xref: /openbmc/linux/tools/perf/util/machine.c (revision 76ce0265)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include <stdlib.h>
7 #include "callchain.h"
8 #include "debug.h"
9 #include "dso.h"
10 #include "env.h"
11 #include "event.h"
12 #include "evsel.h"
13 #include "hist.h"
14 #include "machine.h"
15 #include "map.h"
16 #include "map_symbol.h"
17 #include "branch.h"
18 #include "mem-events.h"
19 #include "srcline.h"
20 #include "symbol.h"
21 #include "sort.h"
22 #include "strlist.h"
23 #include "target.h"
24 #include "thread.h"
25 #include "util.h"
26 #include "vdso.h"
27 #include <stdbool.h>
28 #include <sys/types.h>
29 #include <sys/stat.h>
30 #include <unistd.h>
31 #include "unwind.h"
32 #include "linux/hash.h"
33 #include "asm/bug.h"
34 #include "bpf-event.h"
35 #include <internal/lib.h> // page_size
36 
37 #include <linux/ctype.h>
38 #include <symbol/kallsyms.h>
39 #include <linux/mman.h>
40 #include <linux/string.h>
41 #include <linux/zalloc.h>
42 
43 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
44 
45 static struct dso *machine__kernel_dso(struct machine *machine)
46 {
47 	return machine->vmlinux_map->dso;
48 }
49 
50 static void dsos__init(struct dsos *dsos)
51 {
52 	INIT_LIST_HEAD(&dsos->head);
53 	dsos->root = RB_ROOT;
54 	init_rwsem(&dsos->lock);
55 }
56 
57 static void machine__threads_init(struct machine *machine)
58 {
59 	int i;
60 
61 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
62 		struct threads *threads = &machine->threads[i];
63 		threads->entries = RB_ROOT_CACHED;
64 		init_rwsem(&threads->lock);
65 		threads->nr = 0;
66 		INIT_LIST_HEAD(&threads->dead);
67 		threads->last_match = NULL;
68 	}
69 }
70 
71 static int machine__set_mmap_name(struct machine *machine)
72 {
73 	if (machine__is_host(machine))
74 		machine->mmap_name = strdup("[kernel.kallsyms]");
75 	else if (machine__is_default_guest(machine))
76 		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
77 	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
78 			  machine->pid) < 0)
79 		machine->mmap_name = NULL;
80 
81 	return machine->mmap_name ? 0 : -ENOMEM;
82 }
83 
84 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
85 {
86 	int err = -ENOMEM;
87 
88 	memset(machine, 0, sizeof(*machine));
89 	maps__init(&machine->kmaps, machine);
90 	RB_CLEAR_NODE(&machine->rb_node);
91 	dsos__init(&machine->dsos);
92 
93 	machine__threads_init(machine);
94 
95 	machine->vdso_info = NULL;
96 	machine->env = NULL;
97 
98 	machine->pid = pid;
99 
100 	machine->id_hdr_size = 0;
101 	machine->kptr_restrict_warned = false;
102 	machine->comm_exec = false;
103 	machine->kernel_start = 0;
104 	machine->vmlinux_map = NULL;
105 
106 	machine->root_dir = strdup(root_dir);
107 	if (machine->root_dir == NULL)
108 		return -ENOMEM;
109 
110 	if (machine__set_mmap_name(machine))
111 		goto out;
112 
113 	if (pid != HOST_KERNEL_ID) {
114 		struct thread *thread = machine__findnew_thread(machine, -1,
115 								pid);
116 		char comm[64];
117 
118 		if (thread == NULL)
119 			goto out;
120 
121 		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
122 		thread__set_comm(thread, comm, 0);
123 		thread__put(thread);
124 	}
125 
126 	machine->current_tid = NULL;
127 	err = 0;
128 
129 out:
130 	if (err) {
131 		zfree(&machine->root_dir);
132 		zfree(&machine->mmap_name);
133 	}
134 	return 0;
135 }
136 
137 struct machine *machine__new_host(void)
138 {
139 	struct machine *machine = malloc(sizeof(*machine));
140 
141 	if (machine != NULL) {
142 		machine__init(machine, "", HOST_KERNEL_ID);
143 
144 		if (machine__create_kernel_maps(machine) < 0)
145 			goto out_delete;
146 	}
147 
148 	return machine;
149 out_delete:
150 	free(machine);
151 	return NULL;
152 }
153 
154 struct machine *machine__new_kallsyms(void)
155 {
156 	struct machine *machine = machine__new_host();
157 	/*
158 	 * FIXME:
159 	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
160 	 *    ask for not using the kcore parsing code, once this one is fixed
161 	 *    to create a map per module.
162 	 */
163 	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
164 		machine__delete(machine);
165 		machine = NULL;
166 	}
167 
168 	return machine;
169 }
170 
171 static void dsos__purge(struct dsos *dsos)
172 {
173 	struct dso *pos, *n;
174 
175 	down_write(&dsos->lock);
176 
177 	list_for_each_entry_safe(pos, n, &dsos->head, node) {
178 		RB_CLEAR_NODE(&pos->rb_node);
179 		pos->root = NULL;
180 		list_del_init(&pos->node);
181 		dso__put(pos);
182 	}
183 
184 	up_write(&dsos->lock);
185 }
186 
187 static void dsos__exit(struct dsos *dsos)
188 {
189 	dsos__purge(dsos);
190 	exit_rwsem(&dsos->lock);
191 }
192 
193 void machine__delete_threads(struct machine *machine)
194 {
195 	struct rb_node *nd;
196 	int i;
197 
198 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
199 		struct threads *threads = &machine->threads[i];
200 		down_write(&threads->lock);
201 		nd = rb_first_cached(&threads->entries);
202 		while (nd) {
203 			struct thread *t = rb_entry(nd, struct thread, rb_node);
204 
205 			nd = rb_next(nd);
206 			__machine__remove_thread(machine, t, false);
207 		}
208 		up_write(&threads->lock);
209 	}
210 }
211 
212 void machine__exit(struct machine *machine)
213 {
214 	int i;
215 
216 	if (machine == NULL)
217 		return;
218 
219 	machine__destroy_kernel_maps(machine);
220 	maps__exit(&machine->kmaps);
221 	dsos__exit(&machine->dsos);
222 	machine__exit_vdso(machine);
223 	zfree(&machine->root_dir);
224 	zfree(&machine->mmap_name);
225 	zfree(&machine->current_tid);
226 
227 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
228 		struct threads *threads = &machine->threads[i];
229 		struct thread *thread, *n;
230 		/*
231 		 * Forget about the dead, at this point whatever threads were
232 		 * left in the dead lists better have a reference count taken
233 		 * by who is using them, and then, when they drop those references
234 		 * and it finally hits zero, thread__put() will check and see that
235 		 * its not in the dead threads list and will not try to remove it
236 		 * from there, just calling thread__delete() straight away.
237 		 */
238 		list_for_each_entry_safe(thread, n, &threads->dead, node)
239 			list_del_init(&thread->node);
240 
241 		exit_rwsem(&threads->lock);
242 	}
243 }
244 
245 void machine__delete(struct machine *machine)
246 {
247 	if (machine) {
248 		machine__exit(machine);
249 		free(machine);
250 	}
251 }
252 
253 void machines__init(struct machines *machines)
254 {
255 	machine__init(&machines->host, "", HOST_KERNEL_ID);
256 	machines->guests = RB_ROOT_CACHED;
257 }
258 
259 void machines__exit(struct machines *machines)
260 {
261 	machine__exit(&machines->host);
262 	/* XXX exit guest */
263 }
264 
265 struct machine *machines__add(struct machines *machines, pid_t pid,
266 			      const char *root_dir)
267 {
268 	struct rb_node **p = &machines->guests.rb_root.rb_node;
269 	struct rb_node *parent = NULL;
270 	struct machine *pos, *machine = malloc(sizeof(*machine));
271 	bool leftmost = true;
272 
273 	if (machine == NULL)
274 		return NULL;
275 
276 	if (machine__init(machine, root_dir, pid) != 0) {
277 		free(machine);
278 		return NULL;
279 	}
280 
281 	while (*p != NULL) {
282 		parent = *p;
283 		pos = rb_entry(parent, struct machine, rb_node);
284 		if (pid < pos->pid)
285 			p = &(*p)->rb_left;
286 		else {
287 			p = &(*p)->rb_right;
288 			leftmost = false;
289 		}
290 	}
291 
292 	rb_link_node(&machine->rb_node, parent, p);
293 	rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
294 
295 	return machine;
296 }
297 
298 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
299 {
300 	struct rb_node *nd;
301 
302 	machines->host.comm_exec = comm_exec;
303 
304 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
305 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
306 
307 		machine->comm_exec = comm_exec;
308 	}
309 }
310 
311 struct machine *machines__find(struct machines *machines, pid_t pid)
312 {
313 	struct rb_node **p = &machines->guests.rb_root.rb_node;
314 	struct rb_node *parent = NULL;
315 	struct machine *machine;
316 	struct machine *default_machine = NULL;
317 
318 	if (pid == HOST_KERNEL_ID)
319 		return &machines->host;
320 
321 	while (*p != NULL) {
322 		parent = *p;
323 		machine = rb_entry(parent, struct machine, rb_node);
324 		if (pid < machine->pid)
325 			p = &(*p)->rb_left;
326 		else if (pid > machine->pid)
327 			p = &(*p)->rb_right;
328 		else
329 			return machine;
330 		if (!machine->pid)
331 			default_machine = machine;
332 	}
333 
334 	return default_machine;
335 }
336 
337 struct machine *machines__findnew(struct machines *machines, pid_t pid)
338 {
339 	char path[PATH_MAX];
340 	const char *root_dir = "";
341 	struct machine *machine = machines__find(machines, pid);
342 
343 	if (machine && (machine->pid == pid))
344 		goto out;
345 
346 	if ((pid != HOST_KERNEL_ID) &&
347 	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
348 	    (symbol_conf.guestmount)) {
349 		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
350 		if (access(path, R_OK)) {
351 			static struct strlist *seen;
352 
353 			if (!seen)
354 				seen = strlist__new(NULL, NULL);
355 
356 			if (!strlist__has_entry(seen, path)) {
357 				pr_err("Can't access file %s\n", path);
358 				strlist__add(seen, path);
359 			}
360 			machine = NULL;
361 			goto out;
362 		}
363 		root_dir = path;
364 	}
365 
366 	machine = machines__add(machines, pid, root_dir);
367 out:
368 	return machine;
369 }
370 
371 void machines__process_guests(struct machines *machines,
372 			      machine__process_t process, void *data)
373 {
374 	struct rb_node *nd;
375 
376 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
377 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
378 		process(pos, data);
379 	}
380 }
381 
382 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
383 {
384 	struct rb_node *node;
385 	struct machine *machine;
386 
387 	machines->host.id_hdr_size = id_hdr_size;
388 
389 	for (node = rb_first_cached(&machines->guests); node;
390 	     node = rb_next(node)) {
391 		machine = rb_entry(node, struct machine, rb_node);
392 		machine->id_hdr_size = id_hdr_size;
393 	}
394 
395 	return;
396 }
397 
398 static void machine__update_thread_pid(struct machine *machine,
399 				       struct thread *th, pid_t pid)
400 {
401 	struct thread *leader;
402 
403 	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
404 		return;
405 
406 	th->pid_ = pid;
407 
408 	if (th->pid_ == th->tid)
409 		return;
410 
411 	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
412 	if (!leader)
413 		goto out_err;
414 
415 	if (!leader->maps)
416 		leader->maps = maps__new(machine);
417 
418 	if (!leader->maps)
419 		goto out_err;
420 
421 	if (th->maps == leader->maps)
422 		return;
423 
424 	if (th->maps) {
425 		/*
426 		 * Maps are created from MMAP events which provide the pid and
427 		 * tid.  Consequently there never should be any maps on a thread
428 		 * with an unknown pid.  Just print an error if there are.
