1 // SPDX-License-Identifier: GPL-2.0 2 #include <dirent.h> 3 #include <errno.h> 4 #include <inttypes.h> 5 #include <regex.h> 6 #include <stdlib.h> 7 #include "callchain.h" 8 #include "debug.h" 9 #include "dso.h" 10 #include "env.h" 11 #include "event.h" 12 #include "evsel.h" 13 #include "hist.h" 14 #include "machine.h" 15 #include "map.h" 16 #include "map_symbol.h" 17 #include "branch.h" 18 #include "mem-events.h" 19 #include "srcline.h" 20 #include "symbol.h" 21 #include "sort.h" 22 #include "strlist.h" 23 #include "target.h" 24 #include "thread.h" 25 #include "util.h" 26 #include "vdso.h" 27 #include <stdbool.h> 28 #include <sys/types.h> 29 #include <sys/stat.h> 30 #include <unistd.h> 31 #include "unwind.h" 32 #include "linux/hash.h" 33 #include "asm/bug.h" 34 #include "bpf-event.h" 35 #include <internal/lib.h> // page_size 36 37 #include <linux/ctype.h> 38 #include <symbol/kallsyms.h> 39 #include <linux/mman.h> 40 #include <linux/string.h> 41 #include <linux/zalloc.h> 42 43 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock); 44 45 static struct dso *machine__kernel_dso(struct machine *machine) 46 { 47 return machine->vmlinux_map->dso; 48 } 49 50 static void dsos__init(struct dsos *dsos) 51 { 52 INIT_LIST_HEAD(&dsos->head); 53 dsos->root = RB_ROOT; 54 init_rwsem(&dsos->lock); 55 } 56 57 static void machine__threads_init(struct machine *machine) 58 { 59 int i; 60 61 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 62 struct threads *threads = &machine->threads[i]; 63 threads->entries = RB_ROOT_CACHED; 64 init_rwsem(&threads->lock); 65 threads->nr = 0; 66 INIT_LIST_HEAD(&threads->dead); 67 threads->last_match = NULL; 68 } 69 } 70 71 static int machine__set_mmap_name(struct machine *machine) 72 { 73 if (machine__is_host(machine)) 74 machine->mmap_name = strdup("[kernel.kallsyms]"); 75 else if (machine__is_default_guest(machine)) 76 machine->mmap_name = strdup("[guest.kernel.kallsyms]"); 77 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]", 78 machine->pid) < 0) 79 machine->mmap_name = NULL; 80 81 return machine->mmap_name ? 0 : -ENOMEM; 82 } 83 84 int machine__init(struct machine *machine, const char *root_dir, pid_t pid) 85 { 86 int err = -ENOMEM; 87 88 memset(machine, 0, sizeof(*machine)); 89 maps__init(&machine->kmaps, machine); 90 RB_CLEAR_NODE(&machine->rb_node); 91 dsos__init(&machine->dsos); 92 93 machine__threads_init(machine); 94 95 machine->vdso_info = NULL; 96 machine->env = NULL; 97 98 machine->pid = pid; 99 100 machine->id_hdr_size = 0; 101 machine->kptr_restrict_warned = false; 102 machine->comm_exec = false; 103 machine->kernel_start = 0; 104 machine->vmlinux_map = NULL; 105 106 machine->root_dir = strdup(root_dir); 107 if (machine->root_dir == NULL) 108 return -ENOMEM; 109 110 if (machine__set_mmap_name(machine)) 111 goto out; 112 113 if (pid != HOST_KERNEL_ID) { 114 struct thread *thread = machine__findnew_thread(machine, -1, 115 pid); 116 char comm[64]; 117 118 if (thread == NULL) 119 goto out; 120 121 snprintf(comm, sizeof(comm), "[guest/%d]", pid); 122 thread__set_comm(thread, comm, 0); 123 thread__put(thread); 124 } 125 126 machine->current_tid = NULL; 127 err = 0; 128 129 out: 130 if (err) { 131 zfree(&machine->root_dir); 132 zfree(&machine->mmap_name); 133 } 134 return 0; 135 } 136 137 struct machine *machine__new_host(void) 138 { 139 struct machine *machine = malloc(sizeof(*machine)); 140 141 if (machine != NULL) { 142 machine__init(machine, "", HOST_KERNEL_ID); 143 144 if (machine__create_kernel_maps(machine) < 0) 145 goto out_delete; 146 } 147 148 return machine; 149 out_delete: 150 free(machine); 151 return NULL; 152 } 153 154 struct machine *machine__new_kallsyms(void) 155 { 156 struct machine *machine = machine__new_host(); 157 /* 158 * FIXME: 159 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly 160 * ask for not using the kcore parsing code, once this one is fixed 161 * to create a map per module. 162 */ 163 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) { 164 machine__delete(machine); 165 machine = NULL; 166 } 167 168 return machine; 169 } 170 171 static void dsos__purge(struct dsos *dsos) 172 { 173 struct dso *pos, *n; 174 175 down_write(&dsos->lock); 176 177 list_for_each_entry_safe(pos, n, &dsos->head, node) { 178 RB_CLEAR_NODE(&pos->rb_node); 179 pos->root = NULL; 180 list_del_init(&pos->node); 181 dso__put(pos); 182 } 183 184 up_write(&dsos->lock); 185 } 186 187 static void dsos__exit(struct dsos *dsos) 188 { 189 dsos__purge(dsos); 190 exit_rwsem(&dsos->lock); 191 } 192 193 void machine__delete_threads(struct machine *machine) 194 { 195 struct rb_node *nd; 196 int i; 197 198 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 199 struct threads *threads = &machine->threads[i]; 200 down_write(&threads->lock); 201 nd = rb_first_cached(&threads->entries); 202 while (nd) { 203 struct thread *t = rb_entry(nd, struct thread, rb_node); 204 205 nd = rb_next(nd); 206 __machine__remove_thread(machine, t, false); 207 } 208 up_write(&threads->lock); 209 } 210 } 211 212 void machine__exit(struct machine *machine) 213 { 214 int i; 215 216 if (machine == NULL) 217 return; 218 219 machine__destroy_kernel_maps(machine); 220 maps__exit(&machine->kmaps); 221 dsos__exit(&machine->dsos); 222 machine__exit_vdso(machine); 223 zfree(&machine->root_dir); 224 zfree(&machine->mmap_name); 225 zfree(&machine->current_tid); 226 227 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 228 struct threads *threads = &machine->threads[i]; 229 struct thread *thread, *n; 230 /* 231 * Forget about the dead, at this point whatever threads were 232 * left in the dead lists better have a reference count taken 233 * by who is using them, and then, when they drop those references 234 * and it finally hits zero, thread__put() will check and see that 235 * its not in the dead threads list and will not try to remove it 236 * from there, just calling thread__delete() straight away. 237 */ 238 list_for_each_entry_safe(thread, n, &threads->dead, node) 239 list_del_init(&thread->node); 240 241 exit_rwsem(&threads->lock); 242 } 243 } 244 245 void machine__delete(struct machine *machine) 246 { 247 if (machine) { 248 machine__exit(machine); 249 free(machine); 250 } 251 } 252 253 void machines__init(struct machines *machines) 254 { 255 machine__init(&machines->host, "", HOST_KERNEL_ID); 256 machines->guests = RB_ROOT_CACHED; 257 } 258 259 void machines__exit(struct machines *machines) 260 { 261 machine__exit(&machines->host); 262 /* XXX exit guest */ 263 } 264 265 struct machine *machines__add(struct machines *machines, pid_t pid, 266 const char *root_dir) 267 { 268 struct rb_node **p = &machines->guests.rb_root.rb_node; 269 struct rb_node *parent = NULL; 270 struct machine *pos, *machine = malloc(sizeof(*machine)); 271 bool leftmost = true; 272 273 if (machine == NULL) 274 return NULL; 275 276 if (machine__init(machine, root_dir, pid) != 0) { 277 free(machine); 278 return NULL; 279 } 280 281 while (*p != NULL) { 282 parent = *p; 283 pos = rb_entry(parent, struct machine, rb_node); 284 if (pid < pos->pid) 285 p = &(*p)->rb_left; 286 else { 287 p = &(*p)->rb_right; 288 leftmost = false; 289 } 290 } 291 292 rb_link_node(&machine->rb_node, parent, p); 293 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost); 294 295 return machine; 296 } 297 298 void machines__set_comm_exec(struct machines *machines, bool comm_exec) 299 { 300 struct rb_node *nd; 301 302 machines->host.comm_exec = comm_exec; 303 304 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 305 struct machine *machine = rb_entry(nd, struct machine, rb_node); 306 307 machine->comm_exec = comm_exec; 308 } 309 } 310 311 struct machine *machines__find(struct machines *machines, pid_t pid) 312 { 313 struct rb_node **p = &machines->guests.rb_root.rb_node; 314 struct rb_node *parent = NULL; 315 struct machine *machine; 316 struct machine *default_machine = NULL; 317 318 if (pid == HOST_KERNEL_ID) 319 return &machines->host; 320 321 while (*p != NULL) { 322 parent = *p; 323 machine = rb_entry(parent, struct machine, rb_node); 324 if (pid < machine->pid) 325 p = &(*p)->rb_left; 326 else if (pid > machine->pid) 327 p = &(*p)->rb_right; 328 else 329 return machine; 330 if (!machine->pid) 331 default_machine = machine; 332 } 333 334 return default_machine; 335 } 336 337 struct machine *machines__findnew(struct machines *machines, pid_t pid) 338 { 339 char path[PATH_MAX]; 340 const char *root_dir = ""; 341 struct machine *machine = machines__find(machines, pid); 342 343 if (machine && (machine->pid == pid)) 344 goto out; 345 346 if ((pid != HOST_KERNEL_ID) && 347 (pid != DEFAULT_GUEST_KERNEL_ID) && 348 (symbol_conf.guestmount)) { 349 sprintf(path, "%s/%d", symbol_conf.guestmount, pid); 350 if (access(path, R_OK)) { 351 static struct strlist *seen; 352 353 if (!seen) 354 seen = strlist__new(NULL, NULL); 355 356 if (!strlist__has_entry(seen, path)) { 357 pr_err("Can't access file %s\n", path); 358 strlist__add(seen, path); 359 } 360 machine = NULL; 361 goto out; 362 } 363 root_dir = path; 364 } 365 366 machine = machines__add(machines, pid, root_dir); 367 out: 368 