1 // SPDX-License-Identifier: GPL-2.0 2 #include <dirent.h> 3 #include <errno.h> 4 #include <inttypes.h> 5 #include <regex.h> 6 #include <stdlib.h> 7 #include "callchain.h" 8 #include "debug.h" 9 #include "dso.h" 10 #include "env.h" 11 #include "event.h" 12 #include "evsel.h" 13 #include "hist.h" 14 #include "machine.h" 15 #include "map.h" 16 #include "map_symbol.h" 17 #include "branch.h" 18 #include "mem-events.h" 19 #include "srcline.h" 20 #include "symbol.h" 21 #include "sort.h" 22 #include "strlist.h" 23 #include "target.h" 24 #include "thread.h" 25 #include "util.h" 26 #include "vdso.h" 27 #include <stdbool.h> 28 #include <sys/types.h> 29 #include <sys/stat.h> 30 #include <unistd.h> 31 #include "unwind.h" 32 #include "linux/hash.h" 33 #include "asm/bug.h" 34 #include "bpf-event.h" 35 #include <internal/lib.h> // page_size 36 #include "cgroup.h" 37 38 #include <linux/ctype.h> 39 #include <symbol/kallsyms.h> 40 #include <linux/mman.h> 41 #include <linux/string.h> 42 #include <linux/zalloc.h> 43 44 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock); 45 46 static struct dso *machine__kernel_dso(struct machine *machine) 47 { 48 return machine->vmlinux_map->dso; 49 } 50 51 static void dsos__init(struct dsos *dsos) 52 { 53 INIT_LIST_HEAD(&dsos->head); 54 dsos->root = RB_ROOT; 55 init_rwsem(&dsos->lock); 56 } 57 58 static void machine__threads_init(struct machine *machine) 59 { 60 int i; 61 62 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 63 struct threads *threads = &machine->threads[i]; 64 threads->entries = RB_ROOT_CACHED; 65 init_rwsem(&threads->lock); 66 threads->nr = 0; 67 INIT_LIST_HEAD(&threads->dead); 68 threads->last_match = NULL; 69 } 70 } 71 72 static int machine__set_mmap_name(struct machine *machine) 73 { 74 if (machine__is_host(machine)) 75 machine->mmap_name = strdup("[kernel.kallsyms]"); 76 else if (machine__is_default_guest(machine)) 77 machine->mmap_name = strdup("[guest.kernel.kallsyms]"); 78 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]", 79 machine->pid) < 0) 80 machine->mmap_name = NULL; 81 82 return machine->mmap_name ? 0 : -ENOMEM; 83 } 84 85 int machine__init(struct machine *machine, const char *root_dir, pid_t pid) 86 { 87 int err = -ENOMEM; 88 89 memset(machine, 0, sizeof(*machine)); 90 maps__init(&machine->kmaps, machine); 91 RB_CLEAR_NODE(&machine->rb_node); 92 dsos__init(&machine->dsos); 93 94 machine__threads_init(machine); 95 96 machine->vdso_info = NULL; 97 machine->env = NULL; 98 99 machine->pid = pid; 100 101 machine->id_hdr_size = 0; 102 machine->kptr_restrict_warned = false; 103 machine->comm_exec = false; 104 machine->kernel_start = 0; 105 machine->vmlinux_map = NULL; 106 107 machine->root_dir = strdup(root_dir); 108 if (machine->root_dir == NULL) 109 return -ENOMEM; 110 111 if (machine__set_mmap_name(machine)) 112 goto out; 113 114 if (pid != HOST_KERNEL_ID) { 115 struct thread *thread = machine__findnew_thread(machine, -1, 116 pid); 117 char comm[64]; 118 119 if (thread == NULL) 120 goto out; 121 122 snprintf(comm, sizeof(comm), "[guest/%d]", pid); 123 thread__set_comm(thread, comm, 0); 124 thread__put(thread); 125 } 126 127 machine->current_tid = NULL; 128 err = 0; 129 130 out: 131 if (err) { 132 zfree(&machine->root_dir); 133 zfree(&machine->mmap_name); 134 } 135 return 0; 136 } 137 138 struct machine *machine__new_host(void) 139 { 140 struct machine *machine = malloc(sizeof(*machine)); 141 142 if (machine != NULL) { 143 machine__init(machine, "", HOST_KERNEL_ID); 144 145 if (machine__create_kernel_maps(machine) < 0) 146 goto out_delete; 147 } 148 149 return machine; 150 out_delete: 151 free(machine); 152 return NULL; 153 } 154 155 struct machine *machine__new_kallsyms(void) 156 { 157 struct machine *machine = machine__new_host(); 158 /* 159 * FIXME: 160 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly 161 * ask for not using the kcore parsing code, once this one is fixed 162 * to create a map per module. 163 */ 164 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) { 165 machine__delete(machine); 166 machine = NULL; 167 } 168 169 return machine; 170 } 171 172 static void dsos__purge(struct dsos *dsos) 173 { 174 struct dso *pos, *n; 175 176 down_write(&dsos->lock); 177 178 list_for_each_entry_safe(pos, n, &dsos->head, node) { 179 RB_CLEAR_NODE(&pos->rb_node); 180 pos->root = NULL; 181 list_del_init(&pos->node); 182 dso__put(pos); 183 } 184 185 up_write(&dsos->lock); 186 } 187 188 static void dsos__exit(struct dsos *dsos) 189 { 190 dsos__purge(dsos); 191 exit_rwsem(&dsos->lock); 192 } 193 194 void machine__delete_threads(struct machine *machine) 195 { 196 struct rb_node *nd; 197 int i; 198 199 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 200 struct threads *threads = &machine->threads[i]; 201 down_write(&threads->lock); 202 nd = rb_first_cached(&threads->entries); 203 while (nd) { 204 struct thread *t = rb_entry(nd, struct thread, rb_node); 205 206 nd = rb_next(nd); 207 __machine__remove_thread(machine, t, false); 208 } 209 up_write(&threads->lock); 210 } 211 } 212 213 void machine__exit(struct machine *machine) 214 { 215 int i; 216 217 if (machine == NULL) 218 return; 219 220 machine__destroy_kernel_maps(machine); 221 maps__exit(&machine->kmaps); 222 dsos__exit(&machine->dsos); 223 machine__exit_vdso(machine); 224 zfree(&machine->root_dir); 225 zfree(&machine->mmap_name); 226 zfree(&machine->current_tid); 227 228 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 229 struct threads *threads = &machine->threads[i]; 230 struct thread *thread, *n; 231 /* 232 * Forget about the dead, at this point whatever threads were 233 * left in the dead lists better have a reference count taken 234 * by who is using them, and then, when they drop those references 235 * and it finally hits zero, thread__put() will check and see that 236 * its not in the dead threads list and will not try to remove it 237 * from there, just calling thread__delete() straight away. 238 */ 239 list_for_each_entry_safe(thread, n, &threads->dead, node) 240 list_del_init(&thread->node); 241 242 exit_rwsem(&threads->lock); 243 } 244 } 245 246 void machine__delete(struct machine *machine) 247 { 248 if (machine) { 249 machine__exit(machine); 250 free(machine); 251 } 252 } 253 254 void machines__init(struct machines *machines) 255 { 256 machine__init(&machines->host, "", HOST_KERNEL_ID); 257 machines->guests = RB_ROOT_CACHED; 258 } 259 260 void machines__exit(struct machines *machines) 261 { 262 machine__exit(&machines->host); 263 /* XXX exit guest */ 264 } 265 266 struct machine *machines__add(struct machines *machines, pid_t pid, 267 const char *root_dir) 268 { 269 struct rb_node **p = &machines->guests.rb_root.rb_node; 270 struct rb_node *parent = NULL; 271 struct machine *pos, *machine = malloc(sizeof(*machine)); 272 bool leftmost = true; 273 274 if (machine == NULL) 275 return NULL; 276 277 if (machine__init(machine, root_dir, pid) != 0) { 278 free(machine); 279 return NULL; 280 } 281 282 while (*p != NULL) { 283 parent = *p; 284 pos = rb_entry(parent, struct machine, rb_node); 285 if (pid < pos->pid) 286 p = &(*p)->rb_left; 287 else { 288 p = &(*p)->rb_right; 289 leftmost = false; 290 } 291 } 292 293 rb_link_node(&machine->rb_node, parent, p); 294 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost); 295 296 return machine; 297 } 298 299 void machines__set_comm_exec(struct machines *machines, bool comm_exec) 300 { 301 struct rb_node *nd; 302 303 machines->host.comm_exec = comm_exec; 304 305 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 306 struct machine *machine = rb_entry(nd, struct machine, rb_node); 307 308 machine->comm_exec = comm_exec; 309 } 310 } 311 312 struct machine *machines__find(struct machines *machines, pid_t pid) 313 { 314 struct rb_node **p = &machines->guests.rb_root.rb_node; 315 struct rb_node *parent = NULL; 316 struct machine *machine; 317 struct machine *default_machine = NULL; 318 319 if (pid == HOST_KERNEL_ID) 320 return &machines->host; 321 322 while (*p != NULL) { 323 parent = *p; 324 machine = rb_entry(parent, struct machine, rb_node); 325 if (pid < machine->pid) 326 p = &(*p)->rb_left; 327 else if (pid > machine->pid) 328 p = &(*p)->rb_right; 329 else 330 return machine; 331 if (!machine->pid) 332 default_machine = machine; 333 } 334 335 return default_machine; 336 } 337 338 struct machine *machines__findnew(struct machines *machines, pid_t pid) 339 { 340 char path[PATH_MAX]; 341 const char *root_dir = ""; 342 struct machine *machine = machines__find(machines, pid); 343 344 if (machine && (machine->pid == pid)) 345 goto out; 346 347 if ((pid != HOST_KERNEL_ID) && 348 (pid != DEFAULT_GUEST_KERNEL_ID) && 349 (symbol_conf.guestmount)) { 350 sprintf(path, "%s/%d", symbol_conf.guestmount, pid); 351 if (access(path, R_OK)) { 352 static struct strlist *seen; 353 354 if (!seen) 355 seen = strlist__new(NULL, NULL); 356 357 if (!strlist__has_entry(seen, path)) { 358 pr_err("Can't access file %s\n", path); 359 strlist__add(seen, path); 360 } 361 machine = NULL; 362 goto out; 363 } 364 root_dir = path; 365 } 366 367 machine = machines__add(machines, pid, root_dir); 368 out: 369 return machine; 370 } 371 372 struct machine *machines__find_guest(struct machines *machines, pid_t pid) 373 { 374 struct machine *machine = machines__find(machines, pid); 375 376 if (!machine) 377 machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID); 378 return machine; 379 } 380 381 void machines__process_guests(struct machines *machines, 382 machine__process_t process, void *data) 383 { 384 struct rb_node *nd; 385 386 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 387 struct machine *pos = rb_entry(nd, struct machine, rb_node); 388 process(pos, data); 389 } 390 } 391 392 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size) 393 { 394 struct rb_node *node; 395 struct machine *machine; 396 397 machines->host.id_hdr_size = id_hdr_size; 398 399 for (node = rb_first_cached(&machines->guests); node; 400 node = rb_next(node)) { 401 machine = rb_entry(node, struct machine, rb_node); 402 machine->id_hdr_size = id_hdr_size; 403 } 404 405 return; 406 } 407 408 static void machine__update_thread_pid(struct machine *machine, 409 struct thread *th, pid_t pid) 410 { 411 struct thread *leader; 412 413 if (pid == th->pid_ || pid == -1 || th->pid_ != -1) 414 return; 415 416 th->pid_ = pid; 417 418 if (th->pid_ == th->tid) 419 return; 420 421 leader = __machine__findnew_thread(machine, th->pid_, th->pid_); 422 if (!leader) 423 goto out_err; 424 425 if (!leader->maps) 426 leader->maps = maps__new(machine); 427 428 if (!leader->maps) 429 goto out_err; 430 431 if (th->maps == leader->maps) 432 return; 433 434 if (th->maps) { 435 /* 436 * Maps are created from MMAP events which provide the pid and 