1 // SPDX-License-Identifier: GPL-2.0 2 #include <dirent.h> 3 #include <errno.h> 4 #include <inttypes.h> 5 #include <regex.h> 6 #include "callchain.h" 7 #include "debug.h" 8 #include "event.h" 9 #include "evsel.h" 10 #include "hist.h" 11 #include "machine.h" 12 #include "map.h" 13 #include "sort.h" 14 #include "strlist.h" 15 #include "thread.h" 16 #include "vdso.h" 17 #include <stdbool.h> 18 #include <sys/types.h> 19 #include <sys/stat.h> 20 #include <unistd.h> 21 #include "unwind.h" 22 #include "linux/hash.h" 23 #include "asm/bug.h" 24 25 #include "sane_ctype.h" 26 #include <symbol/kallsyms.h> 27 #include <linux/mman.h> 28 29 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock); 30 31 static void dsos__init(struct dsos *dsos) 32 { 33 INIT_LIST_HEAD(&dsos->head); 34 dsos->root = RB_ROOT; 35 init_rwsem(&dsos->lock); 36 } 37 38 static void machine__threads_init(struct machine *machine) 39 { 40 int i; 41 42 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 43 struct threads *threads = &machine->threads[i]; 44 threads->entries = RB_ROOT; 45 init_rwsem(&threads->lock); 46 threads->nr = 0; 47 INIT_LIST_HEAD(&threads->dead); 48 threads->last_match = NULL; 49 } 50 } 51 52 static int machine__set_mmap_name(struct machine *machine) 53 { 54 if (machine__is_host(machine)) 55 machine->mmap_name = strdup("[kernel.kallsyms]"); 56 else if (machine__is_default_guest(machine)) 57 machine->mmap_name = strdup("[guest.kernel.kallsyms]"); 58 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]", 59 machine->pid) < 0) 60 machine->mmap_name = NULL; 61 62 return machine->mmap_name ? 0 : -ENOMEM; 63 } 64 65 int machine__init(struct machine *machine, const char *root_dir, pid_t pid) 66 { 67 int err = -ENOMEM; 68 69 memset(machine, 0, sizeof(*machine)); 70 map_groups__init(&machine->kmaps, machine); 71 RB_CLEAR_NODE(&machine->rb_node); 72 dsos__init(&machine->dsos); 73 74 machine__threads_init(machine); 75 76 machine->vdso_info = NULL; 77 machine->env = NULL; 78 79 machine->pid = pid; 80 81 machine->id_hdr_size = 0; 82 machine->kptr_restrict_warned = false; 83 machine->comm_exec = false; 84 machine->kernel_start = 0; 85 machine->vmlinux_map = NULL; 86 87 machine->root_dir = strdup(root_dir); 88 if (machine->root_dir == NULL) 89 return -ENOMEM; 90 91 if (machine__set_mmap_name(machine)) 92 goto out; 93 94 if (pid != HOST_KERNEL_ID) { 95 struct thread *thread = machine__findnew_thread(machine, -1, 96 pid); 97 char comm[64]; 98 99 if (thread == NULL) 100 goto out; 101 102 snprintf(comm, sizeof(comm), "[guest/%d]", pid); 103 thread__set_comm(thread, comm, 0); 104 thread__put(thread); 105 } 106 107 machine->current_tid = NULL; 108 err = 0; 109 110 out: 111 if (err) { 112 zfree(&machine->root_dir); 113 zfree(&machine->mmap_name); 114 } 115 return 0; 116 } 117 118 struct machine *machine__new_host(void) 119 { 120 struct machine *machine = malloc(sizeof(*machine)); 121 122 if (machine != NULL) { 123 machine__init(machine, "", HOST_KERNEL_ID); 124 125 if (machine__create_kernel_maps(machine) < 0) 126 goto out_delete; 127 } 128 129 return machine; 130 out_delete: 131 free(machine); 132 return NULL; 133 } 134 135 struct machine *machine__new_kallsyms(void) 136 { 137 struct machine *machine = machine__new_host(); 138 /* 139 * FIXME: 140 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitely 141 * ask for not using the kcore parsing code, once this one is fixed 142 * to create a map per module. 143 */ 144 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) { 145 machine__delete(machine); 146 machine = NULL; 147 } 148 149 return machine; 150 } 151 152 static void dsos__purge(struct dsos *dsos) 153 { 154 struct dso *pos, *n; 155 156 down_write(&dsos->lock); 157 158 list_for_each_entry_safe(pos, n, &dsos->head, node) { 159 RB_CLEAR_NODE(&pos->rb_node); 160 pos->root = NULL; 161 list_del_init(&pos->node); 162 dso__put(pos); 163 } 164 165 up_write(&dsos->lock); 166 } 167 168 static void dsos__exit(struct dsos *dsos) 169 { 170 dsos__purge(dsos); 171 exit_rwsem(&dsos->lock); 172 } 173 174 void machine__delete_threads(struct machine *machine) 175 { 176 struct rb_node *nd; 177 int i; 178 179 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 180 struct threads *threads = &machine->threads[i]; 181 down_write(&threads->lock); 182 nd = rb_first(&threads->entries); 183 while (nd) { 184 struct thread *t = rb_entry(nd, struct thread, rb_node); 185 186 nd = rb_next(nd); 187 __machine__remove_thread(machine, t, false); 188 } 189 up_write(&threads->lock); 190 } 191 } 192 193 void machine__exit(struct machine *machine) 194 { 195 int i; 196 197 if (machine == NULL) 198 return; 199 200 machine__destroy_kernel_maps(machine); 201 map_groups__exit(&machine->kmaps); 202 dsos__exit(&machine->dsos); 203 machine__exit_vdso(machine); 204 zfree(&machine->root_dir); 205 zfree(&machine->mmap_name); 206 zfree(&machine->current_tid); 207 208 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 209 struct threads *threads = &machine->threads[i]; 210 exit_rwsem(&threads->lock); 211 } 212 } 213 214 void machine__delete(struct machine *machine) 215 { 216 if (machine) { 217 machine__exit(machine); 218 free(machine); 219 } 220 } 221 222 void machines__init(struct machines *machines) 223 { 224 machine__init(&machines->host, "", HOST_KERNEL_ID); 225 machines->guests = RB_ROOT; 226 } 227 228 void machines__exit(struct machines *machines) 229 { 230 machine__exit(&machines->host); 231 /* XXX exit guest */ 232 } 233 234 struct machine *machines__add(struct machines *machines, pid_t pid, 235 const char *root_dir) 236 { 237 struct rb_node **p = &machines->guests.rb_node; 238 struct rb_node *parent = NULL; 239 struct machine *pos, *machine = malloc(sizeof(*machine)); 240 241 if (machine == NULL) 242 return NULL; 243 244 if (machine__init(machine, root_dir, pid) != 0) { 245 free(machine); 246 return NULL; 247 } 248 249 while (*p != NULL) { 250 parent = *p; 251 pos = rb_entry(parent, struct machine, rb_node); 252 if (pid < pos->pid) 253 p = &(*p)->rb_left; 254 else 255 p = &(*p)->rb_right; 256 } 257 258 rb_link_node(&machine->rb_node, parent, p); 259 rb_insert_color(&machine->rb_node, &machines->guests); 260 261 return machine; 262 } 263 264 void machines__set_comm_exec(struct machines *machines, bool comm_exec) 265 { 266 struct rb_node *nd; 267 268 machines->host.comm_exec = comm_exec; 269 270 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 271 struct machine *machine = rb_entry(nd, struct machine, rb_node); 272 273 machine->comm_exec = comm_exec; 274 } 275 } 276 277 struct machine *machines__find(struct machines *machines, pid_t pid) 278 { 279 struct rb_node **p = &machines->guests.rb_node; 280 struct rb_node *parent = NULL; 281 struct machine *machine; 282 struct machine *default_machine = NULL; 283 284 if (pid == HOST_KERNEL_ID) 285 return &machines->host; 286 287 while (*p != NULL) { 288 parent = *p; 289 machine = rb_entry(parent, struct machine, rb_node); 290 if (pid < machine->pid) 291 p = &(*p)->rb_left; 292 else if (pid > machine->pid) 293 p = &(*p)->rb_right; 294 else 295 return machine; 296 if (!machine->pid) 297 default_machine = machine; 298 } 299 300 return default_machine; 301 } 302 303 struct machine *machines__findnew(struct machines *machines, pid_t pid) 304 { 305 char path[PATH_MAX]; 306 const char *root_dir = ""; 307 struct machine *machine = machines__find(machines, pid); 308 309 if (machine && (machine->pid == pid)) 310 goto out; 311 312 if ((pid != HOST_KERNEL_ID) && 313 (pid != DEFAULT_GUEST_KERNEL_ID) && 314 (symbol_conf.guestmount)) { 315 sprintf(path, "%s/%d", symbol_conf.guestmount, pid); 316 if (access(path, R_OK)) { 317 static struct strlist *seen; 318 319 if (!seen) 320 seen = strlist__new(NULL, NULL); 321 322 if (!strlist__has_entry(seen, path)) { 323 pr_err("Can't access file %s\n", path); 324 strlist__add(seen, path); 325 } 326 machine = NULL; 327 goto out; 328 } 329 root_dir = path; 330 } 331 332 machine = machines__add(machines, pid, root_dir); 333 out: 334 return machine; 335 } 336 337 void machines__process_guests(struct machines *machines, 338 machine__process_t process, void *data) 339 { 340 struct rb_node *nd; 341 342 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 343 struct machine *pos = rb_entry(nd, struct machine, rb_node); 344 process(pos, data); 345 } 346 } 347 348 