return machine; 369 } 370 371 void machines__process_guests(struct machines *machines, 372 machine__process_t process, void *data) 373 { 374 struct rb_node *nd; 375 376 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 377 struct machine *pos = rb_entry(nd, struct machine, rb_node); 378 process(pos, data); 379 } 380 } 381 382 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size) 383 { 384 struct rb_node *node; 385 struct machine *machine; 386 387 machines->host.id_hdr_size = id_hdr_size; 388 389 for (node = rb_first_cached(&machines->guests); node; 390 node = rb_next(node)) { 391 machine = rb_entry(node, struct machine, rb_node); 392 machine->id_hdr_size = id_hdr_size; 393 } 394 395 return; 396 } 397 398 static void machine__update_thread_pid(struct machine *machine, 399 struct thread *th, pid_t pid) 400 { 401 struct thread *leader; 402 403 if (pid == th->pid_ || pid == -1 || th->pid_ != -1) 404 return; 405 406 th->pid_ = pid; 407 408 if (th->pid_ == th->tid) 409 return; 410 411 leader = __machine__findnew_thread(machine, th->pid_, th->pid_); 412 if (!leader) 413 goto out_err; 414 415 if (!leader->maps) 416 leader->maps = maps__new(machine); 417 418 if (!leader->maps) 419 goto out_err; 420 421 if (th->maps == leader->maps) 422 return; 423 424 if (th->maps) { 425 /* 426 * Maps are created from MMAP events which provide the pid and 427 * tid. Consequently there never should be any maps on a thread 428 * with an unknown pid. Just print an error if there are. 429 */ 430 if (!maps__empty(th->maps)) 431 pr_err("Discarding thread maps for %d:%d\n", 432 th->pid_, th->tid); 433 maps__put(th->maps); 434 } 435 436 th->maps = maps__get(leader->maps); 437 out_put: 438 thread__put(leader); 439 return; 440 out_err: 441 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid); 442 goto out_put; 443 } 444 445 /* 446 * Front-end cache - TID lookups come in blocks, 447 * so most of the time we dont have to look up 448 * the full rbtree: 449 */ 450 static struct thread* 451 __threads__get_last_match(struct threads *threads, struct machine *machine, 452 int pid, int tid) 453 { 454 struct thread *th; 455 456 th = threads->last_match; 457 if (th != NULL) { 458 if (th->tid == tid) { 459 machine__update_thread_pid(machine, th, pid); 460 return thread__get(th); 461 } 462 463 threads->last_match = NULL; 464 } 465 466 return NULL; 467 } 468 469 static struct thread* 470 threads__get_last_match(struct threads *threads, struct machine *machine, 471 int pid, int tid) 472 { 473 struct thread *th = NULL; 474 475 if (perf_singlethreaded) 476 th = __threads__get_last_match(threads, machine, pid, tid); 477 478 return th; 479 } 480 481 static void 482 __threads__set_last_match(struct threads *threads, struct thread *th) 483 { 484 threads->last_match = th; 485 } 486 487 static void 488 threads__set_last_match(struct threads *threads, struct thread *th) 489 { 490 if (perf_singlethreaded) 491 __threads__set_last_match(threads, th); 492 } 493 494 /* 495 * Caller must eventually drop thread->refcnt returned with a successful 496 * lookup/new thread inserted. 497 */ 498 static struct thread *____machine__findnew_thread(struct machine *machine, 499 struct threads *threads, 500 pid_t pid, pid_t tid, 501 bool create) 502 { 503 struct rb_node **p = &threads->entries.rb_root.rb_node; 504 struct rb_node *parent = NULL; 505 struct thread *th; 506 bool leftmost = true; 507 508 th = threads__get_last_match(threads, machine, pid, tid); 509 if (th) 510 return th; 511 512 while (*p != NULL) { 513 parent = *p; 514 th = rb_entry(parent, struct thread, rb_node); 515 516 if (th->tid == tid) { 517 threads__set_last_match(threads, th); 518 machine__update_thread_pid(machine, th, pid); 519 return thread__get(th); 520 } 521 522 if (tid < th->tid) 523 p = &(*p)->rb_left; 524 else { 525 p = &(*p)->rb_right; 526 leftmost = false; 527 } 528 } 529 530 if (!create) 531 return NULL; 532 533 th = thread__new(pid, tid); 534 if (th != NULL) { 535 rb_link_node(&th->rb_node, parent, p); 536 rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost); 537 538 /* 539 * We have to initialize maps separately after rb tree is updated. 540 * 541 * The reason is that we call machine__findnew_thread 542 * within thread__init_maps to find the thread 543 * leader and that would screwed the rb tree. 544 */ 545 if (thread__init_maps(th, machine)) { 546 rb_erase_cached(&th->rb_node, &threads->entries); 547 RB_CLEAR_NODE(&th->rb_node); 548 thread__put(th); 549 return NULL; 550 } 551 /* 552 * It is now in the rbtree, get a ref 553 */ 554 thread__get(th); 555 threads__set_last_match(threads, th); 556 ++threads->nr; 557 } 558 559 return th; 560 } 561 562 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid) 563 { 564 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true); 565 } 566 567 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, 568 pid_t tid) 569 { 570 struct threads *threads = machine__threads(machine, tid); 571 struct thread *th; 572 573 down_write(&threads->lock); 574 th = __machine__findnew_thread(machine, pid, tid); 575 up_write(&threads->lock); 576 return th; 577 } 578 579 struct thread *machine__find_thread(struct machine *machine, pid_t pid, 580 pid_t tid) 581 { 582 struct threads *threads = machine__threads(machine, tid); 583 struct thread *th; 584 585 down_read(&threads->lock); 586 th = ____machine__findnew_thread(machine, threads, pid, tid, false); 587 up_read(&threads->lock); 588 return th; 589 } 590 591 struct comm *machine__thread_exec_comm(struct machine *machine, 592 struct thread *thread) 593 { 594 if (machine->comm_exec) 595 return thread__exec_comm(thread); 596 else 597 return thread__comm(thread); 598 } 599 600 int machine__process_comm_event(struct machine *machine, union perf_event *event, 601 struct perf_sample *sample) 602 { 603 struct thread *thread = machine__findnew_thread(machine, 604 event->comm.pid, 605 event->comm.tid); 606 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC; 607 int err = 0; 608 609 if (exec) 610 machine->comm_exec = true; 611 612 if (dump_trace) 613 perf_event__fprintf_comm(event, stdout); 614 615 if (thread == NULL || 616 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) { 617 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n"); 618 err = -1; 619 } 620 621 thread__put(thread); 622 623 return err; 624 } 625 626 int machine__process_namespaces_event(struct machine *machine __maybe_unused, 627 union perf_event *event, 628 struct perf_sample *sample __maybe_unused) 629 { 630 struct thread *thread = machine__findnew_thread(machine, 631 event->namespaces.pid, 632 event->namespaces.tid); 633 int err = 0; 634 635 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES, 636 "\nWARNING: kernel seems to support more namespaces than perf" 637 " tool.\nTry updating the perf tool..\n\n"); 638 639 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES, 640 "\nWARNING: perf tool seems to support more namespaces than" 641 " the kernel.\nTry updating the kernel..\n\n"); 642 643 if (dump_trace) 644 perf_event__fprintf_namespaces(event, stdout); 645 646 if (thread == NULL || 647 thread__set_namespaces(thread, sample->time, &event->namespaces)) { 648 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n"); 649 err = -1; 650 } 651 652 thread__put(thread); 653 654 return err; 655 } 656 657 int machine__process_lost_event(struct machine *machine __maybe_unused, 658 union perf_event *event, struct perf_sample *sample __maybe_unused) 659 { 660 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n", 661 event->lost.id, event->lost.lost); 662 return 0; 663 } 664 665 int machine__process_lost_samples_event(struct machine *machine __maybe_unused, 666 union perf_event *event, struct perf_sample *sample) 667 { 668 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n", 669 sample->id, event->lost_samples.lost); 670 return 0; 671 } 672 673 static struct dso *machine__findnew_module_dso(struct machine *machine, 674 struct kmod_path *m, 675 const char *filename) 676 { 677 struct dso *dso; 678 679 down_write(&machine->dsos.lock); 680 681 dso = __dsos__find(&machine->dsos, m->name, true); 682 if (!dso) { 683 dso = __dsos__addnew(&machine->dsos, m->name); 684 if (dso == NULL) 685 goto out_unlock; 686 687 dso__set_module_info(dso, m, machine); 688 dso__set_long_name(dso, strdup(filename), true); 689 dso->kernel = DSO_TYPE_KERNEL; 690 } 691 692 dso__get(dso); 693 out_unlock: 694 up_write(&machine->dsos.lock); 695 return dso; 696 } 697 698 int machine__process_aux_event(struct machine *machine __maybe_unused, 699 union perf_event *event) 700 { 701 if (dump_trace) 702 perf_event__fprintf_aux(event, stdout); 703 return 0; 704 } 705 706 int machine__process_itrace_start_event(struct machine *machine __maybe_unused, 707 union perf_event *event) 708 { 709 if (dump_trace) 710 perf_event__fprintf_itrace_start(event, stdout); 711 return 0; 712 } 713 714 int machine__process_switch_event(struct machine *machine __maybe_unused, 715 union perf_event *event) 716 { 717 if (dump_trace) 718 perf_event__fprintf_switch(event, stdout); 719 return 0; 720 } 721 722 static int