437 * tid. Consequently there never should be any maps on a thread 438 * with an unknown pid. Just print an error if there are. 439 */ 440 if (!maps__empty(th->maps)) 441 pr_err("Discarding thread maps for %d:%d\n", 442 th->pid_, th->tid); 443 maps__put(th->maps); 444 } 445 446 th->maps = maps__get(leader->maps); 447 out_put: 448 thread__put(leader); 449 return; 450 out_err: 451 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid); 452 goto out_put; 453 } 454 455 /* 456 * Front-end cache - TID lookups come in blocks, 457 * so most of the time we dont have to look up 458 * the full rbtree: 459 */ 460 static struct thread* 461 __threads__get_last_match(struct threads *threads, struct machine *machine, 462 int pid, int tid) 463 { 464 struct thread *th; 465 466 th = threads->last_match; 467 if (th != NULL) { 468 if (th->tid == tid) { 469 machine__update_thread_pid(machine, th, pid); 470 return thread__get(th); 471 } 472 473 threads->last_match = NULL; 474 } 475 476 return NULL; 477 } 478 479 static struct thread* 480 threads__get_last_match(struct threads *threads, struct machine *machine, 481 int pid, int tid) 482 { 483 struct thread *th = NULL; 484 485 if (perf_singlethreaded) 486 th = __threads__get_last_match(threads, machine, pid, tid); 487 488 return th; 489 } 490 491 static void 492 __threads__set_last_match(struct threads *threads, struct thread *th) 493 { 494 threads->last_match = th; 495 } 496 497 static void 498 threads__set_last_match(struct threads *threads, struct thread *th) 499 { 500 if (perf_singlethreaded) 501 __threads__set_last_match(threads, th); 502 } 503 504 /* 505 * Caller must eventually drop thread->refcnt returned with a successful 506 * lookup/new thread inserted. 507 */ 508 static struct thread *____machine__findnew_thread(struct machine *machine, 509 struct threads *threads, 510 pid_t pid, pid_t tid, 511 bool create) 512 { 513 struct rb_node **p = &threads->entries.rb_root.rb_node; 514 struct rb_node *parent = NULL; 515 struct thread *th; 516 bool leftmost = true; 517 518 th = threads__get_last_match(threads, machine, pid, tid); 519 if (th) 520 return th; 521 522 while (*p != NULL) { 523 parent = *p; 524 th = rb_entry(parent, struct thread, rb_node); 525 526 if (th->tid == tid) { 527 threads__set_last_match(threads, th); 528 machine__update_thread_pid(machine, th, pid); 529 return thread__get(th); 530 } 531 532 if (tid < th->tid) 533 p = &(*p)->rb_left; 534 else { 535 p = &(*p)->rb_right; 536 leftmost = false; 537 } 538 } 539 540 if (!create) 541 return NULL; 542 543 th = thread__new(pid, tid); 544 if (th != NULL) { 545 rb_link_node(&th->rb_node, parent, p); 546 rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost); 547 548 /* 549 * We have to initialize maps separately after rb tree is updated. 550 * 551 * The reason is that we call machine__findnew_thread 552 * within thread__init_maps to find the thread 553 * leader and that would screwed the rb tree. 554 */ 555 if (thread__init_maps(th, machine)) { 556 rb_erase_cached(&th->rb_node, &threads->entries); 557 RB_CLEAR_NODE(&th->rb_node); 558 thread__put(th); 559 return NULL; 560 } 561 /* 562 * It is now in the rbtree, get a ref 563 */ 564 thread__get(th); 565 threads__set_last_match(threads, th); 566 ++threads->nr; 567 } 568 569 return th; 570 } 571 572 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid) 573 { 574 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true); 575 } 576 577 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, 578 pid_t tid) 579 { 580 struct threads *threads = machine__threads(machine, tid); 581 struct thread *th; 582 583 down_write(&threads->lock); 584 th = __machine__findnew_thread(machine, pid, tid); 585 up_write(&threads->lock); 586 return th; 587 } 588 589 struct thread *machine__find_thread(struct machine *machine, pid_t pid, 590 pid_t tid) 591 { 592 struct threads *threads = machine__threads(machine, tid); 593 struct thread *th; 594 595 down_read(&threads->lock); 596 th = ____machine__findnew_thread(machine, threads, pid, tid, false); 597 up_read(&threads->lock); 598 return th; 599 } 600 601 /* 602 * Threads are identified by pid and tid, and the idle task has pid == tid == 0. 603 * So here a single thread is created for that, but actually there is a separate 604 * idle task per cpu, so there should be one 'struct thread' per cpu, but there 605 * is only 1. That causes problems for some tools, requiring workarounds. For 606 * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu(). 607 */ 608 struct thread *machine__idle_thread(struct machine *machine) 609 { 610 struct thread *thread = machine__findnew_thread(machine, 0, 0); 611 612 if (!thread || thread__set_comm(thread, "swapper", 0) || 613 thread__set_namespaces(thread, 0, NULL)) 614 pr_err("problem inserting idle task for machine pid %d\n", machine->pid); 615 616 return thread; 617 } 618 619 struct comm *machine__thread_exec_comm(struct machine *machine, 620 struct thread *thread) 621 { 622 if (machine->comm_exec) 623 return thread__exec_comm(thread); 624 else 625 return thread__comm(thread); 626 } 627 628 int machine__process_comm_event(struct machine *machine, union perf_event *event, 629 struct perf_sample *sample) 630 { 631 struct thread *thread = machine__findnew_thread(machine, 632 event->comm.pid, 633 event->comm.tid); 634 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC; 635 int err = 0; 636 637 if (exec) 638 machine->comm_exec = true; 639 640 if (dump_trace) 641 perf_event__fprintf_comm(event, stdout); 642 643 if (thread == NULL || 644 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) { 645 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n"); 646 err = -1; 647 } 648 649 thread__put(thread); 650 651 return err; 652 } 653 654 int machine__process_namespaces_event(struct machine *machine __maybe_unused, 655 union perf_event *event, 656 struct perf_sample *sample __maybe_unused) 657 { 658 struct thread *thread = machine__findnew_thread(machine, 659 event->namespaces.pid, 660 event->namespaces.tid); 661 int err = 0; 662 663 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES, 664 "\nWARNING: kernel seems to support more namespaces than perf" 665 " tool.\nTry updating the perf tool..\n\n"); 666 667 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES, 668 "\nWARNING: perf tool seems to support more namespaces than" 669 " the kernel.\nTry updating the kernel..\n\n"); 670 671 if (dump_trace) 672 perf_event__fprintf_namespaces(event, stdout); 673 674 if (thread == NULL || 675 thread__set_namespaces(thread, sample->time, &event->namespaces)) { 676 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n"); 677 err = -1; 678 } 679 680 thread__put(thread); 681 682 return err; 683 } 684 685 int machine__process_cgroup_event(struct machine *machine, 686 union perf_event *event, 687 struct perf_sample *sample __maybe_unused) 688 { 689 struct cgroup *cgrp; 690 691 if (dump_trace) 692 perf_event__fprintf_cgroup(event, stdout); 693 694 cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path); 695 if (cgrp == NULL) 696 return -ENOMEM; 697 698 return 0; 699 } 700 701 int machine__process_lost_event(struct machine *machine __maybe_unused, 702 union perf_event *event, struct perf_sample *sample __maybe_unused) 703 { 704 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n", 705 event->lost.id, event->lost.lost); 706 return 0; 707 } 708 709 int machine__process_lost_samples_event(struct machine *machine __maybe_unused, 710 union perf_event *event, struct perf_sample *sample) 711 { 712 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n", 713 sample->id, event->lost_samples.lost); 714 return 0; 715 } 716 717 static struct dso *machine__findnew_module_dso(struct machine *machine, 718 struct kmod_path *m, 719 const char *filename) 720 { 721 struct dso *dso; 722 723 down_write(&machine->dsos.lock); 724 725 dso = __dsos__find(&machine->dsos, m->name, true); 726 if (!dso) { 727 dso = __dsos__addnew(&machine->dsos, m->name); 728 if (dso == NULL) 729 goto out_unlock; 730 731 dso__set_module_info(dso, m, machine); 732 dso__set_long_name(dso, strdup(filename), true); 733 dso->kernel = DSO_SPACE__KERNEL; 734 } 735 736 dso__get(dso); 737 out_unlock: 738 up_write(&machine->dsos.lock); 739 return dso; 740 } 741 742 int machine__process_aux_event(struct machine *machine __maybe_unused, 743 union perf_event *event) 744 { 745 if (dump_trace) 746 perf_event__fprintf_aux(event, stdout); 747 return 0; 748 } 749 750 int machine__process_itrace_start_event(struct machine *machine __maybe_unused, 751 union perf_event *event) 752 { 753 if (dump_trace) 754 perf_event__fprintf_itrace_start(event, stdout); 755 return 0; 756 } 757 758 int machine__process_switch_event(struct machine *machine __maybe_unused, 759 union perf_event *event) 760 { 761 if (dump_trace) 762 perf_event__fprintf_switch(event, stdout); 763 return 0; 764 } 765 766 static int machine__process_ksymbol_register(struct machine *machine, 767 union perf_event *event, 768 struct perf_sample *sample __maybe_unused) 769 { 770 struct symbol *sym; 771 struct map *map = maps__find(&machine->kmaps, event->ksymbol.addr); 772 773 if (!map) { 774 struct dso *dso = dso__new(event->ksymbol.name); 775 776 if (dso) { 777 dso->kernel = DSO_SPACE__KERNEL; 778 map = map__new2(0, dso); 779 dso__put(dso); 780 } 781 782 if (!dso || !map) { 783 return -ENOMEM; 784 } 785 786 if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) { 787 map->dso->binary_type = DSO_BINARY_TYPE__OOL; 788 map->dso->data.file_size = event->ksymbol.len; 789 dso__set_loaded(map->dso); 790 } 791 792 map->start = event->ksymbol.addr; 793 map->end = map->start + event->ksymbol.len; 794 maps__insert(&machine->kmaps, map); 795 map__put(map); 796 dso__set_loaded(dso); 797 798 if (is_bpf_image(event->ksymbol.name)) { 799 dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE; 800 dso__set_long_name(dso, "", false); 801 } 802 } 803 804 sym = symbol__new(map->map_ip(map, map->start), 805 event->ksymbol.len, 806 0, 0, event->ksymbol.name); 807 if (!sym) 808 return -ENOMEM; 809 dso__insert_symbol(map->dso, sym); 810 return 0; 811 } 812 813 static int machine__process_ksymbol_unregister(struct machine *machine, 814 union perf_event *event, 815 struct perf_sample *sample __maybe_unused) 816 { 817 struct symbol *sym; 818 struct map *map; 819 820 map = maps__find(&machine->kmaps, event->ksymbol.addr); 821 if (!map) 822 return 0; 823 824 if (map != machine->vmlinux_map) 825 maps__remove(&machine->kmaps, map); 826 else { 827 sym = dso__find_symbol(map->dso, map->map_ip(map, map->start)); 828 if (sym) 829 dso__delete_symbol(map->dso, sym); 830 } 831 832 return 0; 833 } 834 835 int machine__process_ksymbol(struct machine *machine __maybe_unused, 836 union perf_event *event, 