (!symbol_conf.inline_name || !map || !sym)
2814 		return ret;
2815 
2816 	addr = map__map_ip(map, ip);
2817 	addr = map__rip_2objdump(map, addr);
2818 
2819 	inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2820 	if (!inline_node) {
2821 		inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2822 		if (!inline_node)
2823 			return ret;
2824 		inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2825 	}
2826 
2827 	list_for_each_entry(ilist, &inline_node->val, list) {
2828 		struct map_symbol ilist_ms = {
2829 			.maps = ms->maps,
2830 			.map = map,
2831 			.sym = ilist->symbol,
2832 		};
2833 		ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
2834 					      NULL, 0, 0, 0, ilist->srcline);
2835 
2836 		if (ret != 0)
2837 			return ret;
2838 	}
2839 
2840 	return ret;
2841 }
2842 
2843 static int unwind_entry(struct unwind_entry *entry, void *arg)
2844 {
2845 	struct callchain_cursor *cursor = arg;
2846 	const char *srcline = NULL;
2847 	u64 addr = entry->ip;
2848 
2849 	if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
2850 		return 0;
2851 
2852 	if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
2853 		return 0;
2854 
2855 	/*
2856 	 * Convert entry->ip from a virtual address to an offset in
2857 	 * its corresponding binary.
2858 	 */
2859 	if (entry->ms.map)
2860 		addr = map__map_ip(entry->ms.map, entry->ip);
2861 
2862 	srcline = callchain_srcline(&entry->ms, addr);
2863 	return callchain_cursor_append(cursor, entry->ip, &entry->ms,
2864 				       false, NULL, 0, 0, 0, srcline);
2865 }
2866 
2867 static int thread__resolve_callchain_unwind(struct thread *thread,
2868 					    struct callchain_cursor *cursor,
2869 					    struct evsel *evsel,
2870 					    struct perf_sample *sample,
2871 					    int max_stack)
2872 {
2873 	/* Can we do dwarf post unwind? */
2874 	if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2875 	      (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2876 		return 0;
2877 
2878 	/* Bail out if nothing was captured. */
2879 	if ((!sample->user_regs.regs) ||
2880 	    (!sample->user_stack.size))
2881 		return 0;
2882 
2883 	return unwind__get_entries(unwind_entry, cursor,
2884 				   thread, sample, max_stack);
2885 }
2886 
2887 int thread__resolve_callchain(struct thread *thread,
2888 			      struct callchain_cursor *cursor,
2889 			      struct evsel *evsel,
2890 			      struct perf_sample *sample,
2891 			      struct symbol **parent,
2892 			      struct addr_location *root_al,
2893 			      int max_stack)
2894 {
2895 	int ret = 0;
2896 
2897 	callchain_cursor_reset(cursor);
2898 
2899 	if (callchain_param.order == ORDER_CALLEE) {
2900 		ret = thread__resolve_callchain_sample(thread, cursor,
2901 						       evsel, sample,
2902 						       parent, root_al,
2903 						       max_stack);
2904 		if (ret)
2905 			return ret;
2906 		ret = thread__resolve_callchain_unwind(thread, cursor,
2907 						       evsel, sample,
2908 						       max_stack);
2909 	} else {
2910 		ret = thread__resolve_callchain_unwind(thread, cursor,
2911 						       evsel, sample,
2912 						       max_stack);
2913 		if (ret)
2914 			return ret;
2915 		ret = thread__resolve_callchain_sample(thread, cursor,
2916 						       evsel, sample,
2917 						       parent, root_al,
2918 						       max_stack);
2919 	}
2920 
2921 	return ret;
2922 }
2923 
2924 int machine__for_each_thread(struct machine *machine,
2925 			     int (*fn)(struct thread *thread, void *p),
2926 			     void *priv)
2927 {
2928 	struct threads *threads;
2929 	struct rb_node *nd;
2930 	struct thread *thread;
2931 	int rc = 0;
2932 	int i;
2933 
2934 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2935 		threads = &machine->threads[i];
2936 		for (nd = rb_first_cached(&threads->entries); nd;
2937 		     nd = rb_next(nd)) {
2938 			thread = rb_entry(nd, struct thread, rb_node);
2939 			rc = fn(thread, priv);
2940 			if (rc != 0)
2941 				return rc;
2942 		}
2943 
2944 		list_for_each_entry(thread, &threads->dead, node) {
2945 			rc = fn(thread, priv);
2946 			if (rc != 0)
2947 				return rc;
2948 		}
2949 	}
2950 	return rc;
2951 }
2952 
2953 int machines__for_each_thread(struct machines *machines,
2954 			      int (*fn)(struct thread *thread, void *p),
2955 			      void *priv)
2956 {
2957 	struct rb_node *nd;
2958 	int rc = 0;
2959 
2960 	rc = machine__for_each_thread(&machines->host, fn, priv);
2961 	if (rc != 0)
2962 		return rc;
2963 