machine__process_ksymbol_register(struct machine *machine, 723 union perf_event *event, 724 struct perf_sample *sample __maybe_unused) 725 { 726 struct symbol *sym; 727 struct map *map = maps__find(&machine->kmaps, event->ksymbol.addr); 728 729 if (!map) { 730 struct dso *dso = dso__new(event->ksymbol.name); 731 732 if (dso) { 733 dso->kernel = DSO_TYPE_KERNEL; 734 map = map__new2(0, dso); 735 } 736 737 if (!dso || !map) { 738 dso__put(dso); 739 return -ENOMEM; 740 } 741 742 map->start = event->ksymbol.addr; 743 map->end = map->start + event->ksymbol.len; 744 maps__insert(&machine->kmaps, map); 745 } 746 747 sym = symbol__new(map->map_ip(map, map->start), 748 event->ksymbol.len, 749 0, 0, event->ksymbol.name); 750 if (!sym) 751 return -ENOMEM; 752 dso__insert_symbol(map->dso, sym); 753 return 0; 754 } 755 756 static int machine__process_ksymbol_unregister(struct machine *machine, 757 union perf_event *event, 758 struct perf_sample *sample __maybe_unused) 759 { 760 struct map *map; 761 762 map = maps__find(&machine->kmaps, event->ksymbol.addr); 763 if (map) 764 maps__remove(&machine->kmaps, map); 765 766 return 0; 767 } 768 769 int machine__process_ksymbol(struct machine *machine __maybe_unused, 770 union perf_event *event, 771 struct perf_sample *sample) 772 { 773 if (dump_trace) 774 perf_event__fprintf_ksymbol(event, stdout); 775 776 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER) 777 return machine__process_ksymbol_unregister(machine, event, 778 sample); 779 return machine__process_ksymbol_register(machine, event, sample); 780 } 781 782 static struct map *machine__addnew_module_map(struct machine *machine, u64 start, 783 const char *filename) 784 { 785 struct map *map = NULL; 786 struct kmod_path m; 787 struct dso *dso; 788 789 if (kmod_path__parse_name(&m, filename)) 790 return NULL; 791 792 dso = machine__findnew_module_dso(machine, &m, filename); 793 if (dso == NULL) 794 goto out; 795 796 map = map__new2(start, dso); 797 if (map == NULL) 798 goto out; 799 800 maps__insert(&machine->kmaps, map); 801 802 /* Put the map here because maps__insert alread got it */ 803 map__put(map); 804 out: 805 /* put the dso here, corresponding to machine__findnew_module_dso */ 806 dso__put(dso); 807 zfree(&m.name); 808 return map; 809 } 810 811 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp) 812 { 813 struct rb_node *nd; 814 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp); 815 816 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 817 struct machine *pos = rb_entry(nd, struct machine, rb_node); 818 ret += __dsos__fprintf(&pos->dsos.head, fp); 819 } 820 821 return ret; 822 } 823 824 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp, 825 bool (skip)(struct dso *dso, int parm), int parm) 826 { 827 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm); 828 } 829 830 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp, 831 bool (skip)(struct dso *dso, int parm), int parm) 832 { 833 struct rb_node *nd; 834 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm); 835 836 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 837 struct machine *pos = rb_entry(nd, struct machine, rb_node); 838 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm); 839 } 840 return ret; 841 } 842 843 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp) 844 { 845 int i; 846 size_t printed = 0; 847 struct dso *kdso = machine__kernel_dso(machine); 848 849 if (kdso->has_build_id) { 850 char filename[PATH_MAX]; 851 if (dso__build_id_filename(kdso, filename, sizeof(filename), 852 false)) 853 printed += fprintf(fp, "[0] %s\n", filename); 854 } 855 856 for (i = 0; i < vmlinux_path__nr_entries; ++i) 857 printed += fprintf(fp, "[%d] %s\n", 858 i + kdso->has_build_id, vmlinux_path[i]); 859 860 return printed; 861 } 862 863 size_t machine__fprintf(struct machine *machine, FILE *fp) 864 { 865 struct rb_node *nd; 866 size_t ret; 867 int i; 868 869 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 870 struct threads *threads = &machine->threads[i]; 871 872 down_read(&threads->lock); 873 874 ret = fprintf(fp, "Threads: %u\n", threads->nr); 875 876 for (nd = rb_first_cached(&threads->entries); nd; 877 nd = rb_next(nd)) { 878 struct thread *pos = rb_entry(nd, struct thread, rb_node); 879 880 ret += thread__fprintf(pos, fp); 881 } 882 883 up_read(&threads->lock); 884 } 885 return ret; 886 } 887 888 static struct dso *machine__get_kernel(struct machine *machine) 889 { 890 const char *vmlinux_name = machine->mmap_name; 891 struct dso *kernel; 892 893 if (machine__is_host(machine)) { 894 if (symbol_conf.vmlinux_name) 895 vmlinux_name = symbol_conf.vmlinux_name; 896 897 kernel = machine__findnew_kernel(machine, vmlinux_name, 898 "[kernel]", DSO_TYPE_KERNEL); 899 } else { 900 if (symbol_conf.default_guest_vmlinux_name) 901 vmlinux_name = symbol_conf.default_guest_vmlinux_name; 902 903 kernel = machine__findnew_kernel(machine, vmlinux_name, 904 "[guest.kernel]", 905 DSO_TYPE_GUEST_KERNEL); 906 } 907 908 if (kernel != NULL && (!kernel->has_build_id)) 909 dso__read_running_kernel_build_id(kernel, machine); 910 911 return kernel; 912 } 913 914 struct process_args { 915 u64 start; 916 }; 917 918 void machine__get_kallsyms_filename(struct machine *machine, char *buf, 919 size_t bufsz) 920 { 921 if (machine__is_default_guest(machine)) 922 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms); 923 else 924 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir); 925 } 926 927 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL}; 928 929 /* Figure out the start address of kernel map from /proc/kallsyms. 930 * Returns the name of the start symbol in *symbol_name. Pass in NULL as 931 * symbol_name if it's not that important. 932 */ 933 static int machine__get_running_kernel_start(struct machine *machine, 934 const char **symbol_name, 935 u64 *start, u64 *end) 936 { 937 char filename[PATH_MAX]; 938 int i, err = -1; 939 const char *name; 940 u64 addr = 0; 941 942 machine__get_kallsyms_filename(machine, filename, PATH_MAX); 943 944 if (symbol__restricted_filename(filename, "/proc/kallsyms")) 945 return 0; 946 947 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) { 948 err = kallsyms__get_function_start(filename, name, &addr); 949 if (!err) 950 break; 951 } 952 953 if (err) 954 return -1; 955 956 if (symbol_name) 957 *symbol_name = name; 958 959 *start = addr; 960 961 err = kallsyms__get_function_start(filename, "_etext", &addr); 962 if (!err) 963 *end = addr; 964 965 return 0; 966 } 967 968 int machine__create_extra_kernel_map(struct machine *machine, 969 struct dso *kernel, 970 struct extra_kernel_map *xm) 971 { 972 struct kmap *kmap; 973 struct map *map; 974 975 map = map__new2(xm->start, kernel); 976 if (!map) 977 return -1; 978 979 map->end = xm->end; 980 map->pgoff = xm->pgoff; 981 982 kmap = map__kmap(map); 983 984 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN); 985 986 maps__insert(&machine->kmaps, map); 987 988 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n", 989 kmap->name, map->start, map->end); 990 991 map__put(map); 992 993 return 0; 994 } 995 996 static u64 find_entry_trampoline(struct dso *dso) 997 { 998 /* Duplicates are removed so lookup all aliases */ 999 const char *syms[] = { 1000 "_entry_trampoline", 1001 "__entry_trampoline_start", 1002 "entry_SYSCALL_64_trampoline", 1003 }; 1004 struct symbol *sym = dso__first_symbol(dso); 1005 unsigned int i; 1006 1007 for (; sym; sym = dso__next_symbol(sym)) { 1008 if (sym->binding != STB_GLOBAL) 1009 continue; 1010 for (i = 0; i < ARRAY_SIZE(syms); i++) { 1011 if (!strcmp(sym->name, syms[i])) 1012 return sym->start; 1013 } 1014 } 1015 1016 return 0; 1017 } 1018 1019 /* 1020 * These values can be used for kernels that do not have symbols for the entry 1021 * trampolines in kallsyms. 1022 */ 1023 #define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL 1024 #define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000 1025 #define X86_64_ENTRY_TRAMPOLINE 0x6000 1026 1027 /* Map x86_64 PTI entry trampolines */ 1028 int machine__map_x86_64_entry_trampolines(struct machine *machine, 1029 struct dso *kernel) 1030 { 1031 struct maps *kmaps = &machine->kmaps; 1032 int nr_cpus_avail, cpu; 1033 bool found = false; 1034 struct map *map; 1035 u64 pgoff; 1036 1037 /* 1038 * In the vmlinux case, pgoff is a virtual address which must now be 1039 * mapped to a vmlinux offset. 