837 struct perf_sample *sample) 838 { 839 if (dump_trace) 840 perf_event__fprintf_ksymbol(event, stdout); 841 842 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER) 843 return machine__process_ksymbol_unregister(machine, event, 844 sample); 845 return machine__process_ksymbol_register(machine, event, sample); 846 } 847 848 int machine__process_text_poke(struct machine *machine, union perf_event *event, 849 struct perf_sample *sample __maybe_unused) 850 { 851 struct map *map = maps__find(&machine->kmaps, event->text_poke.addr); 852 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 853 854 if (dump_trace) 855 perf_event__fprintf_text_poke(event, machine, stdout); 856 857 if (!event->text_poke.new_len) 858 return 0; 859 860 if (cpumode != PERF_RECORD_MISC_KERNEL) { 861 pr_debug("%s: unsupported cpumode - ignoring\n", __func__); 862 return 0; 863 } 864 865 if (map && map->dso) { 866 u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len; 867 int ret; 868 869 /* 870 * Kernel maps might be changed when loading symbols so loading 871 * must be done prior to using kernel maps. 872 */ 873 map__load(map); 874 ret = dso__data_write_cache_addr(map->dso, map, machine, 875 event->text_poke.addr, 876 new_bytes, 877 event->text_poke.new_len); 878 if (ret != event->text_poke.new_len) 879 pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n", 880 event->text_poke.addr); 881 } else { 882 pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n", 883 event->text_poke.addr); 884 } 885 886 return 0; 887 } 888 889 static struct map *machine__addnew_module_map(struct machine *machine, u64 start, 890 const char *filename) 891 { 892 struct map *map = NULL; 893 struct kmod_path m; 894 struct dso *dso; 895 896 if (kmod_path__parse_name(&m, filename)) 897 return NULL; 898 899 dso = machine__findnew_module_dso(machine, &m, filename); 900 if (dso == NULL) 901 goto out; 902 903 map = map__new2(start, dso); 904 if (map == NULL) 905 goto out; 906 907 maps__insert(&machine->kmaps, map); 908 909 /* Put the map here because maps__insert already got it */ 910 map__put(map); 911 out: 912 /* put the dso here, corresponding to machine__findnew_module_dso */ 913 dso__put(dso); 914 zfree(&m.name); 915 return map; 916 } 917 918 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp) 919 { 920 struct rb_node *nd; 921 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp); 922 923 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 924 struct machine *pos = rb_entry(nd, struct machine, rb_node); 925 ret += __dsos__fprintf(&pos->dsos.head, fp); 926 } 927 928 return ret; 929 } 930 931 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp, 932 bool (skip)(struct dso *dso, int parm), int parm) 933 { 934 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm); 935 } 936 937 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp, 938 bool (skip)(struct dso *dso, int parm), int parm) 939 { 940 struct rb_node *nd; 941 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm); 942 943 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 944 struct machine *pos = rb_entry(nd, struct machine, rb_node); 945 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm); 946 } 947 return ret; 948 } 949 950 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp) 951 { 952 int i; 953 size_t printed = 0; 954 struct dso *kdso = machine__kernel_dso(machine); 955 956 if (kdso->has_build_id) { 957 char filename[PATH_MAX]; 958 if (dso__build_id_filename(kdso, filename, sizeof(filename), 959 false)) 960 printed += fprintf(fp, "[0] %s\n", filename); 961 } 962 963 for (i = 0; i < vmlinux_path__nr_entries; ++i) 964 printed += fprintf(fp, "[%d] %s\n", 965 i + kdso->has_build_id, vmlinux_path[i]); 966 967 return printed; 968 } 969 970 size_t machine__fprintf(struct machine *machine, FILE *fp) 971 { 972 struct rb_node *nd; 973 size_t ret; 974 int i; 975 976 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 977 struct threads *threads = &machine->threads[i]; 978 979 down_read(&threads->lock); 980 981 ret = fprintf(fp, "Threads: %u\n", threads->nr); 982 983 for (nd = rb_first_cached(&threads->entries); nd; 984 nd = rb_next(nd)) { 985 struct thread *pos = rb_entry(nd, struct thread, rb_node); 986 987 ret += thread__fprintf(pos, fp); 988 } 989 990 up_read(&threads->lock); 991 } 992 return ret; 993 } 994 995 static struct dso *machine__get_kernel(struct machine *machine) 996 { 997 const char *vmlinux_name = machine->mmap_name; 998 struct dso *kernel; 999 1000 if (machine__is_host(machine)) { 1001 if (symbol_conf.vmlinux_name) 1002 vmlinux_name = symbol_conf.vmlinux_name; 1003 1004 kernel = machine__findnew_kernel(machine, vmlinux_name, 1005 "[kernel]", DSO_SPACE__KERNEL); 1006 } else { 1007 if (symbol_conf.default_guest_vmlinux_name) 1008 vmlinux_name = symbol_conf.default_guest_vmlinux_name; 1009 1010 kernel = machine__findnew_kernel(machine, vmlinux_name, 1011 "[guest.kernel]", 1012 DSO_SPACE__KERNEL_GUEST); 1013 } 1014 1015 if (kernel != NULL && (!kernel->has_build_id)) 1016 dso__read_running_kernel_build_id(kernel, machine); 1017 1018 return kernel; 1019 } 1020 1021 struct process_args { 1022 u64 start; 1023 }; 1024 1025 void machine__get_kallsyms_filename(struct machine *machine, char *buf, 1026 size_t bufsz) 1027 { 1028 if (machine__is_default_guest(machine)) 1029 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms); 1030 else 1031 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir); 1032 } 1033 1034 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL}; 1035 1036 /* Figure out the start address of kernel map from /proc/kallsyms. 1037 * Returns the name of the start symbol in *symbol_name. Pass in NULL as 1038 * symbol_name if it's not that important. 1039 */ 1040 static int machine__get_running_kernel_start(struct machine *machine, 1041 const char **symbol_name, 1042 u64 *start, u64 *end) 1043 { 1044 char filename[PATH_MAX]; 1045 int i, err = -1; 1046 const char *name; 1047 u64 addr = 0; 1048 1049 machine__get_kallsyms_filename(machine, filename, PATH_MAX); 1050 1051 if (symbol__restricted_filename(filename, "/proc/kallsyms")) 1052 return 0; 1053 1054 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) { 1055 err = kallsyms__get_function_start(filename, name, &addr); 1056 if (!err) 1057 break; 1058 } 1059 1060 if (err) 1061 return -1; 1062 1063 if (symbol_name) 1064 *symbol_name = name; 1065 1066 *start = addr; 1067 1068 err = kallsyms__get_function_start(filename, "_etext", &addr); 1069 if (!err) 1070 *end = addr; 1071 1072 return 0; 1073 } 1074 1075 int machine__create_extra_kernel_map(struct machine *machine, 1076 struct dso *kernel, 1077 struct extra_kernel_map *xm) 1078 { 1079 struct kmap *kmap; 1080 struct map *map; 1081 1082 map = map__new2(xm->start, kernel); 1083 if (!map) 1084 return -1; 1085 1086 map->end = xm->end; 1087 map->pgoff = xm->pgoff; 1088 1089 kmap = map__kmap(map); 1090 1091 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN); 1092 1093 maps__insert(&machine->kmaps, map); 1094 1095 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n", 1096 kmap->name, map->start, map->end); 1097 1098 map__put(map); 1099 1100 return 0; 1101 } 1102 1103 static u64 find_entry_trampoline(struct dso *dso) 1104 { 1105 /* Duplicates are removed so lookup all aliases */ 1106 const char *syms[] = { 1107 "_entry_trampoline", 1108 "__entry_trampoline_start", 1109 "entry_SYSCALL_64_trampoline", 1110 }; 1111 struct symbol *sym = dso__first_symbol(dso); 1112 unsigned int i; 1113 1114 for (; sym; sym = dso__next_symbol(sym)) { 1115 if (sym->binding != STB_GLOBAL) 1116 continue; 1117 for (i = 0; i < ARRAY_SIZE(syms); i++) { 1118 if (!strcmp(sym->name, syms[i])) 1119 return sym->start; 1120 } 1121 } 1122 1123 return 0; 1124 } 1125 1126 /* 1127 * These values can be used for kernels that do not have symbols for the entry 1128 * trampolines in kallsyms. 1129 */ 1130 #define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL 1131 #define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000 1132 #define X86_64_ENTRY_TRAMPOLINE 0x6000 1133 1134 /* Map x86_64 PTI entry trampolines */ 1135 int machine__map_x86_64_entry_trampolines(struct machine *machine, 1136 struct dso *kernel) 1137 { 1138 struct maps *kmaps = &machine->kmaps; 1139 int nr_cpus_avail, cpu; 1140 bool found = false; 1141 struct map *map; 1142 u64 pgoff; 1143 1144 /* 1145 * In the vmlinux case, pgoff is a virtual address which must now be 1146 * mapped to a vmlinux offset. 1147 */ 1148 maps__for_each_entry(kmaps, map) { 1149 struct kmap *kmap = __map__kmap(map); 1150 struct map *dest_map; 1151 1152 if (!kmap || !is_entry_trampoline(kmap->name)) 1153 continue; 1154 1155 dest_map = maps__find(kmaps, map->pgoff); 1156 if (dest_map != map) 1157 map->pgoff = dest_map->map_ip(dest_map, map->pgoff); 1158 found = true; 1159 } 1160 if (found || machine->trampolines_mapped) 1161 return 0; 1162 1163 pgoff = find_entry_trampoline(kernel); 1164 if (!pgoff) 1165 return 0; 1166 1167 nr_cpus_avail = machine__nr_cpus_avail(machine); 1168 1169 /* Add a 1 page map for each CPU's entry trampoline */ 1170 for (cpu = 0; cpu < nr_cpus_avail; cpu++) { 1171 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU + 1172 cpu * X86_64_CPU_ENTRY_AREA_SIZE + 1173 X86_64_ENTRY_TRAMPOLINE; 1174 struct extra_kernel_map xm = { 1175 .start = va, 1176 .end = va + page_size, 1177 .pgoff = pgoff, 1178 }; 1179 1180 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN); 1181 1182 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0) 1183 return -1; 1184 } 1185 1186 machine->trampolines_mapped = nr_cpus_avail; 1187 1188 return 0; 1189 } 1190 1191 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused, 1192 struct dso *kernel __maybe_unused) 1193 { 1194 return 0; 1195 } 1196 1197 static int 1198 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel) 1199 { 1200 /* In case of renewal the kernel map, destroy previous one */ 1201 machine__destroy_kernel_maps(machine); 1202 1203 machine->vmlinux_map = map__new2(0, kernel); 1204 if (machine->vmlinux_map == NULL) 1205 return -1; 1206 1207 machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip; 1208 maps__insert(&machine->kmaps, machine->vmlinux_map); 1209 return 0; 1210 } 1211 1212 void machine__destroy_kernel_maps(struct machine *machine) 1213 { 1214 struct kmap *kmap; 1215 struct map *map = machine__kernel_map(machine); 1216 1217 if (map == NULL) 1218 return; 1219 1220 kmap = map__kmap(map); 1221 maps__remove(&machine->kmaps, map); 1222 if (kmap && kmap->ref_reloc_sym) { 1223 zfree((char **)&kmap->ref_reloc_sym->name); 1224 zfree(&kmap->ref_reloc_sym); 1225 } 1226 1227 map__zput(machine->vmlinux_map); 1228 } 1229 1230 int machines__create_guest_kernel_maps(struct machines *machines) 1231 { 1232 int ret = 0; 1233 struct dirent **namelist = NULL; 1234 int i, items = 0; 1235 char path[PATH_MAX]; 1236 pid_t pid; 1237 char *endp; 1238 1239 if (symbol_conf.default_guest_vmlinux_name || 1240 symbol_conf.default_guest_modules || 1241 symbol_conf.default_guest_kallsyms) { 1242 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID); 1243 } 1244 1245 if (symbol_conf.guestmount) { 1246 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL); 1247 if (items <= 0) 1248 return -ENOENT; 1249 for (i = 0; i < items; i++) { 1250 if (!isdigit(namelist[i]->d_name[0])) { 1251 /* Filter out . and .. */ 1252 continue; 1253 } 1254 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10); 1255 if ((*endp != '\0') || 1256 (endp == namelist[i]->d_name) || 1257 (errno == ERANGE)) { 1258 pr_debug("invalid directory (%s). Skipping.