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size) 349 { 350 struct rb_node *node; 351 struct machine *machine; 352 353 machines->host.id_hdr_size = id_hdr_size; 354 355 for (node = rb_first(&machines->guests); node; node = rb_next(node)) { 356 machine = rb_entry(node, struct machine, rb_node); 357 machine->id_hdr_size = id_hdr_size; 358 } 359 360 return; 361 } 362 363 static void machine__update_thread_pid(struct machine *machine, 364 struct thread *th, pid_t pid) 365 { 366 struct thread *leader; 367 368 if (pid == th->pid_ || pid == -1 || th->pid_ != -1) 369 return; 370 371 th->pid_ = pid; 372 373 if (th->pid_ == th->tid) 374 return; 375 376 leader = __machine__findnew_thread(machine, th->pid_, th->pid_); 377 if (!leader) 378 goto out_err; 379 380 if (!leader->mg) 381 leader->mg = map_groups__new(machine); 382 383 if (!leader->mg) 384 goto out_err; 385 386 if (th->mg == leader->mg) 387 return; 388 389 if (th->mg) { 390 /* 391 * Maps are created from MMAP events which provide the pid and 392 * tid. Consequently there never should be any maps on a thread 393 * with an unknown pid. Just print an error if there are. 394 */ 395 if (!map_groups__empty(th->mg)) 396 pr_err("Discarding thread maps for %d:%d\n", 397 th->pid_, th->tid); 398 map_groups__put(th->mg); 399 } 400 401 th->mg = map_groups__get(leader->mg); 402 out_put: 403 thread__put(leader); 404 return; 405 out_err: 406 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid); 407 goto out_put; 408 } 409 410 /* 411 * Caller must eventually drop thread->refcnt returned with a successful 412 * lookup/new thread inserted. 413 */ 414 static struct thread *____machine__findnew_thread(struct machine *machine, 415 struct threads *threads, 416 pid_t pid, pid_t tid, 417 bool create) 418 { 419 struct rb_node **p = &threads->entries.rb_node; 420 struct rb_node *parent = NULL; 421 struct thread *th; 422 423 /* 424 * Front-end cache - TID lookups come in blocks, 425 * so most of the time we dont have to look up 426 * the full rbtree: 427 */ 428 th = threads->last_match; 429 if (th != NULL) { 430 if (th->tid == tid) { 431 machine__update_thread_pid(machine, th, pid); 432 return thread__get(th); 433 } 434 435 threads->last_match = NULL; 436 } 437 438 while (*p != NULL) { 439 parent = *p; 440 th = rb_entry(parent, struct thread, rb_node); 441 442 if (th->tid == tid) { 443 threads->last_match = th; 444 machine__update_thread_pid(machine, th, pid); 445 return thread__get(th); 446 } 447 448 if (tid < th->tid) 449 p = &(*p)->rb_left; 450 else 451 p = &(*p)->rb_right; 452 } 453 454 if (!create) 455 return NULL; 456 457 th = thread__new(pid, tid); 458 if (th != NULL) { 459 rb_link_node(&th->rb_node, parent, p); 460 rb_insert_color(&th->rb_node, &threads->entries); 461 462 /* 463 * We have to initialize map_groups separately 464 * after rb tree is updated. 465 * 466 * The reason is that we call machine__findnew_thread 467 * within thread__init_map_groups to find the thread 468 * leader and that would screwed the rb tree. 469 */ 470 if (thread__init_map_groups(th, machine)) { 471 rb_erase_init(&th->rb_node, &threads->entries); 472 RB_CLEAR_NODE(&th->rb_node); 473 thread__put(th); 474 return NULL; 475 } 476 /* 477 * It is now in the rbtree, get a ref 478 */ 479 thread__get(th); 480 threads->last_match = th; 481 ++threads->nr; 482 } 483 484 return th; 485 } 486 487 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid) 488 { 489 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true); 490 } 491 492 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, 493 pid_t tid) 494 { 495 struct threads *threads = machine__threads(machine, tid); 496 struct thread *th; 497 498 down_write(&threads->lock); 499 th = __machine__findnew_thread(machine, pid, tid); 500 up_write(&threads->lock); 501 return th; 502 } 503 504 struct thread *machine__find_thread(struct machine *machine, pid_t pid, 505 pid_t tid) 506 { 507 struct threads *threads = machine__threads(machine, tid); 508 struct thread *th; 509 510 down_read(&threads->lock); 511 th = ____machine__findnew_thread(machine, threads, pid, tid, false); 512 up_read(&threads->lock); 513 return th; 514 } 515 516 struct comm *machine__thread_exec_comm(struct machine *machine, 517 struct thread *thread) 518 { 519 if (machine->comm_exec) 520 return thread__exec_comm(thread); 521 else 522 return thread__comm(thread); 523 } 524 525 int machine__process_comm_event(struct machine *machine, union perf_event *event, 526 struct perf_sample *sample) 527 { 528 struct thread *thread = machine__findnew_thread(machine, 529 event->comm.pid, 530 event->comm.tid); 531 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC; 532 int err = 0; 533 534 if (exec) 535 machine->comm_exec = true; 536 537 if (dump_trace) 538 perf_event__fprintf_comm(event, stdout); 539 540 if (thread == NULL || 541 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) { 542 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n"); 543 err = -1; 544 } 545 546 thread__put(thread); 547 548 return err; 549 } 550 551 int machine__process_namespaces_event(struct machine *machine __maybe_unused, 552 union perf_event *event, 553 struct perf_sample *sample __maybe_unused) 554 { 555 struct thread *thread = machine__findnew_thread(machine, 556 event->namespaces.pid, 557 event->namespaces.tid); 558 int err = 0; 559 560 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES, 561 "\nWARNING: kernel seems to support more namespaces than perf" 562 " tool.\nTry updating the perf tool..\n\n"); 563 564 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES, 565 "\nWARNING: perf tool seems to support more namespaces than" 566 " the kernel.\nTry updating the kernel..\n\n"); 567 568 if (dump_trace) 569 perf_event__fprintf_namespaces(event, stdout); 570 571 if (thread == NULL || 572 thread__set_namespaces(thread, sample->time, &event->namespaces)) { 573 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n"); 574 err = -1; 575 } 576 577 thread__put(thread); 578 579 return err; 580 } 581 582 int machine__process_lost_event(struct machine *machine __maybe_unused, 583 union perf_event *event, struct perf_sample *sample __maybe_unused) 584 { 585 dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n", 586 event->lost.id, event->lost.lost); 587 return 0; 588 } 589 590 int machine__process_lost_samples_event(struct machine *machine __maybe_unused, 591 union perf_event *event, struct perf_sample *sample) 592 { 593 dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n", 594 sample->id, event->lost_samples.lost); 595 return 0; 596 } 597 598 static struct dso *machine__findnew_module_dso(struct machine *machine, 599 struct kmod_path *m, 600 const char *filename) 601 { 602 struct dso *dso; 603 604 down_write(&machine->dsos.lock); 605 606 dso = __dsos__find(&machine->dsos, m->name, true); 607 if (!dso) { 608 dso = __dsos__addnew(&machine->dsos, m->name); 609 if (dso == NULL) 610 goto out_unlock; 611 612 dso__set_module_info(dso, m, machine); 613 dso__set_long_name(dso, strdup(filename), true); 614 } 615 616 dso__get(dso); 617 out_unlock: 618 up_write(&machine->dsos.lock); 619 return dso; 620 } 621 622 int machine__process_aux_event(struct machine *machine __maybe_unused, 623 union perf_event *event) 624 { 625 if (dump_trace) 626 perf_event__fprintf_aux(event, stdout); 627 return 0; 628 } 629 630 int machine__process_itrace_start_event(struct machine *machine __maybe_unused, 631 union perf_event *event) 632 { 633 if (dump_trace) 634 perf_event__fprintf_itrace_start(event, stdout); 635 return 0; 636 } 637 638 int machine__process_switch_event(struct machine *machine __maybe_unused, 639 union perf_event *event) 640 { 641 if (dump_trace) 642 perf_event__fprintf_switch(event, stdout); 643 return 0; 644 } 645 646 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename) 647 { 648 const char *dup_filename; 649 650 if (!filename || !dso || !dso->long_name) 651 return; 652 if (dso->long_name[0] != '[') 653 return; 654 if (!strchr(filename, '/')) 655 return; 656 657 dup_filename = strdup(filename); 658 if (!dup_filename) 659 return; 660 661 dso__set_long_name(dso, dup_filename, true); 662 } 663 664 struct map *machine__findnew_module_map(struct machine *machine, u64 start, 665 const char *filename) 666 { 667 struct map *map = NULL; 668 struct dso *dso = NULL; 669 struct kmod_path m; 670 671 if (kmod_path__parse_name(&m, filename)) 