1 // SPDX-License-Identifier: GPL-2.0 2 #include <dirent.h> 3 #include <errno.h> 4 #include <inttypes.h> 5 #include <regex.h> 6 #include <stdlib.h> 7 #include "callchain.h" 8 #include "debug.h" 9 #include "dso.h" 10 #include "env.h" 11 #include "event.h" 12 #include "evsel.h" 13 #include "hist.h" 14 #include "machine.h" 15 #include "map.h" 16 #include "map_symbol.h" 17 #include "branch.h" 18 #include "mem-events.h" 19 #include "path.h" 20 #include "srcline.h" 21 #include "symbol.h" 22 #include "sort.h" 23 #include "strlist.h" 24 #include "target.h" 25 #include "thread.h" 26 #include "util.h" 27 #include "vdso.h" 28 #include <stdbool.h> 29 #include <sys/types.h> 30 #include <sys/stat.h> 31 #include <unistd.h> 32 #include "unwind.h" 33 #include "linux/hash.h" 34 #include "asm/bug.h" 35 #include "bpf-event.h" 36 #include <internal/lib.h> // page_size 37 #include "cgroup.h" 38 #include "arm64-frame-pointer-unwind-support.h" 39 40 #include <linux/ctype.h> 41 #include <symbol/kallsyms.h> 42 #include <linux/mman.h> 43 #include <linux/string.h> 44 #include <linux/zalloc.h> 45 46 static void __machine__remove_thread(struct machine *machine, struct thread_rb_node *nd, 47 struct thread *th, bool lock); 48 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip); 49 50 static struct dso *machine__kernel_dso(struct machine *machine) 51 { 52 return map__dso(machine->vmlinux_map); 53 } 54 55 static void dsos__init(struct dsos *dsos) 56 { 57 INIT_LIST_HEAD(&dsos->head); 58 dsos->root = RB_ROOT; 59 init_rwsem(&dsos->lock); 60 } 61 62 static void machine__threads_init(struct machine *machine) 63 { 64 int i; 65 66 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 67 struct threads *threads = &machine->threads[i]; 68 threads->entries = RB_ROOT_CACHED; 69 init_rwsem(&threads->lock); 70 threads->nr = 0; 71 INIT_LIST_HEAD(&threads->dead); 72 threads->last_match = NULL; 73 } 74 } 75 76 static int thread_rb_node__cmp_tid(const void *key, const struct rb_node *nd) 77 { 78 int to_find = (int) *((pid_t *)key); 79 80 return to_find - (int)thread__tid(rb_entry(nd, struct thread_rb_node, rb_node)->thread); 81 } 82 83 static struct thread_rb_node *thread_rb_node__find(const struct thread *th, 84 struct rb_root *tree) 85 { 86 pid_t to_find = thread__tid(th); 87 struct rb_node *nd = rb_find(&to_find, tree, thread_rb_node__cmp_tid); 88 89 return rb_entry(nd, struct thread_rb_node, rb_node); 90 } 91 92 static int machine__set_mmap_name(struct machine *machine) 93 { 94 if (machine__is_host(machine)) 95 machine->mmap_name = strdup("[kernel.kallsyms]"); 96 else if (machine__is_default_guest(machine)) 97 machine->mmap_name = strdup("[guest.kernel.kallsyms]"); 98 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]", 99 machine->pid) < 0) 100 machine->mmap_name = NULL; 101 102 return machine->mmap_name ? 0 : -ENOMEM; 103 } 104 105 static void thread__set_guest_comm(struct thread *thread, pid_t pid) 106 { 107 char comm[64]; 108 109 snprintf(comm, sizeof(comm), "[guest/%d]", pid); 110 thread__set_comm(thread, comm, 0); 111 } 112 113 int machine__init(struct machine *machine, const char *root_dir, pid_t pid) 114 { 115 int err = -ENOMEM; 116 117 memset(machine, 0, sizeof(*machine)); 118 machine->kmaps = maps__new(machine); 119 if (machine->kmaps == NULL) 120 return -ENOMEM; 121 122 RB_CLEAR_NODE(&machine->rb_node); 123 dsos__init(&machine->dsos); 124 125 machine__threads_init(machine); 126 127 machine->vdso_info = NULL; 128 machine->env = NULL; 129 130 machine->pid = pid; 131 132 machine->id_hdr_size = 0; 133 machine->kptr_restrict_warned = false; 134 machine->comm_exec = false; 135 machine->kernel_start = 0; 136 machine->vmlinux_map = NULL; 137 138 machine->root_dir = strdup(root_dir); 139 if (machine->root_dir == NULL) 140 goto out; 141 142 if (machine__set_mmap_name(machine)) 143 goto out; 144 145 if (pid != HOST_KERNEL_ID) { 146 struct thread *thread = machine__findnew_thread(machine, -1, 147 pid); 148 149 if (thread == NULL) 150 goto out; 151 152 thread__set_guest_comm(thread, pid); 153 thread__put(thread); 154 } 155 156 machine->current_tid = NULL; 157 err = 0; 158 159 out: 160 if (err) { 161 zfree(&machine->kmaps); 162 zfree(&machine->root_dir); 163 zfree(&machine->mmap_name); 164 } 165 return 0; 166 } 167 168 struct machine *machine__new_host(void) 169 { 170 struct machine *machine = malloc(sizeof(*machine)); 171 172 if (machine != NULL) { 173 machine__init(machine, "", HOST_KERNEL_ID); 174 175 if (machine__create_kernel_maps(machine) < 0) 176 goto out_delete; 177 } 178 179 return machine; 180 out_delete: 181 free(machine); 182 return NULL; 183 } 184 185 struct machine *machine__new_kallsyms(void) 186 { 187 struct machine *machine = machine__new_host(); 188 /* 189 * FIXME: 190 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly 191 * ask for not using the kcore parsing code, once this one is fixed 192 * to create a map per module. 193 */ 194 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) { 195 machine__delete(machine); 196 machine = NULL; 197 } 198 199 return machine; 200 } 201 202 static void dsos__purge(struct dsos *dsos) 203 { 204 struct dso *pos, *n; 205 206 down_write(&dsos->lock); 207 208 list_for_each_entry_safe(pos, n, &dsos->head, node) { 209 RB_CLEAR_NODE(&pos->rb_node); 210 pos->root = NULL; 211 list_del_init(&pos->node); 212 dso__put(pos); 213 } 214 215 up_write(&dsos->lock); 216 } 217 218 static void dsos__exit(struct dsos *dsos) 219 { 220 dsos__purge(dsos); 221 exit_rwsem(&dsos->lock); 222 } 223 224 void machine__delete_threads(struct machine *machine) 225 { 226 struct rb_node *nd; 227 int i; 228 229 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 230 struct threads *threads = &machine->threads[i]; 231 down_write(&threads->lock); 232 nd = rb_first_cached(&threads->entries); 233 while (nd) { 234 struct thread_rb_node *trb = rb_entry(nd, struct thread_rb_node, rb_node); 235 236 nd = rb_next(nd); 237 __machine__remove_thread(machine, trb, trb->thread, false); 238 } 239 up_write(&threads->lock); 240 } 241 } 242 243 void machine__exit(struct machine *machine) 244 { 245 int i; 246 247 if (machine == NULL) 248 return; 249 250 machine__destroy_kernel_maps(machine); 251 maps__zput(machine->kmaps); 252 dsos__exit(&machine->dsos); 253 machine__exit_vdso(machine); 254 zfree(&machine->root_dir); 255 zfree(&machine->mmap_name); 256 zfree(&machine->current_tid); 257 zfree(&machine->kallsyms_filename); 258 259 machine__delete_threads(machine); 260 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 261 struct threads *threads = &machine->threads[i]; 262 263 exit_rwsem(&threads->lock); 264 } 265 } 266 267 void machine__delete(struct machine *machine) 268 { 269 if (machine) { 270 machine__exit(machine); 271 free(machine); 272 } 273 } 274 275 void machines__init(struct machines *machines) 276 { 277 machine__init(&machines->host, "", HOST_KERNEL_ID); 278 machines->guests = RB_ROOT_CACHED; 279 } 280 281 void machines__exit(struct machines *machines) 282 { 283 machine__exit(&machines->host); 284 /* XXX exit guest */ 285 } 286 287 struct machine *machines__add(struct machines *machines, pid_t pid, 288 const char *root_dir) 289 { 290 struct rb_node **p = &machines->guests.rb_root.rb_node; 291 struct rb_node *parent = NULL; 292 struct machine *pos, *machine = malloc(sizeof(*machine)); 293 bool leftmost = true; 294 295 if (machine == NULL) 296 return NULL; 297 298 if (machine__init(machine, root_dir, pid) != 0) { 299 free(machine); 300 return