\n", 1259 namelist[i]->d_name); 1260 continue; 1261 } 1262 sprintf(path, "%s/%s/proc/kallsyms", 1263 symbol_conf.guestmount, 1264 namelist[i]->d_name); 1265 ret = access(path, R_OK); 1266 if (ret) { 1267 pr_debug("Can't access file %s\n", path); 1268 goto failure; 1269 } 1270 machines__create_kernel_maps(machines, pid); 1271 } 1272 failure: 1273 free(namelist); 1274 } 1275 1276 return ret; 1277 } 1278 1279 void machines__destroy_kernel_maps(struct machines *machines) 1280 { 1281 struct rb_node *next = rb_first_cached(&machines->guests); 1282 1283 machine__destroy_kernel_maps(&machines->host); 1284 1285 while (next) { 1286 struct machine *pos = rb_entry(next, struct machine, rb_node); 1287 1288 next = rb_next(&pos->rb_node); 1289 rb_erase_cached(&pos->rb_node, &machines->guests); 1290 machine__delete(pos); 1291 } 1292 } 1293 1294 int machines__create_kernel_maps(struct machines *machines, pid_t pid) 1295 { 1296 struct machine *machine = machines__findnew(machines, pid); 1297 1298 if (machine == NULL) 1299 return -1; 1300 1301 return machine__create_kernel_maps(machine); 1302 } 1303 1304 int machine__load_kallsyms(struct machine *machine, const char *filename) 1305 { 1306 struct map *map = machine__kernel_map(machine); 1307 int ret = __dso__load_kallsyms(map->dso, filename, map, true); 1308 1309 if (ret > 0) { 1310 dso__set_loaded(map->dso); 1311 /* 1312 * Since /proc/kallsyms will have multiple sessions for the 1313 * kernel, with modules between them, fixup the end of all 1314 * sections. 1315 */ 1316 maps__fixup_end(&machine->kmaps); 1317 } 1318 1319 return ret; 1320 } 1321 1322 int machine__load_vmlinux_path(struct machine *machine) 1323 { 1324 struct map *map = machine__kernel_map(machine); 1325 int ret = dso__load_vmlinux_path(map->dso, map); 1326 1327 if (ret > 0) 1328 dso__set_loaded(map->dso); 1329 1330 return ret; 1331 } 1332 1333 static char *get_kernel_version(const char *root_dir) 1334 { 1335 char version[PATH_MAX]; 1336 FILE *file; 1337 char *name, *tmp; 1338 const char *prefix = "Linux version "; 1339 1340 sprintf(version, "%s/proc/version", root_dir); 1341 file = fopen(version, "r"); 1342 if (!file) 1343 return NULL; 1344 1345 tmp = fgets(version, sizeof(version), file); 1346 fclose(file); 1347 if (!tmp) 1348 return NULL; 1349 1350 name = strstr(version, prefix); 1351 if (!name) 1352 return NULL; 1353 name += strlen(prefix); 1354 tmp = strchr(name, ' '); 1355 if (tmp) 1356 *tmp = '\0'; 1357 1358 return strdup(name); 1359 } 1360 1361 static bool is_kmod_dso(struct dso *dso) 1362 { 1363 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE || 1364 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE; 1365 } 1366 1367 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m) 1368 { 1369 char *long_name; 1370 struct map *map = maps__find_by_name(maps, m->name); 1371 1372 if (map == NULL) 1373 return 0; 1374 1375 long_name = strdup(path); 1376 if (long_name == NULL) 1377 return -ENOMEM; 1378 1379 dso__set_long_name(map->dso, long_name, true); 1380 dso__kernel_module_get_build_id(map->dso, ""); 1381 1382 /* 1383 * Full name could reveal us kmod compression, so 1384 * we need to update the symtab_type if needed. 1385 */ 1386 if (m->comp && is_kmod_dso(map->dso)) { 1387 map->dso->symtab_type++; 1388 map->dso->comp = m->comp; 1389 } 1390 1391 return 0; 1392 } 1393 1394 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth) 1395 { 1396 struct dirent *dent; 1397 DIR *dir = opendir(dir_name); 1398 int ret = 0; 1399 1400 if (!dir) { 1401 pr_debug("%s: cannot open %s dir\n", __func__, dir_name); 1402 return -1; 1403 } 1404 1405 while ((dent = readdir(dir)) != NULL) { 1406 char path[PATH_MAX]; 1407 struct stat st; 1408 1409 /*sshfs might return bad dent->d_type, so we have to stat*/ 1410 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name); 1411 if (stat(path, &st)) 1412 continue; 1413 1414 if (S_ISDIR(st.st_mode)) { 1415 if (!strcmp(dent->d_name, ".") || 1416 !strcmp(dent->d_name, "..")) 1417 continue; 1418 1419 /* Do not follow top-level source and build symlinks */ 1420 if (depth == 0) { 1421 if (!strcmp(dent->d_name, "source") || 1422 !strcmp(dent->d_name, "build")) 1423 continue; 1424 } 1425 1426 ret = maps__set_modules_path_dir(maps, path, depth + 1); 1427 if (ret < 0) 1428 goto out; 1429 } else { 1430 struct kmod_path m; 1431 1432 ret = kmod_path__parse_name(&m, dent->d_name); 1433 if (ret) 1434 goto out; 1435 1436 if (m.kmod) 1437 ret = maps__set_module_path(maps, path, &m); 1438 1439 zfree(&m.name); 1440 1441 if (ret) 1442 goto out; 1443 } 1444 } 1445 1446 out: 1447 closedir(dir); 1448 return ret; 1449 } 1450 1451 static int machine__set_modules_path(struct machine *machine) 1452 { 1453 char *version; 1454 char modules_path[PATH_MAX]; 1455 1456 version = get_kernel_version(machine->root_dir); 1457 if (!version) 1458 return -1; 1459 1460 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s", 1461 machine->root_dir, version); 1462 free(version); 1463 1464 return maps__set_modules_path_dir(&machine->kmaps, modules_path, 0); 1465 } 1466 int __weak arch__fix_module_text_start(u64 *start __maybe_unused, 1467 u64 *size __maybe_unused, 1468 const char *name __maybe_unused) 1469 { 1470 return 0; 1471 } 1472 1473 static int machine__create_module(void *arg, const char *name, u64 start, 1474 u64 size) 1475 { 1476 struct machine *machine = arg; 1477 struct map *map; 1478 1479 if (arch__fix_module_text_start(&start, &size, name) < 0) 1480 return -1; 1481 1482 map = machine__addnew_module_map(machine, start, name); 1483 if (map == NULL) 1484 return -1; 1485 map->end = start + size; 1486 1487 dso__kernel_module_get_build_id(map->dso, machine->root_dir); 1488 1489 return 0; 1490 } 1491 1492 static int machine__create_modules(struct machine *machine) 1493 { 1494 const char *modules; 1495 char path[PATH_MAX]; 1496 1497 if (machine__is_default_guest(machine)) { 1498 modules = symbol_conf.default_guest_modules; 1499 } else { 1500 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir); 1501 modules = path; 1502 } 1503 1504 if (symbol__restricted_filename(modules, "/proc/modules")) 1505 return -1; 1506 1507 if (modules__parse(modules, machine, machine__create_module)) 1508 return -1; 1509 1510 if (!machine__set_modules_path(machine)) 1511 return 0; 1512 1513 pr_debug("Problems setting modules path maps, continuing anyway...\n"); 1514 1515 return 0; 1516 } 1517 1518 static void machine__set_kernel_mmap(struct machine *machine, 1519 u64 start, u64 end) 1520 { 1521 machine->vmlinux_map->start = start; 1522 machine->vmlinux_map->end = end; 1523 /* 1524 * Be a bit paranoid here, some perf.data file came with 1525 * a zero sized synthesized MMAP event for the kernel. 1526 */ 1527 if (start == 0 && end == 0) 1528 machine->vmlinux_map->end = ~0ULL; 1529 } 1530 1531 static void machine__update_kernel_mmap(struct machine *machine, 1532 u64 start, u64 end) 1533 { 1534 struct map *map = machine__kernel_map(machine); 1535 1536 map__get(map); 1537 maps__remove(&machine->kmaps, map); 1538 1539 machine__set_kernel_mmap(machine, start, end); 1540 1541 maps__insert(&machine->kmaps, map); 1542 map__put(map); 1543 } 1544 1545 int machine__create_kernel_maps(struct machine *machine) 1546 { 1547 struct dso *kernel = machine__get_kernel(machine); 1548 const char *name = NULL; 1549 struct map *map; 1550 u64 start = 0, end = ~0ULL; 1551 int ret; 1552 1553 if (kernel == NULL) 1554 return -1; 1555 1556 ret = __machine__create_kernel_maps(machine, kernel); 1557 if (ret < 0) 1558 goto out_put; 1559 1560 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) { 1561 if (machine__is_host(machine)) 1562 pr_debug("Problems creating module maps, " 1563 "continuing anyway...\n"); 1564 else 1565 pr_debug("Problems creating module maps for guest %d, " 1566 "continuing anyway...\n", machine->pid); 1567 } 1568 1569 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) { 1570 if (name && 1571 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) { 1572 machine__destroy_kernel_maps(machine); 1573 ret = -1; 1574 goto out_put; 1575 } 1576 1577 /* 1578 * we have a real start address now, so re-order the kmaps 1579 * assume it's the last in the kmaps 1580 */ 1581 machine__update_kernel_mmap(machine, start, end); 1582 } 1583 1584 if (machine__create_extra_kernel_maps(machine, kernel)) 1585 pr_debug("Problems creating extra kernel maps, continuing anyway...\n"); 1586 1587 if (end == ~0ULL) { 1588 /* update end address of the kernel map using adjacent module address */ 1589 map = map__next(machine__kernel_map(machine)); 1590 if (map) 1591 machine__set_kernel_mmap(machine, start, map->start); 1592 } 1593 1594 out_put: 1595 dso__put(kernel); 1596 return ret; 1597 } 1598 1599 static bool machine__uses_kcore(struct machine *machine) 1600 { 1601 struct dso *dso; 1602 1603 list_for_each_entry(dso, &machine->dsos.head, node) { 1604 if (dso__is_kcore(dso)) 1605 return true; 1606 } 1607 1608 return false; 1609 } 1610 1611 static bool perf_event__is_extra_kernel_mmap(struct machine *machine, 1612 struct extra_kernel_map *xm) 1613 { 1614 return machine__is(machine, "x86_64") && 1615 is_entry_trampoline(xm->name); 1616 } 1617 1618 static int machine__process_extra_kernel_map(struct machine *machine, 1619 struct extra_kernel_map *xm) 1620 { 1621 struct dso *kernel = machine__kernel_dso(machine); 1622 1623 if (kernel == NULL) 1624 return -1; 1625 1626 return machine__create_extra_kernel_map(machine, kernel, xm); 1627 } 1628 1629 static int machine__process_kernel_mmap_event(struct machine *machine, 1630 struct extra_kernel_map *xm, 1631 struct build_id *bid) 1632 { 1633 struct map *map; 1634 enum dso_space_type dso_space; 1635 bool is_kernel_mmap; 1636 1637 /* If we have maps from kcore then we do not need or want any others */ 1638 if (machine__uses_kcore(machine)) 1639 return 0; 1640 1641 if (machine__is_host(machine)) 1642 dso_space = DSO_SPACE__KERNEL; 1643 else 1644 dso_space = DSO_SPACE__KERNEL_GUEST; 1645 1646 is_kernel_mmap = memcmp(xm->name, machine->mmap_name, 1647 strlen(machine->mmap_name) - 1) == 0; 1648 if (xm->name[0] == '/' || 1649 (!is_kernel_mmap && xm->name[0] == '[')) { 1650 map = machine__addnew_module_map(machine, xm->start, 1651 xm->name); 1652 if (map == NULL) 1653 goto out_problem; 1654 1655 map->end = map->start + xm->end - xm->start; 1656 1657 if (build_id__is_defined(bid)) 1658 dso__set_build_id(map->dso, bid); 1659 1660 } else if (is_kernel_mmap) { 1661 const char *symbol_name = (xm->name + strlen(machine->mmap_name)); 1662 /* 1663 * Should be there already, from the build-id table in 1664 * the header. 