672 return NULL; 673 674 map = map_groups__find_by_name(&machine->kmaps, m.name); 675 if (map) { 676 /* 677 * If the map's dso is an offline module, give dso__load() 678 * a chance to find the file path of that module by fixing 679 * long_name. 680 */ 681 dso__adjust_kmod_long_name(map->dso, filename); 682 goto out; 683 } 684 685 dso = machine__findnew_module_dso(machine, &m, filename); 686 if (dso == NULL) 687 goto out; 688 689 map = map__new2(start, dso); 690 if (map == NULL) 691 goto out; 692 693 map_groups__insert(&machine->kmaps, map); 694 695 /* Put the map here because map_groups__insert alread got it */ 696 map__put(map); 697 out: 698 /* put the dso here, corresponding to machine__findnew_module_dso */ 699 dso__put(dso); 700 free(m.name); 701 return map; 702 } 703 704 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp) 705 { 706 struct rb_node *nd; 707 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp); 708 709 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 710 struct machine *pos = rb_entry(nd, struct machine, rb_node); 711 ret += __dsos__fprintf(&pos->dsos.head, fp); 712 } 713 714 return ret; 715 } 716 717 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp, 718 bool (skip)(struct dso *dso, int parm), int parm) 719 { 720 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm); 721 } 722 723 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp, 724 bool (skip)(struct dso *dso, int parm), int parm) 725 { 726 struct rb_node *nd; 727 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm); 728 729 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 730 struct machine *pos = rb_entry(nd, struct machine, rb_node); 731 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm); 732 } 733 return ret; 734 } 735 736 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp) 737 { 738 int i; 739 size_t printed = 0; 740 struct dso *kdso = machine__kernel_map(machine)->dso; 741 742 if (kdso->has_build_id) { 743 char filename[PATH_MAX]; 744 if (dso__build_id_filename(kdso, filename, sizeof(filename), 745 false)) 746 printed += fprintf(fp, "[0] %s\n", filename); 747 } 748 749 for (i = 0; i < vmlinux_path__nr_entries; ++i) 750 printed += fprintf(fp, "[%d] %s\n", 751 i + kdso->has_build_id, vmlinux_path[i]); 752 753 return printed; 754 } 755 756 size_t machine__fprintf(struct machine *machine, FILE *fp) 757 { 758 struct rb_node *nd; 759 size_t ret; 760 int i; 761 762 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 763 struct threads *threads = &machine->threads[i]; 764 765 down_read(&threads->lock); 766 767 ret = fprintf(fp, "Threads: %u\n", threads->nr); 768 769 for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) { 770 struct thread *pos = rb_entry(nd, struct thread, rb_node); 771 772 ret += thread__fprintf(pos, fp); 773 } 774 775 up_read(&threads->lock); 776 } 777 return ret; 778 } 779 780 static struct dso *machine__get_kernel(struct machine *machine) 781 { 782 const char *vmlinux_name = machine->mmap_name; 783 struct dso *kernel; 784 785 if (machine__is_host(machine)) { 786 if (symbol_conf.vmlinux_name) 787 vmlinux_name = symbol_conf.vmlinux_name; 788 789 kernel = machine__findnew_kernel(machine, vmlinux_name, 790 "[kernel]", DSO_TYPE_KERNEL); 791 } else { 792 if (symbol_conf.default_guest_vmlinux_name) 793 vmlinux_name = symbol_conf.default_guest_vmlinux_name; 794 795 kernel = machine__findnew_kernel(machine, vmlinux_name, 796 "[guest.kernel]", 797 DSO_TYPE_GUEST_KERNEL); 798 } 799 800 if (kernel != NULL && (!kernel->has_build_id)) 801 dso__read_running_kernel_build_id(kernel, machine); 802 803 return kernel; 804 } 805 806 struct process_args { 807 u64 start; 808 }; 809 810 void machine__get_kallsyms_filename(struct machine *machine, char *buf, 811 size_t bufsz) 812 { 813 if (machine__is_default_guest(machine)) 814 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms); 815 else 816 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir); 817 } 818 819 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL}; 820 821 /* Figure out the start address of kernel map from /proc/kallsyms. 822 * Returns the name of the start symbol in *symbol_name. Pass in NULL as 823 * symbol_name if it's not that important. 824 */ 825 static int machine__get_running_kernel_start(struct machine *machine, 826 const char **symbol_name, u64 *start) 827 { 828 char filename[PATH_MAX]; 829 int i, err = -1; 830 const char *name; 831 u64 addr = 0; 832 833 machine__get_kallsyms_filename(machine, filename, PATH_MAX); 834 835 if (symbol__restricted_filename(filename, "/proc/kallsyms")) 836 return 0; 837 838 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) { 839 err = kallsyms__get_function_start(filename, name, &addr); 840 if (!err) 841 break; 842 } 843 844 if (err) 845 return -1; 846 847 if (symbol_name) 848 *symbol_name = name; 849 850 *start = addr; 851 return 0; 852 } 853 854 int machine__create_extra_kernel_map(struct machine *machine, 855 struct dso *kernel, 856 struct extra_kernel_map *xm) 857 { 858 struct kmap *kmap; 859 struct map *map; 860 861 map = map__new2(xm->start, kernel); 862 if (!map) 863 return -1; 864 865 map->end = xm->end; 866 map->pgoff = xm->pgoff; 867 868 kmap = map__kmap(map); 869 870 kmap->kmaps = &machine->kmaps; 871 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN); 872 873 map_groups__insert(&machine->kmaps, map); 874 875 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n", 876 kmap->name, map->start, map->end); 877 878 map__put(map); 879 880 return 0; 881 } 882 883 static u64 find_entry_trampoline(struct dso *dso) 884 { 885 /* Duplicates are removed so lookup all aliases */ 886 const char *syms[] = { 887 "_entry_trampoline", 888 "__entry_trampoline_start", 889 "entry_SYSCALL_64_trampoline", 890 }; 891 struct symbol *sym = dso__first_symbol(dso); 892 unsigned int i; 893 894 for (; sym; sym = dso__next_symbol(sym)) { 895 if (sym->binding != STB_GLOBAL) 896 continue; 897 for (i = 0; i < ARRAY_SIZE(syms); i++) { 898 if (!strcmp(sym->name, syms[i])) 899 return sym->start; 900 } 901 } 902 903 return 0; 904 } 905 906 /* 907 * These values can be used for kernels that do not have symbols for the entry 908 * trampolines in kallsyms. 909 */ 910 #define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL 911 #define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000 912 #define X86_64_ENTRY_TRAMPOLINE 0x6000 913 914 /* Map x86_64 PTI entry trampolines */ 915 int machine__map_x86_64_entry_trampolines(struct machine *machine, 916 struct dso *kernel) 917 { 918 struct map_groups *kmaps = &machine->kmaps; 919 struct maps *maps = &kmaps->maps; 920 int nr_cpus_avail, cpu; 921 bool found = false; 922 struct map *map; 923 u64 pgoff; 924 925 /* 926 * In the vmlinux case, pgoff is a virtual address which must now be 927 * mapped to a vmlinux offset. 928 */ 929 for (map = maps__first(maps); map; map = map__next(map)) { 930 struct kmap *kmap = __map__kmap(map); 931 struct map *dest_map; 932 933 if (!kmap || !is_entry_trampoline(kmap->name)) 934 continue; 935 936 dest_map = map_groups__find(kmaps, map->pgoff); 937 if (dest_map != map) 938 map->pgoff = dest_map->map_ip(dest_map, map->pgoff); 939 found = true; 940 } 941 if (found || machine->trampolines_mapped) 942 return 0; 943 944 pgoff = find_entry_trampoline(kernel); 945 if (!pgoff) 946 return 0; 947 948 nr_cpus_avail = machine__nr_cpus_avail(machine); 949 950 /* Add a 1 page map for each CPU's entry trampoline */ 951 for (cpu = 0; cpu < nr_cpus_avail; cpu++) { 952 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU + 953 cpu * X86_64_CPU_ENTRY_AREA_SIZE + 954 X86_64_ENTRY_TRAMPOLINE; 955 struct extra_kernel_map xm = { 956 .start = va, 957 .end = va + page_size, 958 .pgoff = pgoff, 959 }; 960 961 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN); 962 963 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0) 964 return -1; 965 } 966 967 machine->trampolines_mapped = nr_cpus_avail; 968 969 return 0; 970 } 971 972 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused, 973 struct dso *kernel __maybe_unused) 974 { 975 return 0; 976 } 977 978 static int 979 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel) 980 { 981 struct kmap *kmap; 982 struct map *map; 983 984 /* In case of renewal the kernel map, destroy previous one */ 985 machine__destroy_kernel_maps(machine); 986 987 