1040 */ 1041 maps__for_each_entry(kmaps, map) { 1042 struct kmap *kmap = __map__kmap(map); 1043 struct map *dest_map; 1044 1045 if (!kmap || !is_entry_trampoline(kmap->name)) 1046 continue; 1047 1048 dest_map = maps__find(kmaps, map->pgoff); 1049 if (dest_map != map) 1050 map->pgoff = dest_map->map_ip(dest_map, map->pgoff); 1051 found = true; 1052 } 1053 if (found || machine->trampolines_mapped) 1054 return 0; 1055 1056 pgoff = find_entry_trampoline(kernel); 1057 if (!pgoff) 1058 return 0; 1059 1060 nr_cpus_avail = machine__nr_cpus_avail(machine); 1061 1062 /* Add a 1 page map for each CPU's entry trampoline */ 1063 for (cpu = 0; cpu < nr_cpus_avail; cpu++) { 1064 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU + 1065 cpu * X86_64_CPU_ENTRY_AREA_SIZE + 1066 X86_64_ENTRY_TRAMPOLINE; 1067 struct extra_kernel_map xm = { 1068 .start = va, 1069 .end = va + page_size, 1070 .pgoff = pgoff, 1071 }; 1072 1073 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN); 1074 1075 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0) 1076 return -1; 1077 } 1078 1079 machine->trampolines_mapped = nr_cpus_avail; 1080 1081 return 0; 1082 } 1083 1084 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused, 1085 struct dso *kernel __maybe_unused) 1086 { 1087 return 0; 1088 } 1089 1090 static int 1091 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel) 1092 { 1093 /* In case of renewal the kernel map, destroy previous one */ 1094 machine__destroy_kernel_maps(machine); 1095 1096 machine->vmlinux_map = map__new2(0, kernel); 1097 if (machine->vmlinux_map == NULL) 1098 return -1; 1099 1100 machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip; 1101 maps__insert(&machine->kmaps, machine->vmlinux_map); 1102 return 0; 1103 } 1104 1105 void machine__destroy_kernel_maps(struct machine *machine) 1106 { 1107 struct kmap *kmap; 1108 struct map *map = machine__kernel_map(machine); 1109 1110 if (map == NULL) 1111 return; 1112 1113 kmap = map__kmap(map); 1114 maps__remove(&machine->kmaps, map); 1115 if (kmap && kmap->ref_reloc_sym) { 1116 zfree((char **)&kmap->ref_reloc_sym->name); 1117 zfree(&kmap->ref_reloc_sym); 1118 } 1119 1120 map__zput(machine->vmlinux_map); 1121 } 1122 1123 int machines__create_guest_kernel_maps(struct machines *machines) 1124 { 1125 int ret = 0; 1126 struct dirent **namelist = NULL; 1127 int i, items = 0; 1128 char path[PATH_MAX]; 1129 pid_t pid; 1130 char *endp; 1131 1132 if (symbol_conf.default_guest_vmlinux_name || 1133 symbol_conf.default_guest_modules || 1134 symbol_conf.default_guest_kallsyms) { 1135 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID); 1136 } 1137 1138 if (symbol_conf.guestmount) { 1139 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL); 1140 if (items <= 0) 1141 return -ENOENT; 1142 for (i = 0; i < items; i++) { 1143 if (!isdigit(namelist[i]->d_name[0])) { 1144 /* Filter out . and .. */ 1145 continue; 1146 } 1147 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10); 1148 if ((*endp != '\0') || 1149 (endp == namelist[i]->d_name) || 1150 (errno == ERANGE)) { 1151 pr_debug("invalid directory (%s). Skipping.\n", 1152 namelist[i]->d_name); 1153 continue; 1154 } 1155 sprintf(path, "%s/%s/proc/kallsyms", 1156 symbol_conf.guestmount, 1157 namelist[i]->d_name); 1158 ret = access(path, R_OK); 1159 if (ret) { 1160 pr_debug("Can't access file %s\n", path); 1161 goto failure; 1162 } 1163 machines__create_kernel_maps(machines, pid); 1164 } 1165 failure: 1166 free(namelist); 1167 } 1168 1169 return ret; 1170 } 1171 1172 void machines__destroy_kernel_maps(struct machines *machines) 1173 { 1174 struct rb_node *next = rb_first_cached(&machines->guests); 1175 1176 machine__destroy_kernel_maps(&machines->host); 1177 1178 while (next) { 1179 struct machine *pos = rb_entry(next, struct machine, rb_node); 1180 1181 next = rb_next(&pos->rb_node); 1182 rb_erase_cached(&pos->rb_node, &machines->guests); 1183 machine__delete(pos); 1184 } 1185 } 1186 1187 int machines__create_kernel_maps(struct machines *machines, pid_t pid) 1188 { 1189 struct machine *machine = machines__findnew(machines, pid); 1190 1191 if (machine == NULL) 1192 return -1; 1193 1194 return machine__create_kernel_maps(machine); 1195 } 1196 1197 int machine__load_kallsyms(struct machine *machine, const char *filename) 1198 { 1199 struct map *map = machine__kernel_map(machine); 1200 int ret = __dso__load_kallsyms(map->dso, filename, map, true); 1201 1202 if (ret > 0) { 1203 dso__set_loaded(map->dso); 1204 /* 1205 * Since /proc/kallsyms will have multiple sessions for the 1206 * kernel, with modules between them, fixup the end of all 1207 * sections. 1208 */ 1209 maps__fixup_end(&machine->kmaps); 1210 } 1211 1212 return ret; 1213 } 1214 1215 int machine__load_vmlinux_path(struct machine *machine) 1216 { 1217 struct map *map = machine__kernel_map(machine); 1218 int ret = dso__load_vmlinux_path(map->dso, map); 1219 1220 if (ret > 0) 1221 dso__set_loaded(map->dso); 1222 1223 return ret; 1224 } 1225 1226 static char *get_kernel_version(const char *root_dir) 1227 { 1228 char version[PATH_MAX]; 1229 FILE *file; 1230 char *name, *tmp; 1231 const char *prefix = "Linux version "; 1232 1233 sprintf(version, "%s/proc/version", root_dir); 1234 file = fopen(version, "r"); 1235 if (!file) 1236 return NULL; 1237 1238 tmp = fgets(version, sizeof(version), file); 1239 fclose(file); 1240 if (!tmp) 1241 return NULL; 1242 1243 name = strstr(version, prefix); 1244 if (!name) 1245 return NULL; 1246 name += strlen(prefix); 1247 tmp = strchr(name, ' '); 1248 if (tmp) 1249 *tmp = '\0'; 1250 1251 return strdup(name); 1252 } 1253 1254 static bool is_kmod_dso(struct dso *dso) 1255 { 1256 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE || 1257 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE; 1258 } 1259 1260 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m) 1261 { 1262 char *long_name; 1263 struct map *map = maps__find_by_name(maps, m->name); 1264 1265 if (map == NULL) 1266 return 0; 1267 1268 long_name = strdup(path); 1269 if (long_name == NULL) 1270 return -ENOMEM; 1271 1272 dso__set_long_name(map->dso, long_name, true); 1273 dso__kernel_module_get_build_id(map->dso, ""); 1274 1275 /* 1276 * Full name could reveal us kmod compression, so 1277 * we need to update the symtab_type if needed. 1278 */ 1279 if (m->comp && is_kmod_dso(map->dso)) { 1280 map->dso->symtab_type++; 1281 map->dso->comp = m->comp; 1282 } 1283 1284 return 0; 1285 } 1286 1287 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth) 1288 { 1289 struct dirent *dent; 1290 DIR *dir = opendir(dir_name); 1291 int ret = 0; 1292 1293 if (!dir) { 1294 pr_debug("%s: cannot open %s dir\n", __func__, dir_name); 1295 return -1; 1296 } 1297 1298 while ((dent = readdir(dir)) != NULL) { 1299 char path[PATH_MAX]; 1300 struct stat st; 1301 1302 /*sshfs might return bad dent->d_type, so we have to stat*/ 1303 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name); 1304 if (stat(path, &st)) 1305 continue; 1306 1307 if (S_ISDIR(st.st_mode)) { 1308 if (!strcmp(dent->d_name, ".") || 1309 !strcmp(dent->d_name, "..")) 1310 continue; 1311 1312 /* Do not follow top-level source and build symlinks */ 1313 if (depth == 0) { 1314 if (!strcmp(dent->d_name, "source") || 1315 !strcmp(dent->d_name, "build")) 1316 continue; 1317 } 1318 1319 ret = maps__set_modules_path_dir(maps, path, depth + 1); 1320 if (ret < 0) 1321 goto out; 1322 } else { 1323 struct kmod_path m; 1324 1325 ret = kmod_path__parse_name(&m, dent->d_name); 1326 if (ret) 1327 goto out; 1328 1329 if (m.kmod) 1330 ret = maps__set_module_path(maps, path, &m); 1331 1332 zfree(&m.name); 1333 1334 if (ret) 1335 goto out; 1336 } 1337 } 1338 1339 out: 1340 closedir(dir); 1341 return ret; 1342 } 1343 1344 static int machine__set_modules_path(struct machine *machine) 1345 { 1346 char *version; 1347 char modules_path[PATH_MAX]; 1348 1349 version = get_kernel_version(machine->root_dir); 1350 if (!version) 1351 return -1; 1352 1353 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s", 1354 machine->root_dir, version); 1355 free(version); 1356 1357 return maps__set_modules_path_dir(&machine->kmaps, modules_path, 0); 1358 } 1359 int __weak arch__fix_module_text_start(u64 *start __maybe_unused, 1360 u64 *size __maybe_unused, 1361 const char *name __maybe_unused) 1362 { 1363 return 0; 1364 } 1365 1366 static int machine__create_module(void *arg, const char *name, u64 start, 1367 u64 size) 1368 { 1369 struct machine *machine = arg; 1370 struct map *map; 1371 1372 if (arch__fix_module_text_start(&start, &size, name) < 0) 1373 return -1; 1374 1375 map = machine__addnew_module_map(machine, start, name); 1376 if (map == NULL) 1377 return -1; 1378 map->end = start + size; 1379 1380 dso__kernel_module_get_build_id(map->dso, machine->root_dir); 1381 1382 return 0; 1383 } 1384 1385 static int machine__create_modules(struct machine *machine) 1386 { 1387 const char *modules; 1388 char path[PATH_MAX]; 1389 1390 if (machine__is_default_guest(machine)) { 1391 modules = symbol_conf.default_guest_modules; 1392 } else { 1393 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir); 1394 modules = path; 1395 } 1396 1397 if (symbol__restricted_filename(modules, "/proc/modules")) 1398 return -1; 1399 1400 if (modules__parse(modules, machine, machine__create_module)) 1401 return -1; 1402 1403 if (!machine__set_modules_path(machine)) 1404 return 0; 1405 1406 pr_debug("Problems setting modules path maps, continuing anyway...\n"); 1407 1408 return 0; 1409 } 1410 1411 static void machine__set_kernel_mmap(struct machine *machine, 1412 u64 start, u64 end) 1413 { 1414 machine->vmlinux_map->start = start; 1415 machine->vmlinux_map->end = end; 1416 /* 1417 * Be a bit paranoid here, some perf.data file came with 1418 * a zero sized synthesized MMAP event for the kernel. 