429 		 */
430 		if (!maps__empty(th->maps))
431 			pr_err("Discarding thread maps for %d:%d\n",
432 			       th->pid_, th->tid);
433 		maps__put(th->maps);
434 	}
435 
436 	th->maps = maps__get(leader->maps);
437 out_put:
438 	thread__put(leader);
439 	return;
440 out_err:
441 	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
442 	goto out_put;
443 }
444 
445 /*
446  * Front-end cache - TID lookups come in blocks,
447  * so most of the time we dont have to look up
448  * the full rbtree:
449  */
450 static struct thread*
451 __threads__get_last_match(struct threads *threads, struct machine *machine,
452 			  int pid, int tid)
453 {
454 	struct thread *th;
455 
456 	th = threads->last_match;
457 	if (th != NULL) {
458 		if (th->tid == tid) {
459 			machine__update_thread_pid(machine, th, pid);
460 			return thread__get(th);
461 		}
462 
463 		threads->last_match = NULL;
464 	}
465 
466 	return NULL;
467 }
468 
469 static struct thread*
470 threads__get_last_match(struct threads *threads, struct machine *machine,
471 			int pid, int tid)
472 {
473 	struct thread *th = NULL;
474 
475 	if (perf_singlethreaded)
476 		th = __threads__get_last_match(threads, machine, pid, tid);
477 
478 	return th;
479 }
480 
481 static void
482 __threads__set_last_match(struct threads *threads, struct thread *th)
483 {
484 	threads->last_match = th;
485 }
486 
487 static void
488 threads__set_last_match(struct threads *threads, struct thread *th)
489 {
490 	if (perf_singlethreaded)
491 		__threads__set_last_match(threads, th);
492 }
493 
494 /*
495  * Caller must eventually drop thread->refcnt returned with a successful
496  * lookup/new thread inserted.
497  */
498 static struct thread *____machine__findnew_thread(struct machine *machine,
499 						  struct threads *threads,
500 						  pid_t pid, pid_t tid,
501 						  bool create)
502 {
503 	struct rb_node **p = &threads->entries.rb_root.rb_node;
504 	struct rb_node *parent = NULL;
505 	struct thread *th;
506 	bool leftmost = true;
507 
508 	th = threads__get_last_match(threads, machine, pid, tid);
509 	if (th)
510 		return th;
511 
512 	while (*p != NULL) {
513 		parent = *p;
514 		th = rb_entry(parent, struct thread, rb_node);
515 
516 		if (th->tid == tid) {
517 			threads__set_last_match(threads, th);
518 			machine__update_thread_pid(machine, th, pid);
519 			return thread__get(th);
520 		}
521 
522 		if (tid < th->tid)
523 			p = &(*p)->rb_left;
524 		else {
525 			p = &(*p)->rb_right;
526 			leftmost = false;
527 		}
528 	}
529 
530 	if (!create)
531 		return NULL;
532 
533 	th = thread__new(pid, tid);
534 	if (th != NULL) {
535 		rb_link_node(&th->rb_node, parent, p);
536 		rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
537 
538 		/*
539 		 * We have to initialize maps separately after rb tree is updated.
540 		 *
541 		 * The reason is that we call machine__findnew_thread
542 		 * within thread__init_maps to find the thread
543 		 * leader and that would screwed the rb tree.
544 		 */
545 		if (thread__init_maps(th, machine)) {
546 			rb_erase_cached(&th->rb_node, &threads->entries);
547 			RB_CLEAR_NODE(&th->rb_node);
548 			thread__put(th);
549 			return NULL;
550 		}
551 		/*
552 		 * It is now in the rbtree, get a ref
553 		 */
554 		thread__get(th);
555 		threads__set_last_match(threads, th);
556 		++threads->nr;
557 	}
558 
559 	return th;
560 }
561 
562 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
563 {
564 	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
565 }
566 
567 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
568 				       pid_t tid)
569 {
570 	struct threads *threads = machine__threads(machine, tid);
571 	struct thread *th;
572 
573 	down_write(&threads->lock);
574 	th = __machine__findnew_thread(machine, pid, tid);
575 	up_write(&threads->lock);
576 	return th;
577 }
578 
579 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
580 				    pid_t tid)
581 {
582 	struct threads *threads = machine__threads(machine, tid);
583 	struct thread *th;
584 
585 	down_read(&threads->lock);
586 	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
587 	up_read(&threads->lock);
588 	return th;
589 }
590 
591 struct comm *machine__thread_exec_comm(struct machine *machine,
592 				       struct thread *thread)
593 {
594 	if (machine->comm_exec)
595 		return thread__exec_comm(thread);
596 	else
597 		return thread__comm(thread);
598 }
599 
600 int machine__process_comm_event(struct machine *machine, union perf_event *event,
601 				struct perf_sample *sample)
602 {
603 	struct thread *thread = machine__findnew_thread(machine,
604 							event->comm.pid,
605 							event->comm.tid);
606 	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
607 	int err = 0;
608 
609 	if (exec)
610 		machine->comm_exec = true;
611 
612 	if (dump_trace)
613 		perf_event__fprintf_comm(event, stdout);
614 
615 	if (thread == NULL ||
616 	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
617 		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
618 		err = -1;
619 	}
620 
621 	thread__put(thread);
622 
623 	return err;
624 }
625 
626 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
627 				      union perf_event *event,
628 				      struct perf_sample *sample __maybe_unused)
629 {
630 	struct thread *thread = machine__findnew_thread(machine,
631 							event->namespaces.pid,
632 							event->namespaces.tid);
633 	int err = 0;
634 
635 	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
636 		  "\nWARNING: kernel seems to support more namespaces than perf"
637 		  " tool.\nTry updating the perf tool..\n\n");
638 
639 	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
640 		  "\nWARNING: perf tool seems to support more namespaces than"
641 		  " the kernel.\nTry updating the kernel..\n\n");
642 
643 	if (dump_trace)
644 		perf_event__fprintf_namespaces(event, stdout);
645 
646 	if (thread == NULL ||
647 	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
648 		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
649 		err = -1;
650 	}
651 
652 	thread__put(thread);
653 
654 	return err;
655 }
656 
657 int machine__process_lost_event(struct machine *machine __maybe_unused,
658 				union perf_event *event, struct perf_sample *sample __maybe_unused)
659 {
660 	dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
661 		    event->lost.id, event->lost.lost);
662 	return 0;
663 }
664 
665 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
666 					union perf_event *event, struct perf_sample *sample)
667 {
668 	dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
669 		    sample->id, event->lost_samples.lost);
670 	return 0;
671 }
672 
673 static struct dso *machine__findnew_module_dso(struct machine *machine,
674 					       struct kmod_path *m,
675 					       const char *filename)
676 {
677 	struct dso *dso;
678 
679 	down_write(&machine->dsos.lock);
680 
681 	dso = __dsos__find(&machine->dsos, m->name, true);
682 	if (!dso) {
683 		dso = __dsos__addnew(&machine->dsos, m->name);
684 		if (dso == NULL)
685 			goto out_unlock;
686 
687 		dso__set_module_info(dso, m, machine);
688 		dso__set_long_name(dso, strdup(filename), true);
689 		dso->kernel = DSO_TYPE_KERNEL;
690 	}
691 
692 	dso__get(dso);
693 out_unlock:
694 	up_write(&machine->dsos.lock);
695 	return dso;
696 }
697 
698 int machine__process_aux_event(struct machine *machine __maybe_unused,
699 			       union perf_event *event)
700 {
701 	if (dump_trace)
702 		perf_event__fprintf_aux(event, stdout);
703 	return 0;
704 }
705 
706 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
707 					union perf_event *event)
708 {
709 	if (dump_trace)
710 		perf_event__fprintf_itrace_start(event, stdout);
711 	return 0;
712 }
713 
714 int machine__process_switch_event(struct machine *machine __maybe_unused,
715 				  union perf_event *event)
716 {
717 	if (dump_trace)
718 		perf_event__fprintf_switch(event, stdout);
719 	return 0;
720 }
721 
722 static int machine__process_ksymbol_register(struct machine *machine,
723 					     union perf_event *event,
724 					     struct perf_sample *sample __maybe_unused)
725 {
726 	struct symbol *sym;
727 	struct map *map = maps__find(&machine->kmaps, event->ksymbol.addr);
728 
729 	if (!map) {
730 		struct dso *dso = dso__new(event->ksymbol.name);
731 
732 		if (dso) {
733 			dso->kernel = DSO_TYPE_KERNEL;
734 			map = map__new2(0, dso);