1665 */ 1666 struct dso *kernel = NULL; 1667 struct dso *dso; 1668 1669 down_read(&machine->dsos.lock); 1670 1671 list_for_each_entry(dso, &machine->dsos.head, node) { 1672 1673 /* 1674 * The cpumode passed to is_kernel_module is not the 1675 * cpumode of *this* event. If we insist on passing 1676 * correct cpumode to is_kernel_module, we should 1677 * record the cpumode when we adding this dso to the 1678 * linked list. 1679 * 1680 * However we don't really need passing correct 1681 * cpumode. We know the correct cpumode must be kernel 1682 * mode (if not, we should not link it onto kernel_dsos 1683 * list). 1684 * 1685 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN. 1686 * is_kernel_module() treats it as a kernel cpumode. 1687 */ 1688 1689 if (!dso->kernel || 1690 is_kernel_module(dso->long_name, 1691 PERF_RECORD_MISC_CPUMODE_UNKNOWN)) 1692 continue; 1693 1694 1695 kernel = dso; 1696 break; 1697 } 1698 1699 up_read(&machine->dsos.lock); 1700 1701 if (kernel == NULL) 1702 kernel = machine__findnew_dso(machine, machine->mmap_name); 1703 if (kernel == NULL) 1704 goto out_problem; 1705 1706 kernel->kernel = dso_space; 1707 if (__machine__create_kernel_maps(machine, kernel) < 0) { 1708 dso__put(kernel); 1709 goto out_problem; 1710 } 1711 1712 if (strstr(kernel->long_name, "vmlinux")) 1713 dso__set_short_name(kernel, "[kernel.vmlinux]", false); 1714 1715 machine__update_kernel_mmap(machine, xm->start, xm->end); 1716 1717 if (build_id__is_defined(bid)) 1718 dso__set_build_id(kernel, bid); 1719 1720 /* 1721 * Avoid using a zero address (kptr_restrict) for the ref reloc 1722 * symbol. Effectively having zero here means that at record 1723 * time /proc/sys/kernel/kptr_restrict was non zero. 1724 */ 1725 if (xm->pgoff != 0) { 1726 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, 1727 symbol_name, 1728 xm->pgoff); 1729 } 1730 1731 if (machine__is_default_guest(machine)) { 1732 /* 1733 * preload dso of guest kernel and modules 1734 */ 1735 dso__load(kernel, machine__kernel_map(machine)); 1736 } 1737 } else if (perf_event__is_extra_kernel_mmap(machine, xm)) { 1738 return machine__process_extra_kernel_map(machine, xm); 1739 } 1740 return 0; 1741 out_problem: 1742 return -1; 1743 } 1744 1745 int machine__process_mmap2_event(struct machine *machine, 1746 union perf_event *event, 1747 struct perf_sample *sample) 1748 { 1749 struct thread *thread; 1750 struct map *map; 1751 struct dso_id dso_id = { 1752 .maj = event->mmap2.maj, 1753 .min = event->mmap2.min, 1754 .ino = event->mmap2.ino, 1755 .ino_generation = event->mmap2.ino_generation, 1756 }; 1757 struct build_id __bid, *bid = NULL; 1758 int ret = 0; 1759 1760 if (dump_trace) 1761 perf_event__fprintf_mmap2(event, stdout); 1762 1763 if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) { 1764 bid = &__bid; 1765 build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size); 1766 } 1767 1768 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1769 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1770 struct extra_kernel_map xm = { 1771 .start = event->mmap2.start, 1772 .end = event->mmap2.start + event->mmap2.len, 1773 .pgoff = event->mmap2.pgoff, 1774 }; 1775 1776 strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN); 1777 ret = machine__process_kernel_mmap_event(machine, &xm, bid); 1778 if (ret < 0) 1779 goto out_problem; 1780 return 0; 1781 } 1782 1783 thread = machine__findnew_thread(machine, event->mmap2.pid, 1784 event->mmap2.tid); 1785 if (thread == NULL) 1786 goto out_problem; 1787 1788 map = map__new(machine, event->mmap2.start, 1789 event->mmap2.len, event->mmap2.pgoff, 1790 &dso_id, event->mmap2.prot, 1791 event->mmap2.flags, bid, 1792 event->mmap2.filename, thread); 1793 1794 if (map == NULL) 1795 goto out_problem_map; 1796 1797 ret = thread__insert_map(thread, map); 1798 if (ret) 1799 goto out_problem_insert; 1800 1801 thread__put(thread); 1802 map__put(map); 1803 return 0; 1804 1805 out_problem_insert: 1806 map__put(map); 1807 out_problem_map: 1808 thread__put(thread); 1809 out_problem: 1810 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n"); 1811 return 0; 1812 } 1813 1814 int machine__process_mmap_event(struct machine *machine, union perf_event *event, 1815 struct perf_sample *sample) 1816 { 1817 struct thread *thread; 1818 struct map *map; 1819 u32 prot = 0; 1820 int ret = 0; 1821 1822 if (dump_trace) 1823 perf_event__fprintf_mmap(event, stdout); 1824 1825 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1826 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1827 struct extra_kernel_map xm = { 1828 .start = event->mmap.start, 1829 .end = event->mmap.start + event->mmap.len, 1830 .pgoff = event->mmap.pgoff, 1831 }; 1832 1833 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN); 1834 ret = machine__process_kernel_mmap_event(machine, &xm, NULL); 1835 if (ret < 0) 1836 goto out_problem; 1837 return 0; 1838 } 1839 1840 thread = machine__findnew_thread(machine, event->mmap.pid, 1841 event->mmap.tid); 1842 if (thread == NULL) 1843 goto out_problem; 1844 1845 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA)) 1846 prot = PROT_EXEC; 1847 1848 map = map__new(machine, event->mmap.start, 1849 event->mmap.len, event->mmap.pgoff, 1850 NULL, prot, 0, NULL, event->mmap.filename, thread); 1851 1852 if (map == NULL) 1853 goto out_problem_map; 1854 1855 ret = thread__insert_map(thread, map); 1856 if (ret) 1857 goto out_problem_insert; 1858 1859 thread__put(thread); 1860 map__put(map); 1861 return 0; 1862 1863 out_problem_insert: 1864 map__put(map); 1865 out_problem_map: 1866 thread__put(thread); 1867 out_problem: 1868 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n"); 1869 return 0; 1870 } 1871 1872 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock) 1873 { 1874 struct threads *threads = machine__threads(machine, th->tid); 1875 1876 if (threads->last_match == th) 1877 threads__set_last_match(threads, NULL); 1878 1879 if (lock) 1880 down_write(&threads->lock); 1881 1882 BUG_ON(refcount_read(&th->refcnt) == 0); 1883 1884 rb_erase_cached(&th->rb_node, &threads->entries); 1885 RB_CLEAR_NODE(&th->rb_node); 1886 --threads->nr; 1887 /* 1888 * Move it first to the dead_threads list, then drop the reference, 1889 * if this is the last reference, then the thread__delete destructor 1890 * will be called and we will remove it from the dead_threads list. 1891 */ 1892 list_add_tail(&th->node, &threads->dead); 1893 1894 /* 1895 * We need to do the put here because if this is the last refcount, 1896 * then we will be touching the threads->dead head when removing the 1897 * thread. 1898 */ 1899 thread__put(th); 1900 1901 if (lock) 1902 up_write(&threads->lock); 1903 } 1904 1905 void machine__remove_thread(struct machine *machine, struct thread *th) 1906 { 1907 return __machine__remove_thread(machine, th, true); 1908 } 1909 1910 int machine__process_fork_event(struct machine *machine, union perf_event *event, 1911 struct perf_sample *sample) 1912 { 1913 struct thread *thread = machine__find_thread(machine, 1914 event->fork.pid, 1915 event->fork.tid); 1916 struct thread *parent = machine__findnew_thread(machine, 1917 event->fork.ppid, 1918 event->fork.ptid); 1919 bool do_maps_clone = true; 1920 int err = 0; 1921 1922 if (dump_trace) 1923 perf_event__fprintf_task(event, stdout); 1924 1925 /* 1926 * There may be an existing thread that is not actually the parent, 1927 * either because we are processing events out of order, or because the 1928 * (fork) event that would have removed the thread was lost. Assume the 1929 * latter case and continue on as best we can. 1930 */ 1931 if (parent->pid_ != (pid_t)event->fork.ppid) { 1932 dump_printf("removing erroneous parent thread %d/%d\n", 1933 parent->pid_, parent->tid); 1934 machine__remove_thread(machine, parent); 1935 thread__put(parent); 1936 parent = machine__findnew_thread(machine, event->fork.ppid, 1937 event->fork.ptid); 1938 } 1939 1940 /* if a thread currently exists for the thread id remove it */ 1941 if (thread != NULL) { 1942 machine__remove_thread(machine, thread); 1943 thread__put(thread); 1944 } 1945 1946 thread = machine__findnew_thread(machine, event->fork.pid, 1947 event->fork.tid); 1948 /* 1949 * When synthesizing FORK events, we are trying to create thread 1950 * objects for the already running tasks on the machine. 1951 * 1952 * Normally, for a kernel FORK event, we want to clone the parent's 1953 * maps because that is what the kernel just did. 1954 * 1955 * But when synthesizing, this should not be done. If we do, we end up 1956 * with overlapping maps as we process the synthesized MMAP2 events that 1957 * get delivered shortly thereafter. 1958 * 1959 * Use the FORK event misc flags in an internal way to signal this 1960 * situation, so we can elide the map clone when appropriate. 