machine->vmlinux_map = map__new2(0, kernel); 988 if (machine->vmlinux_map == NULL) 989 return -1; 990 991 machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip; 992 map = machine__kernel_map(machine); 993 kmap = map__kmap(map); 994 if (!kmap) 995 return -1; 996 997 kmap->kmaps = &machine->kmaps; 998 map_groups__insert(&machine->kmaps, map); 999 1000 return 0; 1001 } 1002 1003 void machine__destroy_kernel_maps(struct machine *machine) 1004 { 1005 struct kmap *kmap; 1006 struct map *map = machine__kernel_map(machine); 1007 1008 if (map == NULL) 1009 return; 1010 1011 kmap = map__kmap(map); 1012 map_groups__remove(&machine->kmaps, map); 1013 if (kmap && kmap->ref_reloc_sym) { 1014 zfree((char **)&kmap->ref_reloc_sym->name); 1015 zfree(&kmap->ref_reloc_sym); 1016 } 1017 1018 map__zput(machine->vmlinux_map); 1019 } 1020 1021 int machines__create_guest_kernel_maps(struct machines *machines) 1022 { 1023 int ret = 0; 1024 struct dirent **namelist = NULL; 1025 int i, items = 0; 1026 char path[PATH_MAX]; 1027 pid_t pid; 1028 char *endp; 1029 1030 if (symbol_conf.default_guest_vmlinux_name || 1031 symbol_conf.default_guest_modules || 1032 symbol_conf.default_guest_kallsyms) { 1033 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID); 1034 } 1035 1036 if (symbol_conf.guestmount) { 1037 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL); 1038 if (items <= 0) 1039 return -ENOENT; 1040 for (i = 0; i < items; i++) { 1041 if (!isdigit(namelist[i]->d_name[0])) { 1042 /* Filter out . and .. */ 1043 continue; 1044 } 1045 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10); 1046 if ((*endp != '\0') || 1047 (endp == namelist[i]->d_name) || 1048 (errno == ERANGE)) { 1049 pr_debug("invalid directory (%s). Skipping.\n", 1050 namelist[i]->d_name); 1051 continue; 1052 } 1053 sprintf(path, "%s/%s/proc/kallsyms", 1054 symbol_conf.guestmount, 1055 namelist[i]->d_name); 1056 ret = access(path, R_OK); 1057 if (ret) { 1058 pr_debug("Can't access file %s\n", path); 1059 goto failure; 1060 } 1061 machines__create_kernel_maps(machines, pid); 1062 } 1063 failure: 1064 free(namelist); 1065 } 1066 1067 return ret; 1068 } 1069 1070 void machines__destroy_kernel_maps(struct machines *machines) 1071 { 1072 struct rb_node *next = rb_first(&machines->guests); 1073 1074 machine__destroy_kernel_maps(&machines->host); 1075 1076 while (next) { 1077 struct machine *pos = rb_entry(next, struct machine, rb_node); 1078 1079 next = rb_next(&pos->rb_node); 1080 rb_erase(&pos->rb_node, &machines->guests); 1081 machine__delete(pos); 1082 } 1083 } 1084 1085 int machines__create_kernel_maps(struct machines *machines, pid_t pid) 1086 { 1087 struct machine *machine = machines__findnew(machines, pid); 1088 1089 if (machine == NULL) 1090 return -1; 1091 1092 return machine__create_kernel_maps(machine); 1093 } 1094 1095 int machine__load_kallsyms(struct machine *machine, const char *filename) 1096 { 1097 struct map *map = machine__kernel_map(machine); 1098 int ret = __dso__load_kallsyms(map->dso, filename, map, true); 1099 1100 if (ret > 0) { 1101 dso__set_loaded(map->dso); 1102 /* 1103 * Since /proc/kallsyms will have multiple sessions for the 1104 * kernel, with modules between them, fixup the end of all 1105 * sections. 1106 */ 1107 map_groups__fixup_end(&machine->kmaps); 1108 } 1109 1110 return ret; 1111 } 1112 1113 int machine__load_vmlinux_path(struct machine *machine) 1114 { 1115 struct map *map = machine__kernel_map(machine); 1116 int ret = dso__load_vmlinux_path(map->dso, map); 1117 1118 if (ret > 0) 1119 dso__set_loaded(map->dso); 1120 1121 return ret; 1122 } 1123 1124 static char *get_kernel_version(const char *root_dir) 1125 { 1126 char version[PATH_MAX]; 1127 FILE *file; 1128 char *name, *tmp; 1129 const char *prefix = "Linux version "; 1130 1131 sprintf(version, "%s/proc/version", root_dir); 1132 file = fopen(version, "r"); 1133 if (!file) 1134 return NULL; 1135 1136 version[0] = '\0'; 1137 tmp = fgets(version, sizeof(version), file); 1138 fclose(file); 1139 1140 name = strstr(version, prefix); 1141 if (!name) 1142 return NULL; 1143 name += strlen(prefix); 1144 tmp = strchr(name, ' '); 1145 if (tmp) 1146 *tmp = '\0'; 1147 1148 return strdup(name); 1149 } 1150 1151 static bool is_kmod_dso(struct dso *dso) 1152 { 1153 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE || 1154 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE; 1155 } 1156 1157 static int map_groups__set_module_path(struct map_groups *mg, const char *path, 1158 struct kmod_path *m) 1159 { 1160 char *long_name; 1161 struct map *map = map_groups__find_by_name(mg, m->name); 1162 1163 if (map == NULL) 1164 return 0; 1165 1166 long_name = strdup(path); 1167 if (long_name == NULL) 1168 return -ENOMEM; 1169 1170 dso__set_long_name(map->dso, long_name, true); 1171 dso__kernel_module_get_build_id(map->dso, ""); 1172 1173 /* 1174 * Full name could reveal us kmod compression, so 1175 * we need to update the symtab_type if needed. 1176 */ 1177 if (m->comp && is_kmod_dso(map->dso)) 1178 map->dso->symtab_type++; 1179 1180 return 0; 1181 } 1182 1183 static int map_groups__set_modules_path_dir(struct map_groups *mg, 1184 const char *dir_name, int depth) 1185 { 1186 struct dirent *dent; 1187 DIR *dir = opendir(dir_name); 1188 int ret = 0; 1189 1190 if (!dir) { 1191 pr_debug("%s: cannot open %s dir\n", __func__, dir_name); 1192 return -1; 1193 } 1194 1195 while ((dent = readdir(dir)) != NULL) { 1196 char path[PATH_MAX]; 1197 struct stat st; 1198 1199 /*sshfs might return bad dent->d_type, so we have to stat*/ 1200 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name); 1201 if (stat(path, &st)) 1202 continue; 1203 1204 if (S_ISDIR(st.st_mode)) { 1205 if (!strcmp(dent->d_name, ".") || 1206 !strcmp(dent->d_name, "..")) 1207 continue; 1208 1209 /* Do not follow top-level source and build symlinks */ 1210 if (depth == 0) { 1211 if (!strcmp(dent->d_name, "source") || 1212 !strcmp(dent->d_name, "build")) 1213 continue; 1214 } 1215 1216 ret = map_groups__set_modules_path_dir(mg, path, 1217 depth + 1); 1218 if (ret < 0) 1219 goto out; 1220 } else { 1221 struct kmod_path m; 1222 1223 ret = kmod_path__parse_name(&m, dent->d_name); 1224 if (ret) 1225 goto out; 1226 1227 if (m.kmod) 1228 ret = map_groups__set_module_path(mg, path, &m); 1229 1230 free(m.name); 1231 1232 if (ret) 1233 goto out; 1234 } 1235 } 1236 1237 out: 1238 closedir(dir); 1239 return ret; 1240 } 1241 1242 static int machine__set_modules_path(struct machine *machine) 1243 { 1244 char *version; 1245 char modules_path[PATH_MAX]; 1246 1247 version = get_kernel_version(machine->root_dir); 1248 if (!version) 1249 return -1; 1250 1251 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s", 1252 machine->root_dir, version); 1253 free(version); 1254 1255 return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0); 1256 } 1257 int __weak arch__fix_module_text_start(u64 *start __maybe_unused, 1258 const char *name __maybe_unused) 1259 { 1260 return 0; 1261 } 1262 1263 static int machine__create_module(void *arg, const char *name, u64 start, 1264 u64 size) 1265 { 1266 struct machine *machine = arg; 1267 struct map *map; 1268 1269 if (arch__fix_module_text_start(&start, name) < 0) 1270 return -1; 1271 1272 map = machine__findnew_module_map(machine, start, name); 1273 if (map == NULL) 1274 return -1; 1275 map->end = start + size; 1276 1277 dso__kernel_module_get_build_id(map->dso, machine->root_dir); 1278 1279 return 0; 1280 } 1281 1282 static int machine__create_modules(struct machine *machine) 1283 { 1284 const char *modules; 1285 char path[PATH_MAX]; 1286 1287 if (machine__is_default_guest(machine)) { 1288 modules = symbol_conf.default_guest_modules; 1289 } else { 1290 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir); 1291 modules = path; 1292 } 1293 1294 if (symbol__restricted_filename(modules, "/proc/modules")) 1295 return -1; 1296 1297 if (modules__parse(modules, machine, machine__create_module)) 1298 return -1; 1299 1300 if (!machine__set_modules_path(machine)) 1301 return 0; 1302 1303 pr_debug("Problems setting modules path maps, continuing anyway...\n"); 1304 1305 return 0; 1306 } 1307 1308 static void machine__set_kernel_mmap(struct machine *machine, 1309 u64 start, u64 end) 1310 { 1311 machine->vmlinux_map->start = start; 1312 machine->vmlinux_map->end = end; 1313 /* 1314 * Be a bit paranoid here, some perf.data file came with 1315 * a zero sized synthesized MMAP event for the kernel. 