735 		}
736 
737 		if (!dso || !map) {
738 			dso__put(dso);
739 			return -ENOMEM;
740 		}
741 
742 		map->start = event->ksymbol.addr;
743 		map->end = map->start + event->ksymbol.len;
744 		maps__insert(&machine->kmaps, map);
745 	}
746 
747 	sym = symbol__new(map->map_ip(map, map->start),
748 			  event->ksymbol.len,
749 			  0, 0, event->ksymbol.name);
750 	if (!sym)
751 		return -ENOMEM;
752 	dso__insert_symbol(map->dso, sym);
753 	return 0;
754 }
755 
756 static int machine__process_ksymbol_unregister(struct machine *machine,
757 					       union perf_event *event,
758 					       struct perf_sample *sample __maybe_unused)
759 {
760 	struct map *map;
761 
762 	map = maps__find(&machine->kmaps, event->ksymbol.addr);
763 	if (map)
764 		maps__remove(&machine->kmaps, map);
765 
766 	return 0;
767 }
768 
769 int machine__process_ksymbol(struct machine *machine __maybe_unused,
770 			     union perf_event *event,
771 			     struct perf_sample *sample)
772 {
773 	if (dump_trace)
774 		perf_event__fprintf_ksymbol(event, stdout);
775 
776 	if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
777 		return machine__process_ksymbol_unregister(machine, event,
778 							   sample);
779 	return machine__process_ksymbol_register(machine, event, sample);
780 }
781 
782 static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
783 					      const char *filename)
784 {
785 	struct map *map = NULL;
786 	struct kmod_path m;
787 	struct dso *dso;
788 
789 	if (kmod_path__parse_name(&m, filename))
790 		return NULL;
791 
792 	dso = machine__findnew_module_dso(machine, &m, filename);
793 	if (dso == NULL)
794 		goto out;
795 
796 	map = map__new2(start, dso);
797 	if (map == NULL)
798 		goto out;
799 
800 	maps__insert(&machine->kmaps, map);
801 
802 	/* Put the map here because maps__insert alread got it */
803 	map__put(map);
804 out:
805 	/* put the dso here, corresponding to  machine__findnew_module_dso */
806 	dso__put(dso);
807 	zfree(&m.name);
808 	return map;
809 }
810 
811 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
812 {
813 	struct rb_node *nd;
814 	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
815 
816 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
817 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
818 		ret += __dsos__fprintf(&pos->dsos.head, fp);
819 	}
820 
821 	return ret;
822 }
823 
824 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
825 				     bool (skip)(struct dso *dso, int parm), int parm)
826 {
827 	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
828 }
829 
830 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
831 				     bool (skip)(struct dso *dso, int parm), int parm)
832 {
833 	struct rb_node *nd;
834 	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
835 
836 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
837 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
838 		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
839 	}
840 	return ret;
841 }
842 
843 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
844 {
845 	int i;
846 	size_t printed = 0;
847 	struct dso *kdso = machine__kernel_dso(machine);
848 
849 	if (kdso->has_build_id) {
850 		char filename[PATH_MAX];
851 		if (dso__build_id_filename(kdso, filename, sizeof(filename),
852 					   false))
853 			printed += fprintf(fp, "[0] %s\n", filename);
854 	}
855 
856 	for (i = 0; i < vmlinux_path__nr_entries; ++i)
857 		printed += fprintf(fp, "[%d] %s\n",
858 				   i + kdso->has_build_id, vmlinux_path[i]);
859 
860 	return printed;
861 }
862 
863 size_t machine__fprintf(struct machine *machine, FILE *fp)
864 {
865 	struct rb_node *nd;
866 	size_t ret;
867 	int i;
868 
869 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
870 		struct threads *threads = &machine->threads[i];
871 
872 		down_read(&threads->lock);
873 
874 		ret = fprintf(fp, "Threads: %u\n", threads->nr);
875 
876 		for (nd = rb_first_cached(&threads->entries); nd;
877 		     nd = rb_next(nd)) {
878 			struct thread *pos = rb_entry(nd, struct thread, rb_node);
879 
880 			ret += thread__fprintf(pos, fp);
881 		}
882 
883 		up_read(&threads->lock);
884 	}
885 	return ret;
886 }
887 
888 static struct dso *machine__get_kernel(struct machine *machine)
889 {
890 	const char *vmlinux_name = machine->mmap_name;
891 	struct dso *kernel;
892 
893 	if (machine__is_host(machine)) {
894 		if (symbol_conf.vmlinux_name)
895 			vmlinux_name = symbol_conf.vmlinux_name;
896 
897 		kernel = machine__findnew_kernel(machine, vmlinux_name,
898 						 "[kernel]", DSO_TYPE_KERNEL);
899 	} else {
900 		if (symbol_conf.default_guest_vmlinux_name)
901 			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
902 
903 		kernel = machine__findnew_kernel(machine, vmlinux_name,
904 						 "[guest.kernel]",
905 						 DSO_TYPE_GUEST_KERNEL);
906 	}
907 
908 	if (kernel != NULL && (!kernel->has_build_id))
909 		dso__read_running_kernel_build_id(kernel, machine);
910 
911 	return kernel;
912 }
913 
914 struct process_args {
915 	u64 start;
916 };
917 
918 void machine__get_kallsyms_filename(struct machine *machine, char *buf,
919 				    size_t bufsz)
920 {
921 	if (machine__is_default_guest(machine))
922 		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
923 	else
924 		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
925 }
926 
927 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
928 
929 /* Figure out the start address of kernel map from /proc/kallsyms.
930  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
931  * symbol_name if it's not that important.
932  */
933 static int machine__get_running_kernel_start(struct machine *machine,
934 					     const char **symbol_name,
935 					     u64 *start, u64 *end)
936 {
937 	char filename[PATH_MAX];
938 	int i, err = -1;
939 	const char *name;
940 	u64 addr = 0;
941 
942 	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
943 
944 	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
945 		return 0;
946 
947 	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
948 		err = kallsyms__get_function_start(filename, name, &addr);
949 		if (!err)
950 			break;
951 	}
952 
953 	if (err)
954 		return -1;
955 
956 	if (symbol_name)
957 		*symbol_name = name;
958 
959 	*start = addr;
960 
961 	err = kallsyms__get_function_start(filename, "_etext", &addr);
962 	if (!err)
963 		*end = addr;
964 
965 	return 0;
966 }
967 
968 int machine__create_extra_kernel_map(struct machine *machine,
969 				     struct dso *kernel,
970 				     struct extra_kernel_map *xm)
971 {
972 	struct kmap *kmap;
973 	struct map *map;
974 
975 	map = map__new2(xm->start, kernel);
976 	if (!map)
977 		return -1;
978 
979 	map->end   = xm->end;
980 	map->pgoff = xm->pgoff;
981 
982 	kmap = map__kmap(map);
983 
984 	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
985 
986 	maps__insert(&machine->kmaps, map);
987 
988 	pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
989 		  kmap->name, map->start, map->end);
990 
991 	map__put(map);
992 
993 	return 0;
994 }
995 
996 static u64 find_entry_trampoline(struct dso *dso)
997 {
998 	/* Duplicates are removed so lookup all aliases */
999 	const char *syms[] = {
1000 		"_entry_trampoline",
1001 		"__entry_trampoline_start",
1002 		"entry_SYSCALL_64_trampoline",
1003 	};
1004 	struct symbol *sym = dso__first_symbol(dso);
1005 	unsigned int i;
1006 
1007 	for (; sym; sym = dso__next_symbol(sym)) {
1008 		if (sym->binding != STB_GLOBAL)
1009 			continue;
1010 		for (i = 0; i < ARRAY_SIZE(syms); i++) {
1011 			if (!strcmp(sym->name, syms[i]))
1012 				return sym->start;
1013 		}
1014 	}
1015 
1016 	return 0;
1017 }
1018 
1019 /*
1020  * These values can be used for kernels that do not have symbols for the entry
1021  * trampolines in kallsyms.
1022  */
1023 #define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
1024 #define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
1025 #define X86_64_ENTRY_TRAMPOLINE		0x6000
1026 
1027 /* Map x86_64 PTI entry trampolines */
1028 int machine__map_x86_64_entry_trampolines(struct machine *machine,
1029 					  struct dso *kernel)
1030 {
1031 	struct maps *kmaps = &machine->kmaps;
1032 	int nr_cpus_avail, cpu;
1033 	bool found = false;
1034 	struct map *map;
1035 	u64 pgoff;
1036 
1037 	/*
1038 	 * In the vmlinux case, pgoff is a virtual address which must now be
1039 	 * mapped to a vmlinux offset.