NULL; 301 } 302 303 while (*p != NULL) { 304 parent = *p; 305 pos = rb_entry(parent, struct machine, rb_node); 306 if (pid < pos->pid) 307 p = &(*p)->rb_left; 308 else { 309 p = &(*p)->rb_right; 310 leftmost = false; 311 } 312 } 313 314 rb_link_node(&machine->rb_node, parent, p); 315 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost); 316 317 machine->machines = machines; 318 319 return machine; 320 } 321 322 void machines__set_comm_exec(struct machines *machines, bool comm_exec) 323 { 324 struct rb_node *nd; 325 326 machines->host.comm_exec = comm_exec; 327 328 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 329 struct machine *machine = rb_entry(nd, struct machine, rb_node); 330 331 machine->comm_exec = comm_exec; 332 } 333 } 334 335 struct machine *machines__find(struct machines *machines, pid_t pid) 336 { 337 struct rb_node **p = &machines->guests.rb_root.rb_node; 338 struct rb_node *parent = NULL; 339 struct machine *machine; 340 struct machine *default_machine = NULL; 341 342 if (pid == HOST_KERNEL_ID) 343 return &machines->host; 344 345 while (*p != NULL) { 346 parent = *p; 347 machine = rb_entry(parent, struct machine, rb_node); 348 if (pid < machine->pid) 349 p = &(*p)->rb_left; 350 else if (pid > machine->pid) 351 p = &(*p)->rb_right; 352 else 353 return machine; 354 if (!machine->pid) 355 default_machine = machine; 356 } 357 358 return default_machine; 359 } 360 361 struct machine *machines__findnew(struct machines *machines, pid_t pid) 362 { 363 char path[PATH_MAX]; 364 const char *root_dir = ""; 365 struct machine *machine = machines__find(machines, pid); 366 367 if (machine && (machine->pid == pid)) 368 goto out; 369 370 if ((pid != HOST_KERNEL_ID) && 371 (pid != DEFAULT_GUEST_KERNEL_ID) && 372 (symbol_conf.guestmount)) { 373 sprintf(path, "%s/%d", symbol_conf.guestmount, pid); 374 if (access(path, R_OK)) { 375 static struct strlist *seen; 376 377 if (!seen) 378 seen = strlist__new(NULL, NULL); 379 380 if (!strlist__has_entry(seen, path)) { 381 pr_err("Can't access file %s\n", path); 382 strlist__add(seen, path); 383 } 384 machine = NULL; 385 goto out; 386 } 387 root_dir = path; 388 } 389 390 machine = machines__add(machines, pid, root_dir); 391 out: 392 return machine; 393 } 394 395 struct machine *machines__find_guest(struct machines *machines, pid_t pid) 396 { 397 struct machine *machine = machines__find(machines, pid); 398 399 if (!machine) 400 machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID); 401 return machine; 402 } 403 404 /* 405 * A common case for KVM test programs is that the test program acts as the 406 * hypervisor, creating, running and destroying the virtual machine, and 407 * providing the guest object code from its own object code. In this case, 408 * the VM is not running an OS, but only the functions loaded into it by the 409 * hypervisor test program, and conveniently, loaded at the same virtual 410 * addresses. 411 * 412 * Normally to resolve addresses, MMAP events are needed to map addresses 413 * back to the object code and debug symbols for that object code. 414 * 415 * Currently, there is no way to get such mapping information from guests 416 * but, in the scenario described above, the guest has the same mappings 417 * as the hypervisor, so support for that scenario can be achieved. 418 * 419 * To support that, copy the host thread's maps to the guest thread's maps. 420 * Note, we do not discover the guest until we encounter a guest event, 421 * which works well because it is not until then that we know that the host 422 * thread's maps have been set up. 423 * 424 * This function returns the guest thread. Apart from keeping the data 425 * structures sane, using a thread belonging to the guest machine, instead 426 * of the host thread, allows it to have its own comm (refer 427 * thread__set_guest_comm()). 428 */ 429 static struct thread *findnew_guest_code(struct machine *machine, 430 struct machine *host_machine, 431 pid_t pid) 432 { 433 struct thread *host_thread; 434 struct thread *thread; 435 int err; 436 437 if (!machine) 438 return NULL; 439 440 thread = machine__findnew_thread(machine, -1, pid); 441 if (!thread) 442 return NULL; 443 444 /* Assume maps are set up if there are any */ 445 if (maps__nr_maps(thread__maps(thread))) 446 return thread; 447 448 host_thread = machine__find_thread(host_machine, -1, pid); 449 if (!host_thread) 450 goto out_err; 451 452 thread__set_guest_comm(thread, pid); 453 454 /* 455 * Guest code can be found in hypervisor process at the same address 456 * so copy host maps. 457 */ 458 err = maps__clone(thread, thread__maps(host_thread)); 459 thread__put(host_thread); 460 if (err) 461 goto out_err; 462 463 return thread; 464 465 out_err: 466 thread__zput(thread); 467 return NULL; 468 } 469 470 struct thread *machines__findnew_guest_code(struct machines *machines, pid_t pid) 471 { 472 struct machine *host_machine = machines__find(machines, HOST_KERNEL_ID); 473 struct machine *machine = machines__findnew(machines, pid); 474 475 return findnew_guest_code(machine, host_machine, pid); 476 } 477 478 struct thread *machine__findnew_guest_code(struct machine *machine, pid_t pid) 479 { 480 struct machines *machines = machine->machines; 481 struct machine *host_machine; 482 483 if (!machines) 484 return NULL; 485 486 host_machine = machines__find(machines, HOST_KERNEL_ID); 487 488 return findnew_guest_code(machine, host_machine, pid); 489 } 490 491 void machines__process_guests(struct machines *machines, 492 machine__process_t process, void *data) 493 { 494 struct rb_node *nd; 495 496 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 497 struct machine *pos = rb_entry(nd, struct machine, rb_node); 498 process(pos, data); 499 } 500 } 501 502 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size) 503 { 504 struct rb_node *node; 505 struct machine *machine; 506 507 machines->host.id_hdr_size = id_hdr_size; 508 509 for (node = rb_first_cached(&machines->guests); node; 510 node = rb_next(node)) { 511 machine = rb_entry(node, struct machine, rb_node); 512 machine->id_hdr_size = id_hdr_size; 513 } 514 515 return; 516 } 517 518 static void machine__update_thread_pid(struct machine *machine, 519 struct thread *th, pid_t pid) 520 { 521 struct thread *leader; 522 523 if (pid == thread__pid(th) || pid == -1 || thread__pid(th) != -1) 524 return; 525 526 thread__set_pid(th, pid); 527 528 if (thread__pid(th) == thread__tid(th)) 529 return; 530 531 leader = __machine__findnew_thread(machine, thread__pid(th), thread__pid(th)); 532 if (!leader) 533 goto out_err; 534 535 if (!thread__maps(leader)) 536 thread__set_maps(leader, maps__new(machine)); 537 538 if (!thread__maps(leader)) 539 goto out_err; 540 541 if (thread__maps(th) == thread__maps(leader)) 542 goto out_put; 543 544 if (thread__maps(th)) { 545 /* 546 * Maps are created from MMAP events which provide the pid and 547 * tid. Consequently there never should be any maps on a thread 548 * with an unknown pid. Just print an error if there are. 549 */ 550 if (!maps__empty(thread__maps(th))) 551 pr_err("Discarding thread maps for %d:%d\n", 552 thread__pid(th), thread__tid(th)); 553 maps__put(thread__maps(th)); 554 } 555 556 thread__set_maps(th, maps__get(thread__maps(leader))); 557 out_put: 558 thread__put(leader); 559 return; 560 out_err: 561 pr_err("Failed to join map groups for %d:%d\n", thread__pid(th), thread__tid(th)); 562 goto out_put; 563 } 564 565 /* 566 * Front-end cache - TID lookups