2964 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
2965 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
2966 
2967 		rc = machine__for_each_thread(machine, fn, priv);
2968 		if (rc != 0)
2969 			return rc;
2970 	}
2971 	return rc;
2972 }
2973 
2974 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2975 {
2976 	int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2977 
2978 	if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid)
2979 		return -1;
2980 
2981 	return machine->current_tid[cpu];
2982 }
2983 
2984 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2985 			     pid_t tid)
2986 {
2987 	struct thread *thread;
2988 	int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2989 
2990 	if (cpu < 0)
2991 		return -EINVAL;
2992 
2993 	if (!machine->current_tid) {
2994 		int i;
2995 
2996 		machine->current_tid = calloc(nr_cpus, sizeof(pid_t));
2997 		if (!machine->current_tid)
2998 			return -ENOMEM;
2999 		for (i = 0; i < nr_cpus; i++)
3000 			machine->current_tid[i] = -1;
3001 	}
3002 
3003 	if (cpu >= nr_cpus) {
3004 		pr_err("Requested CPU %d too large. ", cpu);
3005 		pr_err("Consider raising MAX_NR_CPUS\n");
3006 		return -EINVAL;
3007 	}
3008 
3009 	machine->current_tid[cpu] = tid;
3010 
3011 	thread = machine__findnew_thread(machine, pid, tid);
3012 	if (!thread)
3013 		return -ENOMEM;
3014 
3015 	thread->cpu = cpu;
3016 	thread__put(thread);
3017 
3018 	return 0;
3019 }
3020 
3021 /*
3022  * Compares the raw arch string. N.B. see instead perf_env__arch() if a
3023  * normalized arch is needed.
3024  */
3025 bool machine__is(struct machine *machine, const char *arch)
3026 {
3027 	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3028 }
3029 
3030 int machine__nr_cpus_avail(struct machine *machine)
3031 {
3032 	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3033 }
3034 
3035 int machine__get_kernel_start(struct machine *machine)
3036 {
3037 	struct map *map = machine__kernel_map(machine);
3038 	int err = 0;
3039 
3040 	/*
3041 	 * The only addresses above 2^63 are kernel addresses of a 64-bit
3042 	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
3043 	 * all addresses including kernel addresses are less than 2^32.  In
3044 	 * that case (32-bit system), if the kernel mapping is unknown, all
3045 	 * addresses will be assumed to be in user space - see
3046 	 * machine__kernel_ip().
3047 	 */
3048 	machine->kernel_start = 1ULL << 63;
3049 	if (map) {
3050 		err = map__load(map);
3051 		/*
3052 		 * On x86_64, PTI entry trampolines are less than the
3053 		 * start of kernel text, but still above 2^63. So leave
3054 		 * kernel_start = 1ULL << 63 for x86_64.
3055 		 */
3056 		if (!err && !machine__is(machine, "x86_64"))
3057 			machine->kernel_start = map->start;
3058 	}
3059 	return err;
3060 }
3061 
3062 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3063 {
3064 	u8 addr_cpumode = cpumode;
3065 	bool kernel_ip;
3066 
3067 	if (!machine->single_address_space)
3068 		goto out;
3069 
3070 	kernel_ip = machine__kernel_ip(machine, addr);
3071 	switch (cpumode) {
3072 	case PERF_RECORD_MISC_KERNEL:
3073 	case PERF_RECORD_MISC_USER:
3074 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3075 					   PERF_RECORD_MISC_USER;
3076 		break;
3077 	case PERF_RECORD_MISC_GUEST_KERNEL:
3078 	case PERF_RECORD_MISC_GUEST_USER:
3079 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3080 					   PERF_RECORD_MISC_GUEST_USER;
3081 		break;
3082 	default:
3083 		break;
3084 	}
3085 out:
3086 	return addr_cpumode;
3087 }
3088 
3089 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
3090 {
3091 	return dsos__findnew_id(&machine->dsos, filename, id);
3092 }
3093 
3094 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3095 {
3096 	return machine__findnew_dso_id(machine, filename, NULL);
3097 }
3098 
3099 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3100 {
3101 	struct machine *machine = vmachine;
3102 	struct map *map;
3103 	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3104 
3105 	if (sym == NULL)
3106 		return NULL;
3107 
3108 	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
3109 	*addrp = map->unmap_ip(map, sym->start);
3110 	return sym->name;
3111 }
3112 
3113 int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv)
3114 {
3115 	struct dso *pos;
3116 	int err = 0;
3117 
3118 	list_for_each_entry(pos, &machine->dsos.head, node) {
3119 		if (fn(pos, machine, priv))
3120 			err = -1;
3121 	}
3122 	return err;
3123 }
3124