1316 */ 1317 if (start == 0 && end == 0) 1318 machine->vmlinux_map->end = ~0ULL; 1319 } 1320 1321 int machine__create_kernel_maps(struct machine *machine) 1322 { 1323 struct dso *kernel = machine__get_kernel(machine); 1324 const char *name = NULL; 1325 struct map *map; 1326 u64 addr = 0; 1327 int ret; 1328 1329 if (kernel == NULL) 1330 return -1; 1331 1332 ret = __machine__create_kernel_maps(machine, kernel); 1333 if (ret < 0) 1334 goto out_put; 1335 1336 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) { 1337 if (machine__is_host(machine)) 1338 pr_debug("Problems creating module maps, " 1339 "continuing anyway...\n"); 1340 else 1341 pr_debug("Problems creating module maps for guest %d, " 1342 "continuing anyway...\n", machine->pid); 1343 } 1344 1345 if (!machine__get_running_kernel_start(machine, &name, &addr)) { 1346 if (name && 1347 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, addr)) { 1348 machine__destroy_kernel_maps(machine); 1349 ret = -1; 1350 goto out_put; 1351 } 1352 1353 /* we have a real start address now, so re-order the kmaps */ 1354 map = machine__kernel_map(machine); 1355 1356 map__get(map); 1357 map_groups__remove(&machine->kmaps, map); 1358 1359 /* assume it's the last in the kmaps */ 1360 machine__set_kernel_mmap(machine, addr, ~0ULL); 1361 1362 map_groups__insert(&machine->kmaps, map); 1363 map__put(map); 1364 } 1365 1366 if (machine__create_extra_kernel_maps(machine, kernel)) 1367 pr_debug("Problems creating extra kernel maps, continuing anyway...\n"); 1368 1369 /* update end address of the kernel map using adjacent module address */ 1370 map = map__next(machine__kernel_map(machine)); 1371 if (map) 1372 machine__set_kernel_mmap(machine, addr, map->start); 1373 out_put: 1374 dso__put(kernel); 1375 return ret; 1376 } 1377 1378 static bool machine__uses_kcore(struct machine *machine) 1379 { 1380 struct dso *dso; 1381 1382 list_for_each_entry(dso, &machine->dsos.head, node) { 1383 if (dso__is_kcore(dso)) 1384 return true; 1385 } 1386 1387 return false; 1388 } 1389 1390 static bool perf_event__is_extra_kernel_mmap(struct machine *machine, 1391 union perf_event *event) 1392 { 1393 return machine__is(machine, "x86_64") && 1394 is_entry_trampoline(event->mmap.filename); 1395 } 1396 1397 static int machine__process_extra_kernel_map(struct machine *machine, 1398 union perf_event *event) 1399 { 1400 struct map *kernel_map = machine__kernel_map(machine); 1401 struct dso *kernel = kernel_map ? kernel_map->dso : NULL; 1402 struct extra_kernel_map xm = { 1403 .start = event->mmap.start, 1404 .end = event->mmap.start + event->mmap.len, 1405 .pgoff = event->mmap.pgoff, 1406 }; 1407 1408 if (kernel == NULL) 1409 return -1; 1410 1411 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN); 1412 1413 return machine__create_extra_kernel_map(machine, kernel, &xm); 1414 } 1415 1416 static int machine__process_kernel_mmap_event(struct machine *machine, 1417 union perf_event *event) 1418 { 1419 struct map *map; 1420 enum dso_kernel_type kernel_type; 1421 bool is_kernel_mmap; 1422 1423 /* If we have maps from kcore then we do not need or want any others */ 1424 if (machine__uses_kcore(machine)) 1425 return 0; 1426 1427 if (machine__is_host(machine)) 1428 kernel_type = DSO_TYPE_KERNEL; 1429 else 1430 kernel_type = DSO_TYPE_GUEST_KERNEL; 1431 1432 is_kernel_mmap = memcmp(event->mmap.filename, 1433 machine->mmap_name, 1434 strlen(machine->mmap_name) - 1) == 0; 1435 if (event->mmap.filename[0] == '/' || 1436 (!is_kernel_mmap && event->mmap.filename[0] == '[')) { 1437 map = machine__findnew_module_map(machine, event->mmap.start, 1438 event->mmap.filename); 1439 if (map == NULL) 1440 goto out_problem; 1441 1442 map->end = map->start + event->mmap.len; 1443 } else if (is_kernel_mmap) { 1444 const char *symbol_name = (event->mmap.filename + 1445 strlen(machine->mmap_name)); 1446 /* 1447 * Should be there already, from the build-id table in 1448 * the header. 1449 */ 1450 struct dso *kernel = NULL; 1451 struct dso *dso; 1452 1453 down_read(&machine->dsos.lock); 1454 1455 list_for_each_entry(dso, &machine->dsos.head, node) { 1456 1457 /* 1458 * The cpumode passed to is_kernel_module is not the 1459 * cpumode of *this* event. If we insist on passing 1460 * correct cpumode to is_kernel_module, we should 1461 * record the cpumode when we adding this dso to the 1462 * linked list. 1463 * 1464 * However we don't really need passing correct 1465 * cpumode. We know the correct cpumode must be kernel 1466 * mode (if not, we should not link it onto kernel_dsos 1467 * list). 1468 * 1469 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN. 1470 * is_kernel_module() treats it as a kernel cpumode. 1471 */ 1472 1473 if (!dso->kernel || 1474 is_kernel_module(dso->long_name, 1475 PERF_RECORD_MISC_CPUMODE_UNKNOWN)) 1476 continue; 1477 1478 1479 kernel = dso; 1480 break; 1481 } 1482 1483 up_read(&machine->dsos.lock); 1484 1485 if (kernel == NULL) 1486 kernel = machine__findnew_dso(machine, machine->mmap_name); 1487 if (kernel == NULL) 1488 goto out_problem; 1489 1490 kernel->kernel = kernel_type; 1491 if (__machine__create_kernel_maps(machine, kernel) < 0) { 1492 dso__put(kernel); 1493 goto out_problem; 1494 } 1495 1496 if (strstr(kernel->long_name, "vmlinux")) 1497 dso__set_short_name(kernel, "[kernel.vmlinux]", false); 1498 1499 machine__set_kernel_mmap(machine, event->mmap.start, 1500 event->mmap.start + event->mmap.len); 1501 1502 /* 1503 * Avoid using a zero address (kptr_restrict) for the ref reloc 1504 * symbol. Effectively having zero here means that at record 1505 * time /proc/sys/kernel/kptr_restrict was non zero. 1506 */ 1507 if (event->mmap.pgoff != 0) { 1508 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, 1509 symbol_name, 1510 event->mmap.pgoff); 1511 } 1512 1513 if (machine__is_default_guest(machine)) { 1514 /* 1515 * preload dso of guest kernel and modules 1516 */ 1517 dso__load(kernel, machine__kernel_map(machine)); 1518 } 1519 } else if (perf_event__is_extra_kernel_mmap(machine, event)) { 1520 return machine__process_extra_kernel_map(machine, event); 1521 } 1522 return 0; 1523 out_problem: 1524 return -1; 1525 } 1526 1527 int machine__process_mmap2_event(struct machine *machine, 1528 union perf_event *event, 1529 struct perf_sample *sample) 1530 { 1531 struct thread *thread; 1532 struct map *map; 1533 int ret = 0; 1534 1535 if (dump_trace) 1536 perf_event__fprintf_mmap2(event, stdout); 1537 1538 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1539 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1540 ret = machine__process_kernel_mmap_event(machine, event); 1541 if (ret < 0) 1542 goto out_problem; 1543 return 0; 1544 } 1545 1546 thread = machine__findnew_thread(machine, event->mmap2.pid, 1547 event->mmap2.tid); 1548 if (thread == NULL) 1549 goto out_problem; 1550 1551 map = map__new(machine, event->mmap2.start, 1552 event->mmap2.len, event->mmap2.pgoff, 1553 event->mmap2.maj, 1554 event->mmap2.min, event->mmap2.ino, 1555 event->mmap2.ino_generation, 1556 event->mmap2.prot, 1557 event->mmap2.flags, 1558 event->mmap2.filename, thread); 1559 1560 if (map == NULL) 1561 goto out_problem_map; 1562 1563 ret = thread__insert_map(thread, map); 1564 if (ret) 1565 goto out_problem_insert; 1566 1567 thread__put(thread); 1568 map__put(map); 1569 return 0; 1570 1571 out_problem_insert: 1572 map__put(map); 1573 out_problem_map: 1574 thread__put(thread); 1575 out_problem: 1576 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n"); 1577 return 0; 1578 } 1579 1580 int machine__process_mmap_event(struct machine *machine, union perf_event *event, 1581 struct perf_sample *sample) 1582 { 1583 struct thread *thread; 1584 struct map *map; 1585 u32 prot = 0; 1586 int ret = 0; 1587 1588 if (dump_trace) 1589 perf_event__fprintf_mmap(event, stdout); 1590 1591 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1592 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1593 ret = machine__process_kernel_mmap_event(machine, event); 1594 if (ret < 0) 1595 goto out_problem; 1596 return 0; 1597 } 1598 1599 thread = machine__findnew_thread(machine, event->mmap.pid, 1600 event->mmap.tid); 1601 if (thread == NULL) 1602 goto out_problem; 1603 1604 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA)) 