come in blocks, 567 * so most of the time we dont have to look up 568 * the full rbtree: 569 */ 570 static struct thread* 571 __threads__get_last_match(struct threads *threads, struct machine *machine, 572 int pid, int tid) 573 { 574 struct thread *th; 575 576 th = threads->last_match; 577 if (th != NULL) { 578 if (thread__tid(th) == tid) { 579 machine__update_thread_pid(machine, th, pid); 580 return thread__get(th); 581 } 582 thread__put(threads->last_match); 583 threads->last_match = NULL; 584 } 585 586 return NULL; 587 } 588 589 static struct thread* 590 threads__get_last_match(struct threads *threads, struct machine *machine, 591 int pid, int tid) 592 { 593 struct thread *th = NULL; 594 595 if (perf_singlethreaded) 596 th = __threads__get_last_match(threads, machine, pid, tid); 597 598 return th; 599 } 600 601 static void 602 __threads__set_last_match(struct threads *threads, struct thread *th) 603 { 604 thread__put(threads->last_match); 605 threads->last_match = thread__get(th); 606 } 607 608 static void 609 threads__set_last_match(struct threads *threads, struct thread *th) 610 { 611 if (perf_singlethreaded) 612 __threads__set_last_match(threads, th); 613 } 614 615 /* 616 * Caller must eventually drop thread->refcnt returned with a successful 617 * lookup/new thread inserted. 618 */ 619 static struct thread *____machine__findnew_thread(struct machine *machine, 620 struct threads *threads, 621 pid_t pid, pid_t tid, 622 bool create) 623 { 624 struct rb_node **p = &threads->entries.rb_root.rb_node; 625 struct rb_node *parent = NULL; 626 struct thread *th; 627 struct thread_rb_node *nd; 628 bool leftmost = true; 629 630 th = threads__get_last_match(threads, machine, pid, tid); 631 if (th) 632 return th; 633 634 while (*p != NULL) { 635 parent = *p; 636 th = rb_entry(parent, struct thread_rb_node, rb_node)->thread; 637 638 if (thread__tid(th) == tid) { 639 threads__set_last_match(threads, th); 640 machine__update_thread_pid(machine, th, pid); 641 return thread__get(th); 642 } 643 644 if (tid < thread__tid(th)) 645 p = &(*p)->rb_left; 646 else { 647 p = &(*p)->rb_right; 648 leftmost = false; 649 } 650 } 651 652 if (!create) 653 return NULL; 654 655 th = thread__new(pid, tid); 656 if (th == NULL) 657 return NULL; 658 659 nd = malloc(sizeof(*nd)); 660 if (nd == NULL) { 661 thread__put(th); 662 return NULL; 663 } 664 nd->thread = th; 665 666 rb_link_node(&nd->rb_node, parent, p); 667 rb_insert_color_cached(&nd->rb_node, &threads->entries, leftmost); 668 /* 669 * We have to initialize maps separately after rb tree is updated. 670 * 671 * The reason is that we call machine__findnew_thread within 672 * thread__init_maps to find the thread leader and that would screwed 673 * the rb tree. 674 */ 675 if (thread__init_maps(th, machine)) { 676 pr_err("Thread init failed thread %d\n", pid); 677 rb_erase_cached(&nd->rb_node, &threads->entries); 678 RB_CLEAR_NODE(&nd->rb_node); 679 free(nd); 680 thread__put(th); 681 return NULL; 682 } 683 /* 684 * It is now in the rbtree, get a ref 685 */ 686 threads__set_last_match(threads, th); 687 ++threads->nr; 688 689 return thread__get(th); 690 } 691 692 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid) 693 { 694 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true); 695 } 696 697 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, 698 pid_t tid) 699 { 700 struct threads *threads = machine__threads(machine, tid); 701 struct thread *th; 702 703 down_write(&threads->lock); 704 th = __machine__findnew_thread(machine, pid, tid); 705 up_write(&threads->lock); 706 return th; 707 } 708 709 struct thread *machine__find_thread(struct machine *machine, pid_t pid, 710 pid_t tid) 711 { 712 struct threads *threads = machine__threads(machine, tid); 713 struct thread *th; 714 715 down_read(&threads->lock); 716 th = ____machine__findnew_thread(machine, threads, pid, tid, false); 717 up_read(&threads->lock); 718 return th; 719 } 720 721 /* 722 * Threads are identified by pid and tid, and the idle task has pid == tid == 0. 723 * So here a single thread is created for that, but actually there is a separate 724 * idle task per cpu, so there should be one 'struct thread' per cpu, but there 725 * is only 1. That causes problems for some tools, requiring workarounds. For 726 * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu(). 727 */ 728 struct thread *machine__idle_thread(struct machine *machine) 729 { 730 struct thread *thread = machine__findnew_thread(machine, 0, 0); 731 732 if (!thread || thread__set_comm(thread, "swapper", 0) || 733 thread__set_namespaces(thread, 0, NULL)) 734 pr_err("problem inserting idle task for machine pid %d\n", machine->pid); 735 736 return thread; 737 } 738 739 struct comm *machine__thread_exec_comm(struct machine *machine, 740 struct thread *thread) 741 { 742 if (machine->comm_exec) 743 return thread__exec_comm(thread); 744 else 745 return thread__comm(thread); 746 } 747 748 int machine__process_comm_event(struct machine *machine, union perf_event *event, 749 struct perf_sample *sample) 750 { 751 struct thread *thread = machine__findnew_thread(machine, 752 event->comm.pid, 753 event->comm.tid); 754 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC; 755 int err = 0; 756 757 if (exec) 758 machine->comm_exec = true; 759 760 if (dump_trace) 761 perf_event__fprintf_comm(event, stdout); 762 763 if (thread == NULL || 764 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) { 765 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n"); 766 err = -1; 767 } 768 769 thread__put(thread); 770 771 return err; 772 } 773 774 int machine__process_namespaces_event(struct machine *machine __maybe_unused, 775 union perf_event *event, 776 struct perf_sample *sample __maybe_unused) 777 { 778 struct thread *thread = machine__findnew_thread(machine, 779 event->namespaces.pid, 780 event->namespaces.tid); 781 int err = 0; 782 783 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES, 784 "\nWARNING: kernel seems to support more namespaces than perf" 785 " tool.\nTry updating the perf tool..\n\n"); 786 787 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES, 788 "\nWARNING: perf tool seems to support more namespaces than" 789 " the kernel.\nTry updating the kernel..\n\n"); 790 791 if (dump_trace) 792 perf_event__fprintf_namespaces(event, stdout); 793 794 if (thread == NULL || 795 thread__set_namespaces(thread, sample->time, &event->namespaces)) { 796 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n"); 797 err = -1; 798 } 799 800 thread__put(thread); 801 802 return err; 803 } 804 805 int machine__process_cgroup_event(struct machine *machine, 806 union perf_event *event, 807 struct perf_sample *sample __maybe_unused) 808 { 809 struct cgroup *cgrp; 810 811 if (dump_trace) 812 perf_event__fprintf_cgroup(event, stdout); 813 814 cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path); 815 if (cgrp == NULL) 816 return -ENOMEM; 817 818 return 0; 819 } 820 821 int machine__process_lost_event(struct machine *machine __maybe_unused, 822 union perf_event *event, struct perf_sample *sample __maybe_unused) 823 { 824 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n", 825 event->lost.id, event->lost.lost); 826 return 0; 827 } 828 829 int machine__process_lost_samples_event(struct machine *machine __maybe_unused, 830 union perf_event *event, struct perf_sample *sample) 831 { 832 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n", 833 sample->id, event->lost_samples.lost); 834 