1040 	 */
1041 	maps__for_each_entry(kmaps, map) {
1042 		struct kmap *kmap = __map__kmap(map);
1043 		struct map *dest_map;
1044 
1045 		if (!kmap || !is_entry_trampoline(kmap->name))
1046 			continue;
1047 
1048 		dest_map = maps__find(kmaps, map->pgoff);
1049 		if (dest_map != map)
1050 			map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1051 		found = true;
1052 	}
1053 	if (found || machine->trampolines_mapped)
1054 		return 0;
1055 
1056 	pgoff = find_entry_trampoline(kernel);
1057 	if (!pgoff)
1058 		return 0;
1059 
1060 	nr_cpus_avail = machine__nr_cpus_avail(machine);
1061 
1062 	/* Add a 1 page map for each CPU's entry trampoline */
1063 	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1064 		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1065 			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1066 			 X86_64_ENTRY_TRAMPOLINE;
1067 		struct extra_kernel_map xm = {
1068 			.start = va,
1069 			.end   = va + page_size,
1070 			.pgoff = pgoff,
1071 		};
1072 
1073 		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1074 
1075 		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1076 			return -1;
1077 	}
1078 
1079 	machine->trampolines_mapped = nr_cpus_avail;
1080 
1081 	return 0;
1082 }
1083 
1084 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1085 					     struct dso *kernel __maybe_unused)
1086 {
1087 	return 0;
1088 }
1089 
1090 static int
1091 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1092 {
1093 	/* In case of renewal the kernel map, destroy previous one */
1094 	machine__destroy_kernel_maps(machine);
1095 
1096 	machine->vmlinux_map = map__new2(0, kernel);
1097 	if (machine->vmlinux_map == NULL)
1098 		return -1;
1099 
1100 	machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1101 	maps__insert(&machine->kmaps, machine->vmlinux_map);
1102 	return 0;
1103 }
1104 
1105 void machine__destroy_kernel_maps(struct machine *machine)
1106 {
1107 	struct kmap *kmap;
1108 	struct map *map = machine__kernel_map(machine);
1109 
1110 	if (map == NULL)
1111 		return;
1112 
1113 	kmap = map__kmap(map);
1114 	maps__remove(&machine->kmaps, map);
1115 	if (kmap && kmap->ref_reloc_sym) {
1116 		zfree((char **)&kmap->ref_reloc_sym->name);
1117 		zfree(&kmap->ref_reloc_sym);
1118 	}
1119 
1120 	map__zput(machine->vmlinux_map);
1121 }
1122 
1123 int machines__create_guest_kernel_maps(struct machines *machines)
1124 {
1125 	int ret = 0;
1126 	struct dirent **namelist = NULL;
1127 	int i, items = 0;
1128 	char path[PATH_MAX];
1129 	pid_t pid;
1130 	char *endp;
1131 
1132 	if (symbol_conf.default_guest_vmlinux_name ||
1133 	    symbol_conf.default_guest_modules ||
1134 	    symbol_conf.default_guest_kallsyms) {
1135 		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1136 	}
1137 
1138 	if (symbol_conf.guestmount) {
1139 		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1140 		if (items <= 0)
1141 			return -ENOENT;
1142 		for (i = 0; i < items; i++) {
1143 			if (!isdigit(namelist[i]->d_name[0])) {
1144 				/* Filter out . and .. */
1145 				continue;
1146 			}
1147 			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1148 			if ((*endp != '\0') ||
1149 			    (endp == namelist[i]->d_name) ||
1150 			    (errno == ERANGE)) {
1151 				pr_debug("invalid directory (%s). Skipping.\n",
1152 					 namelist[i]->d_name);
1153 				continue;
1154 			}
1155 			sprintf(path, "%s/%s/proc/kallsyms",
1156 				symbol_conf.guestmount,
1157 				namelist[i]->d_name);
1158 			ret = access(path, R_OK);
1159 			if (ret) {
1160 				pr_debug("Can't access file %s\n", path);
1161 				goto failure;
1162 			}
1163 			machines__create_kernel_maps(machines, pid);
1164 		}
1165 failure:
1166 		free(namelist);
1167 	}
1168 
1169 	return ret;
1170 }
1171 
1172 void machines__destroy_kernel_maps(struct machines *machines)
1173 {
1174 	struct rb_node *next = rb_first_cached(&machines->guests);
1175 
1176 	machine__destroy_kernel_maps(&machines->host);
1177 
1178 	while (next) {
1179 		struct machine *pos = rb_entry(next, struct machine, rb_node);
1180 
1181 		next = rb_next(&pos->rb_node);
1182 		rb_erase_cached(&pos->rb_node, &machines->guests);
1183 		machine__delete(pos);
1184 	}
1185 }
1186 
1187 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1188 {
1189 	struct machine *machine = machines__findnew(machines, pid);
1190 
1191 	if (machine == NULL)
1192 		return -1;
1193 
1194 	return machine__create_kernel_maps(machine);
1195 }
1196 
1197 int machine__load_kallsyms(struct machine *machine, const char *filename)
1198 {
1199 	struct map *map = machine__kernel_map(machine);
1200 	int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1201 
1202 	if (ret > 0) {
1203 		dso__set_loaded(map->dso);
1204 		/*
1205 		 * Since /proc/kallsyms will have multiple sessions for the
1206 		 * kernel, with modules between them, fixup the end of all
1207 		 * sections.
1208 		 */
1209 		maps__fixup_end(&machine->kmaps);
1210 	}
1211 
1212 	return ret;
1213 }
1214 
1215 int machine__load_vmlinux_path(struct machine *machine)
1216 {
1217 	struct map *map = machine__kernel_map(machine);
1218 	int ret = dso__load_vmlinux_path(map->dso, map);
1219 
1220 	if (ret > 0)
1221 		dso__set_loaded(map->dso);
1222 
1223 	return ret;
1224 }
1225 
1226 static char *get_kernel_version(const char *root_dir)
1227 {
1228 	char version[PATH_MAX];
1229 	FILE *file;
1230 	char *name, *tmp;
1231 	const char *prefix = "Linux version ";
1232 
1233 	sprintf(version, "%s/proc/version", root_dir);
1234 	file = fopen(version, "r");
1235 	if (!file)
1236 		return NULL;
1237 
1238 	tmp = fgets(version, sizeof(version), file);
1239 	fclose(file);
1240 	if (!tmp)
1241 		return NULL;
1242 
1243 	name = strstr(version, prefix);
1244 	if (!name)
1245 		return NULL;
1246 	name += strlen(prefix);
1247 	tmp = strchr(name, ' ');
1248 	if (tmp)
1249 		*tmp = '\0';
1250 
1251 	return strdup(name);
1252 }
1253 
1254 static bool is_kmod_dso(struct dso *dso)
1255 {
1256 	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1257 	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1258 }
1259 
1260 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1261 {
1262 	char *long_name;
1263 	struct map *map = maps__find_by_name(maps, m->name);
1264 
1265 	if (map == NULL)
1266 		return 0;
1267 
1268 	long_name = strdup(path);
1269 	if (long_name == NULL)
1270 		return -ENOMEM;
1271 
1272 	dso__set_long_name(map->dso, long_name, true);
1273 	dso__kernel_module_get_build_id(map->dso, "");
1274 
1275 	/*
1276 	 * Full name could reveal us kmod compression, so
1277 	 * we need to update the symtab_type if needed.
1278 	 */
1279 	if (m->comp && is_kmod_dso(map->dso)) {
1280 		map->dso->symtab_type++;
1281 		map->dso->comp = m->comp;
1282 	}
1283 
1284 	return 0;
1285 }
1286 
1287 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1288 {
1289 	struct dirent *dent;
1290 	DIR *dir = opendir(dir_name);
1291 	int ret = 0;
1292 
1293 	if (!dir) {
1294 		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1295 		return -1;
1296 	}
1297 
1298 	while ((dent = readdir(dir)) != NULL) {
1299 		char path[PATH_MAX];
1300 		struct stat st;
1301 
1302 		/*sshfs might return bad dent->d_type, so we have to stat*/
1303 		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1304 		if (stat(path, &st))
1305 			continue;
1306 
1307 		if (S_ISDIR(st.st_mode)) {
1308 			if (!strcmp(dent->d_name, ".") ||
1309 			    !strcmp(dent->d_name, ".."))
1310 				continue;
1311 
1312 			/* Do not follow top-level source and build symlinks */
1313 			if (depth == 0) {
1314 				if (!strcmp(dent->d_name, "source") ||
1315 				    !strcmp(dent->d_name, "build"))
1316 					continue;
1317 			}
1318 
1319 			ret = maps__set_modules_path_dir(maps, path, depth + 1);
1320 			if (ret < 0)
1321 				goto out;
1322 		} else {
1323 			struct kmod_path m;
1324 
1325 			ret = kmod_path__parse_name(&m, dent->d_name);
1326 			if (ret)
1327 				goto out;
1328 
1329 			if (m.kmod)
1330 				ret = maps__set_module_path(maps, path, &m);
1331 
1332 			zfree(&m.name);
1333 
1334 			if (ret)
1335 				goto out;
1336 		}
1337 	}
1338 
1339 out:
1340 	closedir(dir);
1341 	return ret;
1342 }
1343 
1344 static int machine__set_modules_path(struct machine *machine)
1345 {
1346 	char *version;
1347 	char modules_path[PATH_MAX];
1348 
1349 	version = get_kernel_version(machine->root_dir);
1350 	if (!version)
1351 		return -1;
1352 
1353 	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1354 		 machine->root_dir, version);
1355 	free(version);
1356 
1357 	return maps__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1358 }
1359 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1360 				u64 *size __maybe_unused,
1361 				const char *name __maybe_unused)
1362 {
1363 	return 0;
1364 }
1365 
1366 static int machine__create_module(void *arg, const char *name, u64 start,
1367 				  u64 size)
1368 {
1369 	struct machine *machine = arg;
1370 	struct map *map;
1371 
1372 	if (arch__fix_module_text_start(&start, &size, name) < 0)
1373 		return -1;
1374 
1375 	map = machine__addnew_module_map(machine, start, name);
1376 	if (map == NULL)
1377 		return -1;
1378 	map->end = start + size;
1379 
1380 	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1381 
1382 	return 0;
1383 }
1384 
1385 static int machine__create_modules(struct machine *machine)
1386 {
1387 	const char *modules;
1388 	char path[PATH_MAX];
1389 
1390 	if (machine__is_default_guest(machine)) {
1391 		modules = symbol_conf.default_guest_modules;
1392 	} else {
1393 		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1394 		modules = path;
1395 	}
1396 
1397 	if (symbol__restricted_filename(modules, "/proc/modules"))
1398 		return -1;
1399 
1400 	if (modules__parse(modules, machine, machine__create_module))
1401 		return -1;
1402 
1403 	if (!machine__set_modules_path(machine))
1404 		return 0;
1405 
1406 	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1407 
1408 	return 0;
1409 }
1410 
1411 static void machine__set_kernel_mmap(struct machine *machine,
1412 				     u64 start, u64 end)
1413 {
1414 	machine->vmlinux_map->start = start;
1415 	machine->vmlinux_map->end   = end;
1416 	/*
1417 	 * Be a bit paranoid here, some perf.data file came with
1418 	 * a zero sized synthesized MMAP event for the kernel.