1419 */ 1420 if (start == 0 && end == 0) 1421 machine->vmlinux_map->end = ~0ULL; 1422 } 1423 1424 static void machine__update_kernel_mmap(struct machine *machine, 1425 u64 start, u64 end) 1426 { 1427 struct map *map = machine__kernel_map(machine); 1428 1429 map__get(map); 1430 maps__remove(&machine->kmaps, map); 1431 1432 machine__set_kernel_mmap(machine, start, end); 1433 1434 maps__insert(&machine->kmaps, map); 1435 map__put(map); 1436 } 1437 1438 int machine__create_kernel_maps(struct machine *machine) 1439 { 1440 struct dso *kernel = machine__get_kernel(machine); 1441 const char *name = NULL; 1442 struct map *map; 1443 u64 start = 0, end = ~0ULL; 1444 int ret; 1445 1446 if (kernel == NULL) 1447 return -1; 1448 1449 ret = __machine__create_kernel_maps(machine, kernel); 1450 if (ret < 0) 1451 goto out_put; 1452 1453 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) { 1454 if (machine__is_host(machine)) 1455 pr_debug("Problems creating module maps, " 1456 "continuing anyway...\n"); 1457 else 1458 pr_debug("Problems creating module maps for guest %d, " 1459 "continuing anyway...\n", machine->pid); 1460 } 1461 1462 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) { 1463 if (name && 1464 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) { 1465 machine__destroy_kernel_maps(machine); 1466 ret = -1; 1467 goto out_put; 1468 } 1469 1470 /* 1471 * we have a real start address now, so re-order the kmaps 1472 * assume it's the last in the kmaps 1473 */ 1474 machine__update_kernel_mmap(machine, start, end); 1475 } 1476 1477 if (machine__create_extra_kernel_maps(machine, kernel)) 1478 pr_debug("Problems creating extra kernel maps, continuing anyway...\n"); 1479 1480 if (end == ~0ULL) { 1481 /* update end address of the kernel map using adjacent module address */ 1482 map = map__next(machine__kernel_map(machine)); 1483 if (map) 1484 machine__set_kernel_mmap(machine, start, map->start); 1485 } 1486 1487 out_put: 1488 dso__put(kernel); 1489 return ret; 1490 } 1491 1492 static bool machine__uses_kcore(struct machine *machine) 1493 { 1494 struct dso *dso; 1495 1496 list_for_each_entry(dso, &machine->dsos.head, node) { 1497 if (dso__is_kcore(dso)) 1498 return true; 1499 } 1500 1501 return false; 1502 } 1503 1504 static bool perf_event__is_extra_kernel_mmap(struct machine *machine, 1505 union perf_event *event) 1506 { 1507 return machine__is(machine, "x86_64") && 1508 is_entry_trampoline(event->mmap.filename); 1509 } 1510 1511 static int machine__process_extra_kernel_map(struct machine *machine, 1512 union perf_event *event) 1513 { 1514 struct dso *kernel = machine__kernel_dso(machine); 1515 struct extra_kernel_map xm = { 1516 .start = event->mmap.start, 1517 .end = event->mmap.start + event->mmap.len, 1518 .pgoff = event->mmap.pgoff, 1519 }; 1520 1521 if (kernel == NULL) 1522 return -1; 1523 1524 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN); 1525 1526 return machine__create_extra_kernel_map(machine, kernel, &xm); 1527 } 1528 1529 static int machine__process_kernel_mmap_event(struct machine *machine, 1530 union perf_event *event) 1531 { 1532 struct map *map; 1533 enum dso_kernel_type kernel_type; 1534 bool is_kernel_mmap; 1535 1536 /* If we have maps from kcore then we do not need or want any others */ 1537 if (machine__uses_kcore(machine)) 1538 return 0; 1539 1540 if (machine__is_host(machine)) 1541 kernel_type = DSO_TYPE_KERNEL; 1542 else 1543 kernel_type = DSO_TYPE_GUEST_KERNEL; 1544 1545 is_kernel_mmap = memcmp(event->mmap.filename, 1546 machine->mmap_name, 1547 strlen(machine->mmap_name) - 1) == 0; 1548 if (event->mmap.filename[0] == '/' || 1549 (!is_kernel_mmap && event->mmap.filename[0] == '[')) { 1550 map = machine__addnew_module_map(machine, event->mmap.start, 1551 event->mmap.filename); 1552 if (map == NULL) 1553 goto out_problem; 1554 1555 map->end = map->start + event->mmap.len; 1556 } else if (is_kernel_mmap) { 1557 const char *symbol_name = (event->mmap.filename + 1558 strlen(machine->mmap_name)); 1559 /* 1560 * Should be there already, from the build-id table in 1561 * the header. 1562 */ 1563 struct dso *kernel = NULL; 1564 struct dso *dso; 1565 1566 down_read(&machine->dsos.lock); 1567 1568 list_for_each_entry(dso, &machine->dsos.head, node) { 1569 1570 /* 1571 * The cpumode passed to is_kernel_module is not the 1572 * cpumode of *this* event. If we insist on passing 1573 * correct cpumode to is_kernel_module, we should 1574 * record the cpumode when we adding this dso to the 1575 * linked list. 1576 * 1577 * However we don't really need passing correct 1578 * cpumode. We know the correct cpumode must be kernel 1579 * mode (if not, we should not link it onto kernel_dsos 1580 * list). 1581 * 1582 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN. 1583 * is_kernel_module() treats it as a kernel cpumode. 1584 */ 1585 1586 if (!dso->kernel || 1587 is_kernel_module(dso->long_name, 1588 PERF_RECORD_MISC_CPUMODE_UNKNOWN)) 1589 continue; 1590 1591 1592 kernel = dso; 1593 break; 1594 } 1595 1596 up_read(&machine->dsos.lock); 1597 1598 if (kernel == NULL) 1599 kernel = machine__findnew_dso(machine, machine->mmap_name); 1600 if (kernel == NULL) 1601 goto out_problem; 1602 1603 kernel->kernel = kernel_type; 1604 if (__machine__create_kernel_maps(machine, kernel) < 0) { 1605 dso__put(kernel); 1606 goto out_problem; 1607 } 1608 1609 if (strstr(kernel->long_name, "vmlinux")) 1610 dso__set_short_name(kernel, "[kernel.vmlinux]", false); 1611 1612 machine__update_kernel_mmap(machine, event->mmap.start, 1613 event->mmap.start + event->mmap.len); 1614 1615 /* 1616 * Avoid using a zero address (kptr_restrict) for the ref reloc 1617 * symbol. Effectively having zero here means that at record 1618 * time /proc/sys/kernel/kptr_restrict was non zero. 1619 */ 1620 if (event->mmap.pgoff != 0) { 1621 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, 1622 symbol_name, 1623 event->mmap.pgoff); 1624 } 1625 1626 if (machine__is_default_guest(machine)) { 1627 /* 1628 * preload dso of guest kernel and modules 1629 */ 1630 dso__load(kernel, machine__kernel_map(machine)); 1631 } 1632 } else if (perf_event__is_extra_kernel_mmap(machine, event)) { 1633 return machine__process_extra_kernel_map(machine, event); 1634 } 1635 return 0; 1636 out_problem: 1637 return -1; 1638 } 1639 1640 int machine__process_mmap2_event(struct machine *machine, 1641 union perf_event *event, 1642 struct perf_sample *sample) 1643 { 1644 struct thread *thread; 1645 struct map *map; 1646 struct dso_id dso_id = { 1647 .maj = event->mmap2.maj, 1648 .min = event->mmap2.min, 1649 .ino = event->mmap2.ino, 1650 .ino_generation = event->mmap2.ino_generation, 1651 }; 1652 int ret = 0; 1653 1654 if (dump_trace) 1655 perf_event__fprintf_mmap2(event, stdout); 1656 1657 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1658 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1659 ret = machine__process_kernel_mmap_event(machine, event); 1660 if (ret < 0) 1661 goto out_problem; 1662 return 0; 1663 } 1664 1665 thread = machine__findnew_thread(machine, event->mmap2.pid, 1666 event->mmap2.tid); 1667 if (thread == NULL) 1668 goto out_problem; 1669 1670 map = map__new(machine, event->mmap2.start, 1671 event->mmap2.len, event->mmap2.pgoff, 1672 &dso_id, event->mmap2.prot, 1673 event->mmap2.flags, 1674 event->mmap2.filename, thread); 1675 1676 if (map == NULL) 1677 goto out_problem_map; 1678 1679 ret = thread__insert_map(thread, map); 1680 if (ret) 1681 goto out_problem_insert; 1682 1683 thread__put(thread); 1684 map__put(map); 1685 return 0; 1686 1687 out_problem_insert: 1688 map__put(map); 1689 out_problem_map: 1690 thread__put(thread); 1691 out_problem: 1692 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n"); 1693 return 0; 1694 } 1695 1696 int machine__process_mmap_event(struct machine *machine, union perf_event *event, 1697 struct perf_sample *sample) 1698 { 1699 struct thread *thread; 1700 struct map *map; 1701 u32 prot = 0; 1702 int ret = 0; 1703 1704 if (dump_trace) 1705 perf_event__fprintf_mmap(event, stdout); 1706 1707 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1708 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1709 ret = machine__process_kernel_mmap_event(machine, event); 1710 if (ret < 0) 1711 goto out_problem; 1712 return 0; 1713 } 1714 1715 thread = machine__findnew_thread(machine, event->mmap.pid, 1716 event->mmap.tid); 1717 if (thread == NULL) 1718 goto out_problem; 1719 1720 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA)) 1721 prot = PROT_EXEC; 1722 1723 map = map__new(machine, event->mmap.start, 1724 event->mmap.len, event->mmap.pgoff, 1725 NULL, prot, 0, event->mmap.filename, thread); 1726 1727 if (map == NULL) 1728 goto out_problem_map; 1729 1730 ret = thread__insert_map(thread, map); 1731 if (ret) 1732 goto out_problem_insert; 1733 1734 thread__put(thread); 1735 map__put(map); 1736 return 0; 1737 1738 out_problem_insert: 1739 map__put(map); 1740 out_problem_map: 1741 thread__put(thread); 1742 out_problem: 1743 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n"); 1744 return 0; 1745 } 1746 1747 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock) 1748 { 1749 struct threads *threads = machine__threads(machine, th->tid); 1750 1751 if (threads->last_match == th) 1752 threads__set_last_match(threads, NULL); 1753 1754 if (lock) 1755 down_write(&threads->lock); 1756 1757 BUG_ON(refcount_read(&th->refcnt) == 0); 1758 1759 rb_erase_cached(&th->rb_node, &threads->entries); 1760 RB_CLEAR_NODE(&th->rb_node); 1761 --threads->nr; 1762 /* 1763 * Move it first to the dead_threads list, then drop the reference, 1764 * if this is the last reference, then the thread__delete destructor 1765 * will be called and we will remove it from the dead_threads list. 1766 */ 1767 list_add_tail(&th->node, &threads->dead); 1768 1769 /* 1770 * We need to do the put here because if this is the last refcount, 1771 * then we will be touching the threads->dead head when removing the 1772 * thread. 