return 0; 835 } 836 837 static struct dso *machine__findnew_module_dso(struct machine *machine, 838 struct kmod_path *m, 839 const char *filename) 840 { 841 struct dso *dso; 842 843 down_write(&machine->dsos.lock); 844 845 dso = __dsos__find(&machine->dsos, m->name, true); 846 if (!dso) { 847 dso = __dsos__addnew(&machine->dsos, m->name); 848 if (dso == NULL) 849 goto out_unlock; 850 851 dso__set_module_info(dso, m, machine); 852 dso__set_long_name(dso, strdup(filename), true); 853 dso->kernel = DSO_SPACE__KERNEL; 854 } 855 856 dso__get(dso); 857 out_unlock: 858 up_write(&machine->dsos.lock); 859 return dso; 860 } 861 862 int machine__process_aux_event(struct machine *machine __maybe_unused, 863 union perf_event *event) 864 { 865 if (dump_trace) 866 perf_event__fprintf_aux(event, stdout); 867 return 0; 868 } 869 870 int machine__process_itrace_start_event(struct machine *machine __maybe_unused, 871 union perf_event *event) 872 { 873 if (dump_trace) 874 perf_event__fprintf_itrace_start(event, stdout); 875 return 0; 876 } 877 878 int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused, 879 union perf_event *event) 880 { 881 if (dump_trace) 882 perf_event__fprintf_aux_output_hw_id(event, stdout); 883 return 0; 884 } 885 886 int machine__process_switch_event(struct machine *machine __maybe_unused, 887 union perf_event *event) 888 { 889 if (dump_trace) 890 perf_event__fprintf_switch(event, stdout); 891 return 0; 892 } 893 894 static int machine__process_ksymbol_register(struct machine *machine, 895 union perf_event *event, 896 struct perf_sample *sample __maybe_unused) 897 { 898 struct symbol *sym; 899 struct dso *dso; 900 struct map *map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr); 901 bool put_map = false; 902 int err = 0; 903 904 if (!map) { 905 dso = dso__new(event->ksymbol.name); 906 907 if (!dso) { 908 err = -ENOMEM; 909 goto out; 910 } 911 dso->kernel = DSO_SPACE__KERNEL; 912 map = map__new2(0, dso); 913 dso__put(dso); 914 if (!map) { 915 err = -ENOMEM; 916 goto out; 917 } 918 /* 919 * The inserted map has a get on it, we need to put to release 920 * the reference count here, but do it after all accesses are 921 * done. 922 */ 923 put_map = true; 924 if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) { 925 dso->binary_type = DSO_BINARY_TYPE__OOL; 926 dso->data.file_size = event->ksymbol.len; 927 dso__set_loaded(dso); 928 } 929 930 map__set_start(map, event->ksymbol.addr); 931 map__set_end(map, map__start(map) + event->ksymbol.len); 932 err = maps__insert(machine__kernel_maps(machine), map); 933 if (err) { 934 err = -ENOMEM; 935 goto out; 936 } 937 938 dso__set_loaded(dso); 939 940 if (is_bpf_image(event->ksymbol.name)) { 941 dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE; 942 dso__set_long_name(dso, "", false); 943 } 944 } else { 945 dso = map__dso(map); 946 } 947 948 sym = symbol__new(map__map_ip(map, map__start(map)), 949 event->ksymbol.len, 950 0, 0, event->ksymbol.name); 951 if (!sym) { 952 err = -ENOMEM; 953 goto out; 954 } 955 dso__insert_symbol(dso, sym); 956 out: 957 if (put_map) 958 map__put(map); 959 return err; 960 } 961 962 static int machine__process_ksymbol_unregister(struct machine *machine, 963 union perf_event *event, 964 struct perf_sample *sample __maybe_unused) 965 { 966 struct symbol *sym; 967 struct map *map; 968 969 map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr); 970 if (!map) 971 return 0; 972 973 if (RC_CHK_ACCESS(map) != RC_CHK_ACCESS(machine->vmlinux_map)) 974 maps__remove(machine__kernel_maps(machine), map); 975 else { 976 struct dso *dso = map__dso(map); 977 978 sym = dso__find_symbol(dso, map__map_ip(map, map__start(map))); 979 if (sym) 980 dso__delete_symbol(dso, sym); 981 } 982 983 return 0; 984 } 985 986 int machine__process_ksymbol(struct machine *machine __maybe_unused, 987 union perf_event *event, 988 struct perf_sample *sample) 989 { 990 if (dump_trace) 991 perf_event__fprintf_ksymbol(event, stdout); 992 993 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER) 994 return machine__process_ksymbol_unregister(machine, event, 995 sample); 996 return machine__process_ksymbol_register(machine, event, sample); 997 } 998 999 int machine__process_text_poke(struct machine *machine, union perf_event *event, 1000 struct perf_sample *sample __maybe_unused) 1001 { 1002 struct map *map = maps__find(machine__kernel_maps(machine), event->text_poke.addr); 1003 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 1004 struct dso *dso = map ? map__dso(map) : NULL; 1005 1006 if (dump_trace) 1007 perf_event__fprintf_text_poke(event, machine, stdout); 1008 1009 if (!event->text_poke.new_len) 1010 return 0; 1011 1012 if (cpumode != PERF_RECORD_MISC_KERNEL) { 1013 pr_debug("%s: unsupported cpumode - ignoring\n", __func__); 1014 return 0; 1015 } 1016 1017 if (dso) { 1018 u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len; 1019 int ret; 1020 1021 /* 1022 * Kernel maps might be changed when loading symbols so loading 1023 * must be done prior to using kernel maps. 1024 */ 1025 map__load(map); 1026 ret = dso__data_write_cache_addr(dso, map, machine, 1027 event->text_poke.addr, 1028 new_bytes, 1029 event->text_poke.new_len); 1030 if (ret != event->text_poke.new_len) 1031 pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n", 1032 event->text_poke.addr); 1033 } else { 1034 pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n", 1035 event->text_poke.addr); 1036 } 1037 1038 return 0; 1039 } 1040 1041 static struct map *machine__addnew_module_map(struct machine *machine, u64 start, 1042 const char *filename) 1043 { 1044 struct map *map = NULL; 1045 struct kmod_path m; 1046 struct dso *dso; 1047 int err; 1048 1049 if (kmod_path__parse_name(&m, filename)) 1050 return NULL; 1051 1052 dso = machine__findnew_module_dso(machine, &m, filename); 1053 if (dso == NULL) 1054 goto out; 1055 1056 map = map__new2(start, dso); 1057 if (map == NULL) 1058 goto out; 1059 1060 err = maps__insert(machine__kernel_maps(machine), map); 1061 /* If maps__insert failed, return NULL. */ 1062 if (err) { 1063 map__put(map); 1064 map = NULL; 1065 } 1066 out: 1067 /* put the dso here, corresponding to machine__findnew_module_dso */ 1068 dso__put(dso); 1069 zfree(&m.name); 1070 return map; 1071 } 1072 1073 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp) 1074 { 1075 struct rb_node *nd; 1076 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp); 1077 1078 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 1079 struct machine *pos = rb_entry(nd, struct machine, rb_node); 1080 ret += __dsos__fprintf(&pos->dsos.head, fp); 1081 } 1082 1083 return ret; 1084 } 1085 1086 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp, 1087 bool (skip)(struct dso *dso, int parm), int parm) 1088 { 1089 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm); 1090 } 1091 1092 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp, 1093 bool (skip)(struct dso *dso, int parm), int parm) 1094 { 1095 struct rb_node *nd; 1096 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm); 1097 1098 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 1099 struct machine *pos = rb_entry(nd, struct machine, rb_node); 1100 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm); 1101 } 1102 return ret; 1103 } 1104 1105 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp) 1106 { 1107 int i; 1108 size_t printed = 0; 1109 struct dso *kdso = machine__kernel_dso(machine); 1110 1111 if (kdso->has_build_id) { 1112 