1605 prot = PROT_EXEC; 1606 1607 map = map__new(machine, event->mmap.start, 1608 event->mmap.len, event->mmap.pgoff, 1609 0, 0, 0, 0, prot, 0, 1610 event->mmap.filename, 1611 thread); 1612 1613 if (map == NULL) 1614 goto out_problem_map; 1615 1616 ret = thread__insert_map(thread, map); 1617 if (ret) 1618 goto out_problem_insert; 1619 1620 thread__put(thread); 1621 map__put(map); 1622 return 0; 1623 1624 out_problem_insert: 1625 map__put(map); 1626 out_problem_map: 1627 thread__put(thread); 1628 out_problem: 1629 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n"); 1630 return 0; 1631 } 1632 1633 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock) 1634 { 1635 struct threads *threads = machine__threads(machine, th->tid); 1636 1637 if (threads->last_match == th) 1638 threads->last_match = NULL; 1639 1640 BUG_ON(refcount_read(&th->refcnt) == 0); 1641 if (lock) 1642 down_write(&threads->lock); 1643 rb_erase_init(&th->rb_node, &threads->entries); 1644 RB_CLEAR_NODE(&th->rb_node); 1645 --threads->nr; 1646 /* 1647 * Move it first to the dead_threads list, then drop the reference, 1648 * if this is the last reference, then the thread__delete destructor 1649 * will be called and we will remove it from the dead_threads list. 1650 */ 1651 list_add_tail(&th->node, &threads->dead); 1652 if (lock) 1653 up_write(&threads->lock); 1654 thread__put(th); 1655 } 1656 1657 void machine__remove_thread(struct machine *machine, struct thread *th) 1658 { 1659 return __machine__remove_thread(machine, th, true); 1660 } 1661 1662 int machine__process_fork_event(struct machine *machine, union perf_event *event, 1663 struct perf_sample *sample) 1664 { 1665 struct thread *thread = machine__find_thread(machine, 1666 event->fork.pid, 1667 event->fork.tid); 1668 struct thread *parent = machine__findnew_thread(machine, 1669 event->fork.ppid, 1670 event->fork.ptid); 1671 int err = 0; 1672 1673 if (dump_trace) 1674 perf_event__fprintf_task(event, stdout); 1675 1676 /* 1677 * There may be an existing thread that is not actually the parent, 1678 * either because we are processing events out of order, or because the 1679 * (fork) event that would have removed the thread was lost. Assume the 1680 * latter case and continue on as best we can. 1681 */ 1682 if (parent->pid_ != (pid_t)event->fork.ppid) { 1683 dump_printf("removing erroneous parent thread %d/%d\n", 1684 parent->pid_, parent->tid); 1685 machine__remove_thread(machine, parent); 1686 thread__put(parent); 1687 parent = machine__findnew_thread(machine, event->fork.ppid, 1688 event->fork.ptid); 1689 } 1690 1691 /* if a thread currently exists for the thread id remove it */ 1692 if (thread != NULL) { 1693 machine__remove_thread(machine, thread); 1694 thread__put(thread); 1695 } 1696 1697 thread = machine__findnew_thread(machine, event->fork.pid, 1698 event->fork.tid); 1699 1700 if (thread == NULL || parent == NULL || 1701 thread__fork(thread, parent, sample->time) < 0) { 1702 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n"); 1703 err = -1; 1704 } 1705 thread__put(thread); 1706 thread__put(parent); 1707 1708 return err; 1709 } 1710 1711 int machine__process_exit_event(struct machine *machine, union perf_event *event, 1712 struct perf_sample *sample __maybe_unused) 1713 { 1714 struct thread *thread = machine__find_thread(machine, 1715 event->fork.pid, 1716 event->fork.tid); 1717 1718 if (dump_trace) 1719 perf_event__fprintf_task(event, stdout); 1720 1721 if (thread != NULL) { 1722 thread__exited(thread); 1723 thread__put(thread); 1724 } 1725 1726 return 0; 1727 } 1728 1729 int machine__process_event(struct machine *machine, union perf_event *event, 1730 struct perf_sample *sample) 1731 { 1732 int ret; 1733 1734 switch (event->header.type) { 1735 case PERF_RECORD_COMM: 1736 ret = machine__process_comm_event(machine, event, sample); break; 1737 case PERF_RECORD_MMAP: 1738 ret = machine__process_mmap_event(machine, event, sample); break; 1739 case PERF_RECORD_NAMESPACES: 1740 ret = machine__process_namespaces_event(machine, event, sample); break; 1741 case PERF_RECORD_MMAP2: 1742 ret = machine__process_mmap2_event(machine, event, sample); break; 1743 case PERF_RECORD_FORK: 1744 ret = machine__process_fork_event(machine, event, sample); break; 1745 case PERF_RECORD_EXIT: 1746 ret = machine__process_exit_event(machine, event, sample); break; 1747 case PERF_RECORD_LOST: 1748 ret = machine__process_lost_event(machine, event, sample); break; 1749 case PERF_RECORD_AUX: 1750 ret = machine__process_aux_event(machine, event); break; 1751 case PERF_RECORD_ITRACE_START: 1752 ret = machine__process_itrace_start_event(machine, event); break; 1753 case PERF_RECORD_LOST_SAMPLES: 1754 ret = machine__process_lost_samples_event(machine, event, sample); break; 1755 case PERF_RECORD_SWITCH: 1756 case PERF_RECORD_SWITCH_CPU_WIDE: 1757 ret = machine__process_switch_event(machine, event); break; 1758 default: 1759 ret = -1; 1760 break; 1761 } 1762 1763 return ret; 1764 } 1765 1766 static bool symbol__match_regex(struct symbol *sym, regex_t *regex) 1767 { 1768 if (!regexec(regex, sym->name, 0, NULL, 0)) 1769 return 1; 1770 return 0; 1771 } 1772 1773 static void ip__resolve_ams(struct thread *thread, 1774 struct addr_map_symbol *ams, 1775 u64 ip) 1776 { 1777 struct addr_location al; 1778 1779 memset(&al, 0, sizeof(al)); 1780 /* 1781 * We cannot use the header.misc hint to determine whether a 1782 * branch stack address is user, kernel, guest, hypervisor. 1783 * Branches may straddle the kernel/user/hypervisor boundaries. 1784 * Thus, we have to try consecutively until we find a match 1785 * or else, the symbol is unknown 1786 */ 1787 thread__find_cpumode_addr_location(thread, ip, &al); 1788 1789 ams->addr = ip; 1790 ams->al_addr = al.addr; 1791 ams->sym = al.sym; 1792 ams->map = al.map; 1793 ams->phys_addr = 0; 1794 } 1795 1796 static void ip__resolve_data(struct thread *thread, 1797 u8 m, struct addr_map_symbol *ams, 1798 u64 addr, u64 phys_addr) 1799 { 1800 struct addr_location al; 1801 1802 memset(&al, 0, sizeof(al)); 1803 1804 thread__find_symbol(thread, m, addr, &al); 1805 1806 ams->addr = addr; 1807 ams->al_addr = al.addr; 1808 ams->sym = al.sym; 1809 ams->map = al.map; 1810 ams->phys_addr = phys_addr; 1811 } 1812 1813 struct mem_info *sample__resolve_mem(struct perf_sample *sample, 1814 struct addr_location *al) 1815 { 1816 struct mem_info *mi = mem_info__new(); 1817 1818 if (!mi) 1819 return NULL; 1820 1821 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip); 1822 ip__resolve_data(al->thread, al->cpumode, &mi->daddr, 1823 sample->addr, sample->phys_addr); 1824 mi->data_src.val = sample->data_src; 1825 1826 return mi; 1827 } 1828 1829 static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip) 1830 { 1831 char *srcline = NULL; 1832 1833 if (!map || callchain_param.key == CCKEY_FUNCTION) 1834 return srcline; 1835 1836 srcline = srcline__tree_find(&map->dso->srclines, ip); 1837 if (!srcline) { 1838 bool show_sym = false; 1839 bool show_addr = callchain_param.key == CCKEY_ADDRESS; 1840 1841 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip), 1842 sym, show_sym, show_addr, ip); 1843 srcline__tree_insert(&map->dso->srclines, ip, srcline); 1844 } 1845 1846 return srcline; 1847 } 1848 1849 struct iterations { 1850 int nr_loop_iter; 1851 u64 cycles; 1852 }; 1853 1854 static int add_callchain_ip(struct thread *thread, 1855 struct callchain_cursor *cursor, 1856 struct symbol **parent, 1857 struct addr_location *root_al, 1858 u8 *cpumode, 1859 u64 ip, 1860 bool branch, 1861 struct branch_flags *flags, 1862 struct iterations *iter, 1863 u64 branch_from) 1864 { 1865 struct addr_location al; 1866 int nr_loop_iter = 0; 1867 u64 iter_cycles = 0; 1868 const char *srcline = NULL; 1869 1870 al.filtered = 0; 1871 al.sym = NULL; 1872 if (!cpumode) { 1873 thread__find_cpumode_addr_location(thread, ip, &al); 1874 } else { 1875 if (ip >= PERF_CONTEXT_MAX) { 1876 switch (ip) { 1877 case PERF_CONTEXT_HV: 1878 *cpumode = PERF_RECORD_MISC_HYPERVISOR; 1879 break; 1880 case PERF_CONTEXT_KERNEL: 1881 *cpumode = PERF_RECORD_MISC_KERNEL; 1882 break; 1883 case PERF_CONTEXT_USER: 1884 *cpumode = PERF_RECORD_MISC_USER; 1885 break; 1886 default: 1887 pr_debug("invalid callchain context: " 1888 "%"PRId64"\n", (s64) ip); 1889 /* 1890 * It seems the callchain is corrupted. 