1773 */ 1774 thread__put(th); 1775 1776 if (lock) 1777 up_write(&threads->lock); 1778 } 1779 1780 void machine__remove_thread(struct machine *machine, struct thread *th) 1781 { 1782 return __machine__remove_thread(machine, th, true); 1783 } 1784 1785 int machine__process_fork_event(struct machine *machine, union perf_event *event, 1786 struct perf_sample *sample) 1787 { 1788 struct thread *thread = machine__find_thread(machine, 1789 event->fork.pid, 1790 event->fork.tid); 1791 struct thread *parent = machine__findnew_thread(machine, 1792 event->fork.ppid, 1793 event->fork.ptid); 1794 bool do_maps_clone = true; 1795 int err = 0; 1796 1797 if (dump_trace) 1798 perf_event__fprintf_task(event, stdout); 1799 1800 /* 1801 * There may be an existing thread that is not actually the parent, 1802 * either because we are processing events out of order, or because the 1803 * (fork) event that would have removed the thread was lost. Assume the 1804 * latter case and continue on as best we can. 1805 */ 1806 if (parent->pid_ != (pid_t)event->fork.ppid) { 1807 dump_printf("removing erroneous parent thread %d/%d\n", 1808 parent->pid_, parent->tid); 1809 machine__remove_thread(machine, parent); 1810 thread__put(parent); 1811 parent = machine__findnew_thread(machine, event->fork.ppid, 1812 event->fork.ptid); 1813 } 1814 1815 /* if a thread currently exists for the thread id remove it */ 1816 if (thread != NULL) { 1817 machine__remove_thread(machine, thread); 1818 thread__put(thread); 1819 } 1820 1821 thread = machine__findnew_thread(machine, event->fork.pid, 1822 event->fork.tid); 1823 /* 1824 * When synthesizing FORK events, we are trying to create thread 1825 * objects for the already running tasks on the machine. 1826 * 1827 * Normally, for a kernel FORK event, we want to clone the parent's 1828 * maps because that is what the kernel just did. 1829 * 1830 * But when synthesizing, this should not be done. If we do, we end up 1831 * with overlapping maps as we process the sythesized MMAP2 events that 1832 * get delivered shortly thereafter. 1833 * 1834 * Use the FORK event misc flags in an internal way to signal this 1835 * situation, so we can elide the map clone when appropriate. 1836 */ 1837 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC) 1838 do_maps_clone = false; 1839 1840 if (thread == NULL || parent == NULL || 1841 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) { 1842 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n"); 1843 err = -1; 1844 } 1845 thread__put(thread); 1846 thread__put(parent); 1847 1848 return err; 1849 } 1850 1851 int machine__process_exit_event(struct machine *machine, union perf_event *event, 1852 struct perf_sample *sample __maybe_unused) 1853 { 1854 struct thread *thread = machine__find_thread(machine, 1855 event->fork.pid, 1856 event->fork.tid); 1857 1858 if (dump_trace) 1859 perf_event__fprintf_task(event, stdout); 1860 1861 if (thread != NULL) { 1862 thread__exited(thread); 1863 thread__put(thread); 1864 } 1865 1866 return 0; 1867 } 1868 1869 int machine__process_event(struct machine *machine, union perf_event *event, 1870 struct perf_sample *sample) 1871 { 1872 int ret; 1873 1874 switch (event->header.type) { 1875 case PERF_RECORD_COMM: 1876 ret = machine__process_comm_event(machine, event, sample); break; 1877 case PERF_RECORD_MMAP: 1878 ret = machine__process_mmap_event(machine, event, sample); break; 1879 case PERF_RECORD_NAMESPACES: 1880 ret = machine__process_namespaces_event(machine, event, sample); break; 1881 case PERF_RECORD_MMAP2: 1882 ret = machine__process_mmap2_event(machine, event, sample); break; 1883 case PERF_RECORD_FORK: 1884 ret = machine__process_fork_event(machine, event, sample); break; 1885 case PERF_RECORD_EXIT: 1886 ret = machine__process_exit_event(machine, event, sample); break; 1887 case PERF_RECORD_LOST: 1888 ret = machine__process_lost_event(machine, event, sample); break; 1889 case PERF_RECORD_AUX: 1890 ret = machine__process_aux_event(machine, event); break; 1891 case PERF_RECORD_ITRACE_START: 1892 ret = machine__process_itrace_start_event(machine, event); break; 1893 case PERF_RECORD_LOST_SAMPLES: 1894 ret = machine__process_lost_samples_event(machine, event, sample); break; 1895 case PERF_RECORD_SWITCH: 1896 case PERF_RECORD_SWITCH_CPU_WIDE: 1897 ret = machine__process_switch_event(machine, event); break; 1898 case PERF_RECORD_KSYMBOL: 1899 ret = machine__process_ksymbol(machine, event, sample); break; 1900 case PERF_RECORD_BPF_EVENT: 1901 ret = machine__process_bpf(machine, event, sample); break; 1902 default: 1903 ret = -1; 1904 break; 1905 } 1906 1907 return ret; 1908 } 1909 1910 static bool symbol__match_regex(struct symbol *sym, regex_t *regex) 1911 { 1912 if (!regexec(regex, sym->name, 0, NULL, 0)) 1913 return 1; 1914 return 0; 1915 } 1916 1917 static void ip__resolve_ams(struct thread *thread, 1918 struct addr_map_symbol *ams, 1919 u64 ip) 1920 { 1921 struct addr_location al; 1922 1923 memset(&al, 0, sizeof(al)); 1924 /* 1925 * We cannot use the header.misc hint to determine whether a 1926 * branch stack address is user, kernel, guest, hypervisor. 1927 * Branches may straddle the kernel/user/hypervisor boundaries. 1928 * Thus, we have to try consecutively until we find a match 1929 * or else, the symbol is unknown 1930 */ 1931 thread__find_cpumode_addr_location(thread, ip, &al); 1932 1933 ams->addr = ip; 1934 ams->al_addr = al.addr; 1935 ams->ms.maps = al.maps; 1936 ams->ms.sym = al.sym; 1937 ams->ms.map = al.map; 1938 ams->phys_addr = 0; 1939 } 1940 1941 static void ip__resolve_data(struct thread *thread, 1942 u8 m, struct addr_map_symbol *ams, 1943 u64 addr, u64 phys_addr) 1944 { 1945 struct addr_location al; 1946 1947 memset(&al, 0, sizeof(al)); 1948 1949 thread__find_symbol(thread, m, addr, &al); 1950 1951 ams->addr = addr; 1952 ams->al_addr = al.addr; 1953 ams->ms.maps = al.maps; 1954 ams->ms.sym = al.sym; 1955 ams->ms.map = al.map; 1956 ams->phys_addr = phys_addr; 1957 } 1958 1959 struct mem_info *sample__resolve_mem(struct perf_sample *sample, 1960 struct addr_location *al) 1961 { 1962 struct mem_info *mi = mem_info__new(); 1963 1964 if (!mi) 1965 return NULL; 1966 1967 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip); 1968 ip__resolve_data(al->thread, al->cpumode, &mi->daddr, 1969 sample->addr, sample->phys_addr); 1970 mi->data_src.val = sample->data_src; 1971 1972 return mi; 1973 } 1974 1975 static char *callchain_srcline(struct map_symbol *ms, u64 ip) 1976 { 1977 struct map *map = ms->map; 1978 char *srcline = NULL; 1979 1980 if (!map || callchain_param.key == CCKEY_FUNCTION) 1981 return srcline; 1982 1983 srcline = srcline__tree_find(&map->dso->srclines, ip); 1984 if (!srcline) { 1985 bool show_sym = false; 1986 bool show_addr = callchain_param.key == CCKEY_ADDRESS; 1987 1988 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip), 1989 ms->sym, show_sym, show_addr, ip); 1990 srcline__tree_insert(&map->dso->srclines, ip, srcline); 1991 } 1992 1993 return srcline; 1994 } 1995 1996 struct iterations { 1997 int nr_loop_iter; 1998 u64 cycles; 1999 }; 2000 2001 static int add_callchain_ip(struct thread *thread, 2002 struct callchain_cursor *cursor, 2003 struct symbol **parent, 2004 struct addr_location *root_al, 2005 u8 *cpumode, 2006 u64 ip, 2007 bool branch, 2008 struct branch_flags *flags, 2009 struct iterations *iter, 2010 u64 branch_from) 2011 { 2012 struct map_symbol ms; 2013 struct addr_location al; 2014 int nr_loop_iter = 0; 2015 u64 iter_cycles = 0; 2016 const char *srcline = NULL; 2017 2018 al.filtered = 0; 2019 al.sym = NULL; 2020 if (!cpumode) { 2021 thread__find_cpumode_addr_location(thread, ip, &al); 2022 } else { 2023 if (ip >= PERF_CONTEXT_MAX) { 2024 switch (ip) { 2025 case PERF_CONTEXT_HV: 2026 *cpumode = PERF_RECORD_MISC_HYPERVISOR; 2027 break; 2028 case PERF_CONTEXT_KERNEL: 2029 *cpumode = PERF_RECORD_MISC_KERNEL; 2030 break; 2031 case PERF_CONTEXT_USER: 2032 *cpumode = PERF_RECORD_MISC_USER; 2033 break; 2034 default: 2035 pr_debug("invalid callchain context: " 2036 "%"PRId64"\n", (s64) ip); 2037 /* 2038 * It seems the callchain is corrupted. 2039 * Discard all. 2040 */ 2041 callchain_cursor_reset(cursor); 2042 return 1; 2043 } 2044 return 0; 2045 } 2046 thread__find_symbol(thread, *cpumode, ip, &al); 2047 } 2048 2049 if (al.sym != NULL) { 2050 if (perf_hpp_list.parent && !