1419 	 */
1420 	if (start == 0 && end == 0)
1421 		machine->vmlinux_map->end = ~0ULL;
1422 }
1423 
1424 static void machine__update_kernel_mmap(struct machine *machine,
1425 				     u64 start, u64 end)
1426 {
1427 	struct map *map = machine__kernel_map(machine);
1428 
1429 	map__get(map);
1430 	maps__remove(&machine->kmaps, map);
1431 
1432 	machine__set_kernel_mmap(machine, start, end);
1433 
1434 	maps__insert(&machine->kmaps, map);
1435 	map__put(map);
1436 }
1437 
1438 int machine__create_kernel_maps(struct machine *machine)
1439 {
1440 	struct dso *kernel = machine__get_kernel(machine);
1441 	const char *name = NULL;
1442 	struct map *map;
1443 	u64 start = 0, end = ~0ULL;
1444 	int ret;
1445 
1446 	if (kernel == NULL)
1447 		return -1;
1448 
1449 	ret = __machine__create_kernel_maps(machine, kernel);
1450 	if (ret < 0)
1451 		goto out_put;
1452 
1453 	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1454 		if (machine__is_host(machine))
1455 			pr_debug("Problems creating module maps, "
1456 				 "continuing anyway...\n");
1457 		else
1458 			pr_debug("Problems creating module maps for guest %d, "
1459 				 "continuing anyway...\n", machine->pid);
1460 	}
1461 
1462 	if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1463 		if (name &&
1464 		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1465 			machine__destroy_kernel_maps(machine);
1466 			ret = -1;
1467 			goto out_put;
1468 		}
1469 
1470 		/*
1471 		 * we have a real start address now, so re-order the kmaps
1472 		 * assume it's the last in the kmaps
1473 		 */
1474 		machine__update_kernel_mmap(machine, start, end);
1475 	}
1476 
1477 	if (machine__create_extra_kernel_maps(machine, kernel))
1478 		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1479 
1480 	if (end == ~0ULL) {
1481 		/* update end address of the kernel map using adjacent module address */
1482 		map = map__next(machine__kernel_map(machine));
1483 		if (map)
1484 			machine__set_kernel_mmap(machine, start, map->start);
1485 	}
1486 
1487 out_put:
1488 	dso__put(kernel);
1489 	return ret;
1490 }
1491 
1492 static bool machine__uses_kcore(struct machine *machine)
1493 {
1494 	struct dso *dso;
1495 
1496 	list_for_each_entry(dso, &machine->dsos.head, node) {
1497 		if (dso__is_kcore(dso))
1498 			return true;
1499 	}
1500 
1501 	return false;
1502 }
1503 
1504 static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1505 					     union perf_event *event)
1506 {
1507 	return machine__is(machine, "x86_64") &&
1508 	       is_entry_trampoline(event->mmap.filename);
1509 }
1510 
1511 static int machine__process_extra_kernel_map(struct machine *machine,
1512 					     union perf_event *event)
1513 {
1514 	struct dso *kernel = machine__kernel_dso(machine);
1515 	struct extra_kernel_map xm = {
1516 		.start = event->mmap.start,
1517 		.end   = event->mmap.start + event->mmap.len,
1518 		.pgoff = event->mmap.pgoff,
1519 	};
1520 
1521 	if (kernel == NULL)
1522 		return -1;
1523 
1524 	strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1525 
1526 	return machine__create_extra_kernel_map(machine, kernel, &xm);
1527 }
1528 
1529 static int machine__process_kernel_mmap_event(struct machine *machine,
1530 					      union perf_event *event)
1531 {
1532 	struct map *map;
1533 	enum dso_kernel_type kernel_type;
1534 	bool is_kernel_mmap;
1535 
1536 	/* If we have maps from kcore then we do not need or want any others */
1537 	if (machine__uses_kcore(machine))
1538 		return 0;
1539 
1540 	if (machine__is_host(machine))
1541 		kernel_type = DSO_TYPE_KERNEL;
1542 	else
1543 		kernel_type = DSO_TYPE_GUEST_KERNEL;
1544 
1545 	is_kernel_mmap = memcmp(event->mmap.filename,
1546 				machine->mmap_name,
1547 				strlen(machine->mmap_name) - 1) == 0;
1548 	if (event->mmap.filename[0] == '/' ||
1549 	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1550 		map = machine__addnew_module_map(machine, event->mmap.start,
1551 						 event->mmap.filename);
1552 		if (map == NULL)
1553 			goto out_problem;
1554 
1555 		map->end = map->start + event->mmap.len;
1556 	} else if (is_kernel_mmap) {
1557 		const char *symbol_name = (event->mmap.filename +
1558 				strlen(machine->mmap_name));
1559 		/*
1560 		 * Should be there already, from the build-id table in
1561 		 * the header.
1562 		 */
1563 		struct dso *kernel = NULL;
1564 		struct dso *dso;
1565 
1566 		down_read(&machine->dsos.lock);
1567 
1568 		list_for_each_entry(dso, &machine->dsos.head, node) {
1569 
1570 			/*
1571 			 * The cpumode passed to is_kernel_module is not the
1572 			 * cpumode of *this* event. If we insist on passing
1573 			 * correct cpumode to is_kernel_module, we should
1574 			 * record the cpumode when we adding this dso to the
1575 			 * linked list.
1576 			 *
1577 			 * However we don't really need passing correct
1578 			 * cpumode.  We know the correct cpumode must be kernel
1579 			 * mode (if not, we should not link it onto kernel_dsos
1580 			 * list).
1581 			 *
1582 			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1583 			 * is_kernel_module() treats it as a kernel cpumode.
1584 			 */
1585 
1586 			if (!dso->kernel ||
1587 			    is_kernel_module(dso->long_name,
1588 					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1589 				continue;
1590 
1591 
1592 			kernel = dso;
1593 			break;
1594 		}
1595 
1596 		up_read(&machine->dsos.lock);
1597 
1598 		if (kernel == NULL)
1599 			kernel = machine__findnew_dso(machine, machine->mmap_name);
1600 		if (kernel == NULL)
1601 			goto out_problem;
1602 
1603 		kernel->kernel = kernel_type;
1604 		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1605 			dso__put(kernel);
1606 			goto out_problem;
1607 		}
1608 
1609 		if (strstr(kernel->long_name, "vmlinux"))
1610 			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1611 
1612 		machine__update_kernel_mmap(machine, event->mmap.start,
1613 					 event->mmap.start + event->mmap.len);
1614 
1615 		/*
1616 		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1617 		 * symbol. Effectively having zero here means that at record
1618 		 * time /proc/sys/kernel/kptr_restrict was non zero.
1619 		 */
1620 		if (event->mmap.pgoff != 0) {
1621 			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1622 							symbol_name,
1623 							event->mmap.pgoff);
1624 		}
1625 
1626 		if (machine__is_default_guest(machine)) {
1627 			/*
1628 			 * preload dso of guest kernel and modules
1629 			 */
1630 			dso__load(kernel, machine__kernel_map(machine));
1631 		}
1632 	} else if (perf_event__is_extra_kernel_mmap(machine, event)) {
1633 		return machine__process_extra_kernel_map(machine, event);
1634 	}
1635 	return 0;
1636 out_problem:
1637 	return -1;
1638 }
1639 
1640 int machine__process_mmap2_event(struct machine *machine,
1641 				 union perf_event *event,
1642 				 struct perf_sample *sample)
1643 {
1644 	struct thread *thread;
1645 	struct map *map;
1646 	struct dso_id dso_id = {
1647 		.maj = event->mmap2.maj,
1648 		.min = event->mmap2.min,
1649 		.ino = event->mmap2.ino,
1650 		.ino_generation = event->mmap2.ino_generation,
1651 	};
1652 	int ret = 0;
1653 
1654 	if (dump_trace)
1655 		perf_event__fprintf_mmap2(event, stdout);
1656 
1657 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1658 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1659 		ret = machine__process_kernel_mmap_event(machine, event);
1660 		if (ret < 0)
1661 			goto out_problem;
1662 		return 0;
1663 	}
1664 
1665 	thread = machine__findnew_thread(machine, event->mmap2.pid,
1666 					event->mmap2.tid);
1667 	if (thread == NULL)
1668 		goto out_problem;
1669 
1670 	map = map__new(machine, event->mmap2.start,
1671 			event->mmap2.len, event->mmap2.pgoff,
1672 			&dso_id, event->mmap2.prot,
1673 			event->mmap2.flags,
1674 			event->mmap2.filename, thread);
1675 
1676 	if (map == NULL)
1677 		goto out_problem_map;
1678 
1679 	ret = thread__insert_map(thread, map);
1680 	if (ret)
1681 		goto out_problem_insert;
1682 
1683 	thread__put(thread);
1684 	map__put(map);
1685 	return 0;
1686 
1687 out_problem_insert:
1688 	map__put(map);
1689 out_problem_map:
1690 	thread__put(thread);
1691 out_problem:
1692 	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1693 	return 0;
1694 }
1695 
1696 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1697 				struct perf_sample *sample)
1698 {
1699 	struct thread *thread;
1700 	struct map *map;
1701 	u32 prot = 0;
1702 	int ret = 0;
1703 
1704 	if (dump_trace)
1705 		perf_event__fprintf_mmap(event, stdout);
1706 
1707 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1708 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1709 		ret = machine__process_kernel_mmap_event(machine, event);
1710 		if (ret < 0)
1711 			goto out_problem;
1712 		return 0;
1713 	}
1714 
1715 	thread = machine__findnew_thread(machine, event->mmap.pid,
1716 					 event->mmap.tid);
1717 	if (thread == NULL)
1718 		goto out_problem;
1719 
1720 	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1721 		prot = PROT_EXEC;
1722 
1723 	map = map__new(machine, event->mmap.start,
1724 			event->mmap.len, event->mmap.pgoff,
1725 			NULL, prot, 0, event->mmap.filename, thread);
1726 
1727 	if (map == NULL)
1728 		goto out_problem_map;
1729 
1730 	ret = thread__insert_map(thread, map);
1731 	if (ret)
1732 		goto out_problem_insert;
1733 
1734 	thread__put(thread);
1735 	map__put(map);
1736 	return 0;
1737 
1738 out_problem_insert:
1739 	map__put(map);
1740 out_problem_map:
1741 	thread__put(thread);
1742 out_problem:
1743 	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1744 	return 0;
1745 }
1746 
1747 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1748 {
1749 	struct threads *threads = machine__threads(machine, th->tid);
1750 
1751 	if (threads->last_match == th)
1752 		threads__set_last_match(threads, NULL);
1753 
1754 	if (lock)
1755 		down_write(&threads->lock);
1756 
1757 	BUG_ON(refcount_read(&th->refcnt) == 0);
1758 
1759 	rb_erase_cached(&th->rb_node, &threads->entries);
1760 	RB_CLEAR_NODE(&th->rb_node);
1761 	--threads->nr;
1762 	/*
1763 	 * Move it first to the dead_threads list, then drop the reference,
1764 	 * if this is the last reference, then the thread__delete destructor
1765 	 * will be called and we will remove it from the dead_threads list.
1766 	 */
1767 	list_add_tail(&th->node, &threads->dead);
1768 
1769 	/*
1770 	 * We need to do the put here because if this is the last refcount,
1771 	 * then we will be touching the threads->dead head when removing the
1772 	 * thread.
1773 	 */
1774 	thread__put(th);
1775 
1776 	if (lock)
1777 		up_write(&threads->lock);
1778 }
1779 
1780 void machine__remove_thread(struct machine *machine, struct thread *th)
1781 {
1782 	return __machine__remove_thread(machine, th, true);
1783 }
1784 
1785 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1786 				struct perf_sample *sample)
1787 {
1788 	struct thread *thread = machine__find_thread(machine,
1789 						     event->fork.pid,
1790 						     event->fork.tid);
1791 	struct thread *parent = machine__findnew_thread(machine,
1792 							event->fork.ppid,
1793 							event->fork.ptid);
1794 	bool do_maps_clone = true;
1795 	int err = 0;
1796 
1797 	if (dump_trace)
1798 		perf_event__fprintf_task(event, stdout);
1799 
1800 	/*
1801 	 * There may be an existing thread that is not actually the parent,
1802 	 * either because we are processing events out of order, or because the
1803 	 * (fork) event that would have removed the thread was lost. Assume the
1804 	 * latter case and continue on as best we can.