1961 */ 1962 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC) 1963 do_maps_clone = false; 1964 1965 if (thread == NULL || parent == NULL || 1966 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) { 1967 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n"); 1968 err = -1; 1969 } 1970 thread__put(thread); 1971 thread__put(parent); 1972 1973 return err; 1974 } 1975 1976 int machine__process_exit_event(struct machine *machine, union perf_event *event, 1977 struct perf_sample *sample __maybe_unused) 1978 { 1979 struct thread *thread = machine__find_thread(machine, 1980 event->fork.pid, 1981 event->fork.tid); 1982 1983 if (dump_trace) 1984 perf_event__fprintf_task(event, stdout); 1985 1986 if (thread != NULL) { 1987 thread__exited(thread); 1988 thread__put(thread); 1989 } 1990 1991 return 0; 1992 } 1993 1994 int machine__process_event(struct machine *machine, union perf_event *event, 1995 struct perf_sample *sample) 1996 { 1997 int ret; 1998 1999 switch (event->header.type) { 2000 case PERF_RECORD_COMM: 2001 ret = machine__process_comm_event(machine, event, sample); break; 2002 case PERF_RECORD_MMAP: 2003 ret = machine__process_mmap_event(machine, event, sample); break; 2004 case PERF_RECORD_NAMESPACES: 2005 ret = machine__process_namespaces_event(machine, event, sample); break; 2006 case PERF_RECORD_CGROUP: 2007 ret = machine__process_cgroup_event(machine, event, sample); break; 2008 case PERF_RECORD_MMAP2: 2009 ret = machine__process_mmap2_event(machine, event, sample); break; 2010 case PERF_RECORD_FORK: 2011 ret = machine__process_fork_event(machine, event, sample); break; 2012 case PERF_RECORD_EXIT: 2013 ret = machine__process_exit_event(machine, event, sample); break; 2014 case PERF_RECORD_LOST: 2015 ret = machine__process_lost_event(machine, event, sample); break; 2016 case PERF_RECORD_AUX: 2017 ret = machine__process_aux_event(machine, event); break; 2018 case PERF_RECORD_ITRACE_START: 2019 ret = machine__process_itrace_start_event(machine, event); break; 2020 case PERF_RECORD_LOST_SAMPLES: 2021 ret = machine__process_lost_samples_event(machine, event, sample); break; 2022 case PERF_RECORD_SWITCH: 2023 case PERF_RECORD_SWITCH_CPU_WIDE: 2024 ret = machine__process_switch_event(machine, event); break; 2025 case PERF_RECORD_KSYMBOL: 2026 ret = machine__process_ksymbol(machine, event, sample); break; 2027 case PERF_RECORD_BPF_EVENT: 2028 ret = machine__process_bpf(machine, event, sample); break; 2029 case PERF_RECORD_TEXT_POKE: 2030 ret = machine__process_text_poke(machine, event, sample); break; 2031 default: 2032 ret = -1; 2033 break; 2034 } 2035 2036 return ret; 2037 } 2038 2039 static bool symbol__match_regex(struct symbol *sym, regex_t *regex) 2040 { 2041 if (!regexec(regex, sym->name, 0, NULL, 0)) 2042 return true; 2043 return false; 2044 } 2045 2046 static void ip__resolve_ams(struct thread *thread, 2047 struct addr_map_symbol *ams, 2048 u64 ip) 2049 { 2050 struct addr_location al; 2051 2052 memset(&al, 0, sizeof(al)); 2053 /* 2054 * We cannot use the header.misc hint to determine whether a 2055 * branch stack address is user, kernel, guest, hypervisor. 2056 * Branches may straddle the kernel/user/hypervisor boundaries. 2057 * Thus, we have to try consecutively until we find a match 2058 * or else, the symbol is unknown 2059 */ 2060 thread__find_cpumode_addr_location(thread, ip, &al); 2061 2062 ams->addr = ip; 2063 ams->al_addr = al.addr; 2064 ams->ms.maps = al.maps; 2065 ams->ms.sym = al.sym; 2066 ams->ms.map = al.map; 2067 ams->phys_addr = 0; 2068 ams->data_page_size = 0; 2069 } 2070 2071 static void ip__resolve_data(struct thread *thread, 2072 u8 m, struct addr_map_symbol *ams, 2073 u64 addr, u64 phys_addr, u64 daddr_page_size) 2074 { 2075 struct addr_location al; 2076 2077 memset(&al, 0, sizeof(al)); 2078 2079 thread__find_symbol(thread, m, addr, &al); 2080 2081 ams->addr = addr; 2082 ams->al_addr = al.addr; 2083 ams->ms.maps = al.maps; 2084 ams->ms.sym = al.sym; 2085 ams->ms.map = al.map; 2086 ams->phys_addr = phys_addr; 2087 ams->data_page_size = daddr_page_size; 2088 } 2089 2090 struct mem_info *sample__resolve_mem(struct perf_sample *sample, 2091 struct addr_location *al) 2092 { 2093 struct mem_info *mi = mem_info__new(); 2094 2095 if (!mi) 2096 return NULL; 2097 2098 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip); 2099 ip__resolve_data(al->thread, al->cpumode, &mi->daddr, 2100 sample->addr, sample->phys_addr, 2101 sample->data_page_size); 2102 mi->data_src.val = sample->data_src; 2103 2104 return mi; 2105 } 2106 2107 static char *callchain_srcline(struct map_symbol *ms, u64 ip) 2108 { 2109 struct map *map = ms->map; 2110 char *srcline = NULL; 2111 2112 if (!map || callchain_param.key == CCKEY_FUNCTION) 2113 return srcline; 2114 2115 srcline = srcline__tree_find(&map->dso->srclines, ip); 2116 if (!srcline) { 2117 bool show_sym = false; 2118 bool show_addr = callchain_param.key == CCKEY_ADDRESS; 2119 2120 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip), 2121 ms->sym, show_sym, show_addr, ip); 2122 srcline__tree_insert(&map->dso->srclines, ip, srcline); 2123 } 2124 2125 return srcline; 2126 } 2127 2128 struct iterations { 2129 int nr_loop_iter; 2130 u64 cycles; 2131 }; 2132 2133 static int add_callchain_ip(struct thread *thread, 2134 struct callchain_cursor *cursor, 2135 struct symbol **parent, 2136 struct addr_location *root_al, 2137 u8 *cpumode, 2138 u64 ip, 2139 bool branch, 2140 struct branch_flags *flags, 2141 struct iterations *iter, 2142 u64 branch_from) 2143 { 2144 struct map_symbol ms; 2145 struct addr_location al; 2146 int nr_loop_iter = 0; 2147 u64 iter_cycles = 0; 2148 const char *srcline = NULL; 2149 2150 al.filtered = 0; 2151 al.sym = NULL; 2152 if (!cpumode) { 2153 thread__find_cpumode_addr_location(thread, ip, &al); 2154 } else { 2155 if (ip >= PERF_CONTEXT_MAX) { 2156 switch (ip) { 2157 case PERF_CONTEXT_HV: 2158 *cpumode = PERF_RECORD_MISC_HYPERVISOR; 2159 break; 2160 case PERF_CONTEXT_KERNEL: 2161 *cpumode = PERF_RECORD_MISC_KERNEL; 2162 break; 2163 case PERF_CONTEXT_USER: 2164 *cpumode = PERF_RECORD_MISC_USER; 2165 break; 2166 default: 2167 pr_debug("invalid callchain context: " 2168 "%"PRId64"\n", (s64) ip); 2169 /* 2170 * It seems the callchain is corrupted. 2171 * Discard all. 2172 */ 2173 callchain_cursor_reset(cursor); 2174 return 1; 2175 } 2176 return 0; 2177 } 2178 thread__find_symbol(thread, *cpumode, ip, &al); 2179 } 2180 2181 if (al.sym != NULL) { 2182 if (perf_hpp_list.parent && !*parent && 2183 symbol__match_regex(al.sym, &parent_regex)) 2184 *parent = al.sym; 2185 else if (have_ignore_callees && root_al && 2186 symbol__match_regex(al.sym, &ignore_callees_regex)) { 2187 /* Treat this symbol as the root, 2188 forgetting its callees. */ 2189 *root_al = al; 2190 callchain_cursor_reset(cursor); 2191 } 2192 } 2193 2194 if (symbol_conf.hide_unresolved && al.sym == NULL) 2195 return 0; 2196 2197 if (iter) { 2198 nr_loop_iter = iter->nr_loop_iter; 2199 iter_cycles = iter->cycles; 2200 } 2201 2202 ms.maps = al.maps; 2203 ms.map = al.map; 2204 ms.sym = al.sym; 2205 srcline = callchain_srcline(&ms, al.addr); 2206 return callchain_cursor_append(cursor, ip, &ms, 2207 branch, flags, nr_loop_iter, 2208 iter_cycles, branch_from, srcline); 2209 } 2210 2211 struct branch_info *sample__resolve_bstack(struct perf_sample *sample, 2212 struct addr_location *al) 2213 { 2214 unsigned int i; 2215 const struct branch_stack *bs = sample->branch_stack; 2216 struct branch_entry *entries = perf_sample__branch_entries(sample); 2217 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info)); 2218 2219 if (!bi) 2220 return NULL; 2221 2222 for (i = 0; i < bs->nr; i++) { 2223 ip__resolve_ams(al->thread, &bi[i].to, entries[i].to); 2224 ip__resolve_ams(al->thread, &bi[i].from, entries[i].from); 2225 bi[i].flags = entries[i].flags; 2226 } 2227 return bi; 2228 } 2229 2230 static void save_iterations(struct iterations *iter, 2231 struct branch_entry *be, int nr) 2232 { 2233 int i; 2234 2235 iter->nr_loop_iter++; 2236 iter->cycles = 0; 2237 2238 for (i = 0; i < nr; i++) 2239 iter->cycles += be[i].flags.cycles; 2240 } 2241 2242 #define CHASHSZ 127 2243 #define CHASHBITS 7 2244 #define NO_ENTRY 0xff 2245 2246 #define PERF_MAX_BRANCH_DEPTH 127 2247 2248 /* Remove loops. */ 2249 static int remove_loops(struct branch_entry *l, int nr, 2250 struct iterations *iter) 2251 { 2252 int i, j, off; 2253 unsigned char chash[CHASHSZ]; 2254 2255 memset(chash, NO_ENTRY, sizeof(chash)); 2256 2257 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255); 2258 2259 for (i = 0; i < nr; i++) { 2260 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ; 2261 2262 /* no collision handling for now */ 2263 if (chash[h] == NO_ENTRY) { 2264 chash[h] = i; 2265 } else if (l[chash[h]].from == l[i].from) { 2266 bool is_loop = true; 2267 /* check if it is a real loop */ 2268 off = 0; 2269 for (j = chash[h]; j < i && i + off < nr; j++, off++) 2270 if (l[j].from != l[i + off].from) { 2271 is_loop = false; 2272 break; 2273 } 2274 if (is_loop) { 2275 j = nr - (i + off); 2276 if (j > 0) { 2277 save_iterations(iter + i + off, 2278 l + i, off); 2279 2280 memmove(iter + i, iter + i + off, 2281 j * sizeof(*iter)); 2282 2283 memmove(l + i, l + i + off, 2284 j * sizeof(*l)); 2285 } 2286 2287 nr -= off; 2288 } 2289 } 2290 } 2291 return nr; 2292 } 2293 2294 static int lbr_callchain_add_kernel_ip(struct thread *thread, 2295 struct callchain_cursor *cursor, 2296 struct perf_sample *sample, 2297 struct symbol **parent, 2298 struct addr_location *root_al, 2299 u64 branch_from, 2300 bool callee, int end) 2301 { 2302 struct ip_callchain *chain = sample->callchain; 2303 u8 cpumode = PERF_RECORD_MISC_USER; 2304 int err, i; 2305 2306 if (callee) { 2307 for (i = 0; i < end + 1; i++) { 2308 err = add_callchain_ip(thread, cursor, parent, 2309 root_al, &cpumode, chain->ips[i], 2310 false, NULL, NULL, branch_from); 2311 if (err) 2312 return err; 2313 } 2314 return 0; 2315 } 2316 2317 for (i = end; i >= 0; i--) { 2318 err = add_callchain_ip(thread, cursor, parent, 2319 root_al, &cpumode, chain->ips[i], 2320 false, NULL, NULL, branch_from); 2321 if (err) 2322 return err; 2323 } 2324 2325 return 0; 2326 } 2327 2328 static void save_lbr_cursor_node(struct thread *thread, 2329 struct callchain_cursor *cursor, 2330 int idx) 2331 { 2332 struct lbr_stitch *lbr_stitch = thread->lbr_stitch; 2333 2334 if (!lbr_stitch) 2335 return; 2336 2337 if (cursor->pos == cursor->nr) { 2338 lbr_stitch->prev_lbr_cursor[idx].valid = false; 2339 return; 2340 } 2341 2342 if (!cursor->curr) 2343 cursor->curr = cursor->first; 2344 else 2345 cursor->curr = cursor->curr->next; 2346 memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr, 2347 sizeof(struct callchain_cursor_node)); 2348 2349 lbr_stitch->prev_lbr_cursor[idx].valid = true; 2350 cursor->pos++; 2351 } 2352 2353 static int lbr_callchain_add_lbr_ip(struct thread *thread, 2354 struct callchain_cursor *cursor, 2355 struct perf_sample *sample, 2356 struct symbol **parent, 2357 struct addr_location *root_al, 2358 u64 *branch_from, 2359 bool callee) 2360 { 2361 struct branch_stack *lbr_stack = sample->branch_stack; 2362 struct branch_entry *entries = perf_sample__branch_entries(sample); 2363 u8 cpumode = PERF_RECORD_MISC_USER; 2364 int lbr_nr = lbr_stack->nr; 2365 struct branch_flags *flags; 2366 int err, i; 2367 u64 ip; 2368 2369 /* 2370 * The curr and pos are not used in writing session. They are cleared 2371 * in callchain_cursor_commit() when the writing session is closed. 2372 * Using curr and pos to track the current cursor node. 2373 */ 2374 if (thread->lbr_stitch) { 2375 cursor->curr = NULL; 2376 cursor->pos = cursor->nr; 2377 if (cursor->nr) { 2378 cursor->curr = cursor->first; 2379 for (i = 0; i < (int)(cursor->nr - 1); i++) 2380 cursor->curr = cursor->curr->next; 2381 } 2382 } 2383 2384 if (callee) { 2385 /* Add LBR ip from first entries.to */ 2386 ip = entries[0].to; 2387 flags = &entries[0].flags; 2388 *branch_from = entries[0].from; 2389 err = add_callchain_ip(thread, cursor, parent, 2390 root_al, &cpumode, ip, 2391 true, flags, NULL, 2392 *branch_from); 2393 if (err) 2394 return err; 2395 2396 /* 2397 * The number of cursor node increases. 