*parent && 2051 symbol__match_regex(al.sym, &parent_regex)) 2052 *parent = al.sym; 2053 else if (have_ignore_callees && root_al && 2054 symbol__match_regex(al.sym, &ignore_callees_regex)) { 2055 /* Treat this symbol as the root, 2056 forgetting its callees. */ 2057 *root_al = al; 2058 callchain_cursor_reset(cursor); 2059 } 2060 } 2061 2062 if (symbol_conf.hide_unresolved && al.sym == NULL) 2063 return 0; 2064 2065 if (iter) { 2066 nr_loop_iter = iter->nr_loop_iter; 2067 iter_cycles = iter->cycles; 2068 } 2069 2070 ms.maps = al.maps; 2071 ms.map = al.map; 2072 ms.sym = al.sym; 2073 srcline = callchain_srcline(&ms, al.addr); 2074 return callchain_cursor_append(cursor, ip, &ms, 2075 branch, flags, nr_loop_iter, 2076 iter_cycles, branch_from, srcline); 2077 } 2078 2079 struct branch_info *sample__resolve_bstack(struct perf_sample *sample, 2080 struct addr_location *al) 2081 { 2082 unsigned int i; 2083 const struct branch_stack *bs = sample->branch_stack; 2084 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info)); 2085 2086 if (!bi) 2087 return NULL; 2088 2089 for (i = 0; i < bs->nr; i++) { 2090 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to); 2091 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from); 2092 bi[i].flags = bs->entries[i].flags; 2093 } 2094 return bi; 2095 } 2096 2097 static void save_iterations(struct iterations *iter, 2098 struct branch_entry *be, int nr) 2099 { 2100 int i; 2101 2102 iter->nr_loop_iter++; 2103 iter->cycles = 0; 2104 2105 for (i = 0; i < nr; i++) 2106 iter->cycles += be[i].flags.cycles; 2107 } 2108 2109 #define CHASHSZ 127 2110 #define CHASHBITS 7 2111 #define NO_ENTRY 0xff 2112 2113 #define PERF_MAX_BRANCH_DEPTH 127 2114 2115 /* Remove loops. */ 2116 static int remove_loops(struct branch_entry *l, int nr, 2117 struct iterations *iter) 2118 { 2119 int i, j, off; 2120 unsigned char chash[CHASHSZ]; 2121 2122 memset(chash, NO_ENTRY, sizeof(chash)); 2123 2124 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255); 2125 2126 for (i = 0; i < nr; i++) { 2127 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ; 2128 2129 /* no collision handling for now */ 2130 if (chash[h] == NO_ENTRY) { 2131 chash[h] = i; 2132 } else if (l[chash[h]].from == l[i].from) { 2133 bool is_loop = true; 2134 /* check if it is a real loop */ 2135 off = 0; 2136 for (j = chash[h]; j < i && i + off < nr; j++, off++) 2137 if (l[j].from != l[i + off].from) { 2138 is_loop = false; 2139 break; 2140 } 2141 if (is_loop) { 2142 j = nr - (i + off); 2143 if (j > 0) { 2144 save_iterations(iter + i + off, 2145 l + i, off); 2146 2147 memmove(iter + i, iter + i + off, 2148 j * sizeof(*iter)); 2149 2150 memmove(l + i, l + i + off, 2151 j * sizeof(*l)); 2152 } 2153 2154 nr -= off; 2155 } 2156 } 2157 } 2158 return nr; 2159 } 2160 2161 /* 2162 * Recolve LBR callstack chain sample 2163 * Return: 2164 * 1 on success get LBR callchain information 2165 * 0 no available LBR callchain information, should try fp 2166 * negative error code on other errors. 2167 */ 2168 static int resolve_lbr_callchain_sample(struct thread *thread, 2169 struct callchain_cursor *cursor, 2170 struct perf_sample *sample, 2171 struct symbol **parent, 2172 struct addr_location *root_al, 2173 int max_stack) 2174 { 2175 struct ip_callchain *chain = sample->callchain; 2176 int chain_nr = min(max_stack, (int)chain->nr), i; 2177 u8 cpumode = PERF_RECORD_MISC_USER; 2178 u64 ip, branch_from = 0; 2179 2180 for (i = 0; i < chain_nr; i++) { 2181 if (chain->ips[i] == PERF_CONTEXT_USER) 2182 break; 2183 } 2184 2185 /* LBR only affects the user callchain */ 2186 if (i != chain_nr) { 2187 struct branch_stack *lbr_stack = sample->branch_stack; 2188 int lbr_nr = lbr_stack->nr, j, k; 2189 bool branch; 2190 struct branch_flags *flags; 2191 /* 2192 * LBR callstack can only get user call chain. 2193 * The mix_chain_nr is kernel call chain 2194 * number plus LBR user call chain number. 2195 * i is kernel call chain number, 2196 * 1 is PERF_CONTEXT_USER, 2197 * lbr_nr + 1 is the user call chain number. 2198 * For details, please refer to the comments 2199 * in callchain__printf 2200 */ 2201 int mix_chain_nr = i + 1 + lbr_nr + 1; 2202 2203 for (j = 0; j < mix_chain_nr; j++) { 2204 int err; 2205 branch = false; 2206 flags = NULL; 2207 2208 if (callchain_param.order == ORDER_CALLEE) { 2209 if (j < i + 1) 2210 ip = chain->ips[j]; 2211 else if (j > i + 1) { 2212 k = j - i - 2; 2213 ip = lbr_stack->entries[k].from; 2214 branch = true; 2215 flags = &lbr_stack->entries[k].flags; 2216 } else { 2217 ip = lbr_stack->entries[0].to; 2218 branch = true; 2219 flags = &lbr_stack->entries[0].flags; 2220 branch_from = 2221 lbr_stack->entries[0].from; 2222 } 2223 } else { 2224 if (j < lbr_nr) { 2225 k = lbr_nr - j - 1; 2226 ip = lbr_stack->entries[k].from; 2227 branch = true; 2228 flags = &lbr_stack->entries[k].flags; 2229 } 2230 else if (j > lbr_nr) 2231 ip = chain->ips[i + 1 - (j - lbr_nr)]; 2232 else { 2233 ip = lbr_stack->entries[0].to; 2234 branch = true; 2235 flags = &lbr_stack->entries[0].flags; 2236 branch_from = 2237 lbr_stack->entries[0].from; 2238 } 2239 } 2240 2241 err = add_callchain_ip(thread, cursor, parent, 2242 root_al, &cpumode, ip, 2243 branch, flags, NULL, 2244 branch_from); 2245 if (err) 2246 return (err < 0) ? err : 0; 2247 } 2248 return 1; 2249 } 2250 2251 return 0; 2252 } 2253 2254 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread, 2255 struct callchain_cursor *cursor, 2256 struct symbol **parent, 2257 struct addr_location *root_al, 2258 u8 *cpumode, int ent) 2259 { 2260 int err = 0; 2261 2262 while (--ent >= 0) { 2263 u64 ip = chain->ips[ent]; 2264 2265 if (ip >= PERF_CONTEXT_MAX) { 2266 err = add_callchain_ip(thread, cursor, parent, 2267 root_al, cpumode, ip, 2268 false, NULL, NULL, 0); 2269 break; 2270 } 2271 } 2272 return err; 2273 } 2274 2275 static int thread__resolve_callchain_sample(struct thread *thread, 2276 struct callchain_cursor *cursor, 2277 struct evsel *evsel, 2278 struct perf_sample *sample, 2279 struct symbol **parent, 2280 struct addr_location *root_al, 2281 int max_stack) 2282 { 2283 struct branch_stack *branch = sample->branch_stack; 2284 struct ip_callchain *chain = sample->callchain; 2285 int chain_nr = 0; 2286 u8 cpumode = PERF_RECORD_MISC_USER; 2287 int i, j, err, nr_entries; 2288 int skip_idx = -1; 2289 int first_call = 0; 2290 2291 if (chain) 2292 chain_nr = chain->nr; 2293 2294 if (perf_evsel__has_branch_callstack(evsel)) { 2295 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent, 2296 root_al, max_stack); 2297 if (err) 2298 return (err < 0) ? err : 0; 2299 } 2300 2301 /* 2302 * Based on DWARF debug information, some architectures skip 2303 * a callchain entry saved by the kernel. 2304 */ 2305 skip_idx = arch_skip_callchain_idx(thread, chain); 2306 2307 /* 2308 * Add branches to call stack for easier browsing. This gives 2309 * more context for a sample than just the callers. 2310 * 2311 * This uses individual histograms of paths compared to the 2312 * aggregated histograms the normal LBR mode uses. 2313 * 2314 * Limitations for now: 2315 * - No extra filters 2316 * - No annotations (should annotate somehow) 2317 */ 2318 2319 if (branch && callchain_param.branch_callstack) { 2320 int nr = min(max_stack, (int)branch->nr); 2321 struct branch_entry be[nr]; 2322 struct iterations iter[nr]; 2323 2324 if (branch->nr > PERF_MAX_BRANCH_DEPTH) { 2325 pr_warning("corrupted branch chain. skipping...\n"); 2326 goto check_calls; 2327 } 2328 2329 for (i = 0; i < nr; i++) { 2330 if (callchain_param.order == ORDER_CALLEE) { 2331 be[i] = branch->entries[i]; 2332 2333 if (chain == NULL) 2334 continue; 2335 2336 /* 2337 * Check for overlap into the callchain. 2338 * The return address is one off compared to 2339 * the branch entry. To adjust for this 2340 * assume the calling instruction is not longer 2341 * than 8 bytes. 