1805 	 */
1806 	if (parent->pid_ != (pid_t)event->fork.ppid) {
1807 		dump_printf("removing erroneous parent thread %d/%d\n",
1808 			    parent->pid_, parent->tid);
1809 		machine__remove_thread(machine, parent);
1810 		thread__put(parent);
1811 		parent = machine__findnew_thread(machine, event->fork.ppid,
1812 						 event->fork.ptid);
1813 	}
1814 
1815 	/* if a thread currently exists for the thread id remove it */
1816 	if (thread != NULL) {
1817 		machine__remove_thread(machine, thread);
1818 		thread__put(thread);
1819 	}
1820 
1821 	thread = machine__findnew_thread(machine, event->fork.pid,
1822 					 event->fork.tid);
1823 	/*
1824 	 * When synthesizing FORK events, we are trying to create thread
1825 	 * objects for the already running tasks on the machine.
1826 	 *
1827 	 * Normally, for a kernel FORK event, we want to clone the parent's
1828 	 * maps because that is what the kernel just did.
1829 	 *
1830 	 * But when synthesizing, this should not be done.  If we do, we end up
1831 	 * with overlapping maps as we process the sythesized MMAP2 events that
1832 	 * get delivered shortly thereafter.
1833 	 *
1834 	 * Use the FORK event misc flags in an internal way to signal this
1835 	 * situation, so we can elide the map clone when appropriate.
1836 	 */
1837 	if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1838 		do_maps_clone = false;
1839 
1840 	if (thread == NULL || parent == NULL ||
1841 	    thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1842 		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1843 		err = -1;
1844 	}
1845 	thread__put(thread);
1846 	thread__put(parent);
1847 
1848 	return err;
1849 }
1850 
1851 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1852 				struct perf_sample *sample __maybe_unused)
1853 {
1854 	struct thread *thread = machine__find_thread(machine,
1855 						     event->fork.pid,
1856 						     event->fork.tid);
1857 
1858 	if (dump_trace)
1859 		perf_event__fprintf_task(event, stdout);
1860 
1861 	if (thread != NULL) {
1862 		thread__exited(thread);
1863 		thread__put(thread);
1864 	}
1865 
1866 	return 0;
1867 }
1868 
1869 int machine__process_event(struct machine *machine, union perf_event *event,
1870 			   struct perf_sample *sample)
1871 {
1872 	int ret;
1873 
1874 	switch (event->header.type) {
1875 	case PERF_RECORD_COMM:
1876 		ret = machine__process_comm_event(machine, event, sample); break;
1877 	case PERF_RECORD_MMAP:
1878 		ret = machine__process_mmap_event(machine, event, sample); break;
1879 	case PERF_RECORD_NAMESPACES:
1880 		ret = machine__process_namespaces_event(machine, event, sample); break;
1881 	case PERF_RECORD_MMAP2:
1882 		ret = machine__process_mmap2_event(machine, event, sample); break;
1883 	case PERF_RECORD_FORK:
1884 		ret = machine__process_fork_event(machine, event, sample); break;
1885 	case PERF_RECORD_EXIT:
1886 		ret = machine__process_exit_event(machine, event, sample); break;
1887 	case PERF_RECORD_LOST:
1888 		ret = machine__process_lost_event(machine, event, sample); break;
1889 	case PERF_RECORD_AUX:
1890 		ret = machine__process_aux_event(machine, event); break;
1891 	case PERF_RECORD_ITRACE_START:
1892 		ret = machine__process_itrace_start_event(machine, event); break;
1893 	case PERF_RECORD_LOST_SAMPLES:
1894 		ret = machine__process_lost_samples_event(machine, event, sample); break;
1895 	case PERF_RECORD_SWITCH:
1896 	case PERF_RECORD_SWITCH_CPU_WIDE:
1897 		ret = machine__process_switch_event(machine, event); break;
1898 	case PERF_RECORD_KSYMBOL:
1899 		ret = machine__process_ksymbol(machine, event, sample); break;
1900 	case PERF_RECORD_BPF_EVENT:
1901 		ret = machine__process_bpf(machine, event, sample); break;
1902 	default:
1903 		ret = -1;
1904 		break;
1905 	}
1906 
1907 	return ret;
1908 }
1909 
1910 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1911 {
1912 	if (!regexec(regex, sym->name, 0, NULL, 0))
1913 		return 1;
1914 	return 0;
1915 }
1916 
1917 static void ip__resolve_ams(struct thread *thread,
1918 			    struct addr_map_symbol *ams,
1919 			    u64 ip)
1920 {
1921 	struct addr_location al;
1922 
1923 	memset(&al, 0, sizeof(al));
1924 	/*
1925 	 * We cannot use the header.misc hint to determine whether a
1926 	 * branch stack address is user, kernel, guest, hypervisor.
1927 	 * Branches may straddle the kernel/user/hypervisor boundaries.
1928 	 * Thus, we have to try consecutively until we find a match
1929 	 * or else, the symbol is unknown
1930 	 */
1931 	thread__find_cpumode_addr_location(thread, ip, &al);
1932 
1933 	ams->addr = ip;
1934 	ams->al_addr = al.addr;
1935 	ams->ms.maps = al.maps;
1936 	ams->ms.sym = al.sym;
1937 	ams->ms.map = al.map;
1938 	ams->phys_addr = 0;
1939 }
1940 
1941 static void ip__resolve_data(struct thread *thread,
1942 			     u8 m, struct addr_map_symbol *ams,
1943 			     u64 addr, u64 phys_addr)
1944 {
1945 	struct addr_location al;
1946 
1947 	memset(&al, 0, sizeof(al));
1948 
1949 	thread__find_symbol(thread, m, addr, &al);
1950 
1951 	ams->addr = addr;
1952 	ams->al_addr = al.addr;
1953 	ams->ms.maps = al.maps;
1954 	ams->ms.sym = al.sym;
1955 	ams->ms.map = al.map;
1956 	ams->phys_addr = phys_addr;
1957 }
1958 
1959 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1960 				     struct addr_location *al)
1961 {
1962 	struct mem_info *mi = mem_info__new();
1963 
1964 	if (!mi)
1965 		return NULL;
1966 
1967 	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1968 	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
1969 			 sample->addr, sample->phys_addr);
1970 	mi->data_src.val = sample->data_src;
1971 
1972 	return mi;
1973 }
1974 
1975 static char *callchain_srcline(struct map_symbol *ms, u64 ip)
1976 {
1977 	struct map *map = ms->map;
1978 	char *srcline = NULL;
1979 
1980 	if (!map || callchain_param.key == CCKEY_FUNCTION)
1981 		return srcline;
1982 
1983 	srcline = srcline__tree_find(&map->dso->srclines, ip);
1984 	if (!srcline) {
1985 		bool show_sym = false;
1986 		bool show_addr = callchain_param.key == CCKEY_ADDRESS;
1987 
1988 		srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
1989 				      ms->sym, show_sym, show_addr, ip);
1990 		srcline__tree_insert(&map->dso->srclines, ip, srcline);
1991 	}
1992 
1993 	return srcline;
1994 }
1995 
1996 struct iterations {
1997 	int nr_loop_iter;
1998 	u64 cycles;
1999 };
2000 
2001 static int add_callchain_ip(struct thread *thread,
2002 			    struct callchain_cursor *cursor,
2003 			    struct symbol **parent,
2004 			    struct addr_location *root_al,
2005 			    u8 *cpumode,
2006 			    u64 ip,
2007 			    bool branch,
2008 			    struct branch_flags *flags,
2009 			    struct iterations *iter,
2010 			    u64 branch_from)
2011 {
2012 	struct map_symbol ms;
2013 	struct addr_location al;
2014 	int nr_loop_iter = 0;
2015 	u64 iter_cycles = 0;
2016 	const char *srcline = NULL;
2017 
2018 	al.filtered = 0;
2019 	al.sym = NULL;
2020 	if (!cpumode) {
2021 		thread__find_cpumode_addr_location(thread, ip, &al);
2022 	} else {
2023 		if (ip >= PERF_CONTEXT_MAX) {
2024 			switch (ip) {
2025 			case PERF_CONTEXT_HV:
2026 				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
2027 				break;
2028 			case PERF_CONTEXT_KERNEL:
2029 				*cpumode = PERF_RECORD_MISC_KERNEL;
2030 				break;
2031 			case PERF_CONTEXT_USER:
2032 				*cpumode = PERF_RECORD_MISC_USER;
2033 				break;
2034 			default:
2035 				pr_debug("invalid callchain context: "
2036 					 "%"PRId64"\n", (s64) ip);
2037 				/*
2038 				 * It seems the callchain is corrupted.
2039 				 * Discard all.