char filename[PATH_MAX]; 1113 if (dso__build_id_filename(kdso, filename, sizeof(filename), 1114 false)) 1115 printed += fprintf(fp, "[0] %s\n", filename); 1116 } 1117 1118 for (i = 0; i < vmlinux_path__nr_entries; ++i) 1119 printed += fprintf(fp, "[%d] %s\n", 1120 i + kdso->has_build_id, vmlinux_path[i]); 1121 1122 return printed; 1123 } 1124 1125 size_t machine__fprintf(struct machine *machine, FILE *fp) 1126 { 1127 struct rb_node *nd; 1128 size_t ret; 1129 int i; 1130 1131 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 1132 struct threads *threads = &machine->threads[i]; 1133 1134 down_read(&threads->lock); 1135 1136 ret = fprintf(fp, "Threads: %u\n", threads->nr); 1137 1138 for (nd = rb_first_cached(&threads->entries); nd; 1139 nd = rb_next(nd)) { 1140 struct thread *pos = rb_entry(nd, struct thread_rb_node, rb_node)->thread; 1141 1142 ret += thread__fprintf(pos, fp); 1143 } 1144 1145 up_read(&threads->lock); 1146 } 1147 return ret; 1148 } 1149 1150 static struct dso *machine__get_kernel(struct machine *machine) 1151 { 1152 const char *vmlinux_name = machine->mmap_name; 1153 struct dso *kernel; 1154 1155 if (machine__is_host(machine)) { 1156 if (symbol_conf.vmlinux_name) 1157 vmlinux_name = symbol_conf.vmlinux_name; 1158 1159 kernel = machine__findnew_kernel(machine, vmlinux_name, 1160 "[kernel]", DSO_SPACE__KERNEL); 1161 } else { 1162 if (symbol_conf.default_guest_vmlinux_name) 1163 vmlinux_name = symbol_conf.default_guest_vmlinux_name; 1164 1165 kernel = machine__findnew_kernel(machine, vmlinux_name, 1166 "[guest.kernel]", 1167 DSO_SPACE__KERNEL_GUEST); 1168 } 1169 1170 if (kernel != NULL && (!kernel->has_build_id)) 1171 dso__read_running_kernel_build_id(kernel, machine); 1172 1173 return kernel; 1174 } 1175 1176 void machine__get_kallsyms_filename(struct machine *machine, char *buf, 1177 size_t bufsz) 1178 { 1179 if (machine__is_default_guest(machine)) 1180 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms); 1181 else 1182 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir); 1183 } 1184 1185 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL}; 1186 1187 /* Figure out the start address of kernel map from /proc/kallsyms. 1188 * Returns the name of the start symbol in *symbol_name. Pass in NULL as 1189 * symbol_name if it's not that important. 1190 */ 1191 static int machine__get_running_kernel_start(struct machine *machine, 1192 const char **symbol_name, 1193 u64 *start, u64 *end) 1194 { 1195 char filename[PATH_MAX]; 1196 int i, err = -1; 1197 const char *name; 1198 u64 addr = 0; 1199 1200 machine__get_kallsyms_filename(machine, filename, PATH_MAX); 1201 1202 if (symbol__restricted_filename(filename, "/proc/kallsyms")) 1203 return 0; 1204 1205 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) { 1206 err = kallsyms__get_function_start(filename, name, &addr); 1207 if (!err) 1208 break; 1209 } 1210 1211 if (err) 1212 return -1; 1213 1214 if (symbol_name) 1215 *symbol_name = name; 1216 1217 *start = addr; 1218 1219 err = kallsyms__get_function_start(filename, "_etext", &addr); 1220 if (!err) 1221 *end = addr; 1222 1223 return 0; 1224 } 1225 1226 int machine__create_extra_kernel_map(struct machine *machine, 1227 struct dso *kernel, 1228 struct extra_kernel_map *xm) 1229 { 1230 struct kmap *kmap; 1231 struct map *map; 1232 int err; 1233 1234 map = map__new2(xm->start, kernel); 1235 if (!map) 1236 return -ENOMEM; 1237 1238 map__set_end(map, xm->end); 1239 map__set_pgoff(map, xm->pgoff); 1240 1241 kmap = map__kmap(map); 1242 1243 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN); 1244 1245 err = maps__insert(machine__kernel_maps(machine), map); 1246 1247 if (!err) { 1248 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n", 1249 kmap->name, map__start(map), map__end(map)); 1250 } 1251 1252 map__put(map); 1253 1254 return err; 1255 } 1256 1257 static u64 find_entry_trampoline(struct dso *dso) 1258 { 1259 /* Duplicates are removed so lookup all aliases */ 1260 const char *syms[] = { 1261 "_entry_trampoline", 1262 "__entry_trampoline_start", 1263 "entry_SYSCALL_64_trampoline", 1264 }; 1265 struct symbol *sym = dso__first_symbol(dso); 1266 unsigned int i; 1267 1268 for (; sym; sym = dso__next_symbol(sym)) { 1269 if (sym->binding != STB_GLOBAL) 1270 continue; 1271 for (i = 0; i < ARRAY_SIZE(syms); i++) { 1272 if (!strcmp(sym->name, syms[i])) 1273 return sym->start; 1274 } 1275 } 1276 1277 return 0; 1278 } 1279 1280 /* 1281 * These values can be used for kernels that do not have symbols for the entry 1282 * trampolines in kallsyms. 1283 */ 1284 #define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL 1285 #define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000 1286 #define X86_64_ENTRY_TRAMPOLINE 0x6000 1287 1288 /* Map x86_64 PTI entry trampolines */ 1289 int machine__map_x86_64_entry_trampolines(struct machine *machine, 1290 struct dso *kernel) 1291 { 1292 struct maps *kmaps = machine__kernel_maps(machine); 1293 int nr_cpus_avail, cpu; 1294 bool found = false; 1295 struct map_rb_node *rb_node; 1296 u64 pgoff; 1297 1298 /* 1299 * In the vmlinux case, pgoff is a virtual address which must now be 1300 * mapped to a vmlinux offset. 1301 */ 1302 maps__for_each_entry(kmaps, rb_node) { 1303 struct map *dest_map, *map = rb_node->map; 1304 struct kmap *kmap = __map__kmap(map); 1305 1306 if (!kmap || !is_entry_trampoline(kmap->name)) 1307 continue; 1308 1309 dest_map = maps__find(kmaps, map__pgoff(map)); 1310 if (dest_map != map) 1311 map__set_pgoff(map, map__map_ip(dest_map, map__pgoff(map))); 1312 found = true; 1313 } 1314 if (found || machine->trampolines_mapped) 1315 return 0; 1316 1317 pgoff = find_entry_trampoline(kernel); 1318 if (!pgoff) 1319 return 0; 1320 1321 nr_cpus_avail = machine__nr_cpus_avail(machine); 1322 1323 /* Add a 1 page map for each CPU's entry trampoline */ 1324 for (cpu = 0; cpu < nr_cpus_avail; cpu++) { 1325 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU + 1326 cpu * X86_64_CPU_ENTRY_AREA_SIZE + 1327 X86_64_ENTRY_TRAMPOLINE; 1328 struct extra_kernel_map xm = { 1329 .start = va, 1330 .end = va + page_size, 1331 .pgoff = pgoff, 1332 }; 1333 1334 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN); 1335 1336 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0) 1337 return -1; 1338 } 1339 1340 machine->trampolines_mapped = nr_cpus_avail; 1341 1342 return 0; 1343 } 1344 1345 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused, 1346 struct dso *kernel __maybe_unused) 1347 { 1348 return 0; 1349 } 1350 1351 static int 1352 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel) 1353 { 1354 /* In case of renewal the kernel map, destroy previous one */ 1355 machine__destroy_kernel_maps(machine); 1356 1357 map__put(machine->vmlinux_map); 1358 machine->vmlinux_map = map__new2(0, kernel); 1359 if (machine->vmlinux_map == NULL) 1360 return -ENOMEM; 1361 1362 map__set_map_ip(machine->vmlinux_map, identity__map_ip); 1363 map__set_unmap_ip(machine->vmlinux_map, identity__map_ip); 1364 return maps__insert(machine__kernel_maps(machine), machine->vmlinux_map); 1365 } 1366 1367 void machine__destroy_kernel_maps(struct machine *machine) 1368 { 1369 struct kmap *kmap; 1370 struct map *map = machine__kernel_map(machine); 1371 1372 if (map == NULL) 1373 return; 1374 1375 kmap = map__kmap(map); 1376 maps__remove(machine__kernel_maps(machine), map); 1377 if (kmap && kmap->ref_reloc_sym) { 1378 zfree((char **)&kmap->ref_reloc_sym->name); 1379 zfree(&kmap->ref_reloc_sym); 1380 } 1381 1382 map__zput(machine->vmlinux_map); 1383 } 1384 1385 int machines__create_guest_kernel_maps(struct machines *machines) 1386 { 1387 int ret = 0; 1388 struct dirent **namelist = NULL; 1389 int i, items = 0; 1390 char path[PATH_MAX]; 1391 pid_t pid; 1392 char *endp; 1393 1394 if (symbol_conf.default_guest_vmlinux_name || 1395 symbol_conf.default_guest_modules || 1396 symbol_conf.default_guest_kallsyms) { 1397 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID); 1398 } 1399 1400 if (symbol_conf.guestmount) { 1401 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL); 1402 if (items <= 0) 1403 return -ENOENT; 1404 for (i = 0; i < items; i++) { 1405 if (!isdigit(namelist[i]->d_name[0])) { 1406 /* Filter out . and .. */ 1407 continue; 1408 } 1409 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10); 1410 if ((*endp != '\0') || 1411 (endp == namelist[i]->d_name) || 1412 (errno == ERANGE)) { 1413 pr_debug("invalid directory (%s). Skipping.