1891 * Discard all. 1892 */ 1893 callchain_cursor_reset(cursor); 1894 return 1; 1895 } 1896 return 0; 1897 } 1898 thread__find_symbol(thread, *cpumode, ip, &al); 1899 } 1900 1901 if (al.sym != NULL) { 1902 if (perf_hpp_list.parent && !*parent && 1903 symbol__match_regex(al.sym, &parent_regex)) 1904 *parent = al.sym; 1905 else if (have_ignore_callees && root_al && 1906 symbol__match_regex(al.sym, &ignore_callees_regex)) { 1907 /* Treat this symbol as the root, 1908 forgetting its callees. */ 1909 *root_al = al; 1910 callchain_cursor_reset(cursor); 1911 } 1912 } 1913 1914 if (symbol_conf.hide_unresolved && al.sym == NULL) 1915 return 0; 1916 1917 if (iter) { 1918 nr_loop_iter = iter->nr_loop_iter; 1919 iter_cycles = iter->cycles; 1920 } 1921 1922 srcline = callchain_srcline(al.map, al.sym, al.addr); 1923 return callchain_cursor_append(cursor, ip, al.map, al.sym, 1924 branch, flags, nr_loop_iter, 1925 iter_cycles, branch_from, srcline); 1926 } 1927 1928 struct branch_info *sample__resolve_bstack(struct perf_sample *sample, 1929 struct addr_location *al) 1930 { 1931 unsigned int i; 1932 const struct branch_stack *bs = sample->branch_stack; 1933 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info)); 1934 1935 if (!bi) 1936 return NULL; 1937 1938 for (i = 0; i < bs->nr; i++) { 1939 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to); 1940 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from); 1941 bi[i].flags = bs->entries[i].flags; 1942 } 1943 return bi; 1944 } 1945 1946 static void save_iterations(struct iterations *iter, 1947 struct branch_entry *be, int nr) 1948 { 1949 int i; 1950 1951 iter->nr_loop_iter = nr; 1952 iter->cycles = 0; 1953 1954 for (i = 0; i < nr; i++) 1955 iter->cycles += be[i].flags.cycles; 1956 } 1957 1958 #define CHASHSZ 127 1959 #define CHASHBITS 7 1960 #define NO_ENTRY 0xff 1961 1962 #define PERF_MAX_BRANCH_DEPTH 127 1963 1964 /* Remove loops. */ 1965 static int remove_loops(struct branch_entry *l, int nr, 1966 struct iterations *iter) 1967 { 1968 int i, j, off; 1969 unsigned char chash[CHASHSZ]; 1970 1971 memset(chash, NO_ENTRY, sizeof(chash)); 1972 1973 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255); 1974 1975 for (i = 0; i < nr; i++) { 1976 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ; 1977 1978 /* no collision handling for now */ 1979 if (chash[h] == NO_ENTRY) { 1980 chash[h] = i; 1981 } else if (l[chash[h]].from == l[i].from) { 1982 bool is_loop = true; 1983 /* check if it is a real loop */ 1984 off = 0; 1985 for (j = chash[h]; j < i && i + off < nr; j++, off++) 1986 if (l[j].from != l[i + off].from) { 1987 is_loop = false; 1988 break; 1989 } 1990 if (is_loop) { 1991 j = nr - (i + off); 1992 if (j > 0) { 1993 save_iterations(iter + i + off, 1994 l + i, off); 1995 1996 memmove(iter + i, iter + i + off, 1997 j * sizeof(*iter)); 1998 1999 memmove(l + i, l + i + off, 2000 j * sizeof(*l)); 2001 } 2002 2003 nr -= off; 2004 } 2005 } 2006 } 2007 return nr; 2008 } 2009 2010 /* 2011 * Recolve LBR callstack chain sample 2012 * Return: 2013 * 1 on success get LBR callchain information 2014 * 0 no available LBR callchain information, should try fp 2015 * negative error code on other errors. 2016 */ 2017 static int resolve_lbr_callchain_sample(struct thread *thread, 2018 struct callchain_cursor *cursor, 2019 struct perf_sample *sample, 2020 struct symbol **parent, 2021 struct addr_location *root_al, 2022 int max_stack) 2023 { 2024 struct ip_callchain *chain = sample->callchain; 2025 int chain_nr = min(max_stack, (int)chain->nr), i; 2026 u8 cpumode = PERF_RECORD_MISC_USER; 2027 u64 ip, branch_from = 0; 2028 2029 for (i = 0; i < chain_nr; i++) { 2030 if (chain->ips[i] == PERF_CONTEXT_USER) 2031 break; 2032 } 2033 2034 /* LBR only affects the user callchain */ 2035 if (i != chain_nr) { 2036 struct branch_stack *lbr_stack = sample->branch_stack; 2037 int lbr_nr = lbr_stack->nr, j, k; 2038 bool branch; 2039 struct branch_flags *flags; 2040 /* 2041 * LBR callstack can only get user call chain. 2042 * The mix_chain_nr is kernel call chain 2043 * number plus LBR user call chain number. 2044 * i is kernel call chain number, 2045 * 1 is PERF_CONTEXT_USER, 2046 * lbr_nr + 1 is the user call chain number. 2047 * For details, please refer to the comments 2048 * in callchain__printf 2049 */ 2050 int mix_chain_nr = i + 1 + lbr_nr + 1; 2051 2052 for (j = 0; j < mix_chain_nr; j++) { 2053 int err; 2054 branch = false; 2055 flags = NULL; 2056 2057 if (callchain_param.order == ORDER_CALLEE) { 2058 if (j < i + 1) 2059 ip = chain->ips[j]; 2060 else if (j > i + 1) { 2061 k = j - i - 2; 2062 ip = lbr_stack->entries[k].from; 2063 branch = true; 2064 flags = &lbr_stack->entries[k].flags; 2065 } else { 2066 ip = lbr_stack->entries[0].to; 2067 branch = true; 2068 flags = &lbr_stack->entries[0].flags; 2069 branch_from = 2070 lbr_stack->entries[0].from; 2071 } 2072 } else { 2073 if (j < lbr_nr) { 2074 k = lbr_nr - j - 1; 2075 ip = lbr_stack->entries[k].from; 2076 branch = true; 2077 flags = &lbr_stack->entries[k].flags; 2078 } 2079 else if (j > lbr_nr) 2080 ip = chain->ips[i + 1 - (j - lbr_nr)]; 2081 else { 2082 ip = lbr_stack->entries[0].to; 2083 branch = true; 2084 flags = &lbr_stack->entries[0].flags; 2085 branch_from = 2086 lbr_stack->entries[0].from; 2087 } 2088 } 2089 2090 err = add_callchain_ip(thread, cursor, parent, 2091 root_al, &cpumode, ip, 2092 branch, flags, NULL, 2093 branch_from); 2094 if (err) 2095 return (err < 0) ? err : 0; 2096 } 2097 return 1; 2098 } 2099 2100 return 0; 2101 } 2102 2103 static int thread__resolve_callchain_sample(struct thread *thread, 2104 struct callchain_cursor *cursor, 2105 struct perf_evsel *evsel, 2106 struct perf_sample *sample, 2107 struct symbol **parent, 2108 struct addr_location *root_al, 2109 int max_stack) 2110 { 2111 struct branch_stack *branch = sample->branch_stack; 2112 struct ip_callchain *chain = sample->callchain; 2113 int chain_nr = 0; 2114 u8 cpumode = PERF_RECORD_MISC_USER; 2115 int i, j, err, nr_entries; 2116 int skip_idx = -1; 2117 int first_call = 0; 2118 2119 if (chain) 2120 chain_nr = chain->nr; 2121 2122 if (perf_evsel__has_branch_callstack(evsel)) { 2123 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent, 2124 root_al, max_stack); 2125 if (err) 2126 return (err < 0) ? err : 0; 2127 } 2128 2129 /* 2130 * Based on DWARF debug information, some architectures skip 2131 * a callchain entry saved by the kernel. 2132 */ 2133 skip_idx = arch_skip_callchain_idx(thread, chain); 2134 2135 /* 2136 * Add branches to call stack for easier browsing. This gives 2137 * more context for a sample than just the callers. 2138 * 2139 * This uses individual histograms of paths compared to the 2140 * aggregated histograms the normal LBR mode uses. 2141 * 2142 * Limitations for now: 2143 * - No extra filters 2144 * - No annotations (should annotate somehow) 2145 */ 2146 2147 if (branch && callchain_param.branch_callstack) { 2148 int nr = min(max_stack, (int)branch->nr); 2149 struct branch_entry be[nr]; 2150 struct iterations iter[nr]; 2151 2152 if (branch->nr > PERF_MAX_BRANCH_DEPTH) { 2153 pr_warning("corrupted branch chain. skipping...\n"); 2154 goto check_calls; 2155 } 2156 2157 for (i = 0; i < nr; i++) { 2158 if (callchain_param.order == ORDER_CALLEE) { 2159 be[i] = branch->entries[i]; 2160 2161 if (chain == NULL) 2162 continue; 2163 2164 /* 2165 * Check for overlap into the callchain. 2166 * The return address is one off compared to 2167 * the branch entry. To adjust for this 2168 * assume the calling instruction is not longer 2169 * than 8 bytes. 