2398 * Move the current cursor node. 2399 * But does not need to save current cursor node for entry 0. 2400 * It's impossible to stitch the whole LBRs of previous sample. 2401 */ 2402 if (thread->lbr_stitch && (cursor->pos != cursor->nr)) { 2403 if (!cursor->curr) 2404 cursor->curr = cursor->first; 2405 else 2406 cursor->curr = cursor->curr->next; 2407 cursor->pos++; 2408 } 2409 2410 /* Add LBR ip from entries.from one by one. */ 2411 for (i = 0; i < lbr_nr; i++) { 2412 ip = entries[i].from; 2413 flags = &entries[i].flags; 2414 err = add_callchain_ip(thread, cursor, parent, 2415 root_al, &cpumode, ip, 2416 true, flags, NULL, 2417 *branch_from); 2418 if (err) 2419 return err; 2420 save_lbr_cursor_node(thread, cursor, i); 2421 } 2422 return 0; 2423 } 2424 2425 /* Add LBR ip from entries.from one by one. */ 2426 for (i = lbr_nr - 1; i >= 0; i--) { 2427 ip = entries[i].from; 2428 flags = &entries[i].flags; 2429 err = add_callchain_ip(thread, cursor, parent, 2430 root_al, &cpumode, ip, 2431 true, flags, NULL, 2432 *branch_from); 2433 if (err) 2434 return err; 2435 save_lbr_cursor_node(thread, cursor, i); 2436 } 2437 2438 /* Add LBR ip from first entries.to */ 2439 ip = entries[0].to; 2440 flags = &entries[0].flags; 2441 *branch_from = entries[0].from; 2442 err = add_callchain_ip(thread, cursor, parent, 2443 root_al, &cpumode, ip, 2444 true, flags, NULL, 2445 *branch_from); 2446 if (err) 2447 return err; 2448 2449 return 0; 2450 } 2451 2452 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread, 2453 struct callchain_cursor *cursor) 2454 { 2455 struct lbr_stitch *lbr_stitch = thread->lbr_stitch; 2456 struct callchain_cursor_node *cnode; 2457 struct stitch_list *stitch_node; 2458 int err; 2459 2460 list_for_each_entry(stitch_node, &lbr_stitch->lists, node) { 2461 cnode = &stitch_node->cursor; 2462 2463 err = callchain_cursor_append(cursor, cnode->ip, 2464 &cnode->ms, 2465 cnode->branch, 2466 &cnode->branch_flags, 2467 cnode->nr_loop_iter, 2468 cnode->iter_cycles, 2469 cnode->branch_from, 2470 cnode->srcline); 2471 if (err) 2472 return err; 2473 } 2474 return 0; 2475 } 2476 2477 static struct stitch_list *get_stitch_node(struct thread *thread) 2478 { 2479 struct lbr_stitch *lbr_stitch = thread->lbr_stitch; 2480 struct stitch_list *stitch_node; 2481 2482 if (!list_empty(&lbr_stitch->free_lists)) { 2483 stitch_node = list_first_entry(&lbr_stitch->free_lists, 2484 struct stitch_list, node); 2485 list_del(&stitch_node->node); 2486 2487 return stitch_node; 2488 } 2489 2490 return malloc(sizeof(struct stitch_list)); 2491 } 2492 2493 static bool has_stitched_lbr(struct thread *thread, 2494 struct perf_sample *cur, 2495 struct perf_sample *prev, 2496 unsigned int max_lbr, 2497 bool callee) 2498 { 2499 struct branch_stack *cur_stack = cur->branch_stack; 2500 struct branch_entry *cur_entries = perf_sample__branch_entries(cur); 2501 struct branch_stack *prev_stack = prev->branch_stack; 2502 struct branch_entry *prev_entries = perf_sample__branch_entries(prev); 2503 struct lbr_stitch *lbr_stitch = thread->lbr_stitch; 2504 int i, j, nr_identical_branches = 0; 2505 struct stitch_list *stitch_node; 2506 u64 cur_base, distance; 2507 2508 if (!cur_stack || !prev_stack) 2509 return false; 2510 2511 /* Find the physical index of the base-of-stack for current sample. */ 2512 cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1; 2513 2514 distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) : 2515 (max_lbr + prev_stack->hw_idx - cur_base); 2516 /* Previous sample has shorter stack. Nothing can be stitched. */ 2517 if (distance + 1 > prev_stack->nr) 2518 return false; 2519 2520 /* 2521 * Check if there are identical LBRs between two samples. 2522 * Identical LBRs must have same from, to and flags values. Also, 2523 * they have to be saved in the same LBR registers (same physical 2524 * index). 2525 * 2526 * Starts from the base-of-stack of current sample. 2527 */ 2528 for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) { 2529 if ((prev_entries[i].from != cur_entries[j].from) || 2530 (prev_entries[i].to != cur_entries[j].to) || 2531 (prev_entries[i].flags.value != cur_entries[j].flags.value)) 2532 break; 2533 nr_identical_branches++; 2534 } 2535 2536 if (!nr_identical_branches) 2537 return false; 2538 2539 /* 2540 * Save the LBRs between the base-of-stack of previous sample 2541 * and the base-of-stack of current sample into lbr_stitch->lists. 2542 * These LBRs will be stitched later. 2543 */ 2544 for (i = prev_stack->nr - 1; i > (int)distance; i--) { 2545 2546 if (!lbr_stitch->prev_lbr_cursor[i].valid) 2547 continue; 2548 2549 stitch_node = get_stitch_node(thread); 2550 if (!stitch_node) 2551 return false; 2552 2553 memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i], 2554 sizeof(struct callchain_cursor_node)); 2555 2556 if (callee) 2557 list_add(&stitch_node->node, &lbr_stitch->lists); 2558 else 2559 list_add_tail(&stitch_node->node, &lbr_stitch->lists); 2560 } 2561 2562 return true; 2563 } 2564 2565 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr) 2566 { 2567 if (thread->lbr_stitch) 2568 return true; 2569 2570 thread->lbr_stitch = zalloc(sizeof(*thread->lbr_stitch)); 2571 if (!thread->lbr_stitch) 2572 goto err; 2573 2574 thread->lbr_stitch->prev_lbr_cursor = calloc(max_lbr + 1, sizeof(struct callchain_cursor_node)); 2575 if (!thread->lbr_stitch->prev_lbr_cursor) 2576 goto free_lbr_stitch; 2577 2578 INIT_LIST_HEAD(&thread->lbr_stitch->lists); 2579 INIT_LIST_HEAD(&thread->lbr_stitch->free_lists); 2580 2581 return true; 2582 2583 free_lbr_stitch: 2584 zfree(&thread->lbr_stitch); 2585 err: 2586 pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n"); 2587 thread->lbr_stitch_enable = false; 2588 return false; 2589 } 2590 2591 /* 2592 * Resolve LBR callstack chain sample 2593 * Return: 2594 * 1 on success get LBR callchain information 2595 * 0 no available LBR callchain information, should try fp 2596 * negative error code on other errors. 2597 */ 2598 static int resolve_lbr_callchain_sample(struct thread *thread, 2599 struct callchain_cursor *cursor, 2600 struct perf_sample *sample, 2601 struct symbol **parent, 2602 struct addr_location *root_al, 2603 int max_stack, 2604 unsigned int max_lbr) 2605 { 2606 bool callee = (callchain_param.order == ORDER_CALLEE); 2607 struct ip_callchain *chain = sample->callchain; 2608 int chain_nr = min(max_stack, (int)chain->nr), i; 2609 struct lbr_stitch *lbr_stitch; 2610 bool stitched_lbr = false; 2611 u64 branch_from = 0; 2612 int err; 2613 2614 for (i = 0; i < chain_nr; i++) { 2615 if (chain->ips[i] == PERF_CONTEXT_USER) 2616 break; 2617 } 2618 2619 /* LBR only affects the user callchain */ 2620 if (i == chain_nr) 2621 return 0; 2622 2623 if (thread->lbr_stitch_enable && !sample->no_hw_idx && 2624 (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) { 2625 lbr_stitch = thread->lbr_stitch; 2626 2627 stitched_lbr = has_stitched_lbr(thread, sample, 2628 &lbr_stitch->prev_sample, 2629 max_lbr, callee); 2630 2631 if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) { 2632 list_replace_init(&lbr_stitch->lists, 2633 &lbr_stitch->free_lists); 2634 } 2635 memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample)); 2636 } 2637 2638 if (callee) { 2639 /* Add kernel ip */ 2640 err = lbr_callchain_add_kernel_ip(thread, cursor, sample, 2641 parent, root_al, branch_from, 2642 true, i); 2643 if (err) 2644 goto error; 2645 2646 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent, 2647 root_al, &branch_from, true); 2648 if (err) 2649 goto error; 2650 2651 if (stitched_lbr) { 2652 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor); 2653 if (err) 2654 goto error; 2655 } 2656 2657 } else { 2658 if (stitched_lbr) { 2659 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor); 2660 if (err) 2661 goto error; 2662 } 2663 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent, 2664 root_al, &branch_from, false); 2665 if (err) 2666 goto error; 2667 2668 /* Add kernel ip */ 2669 err = lbr_callchain_add_kernel_ip(thread, cursor, sample, 2670 parent, root_al, branch_from, 2671 false, i); 2672 if (err) 2673 goto error; 2674 } 2675 return 1; 2676 2677 error: 2678 return (err < 0) ? err : 0; 2679 } 2680 2681 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread, 2682 struct callchain_cursor *cursor, 2683 struct symbol **parent, 2684 struct addr_location *root_al, 2685 u8 *cpumode, int ent) 2686 { 2687 int err = 0; 2688 2689 while (--ent >= 0) { 2690 u64 ip = chain->ips[ent]; 2691 2692 if (ip >= PERF_CONTEXT_MAX) { 2693 err = add_callchain_ip(thread, cursor, parent, 2694 root_al, cpumode, ip, 2695 false, NULL, NULL, 0); 2696 break; 2697 } 2698 } 2699 return err; 2700 } 2701 2702 static int thread__resolve_callchain_sample(struct thread *thread, 2703 struct callchain_cursor *cursor, 2704 struct evsel *evsel, 2705 struct perf_sample *sample, 2706 struct symbol **parent, 2707 struct addr_location *root_al, 2708 int max_stack) 2709 { 2710 struct branch_stack *branch = sample->branch_stack; 2711 struct branch_entry *entries = perf_sample__branch_entries(sample); 2712 struct ip_callchain *chain = sample->callchain; 2713 int chain_nr = 0; 2714 u8 cpumode = PERF_RECORD_MISC_USER; 2715 int i, j, err, nr_entries; 2716 int skip_idx = -1; 2717 int first_call = 0; 2718 2719 if (chain) 2720 chain_nr = chain->nr; 2721 2722 if (evsel__has_branch_callstack(evsel)) { 2723 struct perf_env *env = evsel__env(evsel); 2724 2725 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent, 2726 root_al, max_stack, 2727 !env ? 0 : env->max_branches); 2728 if (err) 2729 return (err < 0) ? err : 0; 2730 } 2731 2732 /* 2733 * Based on DWARF debug information, some architectures skip 2734 * a callchain entry saved by the kernel. 2735 */ 2736 skip_idx = arch_skip_callchain_idx(thread, chain); 2737 2738 /* 2739 * Add branches to call stack for easier browsing. This gives 2740 * more context for a sample than just the callers. 2741 * 2742 * This uses individual histograms of paths compared to the 2743 * aggregated histograms the normal LBR mode uses. 2744 * 2745 * Limitations for now: 2746 * - No extra filters 2747 * - No annotations (should annotate somehow) 2748 */ 2749 2750 if (branch && callchain_param.branch_callstack) { 2751 int nr = min(max_stack, (int)branch->nr); 2752 struct branch_entry be[nr]; 2753 struct iterations iter[nr]; 2754 2755 if (branch->nr > PERF_MAX_BRANCH_DEPTH) { 2756 pr_warning("corrupted branch chain. skipping...\n"); 2757 goto check_calls; 2758 } 2759 2760 for (i = 0; i < nr; i++) { 2761 if (callchain_param.order == ORDER_CALLEE) { 2762 be[i] = entries[i]; 2763 2764 if (chain == NULL) 2765 continue; 2766 2767 /* 2768 * Check for overlap into the callchain. 