2342 */ 2343 if (i == skip_idx || 2344 chain->ips[first_call] >= PERF_CONTEXT_MAX) 2345 first_call++; 2346 else if (be[i].from < chain->ips[first_call] && 2347 be[i].from >= chain->ips[first_call] - 8) 2348 first_call++; 2349 } else 2350 be[i] = branch->entries[branch->nr - i - 1]; 2351 } 2352 2353 memset(iter, 0, sizeof(struct iterations) * nr); 2354 nr = remove_loops(be, nr, iter); 2355 2356 for (i = 0; i < nr; i++) { 2357 err = add_callchain_ip(thread, cursor, parent, 2358 root_al, 2359 NULL, be[i].to, 2360 true, &be[i].flags, 2361 NULL, be[i].from); 2362 2363 if (!err) 2364 err = add_callchain_ip(thread, cursor, parent, root_al, 2365 NULL, be[i].from, 2366 true, &be[i].flags, 2367 &iter[i], 0); 2368 if (err == -EINVAL) 2369 break; 2370 if (err) 2371 return err; 2372 } 2373 2374 if (chain_nr == 0) 2375 return 0; 2376 2377 chain_nr -= nr; 2378 } 2379 2380 check_calls: 2381 if (chain && callchain_param.order != ORDER_CALLEE) { 2382 err = find_prev_cpumode(chain, thread, cursor, parent, root_al, 2383 &cpumode, chain->nr - first_call); 2384 if (err) 2385 return (err < 0) ? err : 0; 2386 } 2387 for (i = first_call, nr_entries = 0; 2388 i < chain_nr && nr_entries < max_stack; i++) { 2389 u64 ip; 2390 2391 if (callchain_param.order == ORDER_CALLEE) 2392 j = i; 2393 else 2394 j = chain->nr - i - 1; 2395 2396 #ifdef HAVE_SKIP_CALLCHAIN_IDX 2397 if (j == skip_idx) 2398 continue; 2399 #endif 2400 ip = chain->ips[j]; 2401 if (ip < PERF_CONTEXT_MAX) 2402 ++nr_entries; 2403 else if (callchain_param.order != ORDER_CALLEE) { 2404 err = find_prev_cpumode(chain, thread, cursor, parent, 2405 root_al, &cpumode, j); 2406 if (err) 2407 return (err < 0) ? err : 0; 2408 continue; 2409 } 2410 2411 err = add_callchain_ip(thread, cursor, parent, 2412 root_al, &cpumode, ip, 2413 false, NULL, NULL, 0); 2414 2415 if (err) 2416 return (err < 0) ? err : 0; 2417 } 2418 2419 return 0; 2420 } 2421 2422 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip) 2423 { 2424 struct symbol *sym = ms->sym; 2425 struct map *map = ms->map; 2426 struct inline_node *inline_node; 2427 struct inline_list *ilist; 2428 u64 addr; 2429 int ret = 1; 2430 2431 if (!symbol_conf.inline_name || !map || !sym) 2432 return ret; 2433 2434 addr = map__map_ip(map, ip); 2435 addr = map__rip_2objdump(map, addr); 2436 2437 inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr); 2438 if (!inline_node) { 2439 inline_node = dso__parse_addr_inlines(map->dso, addr, sym); 2440 if (!inline_node) 2441 return ret; 2442 inlines__tree_insert(&map->dso->inlined_nodes, inline_node); 2443 } 2444 2445 list_for_each_entry(ilist, &inline_node->val, list) { 2446 struct map_symbol ilist_ms = { 2447 .maps = ms->maps, 2448 .map = map, 2449 .sym = ilist->symbol, 2450 }; 2451 ret = callchain_cursor_append(cursor, ip, &ilist_ms, false, 2452 NULL, 0, 0, 0, ilist->srcline); 2453 2454 if (ret != 0) 2455 return ret; 2456 } 2457 2458 return ret; 2459 } 2460 2461 static int unwind_entry(struct unwind_entry *entry, void *arg) 2462 { 2463 struct callchain_cursor *cursor = arg; 2464 const char *srcline = NULL; 2465 u64 addr = entry->ip; 2466 2467 if (symbol_conf.hide_unresolved && entry->ms.sym == NULL) 2468 return 0; 2469 2470 if (append_inlines(cursor, &entry->ms, entry->ip) == 0) 2471 return 0; 2472 2473 /* 2474 * Convert entry->ip from a virtual address to an offset in 2475 * its corresponding binary. 2476 */ 2477 if (entry->ms.map) 2478 addr = map__map_ip(entry->ms.map, entry->ip); 2479 2480 srcline = callchain_srcline(&entry->ms, addr); 2481 return callchain_cursor_append(cursor, entry->ip, &entry->ms, 2482 false, NULL, 0, 0, 0, srcline); 2483 } 2484 2485 static int thread__resolve_callchain_unwind(struct thread *thread, 2486 struct callchain_cursor *cursor, 2487 struct evsel *evsel, 2488 struct perf_sample *sample, 2489 int max_stack) 2490 { 2491 /* Can we do dwarf post unwind? */ 2492 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) && 2493 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER))) 2494 return 0; 2495 2496 /* Bail out if nothing was captured. */ 2497 if ((!sample->user_regs.regs) || 2498 (!sample->user_stack.size)) 2499 return 0; 2500 2501 return unwind__get_entries(unwind_entry, cursor, 2502 thread, sample, max_stack); 2503 } 2504 2505 int thread__resolve_callchain(struct thread *thread, 2506 struct callchain_cursor *cursor, 2507 struct evsel *evsel, 2508 struct perf_sample *sample, 2509 struct symbol **parent, 2510 struct addr_location *root_al, 2511 int max_stack) 2512 { 2513 int ret = 0; 2514 2515 callchain_cursor_reset(cursor); 2516 2517 if (callchain_param.order == ORDER_CALLEE) { 2518 ret = thread__resolve_callchain_sample(thread, cursor, 2519 evsel, sample, 2520 parent, root_al, 2521 max_stack); 2522 if (ret) 2523 return ret; 2524 ret = thread__resolve_callchain_unwind(thread, cursor, 2525 evsel, sample, 2526 max_stack); 2527 } else { 2528 ret = thread__resolve_callchain_unwind(thread, cursor, 2529 evsel, sample, 2530 max_stack); 2531 if (ret) 2532 return ret; 2533 ret = thread__resolve_callchain_sample(thread, cursor, 2534 evsel, sample, 2535 parent, root_al, 2536 max_stack); 2537 } 2538 2539 return ret; 2540 } 2541 2542 int machine__for_each_thread(struct machine *machine, 2543 int (*fn)(struct thread *thread, void *p), 2544 void *priv) 2545 { 2546 struct threads *threads; 2547 struct rb_node *nd; 2548 struct thread *thread; 2549 int rc = 0; 2550 int i; 2551 2552 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 2553 threads = &machine->threads[i]; 2554 for (nd = rb_first_cached(&threads->entries); nd; 2555 nd = rb_next(nd)) { 2556 thread = rb_entry(nd, struct thread, rb_node); 2557 rc = fn(thread, priv); 2558 if (rc != 0) 2559 return rc; 2560 } 2561 2562 list_for_each_entry(thread, &threads->dead, node) { 2563 rc = fn(thread, priv); 2564 if (rc != 0) 2565 return rc; 2566 } 2567 } 2568 return rc; 2569 } 2570 2571 int machines__for_each_thread(struct machines *machines, 2572 int (*fn)(struct thread *thread, void *p), 2573 void *priv) 2574 { 2575 struct rb_node *nd; 2576 int rc = 0; 2577 2578 rc = machine__for_each_thread(&machines->host, fn, priv); 2579 if (rc != 0) 2580 return rc; 2581 2582 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 2583 struct machine *machine = rb_entry(nd, struct machine, rb_node); 2584 2585 rc = machine__for_each_thread(machine, fn, priv); 2586 if (rc != 0) 2587 return rc; 2588 } 2589 return rc; 2590 } 2591 2592 pid_t machine__get_current_tid(struct machine *machine, int cpu) 2593 { 2594 int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS); 2595 2596 if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid) 2597 return -1; 2598 2599 return machine->current_tid[cpu]; 2600 } 2601 2602 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid, 2603 pid_t tid) 2604 { 2605 struct thread *thread; 2606 int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS); 2607 2608 if (cpu < 0) 2609 return -EINVAL; 2610 2611 if (!machine->current_tid) { 2612 int i; 2613 2614 machine->current_tid = calloc(nr_cpus, sizeof(pid_t)); 2615 if (!machine->current_tid) 2616 return -ENOMEM; 2617 for (i = 0; i < nr_cpus; i++) 2618 machine->current_tid[i] = -1; 2619 } 2620 2621 if (cpu >= nr_cpus) { 2622 pr_err("Requested CPU %d too large. ", cpu); 2623 pr_err("Consider raising MAX_NR_CPUS\n"); 2624 return -EINVAL; 2625 } 2626 2627 machine->current_tid[cpu] = tid; 2628 2629 thread = machine__findnew_thread(machine, pid, tid); 2630 if (!thread) 2631 return -ENOMEM; 2632 2633 thread->cpu = cpu; 2634 thread__put(thread); 2635 2636 return 0; 2637 } 2638 2639 /* 2640 * Compares the raw arch string. N.B. see instead perf_env__arch() if a 2641 * normalized arch is needed. 2642 */ 2643 bool machine__is(struct machine *machine, const char *arch) 2644 { 2645 return machine && !strcmp(perf_env__raw_arch(machine->env), arch); 2646 } 2647 2648 int machine__nr_cpus_avail(struct machine *machine) 2649 { 2650 return machine ? perf_env__nr_cpus_avail(machine->env) : 0; 2651 } 2652 2653 int machine__get_kernel_start(struct machine *machine) 2654 { 2655 struct map *map = machine__kernel_map(machine); 2656 int err = 0; 2657 2658 /* 2659 * The only addresses above 2^63 are kernel addresses of a 64-bit 2660 * kernel. Note that addresses are unsigned so that on a 32-bit system 2661 * all addresses including kernel addresses are less than 2^32. In 2662 * that case (32-bit system), if the kernel mapping is unknown, all 2663 * addresses will be assumed to be in user space - see 2664 * machine__kernel_ip(). 2665 */ 2666 machine->kernel_start = 1ULL << 63; 2667 if (map) { 2668 err = map__load(map); 2669 /* 2670 * On x86_64, PTI entry trampolines are less than the 2671 * start of kernel text, but still above 2^63. So leave 2672 * kernel_start = 1ULL << 63 for x86_64. 2673 */ 2674 if (!err && !machine__is(machine, "x86_64")) 2675 machine->kernel_start = map->start; 2676 } 2677 return err; 2678 } 2679 2680 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr) 2681 { 2682 u8 addr_cpumode = cpumode; 2683 bool kernel_ip; 2684 2685 if (!machine->single_address_space) 2686 goto out; 2687 2688 kernel_ip = machine__kernel_ip(machine, addr); 2689 switch (cpumode) { 2690 case PERF_RECORD_MISC_KERNEL: 2691 case PERF_RECORD_MISC_USER: 2692 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL : 2693 PERF_RECORD_MISC_USER; 2694 break; 2695 case PERF_RECORD_MISC_GUEST_KERNEL: 2696 case PERF_RECORD_MISC_GUEST_USER: 2697 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL : 2698 PERF_RECORD_MISC_GUEST_USER; 2699 break; 2700 default: 2701 break; 2702 } 2703 out: 2704 return addr_cpumode; 2705 } 2706 2707 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id) 2708 { 2709 return dsos__findnew_id(&machine->dsos, filename, id); 2710 } 2711 2712 struct dso *machine__findnew_dso(struct machine *machine, const char *filename) 2713 { 2714 return machine__findnew_dso_id(machine, filename, NULL); 2715 } 2716 2717 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp) 2718 { 2719 struct machine *machine = vmachine; 2720 struct map *map; 2721 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map); 2722 2723 if (sym == NULL) 2724 return NULL; 2725 2726 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL; 2727 *addrp = map->unmap_ip(map, sym->start); 2728 return sym->name; 2729 } 2730