\n", 1414 namelist[i]->d_name); 1415 continue; 1416 } 1417 sprintf(path, "%s/%s/proc/kallsyms", 1418 symbol_conf.guestmount, 1419 namelist[i]->d_name); 1420 ret = access(path, R_OK); 1421 if (ret) { 1422 pr_debug("Can't access file %s\n", path); 1423 goto failure; 1424 } 1425 machines__create_kernel_maps(machines, pid); 1426 } 1427 failure: 1428 free(namelist); 1429 } 1430 1431 return ret; 1432 } 1433 1434 void machines__destroy_kernel_maps(struct machines *machines) 1435 { 1436 struct rb_node *next = rb_first_cached(&machines->guests); 1437 1438 machine__destroy_kernel_maps(&machines->host); 1439 1440 while (next) { 1441 struct machine *pos = rb_entry(next, struct machine, rb_node); 1442 1443 next = rb_next(&pos->rb_node); 1444 rb_erase_cached(&pos->rb_node, &machines->guests); 1445 machine__delete(pos); 1446 } 1447 } 1448 1449 int machines__create_kernel_maps(struct machines *machines, pid_t pid) 1450 { 1451 struct machine *machine = machines__findnew(machines, pid); 1452 1453 if (machine == NULL) 1454 return -1; 1455 1456 return machine__create_kernel_maps(machine); 1457 } 1458 1459 int machine__load_kallsyms(struct machine *machine, const char *filename) 1460 { 1461 struct map *map = machine__kernel_map(machine); 1462 struct dso *dso = map__dso(map); 1463 int ret = __dso__load_kallsyms(dso, filename, map, true); 1464 1465 if (ret > 0) { 1466 dso__set_loaded(dso); 1467 /* 1468 * Since /proc/kallsyms will have multiple sessions for the 1469 * kernel, with modules between them, fixup the end of all 1470 * sections. 1471 */ 1472 maps__fixup_end(machine__kernel_maps(machine)); 1473 } 1474 1475 return ret; 1476 } 1477 1478 int machine__load_vmlinux_path(struct machine *machine) 1479 { 1480 struct map *map = machine__kernel_map(machine); 1481 struct dso *dso = map__dso(map); 1482 int ret = dso__load_vmlinux_path(dso, map); 1483 1484 if (ret > 0) 1485 dso__set_loaded(dso); 1486 1487 return ret; 1488 } 1489 1490 static char *get_kernel_version(const char *root_dir) 1491 { 1492 char version[PATH_MAX]; 1493 FILE *file; 1494 char *name, *tmp; 1495 const char *prefix = "Linux version "; 1496 1497 sprintf(version, "%s/proc/version", root_dir); 1498 file = fopen(version, "r"); 1499 if (!file) 1500 return NULL; 1501 1502 tmp = fgets(version, sizeof(version), file); 1503 fclose(file); 1504 if (!tmp) 1505 return NULL; 1506 1507 name = strstr(version, prefix); 1508 if (!name) 1509 return NULL; 1510 name += strlen(prefix); 1511 tmp = strchr(name, ' '); 1512 if (tmp) 1513 *tmp = '\0'; 1514 1515 return strdup(name); 1516 } 1517 1518 static bool is_kmod_dso(struct dso *dso) 1519 { 1520 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE || 1521 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE; 1522 } 1523 1524 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m) 1525 { 1526 char *long_name; 1527 struct dso *dso; 1528 struct map *map = maps__find_by_name(maps, m->name); 1529 1530 if (map == NULL) 1531 return 0; 1532 1533 long_name = strdup(path); 1534 if (long_name == NULL) 1535 return -ENOMEM; 1536 1537 dso = map__dso(map); 1538 dso__set_long_name(dso, long_name, true); 1539 dso__kernel_module_get_build_id(dso, ""); 1540 1541 /* 1542 * Full name could reveal us kmod compression, so 1543 * we need to update the symtab_type if needed. 1544 */ 1545 if (m->comp && is_kmod_dso(dso)) { 1546 dso->symtab_type++; 1547 dso->comp = m->comp; 1548 } 1549 1550 return 0; 1551 } 1552 1553 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth) 1554 { 1555 struct dirent *dent; 1556 DIR *dir = opendir(dir_name); 1557 int ret = 0; 1558 1559 if (!dir) { 1560 pr_debug("%s: cannot open %s dir\n", __func__, dir_name); 1561 return -1; 1562 } 1563 1564 while ((dent = readdir(dir)) != NULL) { 1565 char path[PATH_MAX]; 1566 struct stat st; 1567 1568 /*sshfs might return bad dent->d_type, so we have to stat*/ 1569 path__join(path, sizeof(path), dir_name, dent->d_name); 1570 if (stat(path, &st)) 1571 continue; 1572 1573 if (S_ISDIR(st.st_mode)) { 1574 if (!strcmp(dent->d_name, ".") || 1575 !strcmp(dent->d_name, "..")) 1576 continue; 1577 1578 /* Do not follow top-level source and build symlinks */ 1579 if (depth == 0) { 1580 if (!strcmp(dent->d_name, "source") || 1581 !strcmp(dent->d_name, "build")) 1582 continue; 1583 } 1584 1585 ret = maps__set_modules_path_dir(maps, path, depth + 1); 1586 if (ret < 0) 1587 goto out; 1588 } else { 1589 struct kmod_path m; 1590 1591 ret = kmod_path__parse_name(&m, dent->d_name); 1592 if (ret) 1593 goto out; 1594 1595 if (m.kmod) 1596 ret = maps__set_module_path(maps, path, &m); 1597 1598 zfree(&m.name); 1599 1600 if (ret) 1601 goto out; 1602 } 1603 } 1604 1605 out: 1606 closedir(dir); 1607 return ret; 1608 } 1609 1610 static int machine__set_modules_path(struct machine *machine) 1611 { 1612 char *version; 1613 char modules_path[PATH_MAX]; 1614 1615 version = get_kernel_version(machine->root_dir); 1616 if (!version) 1617 return -1; 1618 1619 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s", 1620 machine->root_dir, version); 1621 free(version); 1622 1623 return maps__set_modules_path_dir(machine__kernel_maps(machine), modules_path, 0); 1624 } 1625 int __weak arch__fix_module_text_start(u64 *start __maybe_unused, 1626 u64 *size __maybe_unused, 1627 const char *name __maybe_unused) 1628 { 1629 return 0; 1630 } 1631 1632 static int machine__create_module(void *arg, const char *name, u64 start, 1633 u64 size) 1634 { 1635 struct machine *machine = arg; 1636 struct map *map; 1637 1638 if (arch__fix_module_text_start(&start, &size, name) < 0) 1639 return -1; 1640 1641 map = machine__addnew_module_map(machine, start, name); 1642 if (map == NULL) 1643 return -1; 1644 map__set_end(map, start + size); 1645 1646 dso__kernel_module_get_build_id(map__dso(map), machine->root_dir); 1647 map__put(map); 1648 return 0; 1649 } 1650 1651 static int machine__create_modules(struct machine *machine) 1652 { 1653 const char *modules; 1654 char path[PATH_MAX]; 1655 1656 if (machine__is_default_guest(machine)) { 1657 modules = symbol_conf.default_guest_modules; 1658 } else { 1659 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir); 1660 modules = path; 1661 } 1662 1663 if (symbol__restricted_filename(modules, "/proc/modules")) 1664 return -1; 1665 1666 if (modules__parse(modules, machine, machine__create_module)) 1667 return -1; 1668 1669 if (!machine__set_modules_path(machine)) 1670 return 0; 1671 1672 pr_debug("Problems setting modules path maps, continuing anyway...