2769 * The return address is one off compared to 2770 * the branch entry. To adjust for this 2771 * assume the calling instruction is not longer 2772 * than 8 bytes. 2773 */ 2774 if (i == skip_idx || 2775 chain->ips[first_call] >= PERF_CONTEXT_MAX) 2776 first_call++; 2777 else if (be[i].from < chain->ips[first_call] && 2778 be[i].from >= chain->ips[first_call] - 8) 2779 first_call++; 2780 } else 2781 be[i] = entries[branch->nr - i - 1]; 2782 } 2783 2784 memset(iter, 0, sizeof(struct iterations) * nr); 2785 nr = remove_loops(be, nr, iter); 2786 2787 for (i = 0; i < nr; i++) { 2788 err = add_callchain_ip(thread, cursor, parent, 2789 root_al, 2790 NULL, be[i].to, 2791 true, &be[i].flags, 2792 NULL, be[i].from); 2793 2794 if (!err) 2795 err = add_callchain_ip(thread, cursor, parent, root_al, 2796 NULL, be[i].from, 2797 true, &be[i].flags, 2798 &iter[i], 0); 2799 if (err == -EINVAL) 2800 break; 2801 if (err) 2802 return err; 2803 } 2804 2805 if (chain_nr == 0) 2806 return 0; 2807 2808 chain_nr -= nr; 2809 } 2810 2811 check_calls: 2812 if (chain && callchain_param.order != ORDER_CALLEE) { 2813 err = find_prev_cpumode(chain, thread, cursor, parent, root_al, 2814 &cpumode, chain->nr - first_call); 2815 if (err) 2816 return (err < 0) ? err : 0; 2817 } 2818 for (i = first_call, nr_entries = 0; 2819 i < chain_nr && nr_entries < max_stack; i++) { 2820 u64 ip; 2821 2822 if (callchain_param.order == ORDER_CALLEE) 2823 j = i; 2824 else 2825 j = chain->nr - i - 1; 2826 2827 #ifdef HAVE_SKIP_CALLCHAIN_IDX 2828 if (j == skip_idx) 2829 continue; 2830 #endif 2831 ip = chain->ips[j]; 2832 if (ip < PERF_CONTEXT_MAX) 2833 ++nr_entries; 2834 else if (callchain_param.order != ORDER_CALLEE) { 2835 err = find_prev_cpumode(chain, thread, cursor, parent, 2836 root_al, &cpumode, j); 2837 if (err) 2838 return (err < 0) ? err : 0; 2839 continue; 2840 } 2841 2842 err = add_callchain_ip(thread, cursor, parent, 2843 root_al, &cpumode, ip, 2844 false, NULL, NULL, 0); 2845 2846 if (err) 2847 return (err < 0) ? err : 0; 2848 } 2849 2850 return 0; 2851 } 2852 2853 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip) 2854 { 2855 struct symbol *sym = ms->sym; 2856 struct map *map = ms->map; 2857 struct inline_node *inline_node; 2858 struct inline_list *ilist; 2859 u64 addr; 2860 int ret = 1; 2861 2862 if (!symbol_conf.inline_name || !map || !sym) 2863 return ret; 2864 2865 addr = map__map_ip(map, ip); 2866 addr = map__rip_2objdump(map, addr); 2867 2868 inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr); 2869 if (!inline_node) { 2870 inline_node = dso__parse_addr_inlines(map->dso, addr, sym); 2871 if (!inline_node) 2872 return ret; 2873 inlines__tree_insert(&map->dso->inlined_nodes, inline_node); 2874 } 2875 2876 list_for_each_entry(ilist, &inline_node->val, list) { 2877 struct map_symbol ilist_ms = { 2878 .maps = ms->maps, 2879 .map = map, 2880 .sym = ilist->symbol, 2881 }; 2882 ret = callchain_cursor_append(cursor, ip, &ilist_ms, false, 2883 NULL, 0, 0, 0, ilist->srcline); 2884 2885 if (ret != 0) 2886 return ret; 2887 } 2888 2889 return ret; 2890 } 2891 2892 static int unwind_entry(struct unwind_entry *entry, void *arg) 2893 { 2894 struct callchain_cursor *cursor = arg; 2895 const char *srcline = NULL; 2896 u64 addr = entry->ip; 2897 2898 if (symbol_conf.hide_unresolved && entry->ms.sym == NULL) 2899 return 0; 2900 2901 if (append_inlines(cursor, &entry->ms, entry->ip) == 0) 2902 return 0; 2903 2904 /* 2905 * Convert entry->ip from a virtual address to an offset in 2906 * its corresponding binary. 2907 */ 2908 if (entry->ms.map) 2909 addr = map__map_ip(entry->ms.map, entry->ip); 2910 2911 srcline = callchain_srcline(&entry->ms, addr); 2912 return callchain_cursor_append(cursor, entry->ip, &entry->ms, 2913 false, NULL, 0, 0, 0, srcline); 2914 } 2915 2916 static int thread__resolve_callchain_unwind(struct thread *thread, 2917 struct callchain_cursor *cursor, 2918 struct evsel *evsel, 2919 struct perf_sample *sample, 2920 int max_stack) 2921 { 2922 /* Can we do dwarf post unwind? */ 2923 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) && 2924 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER))) 2925 return 0; 2926 2927 /* Bail out if nothing was captured. */ 2928 if ((!sample->user_regs.regs) || 2929 (!sample->user_stack.size)) 2930 return 0; 2931 2932 return unwind__get_entries(unwind_entry, cursor, 2933 thread, sample, max_stack); 2934 } 2935 2936 int thread__resolve_callchain(struct thread *thread, 2937 struct callchain_cursor *cursor, 2938 struct evsel *evsel, 2939 struct perf_sample *sample, 2940 struct symbol **parent, 2941 struct addr_location *root_al, 2942 int max_stack) 2943 { 2944 int ret = 0; 2945 2946 callchain_cursor_reset(cursor); 2947 2948 if (callchain_param.order == ORDER_CALLEE) { 2949 ret = thread__resolve_callchain_sample(thread, cursor, 2950 evsel, sample, 2951 parent, root_al, 2952 max_stack); 2953 if (ret) 2954 return ret; 2955 ret = thread__resolve_callchain_unwind(thread, cursor, 2956 evsel, sample, 2957 max_stack); 2958 } else { 2959 ret = thread__resolve_callchain_unwind(thread, cursor, 2960 evsel, sample, 2961 max_stack); 2962 if (ret) 2963 return ret; 2964 ret = thread__resolve_callchain_sample(thread, cursor, 2965 evsel, sample, 2966 parent, root_al, 2967 max_stack); 2968 } 2969 2970 return ret; 2971 } 2972 2973 int machine__for_each_thread(struct machine *machine, 2974 int (*fn)(struct thread *thread, void *p), 2975 void *priv) 2976 { 2977 struct threads *threads; 2978 struct rb_node *nd; 2979 struct thread *thread; 2980 int rc = 0; 2981 int i; 2982 2983 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 2984 threads = &machine->threads[i]; 2985 for (nd = rb_first_cached(&threads->entries); nd; 2986 nd = rb_next(nd)) { 2987 thread = rb_entry(nd, struct thread, rb_node); 2988 rc = fn(thread, priv); 2989 if (rc != 0) 2990 return rc; 2991 } 2992 2993 list_for_each_entry(thread, &threads->dead, node) { 2994 rc = fn(thread, priv); 2995 if (rc != 0) 2996 return rc; 2997 } 2998 } 2999 return rc; 3000 } 3001 3002 int machines__for_each_thread(struct machines *machines, 3003 int (*fn)(struct thread *thread, void *p), 3004 void *priv) 3005 { 3006 struct rb_node *nd; 3007 int rc = 0; 3008 3009 rc = machine__for_each_thread(&machines->host, fn, priv); 3010 if (rc != 0) 3011 return rc; 3012 3013 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 3014 struct machine *machine = rb_entry(nd, struct machine, rb_node); 3015 3016 rc = machine__for_each_thread(machine, fn, priv); 3017 if (rc != 0) 3018 return rc; 3019 } 3020 return rc; 3021 } 3022 3023 pid_t machine__get_current_tid(struct machine *machine, int cpu) 3024 { 3025 int nr_cpus = min(machine->env->nr_cpus_avail, MAX_NR_CPUS); 3026 3027 if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid) 3028 return -1; 3029 3030 return machine->current_tid[cpu]; 3031 } 3032 3033 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid, 3034 pid_t tid) 3035 { 3036 struct thread *thread; 3037 int nr_cpus = min(machine->env->nr_cpus_avail, MAX_NR_CPUS); 3038 3039 if (cpu < 0) 3040 return -EINVAL; 3041 3042 if (!machine->current_tid) { 3043 int i; 3044 3045 machine->current_tid = calloc(nr_cpus, sizeof(pid_t)); 3046 if (!machine->current_tid) 3047 return -ENOMEM; 3048 for (i = 0; i < nr_cpus; i++) 3049 machine->current_tid[i] = -1; 3050 } 3051 3052 if (cpu >= nr_cpus) { 3053 pr_err("Requested CPU %d too large. ", cpu); 3054 pr_err("Consider raising MAX_NR_CPUS\n"); 3055 return -EINVAL; 3056 } 3057 3058 machine->current_tid[cpu] = tid; 3059 3060 thread = machine__findnew_thread(machine, pid, tid); 3061 if (!thread) 3062 return -ENOMEM; 3063 3064 thread->cpu = cpu; 3065 thread__put(thread); 3066 3067 return 0; 3068 } 3069 3070 /* 3071 * Compares the raw arch string. N.B. see instead perf_env__arch() if a 3072 * normalized arch is needed. 3073 */ 3074 bool machine__is(struct machine *machine, const char *arch) 3075 { 3076 return machine && !strcmp(perf_env__raw_arch(machine->env), arch); 3077 } 3078 3079 int machine__nr_cpus_avail(struct machine *machine) 3080 { 3081 return machine ? perf_env__nr_cpus_avail(machine->env) : 0; 3082 } 3083 3084 int machine__get_kernel_start(struct machine *machine) 3085 { 3086 struct map *map = machine__kernel_map(machine); 3087 int err = 0; 3088 3089 /* 3090 * The only addresses above 2^63 are kernel addresses of a 64-bit 3091 * kernel. Note that addresses are unsigned so that on a 32-bit system 3092 * all addresses including kernel addresses are less than 2^32. In 3093 * that case (32-bit system), if the kernel mapping is unknown, all 3094 * addresses will be assumed to be in user space - see 3095 * machine__kernel_ip(). 3096 */ 3097 machine->kernel_start = 1ULL << 63; 3098 if (map) { 3099 err = map__load(map); 3100 /* 3101 * On x86_64, PTI entry trampolines are less than the 3102 * start of kernel text, but still above 2^63. So leave 3103 * kernel_start = 1ULL << 63 for x86_64. 3104 */ 3105 if (!err && !machine__is(machine, "x86_64")) 3106 machine->kernel_start = map->start; 3107 } 3108 return err; 3109 } 3110 3111 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr) 3112 { 3113 u8 addr_cpumode = cpumode; 3114 bool kernel_ip; 3115 3116 if (!machine->single_address_space) 3117 goto out; 3118 3119 kernel_ip = machine__kernel_ip(machine, addr); 3120 switch (cpumode) { 3121 case PERF_RECORD_MISC_KERNEL: 3122 case PERF_RECORD_MISC_USER: 3123 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL : 3124 PERF_RECORD_MISC_USER; 3125 break; 3126 case PERF_RECORD_MISC_GUEST_KERNEL: 3127 case PERF_RECORD_MISC_GUEST_USER: 3128 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL : 3129 PERF_RECORD_MISC_GUEST_USER; 3130 break; 3131 default: 3132 break; 3133 } 3134 out: 3135 return addr_cpumode; 3136 } 3137 3138 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id) 3139 { 3140 return dsos__findnew_id(&machine->dsos, filename, id); 3141 } 3142 3143 struct dso *machine__findnew_dso(struct machine *machine, const char *filename) 3144 { 3145 return machine__findnew_dso_id(machine, filename, NULL); 3146 } 3147 3148 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp) 3149 { 3150 struct machine *machine = vmachine; 3151 struct map *map; 3152 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map); 3153 3154 if (sym == NULL) 3155 return NULL; 3156 3157 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL; 3158 *addrp = map->unmap_ip(map, sym->start); 3159 return sym->name; 3160 } 3161 3162 int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv) 3163 { 3164 struct dso *pos; 3165 int err = 0; 3166 3167 list_for_each_entry(pos, &machine->dsos.head, node) { 3168 if (fn(pos, machine, priv)) 3169 err = -1; 3170 } 3171 return err; 3172 } 3173