2040 				 */
2041 				callchain_cursor_reset(cursor);
2042 				return 1;
2043 			}
2044 			return 0;
2045 		}
2046 		thread__find_symbol(thread, *cpumode, ip, &al);
2047 	}
2048 
2049 	if (al.sym != NULL) {
2050 		if (perf_hpp_list.parent && !*parent &&
2051 		    symbol__match_regex(al.sym, &parent_regex))
2052 			*parent = al.sym;
2053 		else if (have_ignore_callees && root_al &&
2054 		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
2055 			/* Treat this symbol as the root,
2056 			   forgetting its callees. */
2057 			*root_al = al;
2058 			callchain_cursor_reset(cursor);
2059 		}
2060 	}
2061 
2062 	if (symbol_conf.hide_unresolved && al.sym == NULL)
2063 		return 0;
2064 
2065 	if (iter) {
2066 		nr_loop_iter = iter->nr_loop_iter;
2067 		iter_cycles = iter->cycles;
2068 	}
2069 
2070 	ms.maps = al.maps;
2071 	ms.map = al.map;
2072 	ms.sym = al.sym;
2073 	srcline = callchain_srcline(&ms, al.addr);
2074 	return callchain_cursor_append(cursor, ip, &ms,
2075 				       branch, flags, nr_loop_iter,
2076 				       iter_cycles, branch_from, srcline);
2077 }
2078 
2079 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2080 					   struct addr_location *al)
2081 {
2082 	unsigned int i;
2083 	const struct branch_stack *bs = sample->branch_stack;
2084 	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2085 
2086 	if (!bi)
2087 		return NULL;
2088 
2089 	for (i = 0; i < bs->nr; i++) {
2090 		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
2091 		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
2092 		bi[i].flags = bs->entries[i].flags;
2093 	}
2094 	return bi;
2095 }
2096 
2097 static void save_iterations(struct iterations *iter,
2098 			    struct branch_entry *be, int nr)
2099 {
2100 	int i;
2101 
2102 	iter->nr_loop_iter++;
2103 	iter->cycles = 0;
2104 
2105 	for (i = 0; i < nr; i++)
2106 		iter->cycles += be[i].flags.cycles;
2107 }
2108 
2109 #define CHASHSZ 127
2110 #define CHASHBITS 7
2111 #define NO_ENTRY 0xff
2112 
2113 #define PERF_MAX_BRANCH_DEPTH 127
2114 
2115 /* Remove loops. */
2116 static int remove_loops(struct branch_entry *l, int nr,
2117 			struct iterations *iter)
2118 {
2119 	int i, j, off;
2120 	unsigned char chash[CHASHSZ];
2121 
2122 	memset(chash, NO_ENTRY, sizeof(chash));
2123 
2124 	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2125 
2126 	for (i = 0; i < nr; i++) {
2127 		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2128 
2129 		/* no collision handling for now */
2130 		if (chash[h] == NO_ENTRY) {
2131 			chash[h] = i;
2132 		} else if (l[chash[h]].from == l[i].from) {
2133 			bool is_loop = true;
2134 			/* check if it is a real loop */
2135 			off = 0;
2136 			for (j = chash[h]; j < i && i + off < nr; j++, off++)
2137 				if (l[j].from != l[i + off].from) {
2138 					is_loop = false;
2139 					break;
2140 				}
2141 			if (is_loop) {
2142 				j = nr - (i + off);
2143 				if (j > 0) {
2144 					save_iterations(iter + i + off,
2145 						l + i, off);
2146 
2147 					memmove(iter + i, iter + i + off,
2148 						j * sizeof(*iter));
2149 
2150 					memmove(l + i, l + i + off,
2151 						j * sizeof(*l));
2152 				}
2153 
2154 				nr -= off;
2155 			}
2156 		}
2157 	}
2158 	return nr;
2159 }
2160 
2161 /*
2162  * Recolve LBR callstack chain sample
2163  * Return:
2164  * 1 on success get LBR callchain information
2165  * 0 no available LBR callchain information, should try fp
2166  * negative error code on other errors.
2167  */
2168 static int resolve_lbr_callchain_sample(struct thread *thread,
2169 					struct callchain_cursor *cursor,
2170 					struct perf_sample *sample,
2171 					struct symbol **parent,
2172 					struct addr_location *root_al,
2173 					int max_stack)
2174 {
2175 	struct ip_callchain *chain = sample->callchain;
2176 	int chain_nr = min(max_stack, (int)chain->nr), i;
2177 	u8 cpumode = PERF_RECORD_MISC_USER;
2178 	u64 ip, branch_from = 0;
2179 
2180 	for (i = 0; i < chain_nr; i++) {
2181 		if (chain->ips[i] == PERF_CONTEXT_USER)
2182 			break;
2183 	}
2184 
2185 	/* LBR only affects the user callchain */
2186 	if (i != chain_nr) {
2187 		struct branch_stack *lbr_stack = sample->branch_stack;
2188 		int lbr_nr = lbr_stack->nr, j, k;
2189 		bool branch;
2190 		struct branch_flags *flags;
2191 		/*
2192 		 * LBR callstack can only get user call chain.
2193 		 * The mix_chain_nr is kernel call chain
2194 		 * number plus LBR user call chain number.
2195 		 * i is kernel call chain number,
2196 		 * 1 is PERF_CONTEXT_USER,
2197 		 * lbr_nr + 1 is the user call chain number.
2198 		 * For details, please refer to the comments
2199 		 * in callchain__printf
2200 		 */
2201 		int mix_chain_nr = i + 1 + lbr_nr + 1;
2202 
2203 		for (j = 0; j < mix_chain_nr; j++) {
2204 			int err;
2205 			branch = false;
2206 			flags = NULL;
2207 
2208 			if (callchain_param.order == ORDER_CALLEE) {
2209 				if (j < i + 1)
2210 					ip = chain->ips[j];
2211 				else if (j > i + 1) {
2212 					k = j - i - 2;
2213 					ip = lbr_stack->entries[k].from;
2214 					branch = true;
2215 					flags = &lbr_stack->entries[k].flags;
2216 				} else {
2217 					ip = lbr_stack->entries[0].to;
2218 					branch = true;
2219 					flags = &lbr_stack->entries[0].flags;
2220 					branch_from =
2221 						lbr_stack->entries[0].from;
2222 				}
2223 			} else {
2224 				if (j < lbr_nr) {
2225 					k = lbr_nr - j - 1;
2226 					ip = lbr_stack->entries[k].from;
2227 					branch = true;
2228 					flags = &lbr_stack->entries[k].flags;
2229 				}
2230 				else if (j > lbr_nr)
2231 					ip = chain->ips[i + 1 - (j - lbr_nr)];
2232 				else {
2233 					ip = lbr_stack->entries[0].to;
2234 					branch = true;
2235 					flags = &lbr_stack->entries[0].flags;
2236 					branch_from =
2237 						lbr_stack->entries[0].from;
2238 				}
2239 			}
2240 
2241 			err = add_callchain_ip(thread, cursor, parent,
2242 					       root_al, &cpumode, ip,
2243 					       branch, flags, NULL,
2244 					       branch_from);
2245 			if (err)
2246 				return (err < 0) ? err : 0;
2247 		}
2248 		return 1;
2249 	}
2250 
2251 	return 0;
2252 }
2253 
2254 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2255 			     struct callchain_cursor *cursor,
2256 			     struct symbol **parent,
2257 			     struct addr_location *root_al,
2258 			     u8 *cpumode, int ent)
2259 {
2260 	int err = 0;
2261 
2262 	while (--ent >= 0) {
2263 		u64 ip = chain->ips[ent];
2264 
2265 		if (ip >= PERF_CONTEXT_MAX) {
2266 			err = add_callchain_ip(thread, cursor, parent,
2267 					       root_al, cpumode, ip,
2268 					       false, NULL, NULL, 0);
2269 			break;
2270 		}
2271 	}
2272 	return err;
2273 }
2274 
2275 static int thread__resolve_callchain_sample(struct thread *thread,
2276 					    struct callchain_cursor *cursor,
2277 					    struct evsel *evsel,
2278 					    struct perf_sample *sample,
2279 					    struct symbol **parent,
2280 					    struct addr_location *root_al,
2281 					    int max_stack)
2282 {
2283 	struct branch_stack *branch = sample->branch_stack;
2284 	struct ip_callchain *chain = sample->callchain;
2285 	int chain_nr = 0;
2286 	u8 cpumode = PERF_RECORD_MISC_USER;
2287 	int i, j, err, nr_entries;
2288 	int skip_idx = -1;
2289 	int first_call = 0;
2290 
2291 	if (chain)
2292 		chain_nr = chain->nr;
2293 
2294 	if (perf_evsel__has_branch_callstack(evsel)) {
2295 		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2296 						   root_al, max_stack);
2297 		if (err)
2298 			return (err < 0) ? err : 0;
2299 	}
2300 
2301 	/*
2302 	 * Based on DWARF debug information, some architectures skip
2303 	 * a callchain entry saved by the kernel.
2304 	 */
2305 	skip_idx = arch_skip_callchain_idx(thread, chain);
2306 
2307 	/*
2308 	 * Add branches to call stack for easier browsing. This gives
2309 	 * more context for a sample than just the callers.
2310 	 *
2311 	 * This uses individual histograms of paths compared to the
2312 	 * aggregated histograms the normal LBR mode uses.
2313 	 *
2314 	 * Limitations for now:
2315 	 * - No extra filters
2316 	 * - No annotations (should annotate somehow)
2317 	 */
2318 
2319 	if (branch && callchain_param.branch_callstack) {
2320 		int nr = min(max_stack, (int)branch->nr);
2321 		struct branch_entry be[nr];
2322 		struct iterations iter[nr];
2323 
2324 		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2325 			pr_warning("corrupted branch chain. skipping...\n");
2326 			goto check_calls;
2327 		}
2328 
2329 		for (i = 0; i < nr; i++) {
2330 			if (callchain_param.order == ORDER_CALLEE) {
2331 				be[i] = branch->entries[i];
2332 
2333 				if (chain == NULL)
2334 					continue;
2335 
2336 				/*
2337 				 * Check for overlap into the callchain.
2338 				 * The return address is one off compared to
2339 				 * the branch entry. To adjust for this
2340 				 * assume the calling instruction is not longer
2341 				 * than 8 bytes.