2170 */ 2171 if (i == skip_idx || 2172 chain->ips[first_call] >= PERF_CONTEXT_MAX) 2173 first_call++; 2174 else if (be[i].from < chain->ips[first_call] && 2175 be[i].from >= chain->ips[first_call] - 8) 2176 first_call++; 2177 } else 2178 be[i] = branch->entries[branch->nr - i - 1]; 2179 } 2180 2181 memset(iter, 0, sizeof(struct iterations) * nr); 2182 nr = remove_loops(be, nr, iter); 2183 2184 for (i = 0; i < nr; i++) { 2185 err = add_callchain_ip(thread, cursor, parent, 2186 root_al, 2187 NULL, be[i].to, 2188 true, &be[i].flags, 2189 NULL, be[i].from); 2190 2191 if (!err) 2192 err = add_callchain_ip(thread, cursor, parent, root_al, 2193 NULL, be[i].from, 2194 true, &be[i].flags, 2195 &iter[i], 0); 2196 if (err == -EINVAL) 2197 break; 2198 if (err) 2199 return err; 2200 } 2201 2202 if (chain_nr == 0) 2203 return 0; 2204 2205 chain_nr -= nr; 2206 } 2207 2208 check_calls: 2209 for (i = first_call, nr_entries = 0; 2210 i < chain_nr && nr_entries < max_stack; i++) { 2211 u64 ip; 2212 2213 if (callchain_param.order == ORDER_CALLEE) 2214 j = i; 2215 else 2216 j = chain->nr - i - 1; 2217 2218 #ifdef HAVE_SKIP_CALLCHAIN_IDX 2219 if (j == skip_idx) 2220 continue; 2221 #endif 2222 ip = chain->ips[j]; 2223 2224 if (ip < PERF_CONTEXT_MAX) 2225 ++nr_entries; 2226 2227 err = add_callchain_ip(thread, cursor, parent, 2228 root_al, &cpumode, ip, 2229 false, NULL, NULL, 0); 2230 2231 if (err) 2232 return (err < 0) ? err : 0; 2233 } 2234 2235 return 0; 2236 } 2237 2238 static int append_inlines(struct callchain_cursor *cursor, 2239 struct map *map, struct symbol *sym, u64 ip) 2240 { 2241 struct inline_node *inline_node; 2242 struct inline_list *ilist; 2243 u64 addr; 2244 int ret = 1; 2245 2246 if (!symbol_conf.inline_name || !map || !sym) 2247 return ret; 2248 2249 addr = map__rip_2objdump(map, ip); 2250 2251 inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr); 2252 if (!inline_node) { 2253 inline_node = dso__parse_addr_inlines(map->dso, addr, sym); 2254 if (!inline_node) 2255 return ret; 2256 inlines__tree_insert(&map->dso->inlined_nodes, inline_node); 2257 } 2258 2259 list_for_each_entry(ilist, &inline_node->val, list) { 2260 ret = callchain_cursor_append(cursor, ip, map, 2261 ilist->symbol, false, 2262 NULL, 0, 0, 0, ilist->srcline); 2263 2264 if (ret != 0) 2265 return ret; 2266 } 2267 2268 return ret; 2269 } 2270 2271 static int unwind_entry(struct unwind_entry *entry, void *arg) 2272 { 2273 struct callchain_cursor *cursor = arg; 2274 const char *srcline = NULL; 2275 2276 if (symbol_conf.hide_unresolved && entry->sym == NULL) 2277 return 0; 2278 2279 if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0) 2280 return 0; 2281 2282 srcline = callchain_srcline(entry->map, entry->sym, entry->ip); 2283 return callchain_cursor_append(cursor, entry->ip, 2284 entry->map, entry->sym, 2285 false, NULL, 0, 0, 0, srcline); 2286 } 2287 2288 static int thread__resolve_callchain_unwind(struct thread *thread, 2289 struct callchain_cursor *cursor, 2290 struct perf_evsel *evsel, 2291 struct perf_sample *sample, 2292 int max_stack) 2293 { 2294 /* Can we do dwarf post unwind? */ 2295 if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) && 2296 (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER))) 2297 return 0; 2298 2299 /* Bail out if nothing was captured. */ 2300 if ((!sample->user_regs.regs) || 2301 (!sample->user_stack.size)) 2302 return 0; 2303 2304 return unwind__get_entries(unwind_entry, cursor, 2305 thread, sample, max_stack); 2306 } 2307 2308 int thread__resolve_callchain(struct thread *thread, 2309 struct callchain_cursor *cursor, 2310 struct perf_evsel *evsel, 2311 struct perf_sample *sample, 2312 struct symbol **parent, 2313 struct addr_location *root_al, 2314 int max_stack) 2315 { 2316 int ret = 0; 2317 2318 callchain_cursor_reset(cursor); 2319 2320 if (callchain_param.order == ORDER_CALLEE) { 2321 ret = thread__resolve_callchain_sample(thread, cursor, 2322 evsel, sample, 2323 parent, root_al, 2324 max_stack); 2325 if (ret) 2326 return ret; 2327 ret = thread__resolve_callchain_unwind(thread, cursor, 2328 evsel, sample, 2329 max_stack); 2330 } else { 2331 ret = thread__resolve_callchain_unwind(thread, cursor, 2332 evsel, sample, 2333 max_stack); 2334 if (ret) 2335 return ret; 2336 ret = thread__resolve_callchain_sample(thread, cursor, 2337 evsel, sample, 2338 parent, root_al, 2339 max_stack); 2340 } 2341 2342 return ret; 2343 } 2344 2345 int machine__for_each_thread(struct machine *machine, 2346 int (*fn)(struct thread *thread, void *p), 2347 void *priv) 2348 { 2349 struct threads *threads; 2350 struct rb_node *nd; 2351 struct thread *thread; 2352 int rc = 0; 2353 int i; 2354 2355 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 2356 threads = &machine->threads[i]; 2357 for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) { 2358 thread = rb_entry(nd, struct thread, rb_node); 2359 rc = fn(thread, priv); 2360 if (rc != 0) 2361 return rc; 2362 } 2363 2364 list_for_each_entry(thread, &threads->dead, node) { 2365 rc = fn(thread, priv); 2366 if (rc != 0) 2367 return rc; 2368 } 2369 } 2370 return rc; 2371 } 2372 2373 int machines__for_each_thread(struct machines *machines, 2374 int (*fn)(struct thread *thread, void *p), 2375 void *priv) 2376 { 2377 struct rb_node *nd; 2378 int rc = 0; 2379 2380 rc = machine__for_each_thread(&machines->host, fn, priv); 2381 if (rc != 0) 2382 return rc; 2383 2384 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 2385 struct machine *machine = rb_entry(nd, struct machine, rb_node); 2386 2387 rc = machine__for_each_thread(machine, fn, priv); 2388 if (rc != 0) 2389 return rc; 2390 } 2391 return rc; 2392 } 2393 2394 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool, 2395 struct target *target, struct thread_map *threads, 2396 perf_event__handler_t process, bool data_mmap, 2397 unsigned int proc_map_timeout, 2398 unsigned int nr_threads_synthesize) 2399 { 2400 if (target__has_task(target)) 2401 return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout); 2402 else if (target__has_cpu(target)) 2403 return perf_event__synthesize_threads(tool, process, 2404 machine, data_mmap, 2405 proc_map_timeout, 2406 nr_threads_synthesize); 2407 /* command specified */ 2408 return 0; 2409 } 2410 2411 pid_t machine__get_current_tid(struct machine *machine, int cpu) 2412 { 2413 if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid) 2414 return -1; 2415 2416 return machine->current_tid[cpu]; 2417 } 2418 2419 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid, 2420 pid_t tid) 2421 { 2422 struct thread *thread; 2423 2424 if (cpu < 0) 2425 return -EINVAL; 2426 2427 if (!machine->current_tid) { 2428 int i; 2429 2430 machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t)); 2431 if (!machine->current_tid) 2432 return -ENOMEM; 2433 for (i = 0; i < MAX_NR_CPUS; i++) 2434 machine->current_tid[i] = -1; 2435 } 2436 2437 if (cpu >= MAX_NR_CPUS) { 2438 pr_err("Requested CPU %d too large. ", cpu); 2439 pr_err("Consider raising MAX_NR_CPUS\n"); 2440 return -EINVAL; 2441 } 2442 2443 machine->current_tid[cpu] = tid; 2444 2445 thread = machine__findnew_thread(machine, pid, tid); 2446 if (!thread) 2447 return -ENOMEM; 2448 2449 thread->cpu = cpu; 2450 thread__put(thread); 2451 2452 return 0; 2453 } 2454 2455 /* 2456 * Compares the raw arch string. N.B. see instead perf_env__arch() if a 2457 * normalized arch is needed. 2458 */ 2459 bool machine__is(struct machine *machine, const char *arch) 2460 { 2461 return machine && !strcmp(perf_env__raw_arch(machine->env), arch); 2462 } 2463 2464 int machine__nr_cpus_avail(struct machine *machine) 2465 { 2466 return machine ? perf_env__nr_cpus_avail(machine->env) : 0; 2467 } 2468 2469 int machine__get_kernel_start(struct machine *machine) 2470 { 2471 struct map *map = machine__kernel_map(machine); 2472 int err = 0; 2473 2474 /* 2475 * The only addresses above 2^63 are kernel addresses of a 64-bit 2476 * kernel. Note that addresses are unsigned so that on a 32-bit system 2477 * all addresses including kernel addresses are less than 2^32. In 2478 * that case (32-bit system), if the kernel mapping is unknown, all 2479 * addresses will be assumed to be in user space - see 2480 * machine__kernel_ip(). 2481 */ 2482 machine->kernel_start = 1ULL << 63; 2483 if (map) { 2484 err = map__load(map); 2485 /* 2486 * On x86_64, PTI entry trampolines are less than the 2487 * start of kernel text, but still above 2^63. So leave 2488 * kernel_start = 1ULL << 63 for x86_64. 2489 */ 2490 if (!err && !machine__is(machine, "x86_64")) 2491 machine->kernel_start = map->start; 2492 } 2493 return err; 2494 } 2495 2496 struct dso *machine__findnew_dso(struct machine *machine, const char *filename) 2497 { 2498 return dsos__findnew(&machine->dsos, filename); 2499 } 2500 2501 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp) 2502 { 2503 struct machine *machine = vmachine; 2504 struct map *map; 2505 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map); 2506 2507 if (sym == NULL) 2508 return NULL; 2509 2510 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL; 2511 *addrp = map->unmap_ip(map, sym->start); 2512 return sym->name; 2513 } 2514