2342 				 */
2343 				if (i == skip_idx ||
2344 				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2345 					first_call++;
2346 				else if (be[i].from < chain->ips[first_call] &&
2347 				    be[i].from >= chain->ips[first_call] - 8)
2348 					first_call++;
2349 			} else
2350 				be[i] = branch->entries[branch->nr - i - 1];
2351 		}
2352 
2353 		memset(iter, 0, sizeof(struct iterations) * nr);
2354 		nr = remove_loops(be, nr, iter);
2355 
2356 		for (i = 0; i < nr; i++) {
2357 			err = add_callchain_ip(thread, cursor, parent,
2358 					       root_al,
2359 					       NULL, be[i].to,
2360 					       true, &be[i].flags,
2361 					       NULL, be[i].from);
2362 
2363 			if (!err)
2364 				err = add_callchain_ip(thread, cursor, parent, root_al,
2365 						       NULL, be[i].from,
2366 						       true, &be[i].flags,
2367 						       &iter[i], 0);
2368 			if (err == -EINVAL)
2369 				break;
2370 			if (err)
2371 				return err;
2372 		}
2373 
2374 		if (chain_nr == 0)
2375 			return 0;
2376 
2377 		chain_nr -= nr;
2378 	}
2379 
2380 check_calls:
2381 	if (chain && callchain_param.order != ORDER_CALLEE) {
2382 		err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2383 					&cpumode, chain->nr - first_call);
2384 		if (err)
2385 			return (err < 0) ? err : 0;
2386 	}
2387 	for (i = first_call, nr_entries = 0;
2388 	     i < chain_nr && nr_entries < max_stack; i++) {
2389 		u64 ip;
2390 
2391 		if (callchain_param.order == ORDER_CALLEE)
2392 			j = i;
2393 		else
2394 			j = chain->nr - i - 1;
2395 
2396 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2397 		if (j == skip_idx)
2398 			continue;
2399 #endif
2400 		ip = chain->ips[j];
2401 		if (ip < PERF_CONTEXT_MAX)
2402                        ++nr_entries;
2403 		else if (callchain_param.order != ORDER_CALLEE) {
2404 			err = find_prev_cpumode(chain, thread, cursor, parent,
2405 						root_al, &cpumode, j);
2406 			if (err)
2407 				return (err < 0) ? err : 0;
2408 			continue;
2409 		}
2410 
2411 		err = add_callchain_ip(thread, cursor, parent,
2412 				       root_al, &cpumode, ip,
2413 				       false, NULL, NULL, 0);
2414 
2415 		if (err)
2416 			return (err < 0) ? err : 0;
2417 	}
2418 
2419 	return 0;
2420 }
2421 
2422 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
2423 {
2424 	struct symbol *sym = ms->sym;
2425 	struct map *map = ms->map;
2426 	struct inline_node *inline_node;
2427 	struct inline_list *ilist;
2428 	u64 addr;
2429 	int ret = 1;
2430 
2431 	if (!symbol_conf.inline_name || !map || !sym)
2432 		return ret;
2433 
2434 	addr = map__map_ip(map, ip);
2435 	addr = map__rip_2objdump(map, addr);
2436 
2437 	inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2438 	if (!inline_node) {
2439 		inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2440 		if (!inline_node)
2441 			return ret;
2442 		inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2443 	}
2444 
2445 	list_for_each_entry(ilist, &inline_node->val, list) {
2446 		struct map_symbol ilist_ms = {
2447 			.maps = ms->maps,
2448 			.map = map,
2449 			.sym = ilist->symbol,
2450 		};
2451 		ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
2452 					      NULL, 0, 0, 0, ilist->srcline);
2453 
2454 		if (ret != 0)
2455 			return ret;
2456 	}
2457 
2458 	return ret;
2459 }
2460 
2461 static int unwind_entry(struct unwind_entry *entry, void *arg)
2462 {
2463 	struct callchain_cursor *cursor = arg;
2464 	const char *srcline = NULL;
2465 	u64 addr = entry->ip;
2466 
2467 	if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
2468 		return 0;
2469 
2470 	if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
2471 		return 0;
2472 
2473 	/*
2474 	 * Convert entry->ip from a virtual address to an offset in
2475 	 * its corresponding binary.
2476 	 */
2477 	if (entry->ms.map)
2478 		addr = map__map_ip(entry->ms.map, entry->ip);
2479 
2480 	srcline = callchain_srcline(&entry->ms, addr);
2481 	return callchain_cursor_append(cursor, entry->ip, &entry->ms,
2482 				       false, NULL, 0, 0, 0, srcline);
2483 }
2484 
2485 static int thread__resolve_callchain_unwind(struct thread *thread,
2486 					    struct callchain_cursor *cursor,
2487 					    struct evsel *evsel,
2488 					    struct perf_sample *sample,
2489 					    int max_stack)
2490 {
2491 	/* Can we do dwarf post unwind? */
2492 	if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2493 	      (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2494 		return 0;
2495 
2496 	/* Bail out if nothing was captured. */
2497 	if ((!sample->user_regs.regs) ||
2498 	    (!sample->user_stack.size))
2499 		return 0;
2500 
2501 	return unwind__get_entries(unwind_entry, cursor,
2502 				   thread, sample, max_stack);
2503 }
2504 
2505 int thread__resolve_callchain(struct thread *thread,
2506 			      struct callchain_cursor *cursor,
2507 			      struct evsel *evsel,
2508 			      struct perf_sample *sample,
2509 			      struct symbol **parent,
2510 			      struct addr_location *root_al,
2511 			      int max_stack)
2512 {
2513 	int ret = 0;
2514 
2515 	callchain_cursor_reset(cursor);
2516 
2517 	if (callchain_param.order == ORDER_CALLEE) {
2518 		ret = thread__resolve_callchain_sample(thread, cursor,
2519 						       evsel, sample,
2520 						       parent, root_al,
2521 						       max_stack);
2522 		if (ret)
2523 			return ret;
2524 		ret = thread__resolve_callchain_unwind(thread, cursor,
2525 						       evsel, sample,
2526 						       max_stack);
2527 	} else {
2528 		ret = thread__resolve_callchain_unwind(thread, cursor,
2529 						       evsel, sample,
2530 						       max_stack);
2531 		if (ret)
2532 			return ret;
2533 		ret = thread__resolve_callchain_sample(thread, cursor,
2534 						       evsel, sample,
2535 						       parent, root_al,
2536 						       max_stack);
2537 	}
2538 
2539 	return ret;
2540 }
2541 
2542 int machine__for_each_thread(struct machine *machine,
2543 			     int (*fn)(struct thread *thread, void *p),
2544 			     void *priv)
2545 {
2546 	struct threads *threads;
2547 	struct rb_node *nd;
2548 	struct thread *thread;
2549 	int rc = 0;
2550 	int i;
2551 
2552 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2553 		threads = &machine->threads[i];
2554 		for (nd = rb_first_cached(&threads->entries); nd;
2555 		     nd = rb_next(nd)) {
2556 			thread = rb_entry(nd, struct thread, rb_node);
2557 			rc = fn(thread, priv);
2558 			if (rc != 0)
2559 				return rc;
2560 		}
2561 
2562 		list_for_each_entry(thread, &threads->dead, node) {
2563 			rc = fn(thread, priv);
2564 			if (rc != 0)
2565 				return rc;
2566 		}
2567 	}
2568 	return rc;
2569 }
2570 
2571 int machines__for_each_thread(struct machines *machines,
2572 			      int (*fn)(struct thread *thread, void *p),
2573 			      void *priv)
2574 {
2575 	struct rb_node *nd;
2576 	int rc = 0;
2577 
2578 	rc = machine__for_each_thread(&machines->host, fn, priv);
2579 	if (rc != 0)
2580 		return rc;
2581 
2582 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
2583 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
2584 
2585 		rc = machine__for_each_thread(machine, fn, priv);
2586 		if (rc != 0)
2587 			return rc;
2588 	}
2589 	return rc;
2590 }
2591 
2592 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2593 {
2594 	int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2595 
2596 	if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid)
2597 		return -1;
2598 
2599 	return machine->current_tid[cpu];
2600 }
2601 
2602 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2603 			     pid_t tid)
2604 {
2605 	struct thread *thread;
2606 	int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2607 
2608 	if (cpu < 0)
2609 		return -EINVAL;
2610 
2611 	if (!machine->current_tid) {
2612 		int i;
2613 
2614 		machine->current_tid = calloc(nr_cpus, sizeof(pid_t));
2615 		if (!machine->current_tid)
2616 			return -ENOMEM;
2617 		for (i = 0; i < nr_cpus; i++)
2618 			machine->current_tid[i] = -1;
2619 	}
2620 
2621 	if (cpu >= nr_cpus) {
2622 		pr_err("Requested CPU %d too large. ", cpu);
2623 		pr_err("Consider raising MAX_NR_CPUS\n");
2624 		return -EINVAL;
2625 	}
2626 
2627 	machine->current_tid[cpu] = tid;
2628 
2629 	thread = machine__findnew_thread(machine, pid, tid);
2630 	if (!thread)
2631 		return -ENOMEM;
2632 
2633 	thread->cpu = cpu;
2634 	thread__put(thread);
2635 
2636 	return 0;
2637 }
2638 
2639 /*
2640  * Compares the raw arch string. N.B. see instead perf_env__arch() if a
2641  * normalized arch is needed.
2642  */
2643 bool machine__is(struct machine *machine, const char *arch)
2644 {
2645 	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
2646 }
2647 
2648 int machine__nr_cpus_avail(struct machine *machine)
2649 {
2650 	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
2651 }
2652 
2653 int machine__get_kernel_start(struct machine *machine)
2654 {
2655 	struct map *map = machine__kernel_map(machine);
2656 	int err = 0;
2657 
2658 	/*
2659 	 * The only addresses above 2^63 are kernel addresses of a 64-bit
2660 	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
2661 	 * all addresses including kernel addresses are less than 2^32.  In
2662 	 * that case (32-bit system), if the kernel mapping is unknown, all
2663 	 * addresses will be assumed to be in user space - see
2664 	 * machine__kernel_ip().
2665 	 */
2666 	machine->kernel_start = 1ULL << 63;
2667 	if (map) {
2668 		err = map__load(map);
2669 		/*
2670 		 * On x86_64, PTI entry trampolines are less than the
2671 		 * start of kernel text, but still above 2^63. So leave
2672 		 * kernel_start = 1ULL << 63 for x86_64.
2673 		 */
2674 		if (!err && !machine__is(machine, "x86_64"))
2675 			machine->kernel_start = map->start;
2676 	}
2677 	return err;
2678 }
2679 
2680 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
2681 {
2682 	u8 addr_cpumode = cpumode;
2683 	bool kernel_ip;
2684 
2685 	if (!machine->single_address_space)
2686 		goto out;
2687 
2688 	kernel_ip = machine__kernel_ip(machine, addr);
2689 	switch (cpumode) {
2690 	case PERF_RECORD_MISC_KERNEL:
2691 	case PERF_RECORD_MISC_USER:
2692 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
2693 					   PERF_RECORD_MISC_USER;
2694 		break;
2695 	case PERF_RECORD_MISC_GUEST_KERNEL:
2696 	case PERF_RECORD_MISC_GUEST_USER:
2697 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
2698 					   PERF_RECORD_MISC_GUEST_USER;
2699 		break;
2700 	default:
2701 		break;
2702 	}
2703 out:
2704 	return addr_cpumode;
2705 }
2706 
2707 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
2708 {
2709 	return dsos__findnew_id(&machine->dsos, filename, id);
2710 }
2711 
2712 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2713 {
2714 	return machine__findnew_dso_id(machine, filename, NULL);
2715 }
2716 
2717 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2718 {
2719 	struct machine *machine = vmachine;
2720 	struct map *map;
2721 	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
2722 
2723 	if (sym == NULL)
2724 		return NULL;
2725 
2726 	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2727 	*addrp = map->unmap_ip(map, sym->start);
2728 	return sym->name;
2729 }
2730