\n"); 1673 1674 return 0; 1675 } 1676 1677 static void machine__set_kernel_mmap(struct machine *machine, 1678 u64 start, u64 end) 1679 { 1680 map__set_start(machine->vmlinux_map, start); 1681 map__set_end(machine->vmlinux_map, end); 1682 /* 1683 * Be a bit paranoid here, some perf.data file came with 1684 * a zero sized synthesized MMAP event for the kernel. 1685 */ 1686 if (start == 0 && end == 0) 1687 map__set_end(machine->vmlinux_map, ~0ULL); 1688 } 1689 1690 static int machine__update_kernel_mmap(struct machine *machine, 1691 u64 start, u64 end) 1692 { 1693 struct map *orig, *updated; 1694 int err; 1695 1696 orig = machine->vmlinux_map; 1697 updated = map__get(orig); 1698 1699 machine->vmlinux_map = updated; 1700 machine__set_kernel_mmap(machine, start, end); 1701 maps__remove(machine__kernel_maps(machine), orig); 1702 err = maps__insert(machine__kernel_maps(machine), updated); 1703 map__put(orig); 1704 1705 return err; 1706 } 1707 1708 int machine__create_kernel_maps(struct machine *machine) 1709 { 1710 struct dso *kernel = machine__get_kernel(machine); 1711 const char *name = NULL; 1712 u64 start = 0, end = ~0ULL; 1713 int ret; 1714 1715 if (kernel == NULL) 1716 return -1; 1717 1718 ret = __machine__create_kernel_maps(machine, kernel); 1719 if (ret < 0) 1720 goto out_put; 1721 1722 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) { 1723 if (machine__is_host(machine)) 1724 pr_debug("Problems creating module maps, " 1725 "continuing anyway...\n"); 1726 else 1727 pr_debug("Problems creating module maps for guest %d, " 1728 "continuing anyway...\n", machine->pid); 1729 } 1730 1731 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) { 1732 if (name && 1733 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) { 1734 machine__destroy_kernel_maps(machine); 1735 ret = -1; 1736 goto out_put; 1737 } 1738 1739 /* 1740 * we have a real start address now, so re-order the kmaps 1741 * assume it's the last in the kmaps 1742 */ 1743 ret = machine__update_kernel_mmap(machine, start, end); 1744 if (ret < 0) 1745 goto out_put; 1746 } 1747 1748 if (machine__create_extra_kernel_maps(machine, kernel)) 1749 pr_debug("Problems creating extra kernel maps, continuing anyway...\n"); 1750 1751 if (end == ~0ULL) { 1752 /* update end address of the kernel map using adjacent module address */ 1753 struct map_rb_node *rb_node = maps__find_node(machine__kernel_maps(machine), 1754 machine__kernel_map(machine)); 1755 struct map_rb_node *next = map_rb_node__next(rb_node); 1756 1757 if (next) 1758 machine__set_kernel_mmap(machine, start, map__start(next->map)); 1759 } 1760 1761 out_put: 1762 dso__put(kernel); 1763 return ret; 1764 } 1765 1766 static bool machine__uses_kcore(struct machine *machine) 1767 { 1768 struct dso *dso; 1769 1770 list_for_each_entry(dso, &machine->dsos.head, node) { 1771 if (dso__is_kcore(dso)) 1772 return true; 1773 } 1774 1775 return false; 1776 } 1777 1778 static bool perf_event__is_extra_kernel_mmap(struct machine *machine, 1779 struct extra_kernel_map *xm) 1780 { 1781 return machine__is(machine, "x86_64") && 1782 is_entry_trampoline(xm->name); 1783 } 1784 1785 static int machine__process_extra_kernel_map(struct machine *machine, 1786 struct extra_kernel_map *xm) 1787 { 1788 struct dso *kernel = machine__kernel_dso(machine); 1789 1790 if (kernel == NULL) 1791 return -1; 1792 1793 return machine__create_extra_kernel_map(machine, kernel, xm); 1794 } 1795 1796 static int machine__process_kernel_mmap_event(struct machine *machine, 1797 struct extra_kernel_map *xm, 1798 struct build_id *bid) 1799 { 1800 enum dso_space_type dso_space; 1801 bool is_kernel_mmap; 1802 const char *mmap_name = machine->mmap_name; 1803 1804 /* If we have maps from kcore then we do not need or want any others */ 1805 if (machine__uses_kcore(machine)) 1806 return 0; 1807 1808 if (machine__is_host(machine)) 1809 dso_space = DSO_SPACE__KERNEL; 1810 else 1811 dso_space = DSO_SPACE__KERNEL_GUEST; 1812 1813 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0; 1814 if (!is_kernel_mmap && !machine__is_host(machine)) { 1815 /* 1816 * If the event was recorded inside the guest and injected into 1817 * the host perf.data file, then it will match a host mmap_name, 1818 * so try that - see machine__set_mmap_name(). 1819 */ 1820 mmap_name = "[kernel.kallsyms]"; 1821 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0; 1822 } 1823 if (xm->name[0] == '/' || 1824 (!is_kernel_mmap && xm->name[0] == '[')) { 1825 struct map *map = machine__addnew_module_map(machine, xm->start, xm->name); 1826 1827 if (map == NULL) 1828 goto out_problem; 1829 1830 map__set_end(map, map__start(map) + xm->end - xm->start); 1831 1832 if (build_id__is_defined(bid)) 1833 dso__set_build_id(map__dso(map), bid); 1834 1835 map__put(map); 1836 } else if (is_kernel_mmap) { 1837 const char *symbol_name = xm->name + strlen(mmap_name); 1838 /* 1839 * Should be there already, from the build-id table in 1840 * the header. 1841 */ 1842 struct dso *kernel = NULL; 1843 struct dso *dso; 1844 1845 down_read(&machine->dsos.lock); 1846 1847 list_for_each_entry(dso, &machine->dsos.head, node) { 1848 1849 /* 1850 * The cpumode passed to is_kernel_module is not the 1851 * cpumode of *this* event. If we insist on passing 1852 * correct cpumode to is_kernel_module, we should 1853 * record the cpumode when we adding this dso to the 1854 * linked list. 1855 * 1856 * However we don't really need passing correct 1857 * cpumode. We know the correct cpumode must be kernel 1858 * mode (if not, we should not link it onto kernel_dsos 1859 * list). 1860 * 1861 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN. 1862 * is_kernel_module() treats it as a kernel cpumode. 1863 */ 1864 1865 if (!dso->kernel || 1866 is_kernel_module(dso->long_name, 1867 PERF_RECORD_MISC_CPUMODE_UNKNOWN)) 1868 continue; 1869 1870 1871 kernel = dso__get(dso); 1872 break; 1873 } 1874 1875 up_read(&machine->dsos.lock); 1876 1877 if (kernel == NULL) 1878 kernel = machine__findnew_dso(machine, machine->mmap_name); 1879 if (kernel == NULL) 1880 goto out_problem; 1881 1882 kernel->kernel = dso_space; 1883 if (__machine__create_kernel_maps(machine, kernel) < 0) { 1884 dso__put(kernel); 1885 goto out_problem; 1886 } 1887 1888 if (strstr(kernel->long_name, "vmlinux")) 1889 dso__set_short_name(kernel, "[kernel.vmlinux]", false); 1890 1891 if (machine__update_kernel_mmap(machine, xm->start, xm->end) < 0) { 1892 dso__put(kernel); 1893 goto out_problem; 1894 } 1895 1896 if (build_id__is_defined(bid)) 1897 dso__set_build_id(kernel, bid); 1898 1899 /* 1900 * Avoid using a zero address (kptr_restrict) for the ref reloc 1901 * symbol. Effectively having zero here means that at record 1902 * time /proc/sys/kernel/kptr_restrict was non zero. 1903 */ 1904 if (xm->pgoff != 0) { 1905 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, 1906 symbol_name, 1907 xm->pgoff); 1908 } 1909 1910 if (machine__is_default_guest(machine)) { 1911 /* 1912 * preload dso of guest kernel and modules 1913 */ 1914 dso__load(kernel, machine__kernel_map(machine)); 1915 } 1916 dso__put(kernel); 1917 } else if (perf_event__is_extra_kernel_mmap(machine, xm)) { 1918 return machine__process_extra_kernel_map(machine, xm); 1919 } 1920 return 0; 1921 out_problem: 1922 return -1; 1923 } 1924 1925 int machine__process_mmap2_event(struct machine *machine, 1926 union perf_event *event, 1927 struct perf_sample *sample) 1928 { 1929 struct thread *thread; 1930 struct map *map; 1931 struct dso_id dso_id = { 1932 .maj = event->mmap2.maj, 1933 .min = event->mmap2.min, 1934 .ino = event->mmap2.ino, 1935 .ino_generation = event->mmap2.ino_generation, 1936 }; 1937 struct build_id __bid, *bid = NULL; 1938 int ret = 0; 1939 1940 if (dump_trace) 1941 perf_event__fprintf_mmap2(event, stdout); 1942 1943 if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) { 1944 bid = &__bid; 1945 build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size); 1946 } 1947 1948 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1949 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1950 struct extra_kernel_map xm = { 1951 .start = event->mmap2.start, 1952 .end = event->mmap2.start + event->mmap2.len, 1953 .pgoff = event->mmap2.pgoff, 1954 }; 1955 1956 strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN); 1957 ret = machine__process_kernel_mmap_event(machine, &xm, bid); 1958 if (ret < 0) 1959 goto out_problem; 1960 return 0; 1961 } 1962 1963 thread = machine__findnew_thread(machine, event->mmap2.pid, 1964 event->mmap2.tid); 1965 if (thread == NULL) 1966 goto out_problem; 1967 1968 map = map__new(machine, event->mmap2.start, 1969 event->mmap2.len, event->mmap2.pgoff, 1970 &dso_id, event->mmap2.prot, 1971 event->mmap2.flags, bid, 1972 event->mmap2.filename, thread); 1973 1974 if (map == NULL) 1975 goto out_problem_map; 1976 1977 ret = thread__insert_map(thread, map); 1978 if (ret) 1979 goto out_problem_insert; 1980 1981 thread__put(thread); 1982 map__put(map); 1983 return 0; 1984 1985 out_problem_insert: 1986 map__put(map); 1987 out_problem_map: 1988 thread__put(thread); 1989 out_problem: 1990 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n"); 1991 return 0; 1992 } 1993 1994 int machine__process_mmap_event(struct machine *machine, union perf_event *event, 1995 struct perf_sample *sample) 1996 { 1997 struct thread *thread; 1998 struct map *map; 1999 u32 prot = 0; 2000 int ret = 0; 2001 2002 if (dump_trace) 2003 perf_event__fprintf_mmap(event, stdout); 2004 2005 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 2006 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 2007 struct extra_kernel_map xm = { 2008 .start = event->mmap.start, 2009 .end = event->mmap.start + event->mmap.len, 2010 .pgoff = event->mmap.pgoff, 2011 }; 2012 2013 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN); 2014 ret = machine__process_kernel_mmap_event(machine, &xm, NULL); 2015 if (ret < 0) 2016 goto out_problem; 2017 return 0; 2018 } 2019 2020 thread = machine__findnew_thread(machine, event->mmap.pid, 2021 event->mmap.tid); 2022 if (thread == NULL) 2023 goto out_problem; 2024 2025 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA)) 2026 prot = PROT_EXEC; 2027 2028 map = map__new(machine, event->mmap.start, 2029 event->mmap.len, event->mmap.pgoff, 2030 NULL, prot, 0, NULL, event->mmap.filename, thread); 2031 2032 if (map == NULL) 2033 goto out_problem_map; 2034 2035 ret = thread__insert_map(thread, map); 2036 if (ret) 2037 goto out_problem_insert; 2038 2039 thread__put(thread); 2040 map__put(map); 2041 return 0; 2042 2043 out_problem_insert: 2044 map__put(map); 2045 out_problem_map: 2046 thread__put(thread); 2047 out_problem: 2048 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n"); 2049 return 0; 2050 } 2051 2052 static void __machine__remove_thread(struct machine *machine, struct thread_rb_node *nd, 2053 struct thread *th, bool lock) 2054 { 2055 struct threads *threads = machine__threads(machine, thread__tid(th)); 2056 2057 if (!nd) 2058 nd = thread_rb_node__find(th, &threads->entries.rb_root); 2059 2060 if (threads->last_match && RC_CHK_ACCESS(threads->last_match) == RC_CHK_ACCESS(th)) 2061 threads__set_last_match(threads, NULL); 2062 2063 if (lock) 2064 down_write(&threads->lock); 2065 2066 BUG_ON(refcount_read(thread__refcnt(th)) == 0); 2067 2068 thread__put(nd->thread); 2069 rb_erase_cached(&nd->rb_node, &threads->entries); 2070 RB_CLEAR_NODE(&nd->rb_node); 2071 --threads->nr; 2072 2073 free(nd); 2074 2075 if (lock) 2076 up_write(&threads->lock); 2077 } 2078 2079 void machine__remove_thread(struct machine *machine, struct thread *th) 2080 { 2081 return __machine__remove_thread(machine, NULL, th, true); 2082 } 2083 2084 int machine__process_fork_event(struct machine *machine, union perf_event *event, 2085 struct perf_sample *sample) 2086 { 2087 struct thread *thread = machine__find_thread(machine, 2088 event->fork.pid, 2089 event->fork.tid); 2090 struct thread *parent = machine__findnew_thread(machine, 2091 event->fork.ppid, 2092 event->fork.ptid); 2093 bool do_maps_clone = true; 2094 int err = 0; 2095 2096 if (dump_trace) 2097 perf_event__fprintf_task(event, stdout); 2098 2099 /* 2100 * There may be an existing thread that is not actually the parent, 2101 * either because we are processing events out of order, or because the 2102 * (fork) event that would have removed the thread was lost. Assume the 2103 * latter case and continue on as best we can. 2104 */ 2105 if (thread__pid(parent) != (pid_t)event->fork.ppid) { 2106 dump_printf("removing erroneous parent thread %d/%d\n", 2107 thread__pid(parent), thread__tid(parent)); 2108 machine__remove_thread(machine, parent); 2109 thread__put(parent); 2110 parent = machine__findnew_thread(machine, event->fork.ppid, 2111 event->fork.ptid); 2112 } 2113 2114 /* if a thread currently exists for the thread id remove it */ 2115 if (thread != NULL) { 2116 machine__remove_thread(machine, thread); 2117 thread__put(thread); 2118 } 2119 2120 thread = machine__findnew_thread(machine, event->fork.pid, 2121 event->fork.tid); 2122 /* 2123 * When synthesizing FORK events, we are trying to create thread 2124 * objects for the already running tasks on the machine. 2125 * 2126 * Normally, for a kernel FORK event, we want to clone the parent's 2127 * maps because that is what the kernel just did. 2128 * 2129 * But when synthesizing, this should not be done. If we do, we end up 2130 * with overlapping maps as we process the synthesized MMAP2 events that 2131 * get delivered shortly thereafter. 2132 * 2133 * Use the FORK event misc flags in an internal way to signal this 2134 * situation, so we can elide the map clone when appropriate. 2135 */ 2136 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC) 2137 do_maps_clone = false; 2138 2139 if (thread == NULL || parent == NULL || 2140 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) { 2141 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n"); 2142 err = -1; 2143 } 2144 thread__put(thread); 2145 thread__put(parent); 2146 2147 return err; 2148 } 2149 2150 int machine__process_exit_event(struct machine *machine, union perf_event *event, 2151 struct perf_sample *sample __maybe_unused) 2152 { 2153 struct thread *thread = machine__find_thread(machine, 2154 event->fork.pid, 2155 event->fork.tid); 2156 2157 if (dump_trace) 2158 perf_event__fprintf_task(event, stdout); 2159 2160 if (thread != NULL) 2161 thread__put(thread); 2162 2163 return 0; 2164 } 2165 2166 int machine__process_event(struct machine *machine, union perf_event *event, 2167 struct perf_sample *sample) 2168 { 2169 int ret; 2170 2171 switch (event->header.type) { 2172 case PERF_RECORD_COMM: 2173 ret = machine__process_comm_event(machine, event, sample); break; 2174 case PERF_RECORD_MMAP: 2175 ret = machine__process_mmap_event(machine, event, sample); break; 2176 case PERF_RECORD_NAMESPACES: 2177 ret = machine__process_namespaces_event(machine, event, sample); break; 2178 case PERF_RECORD_CGROUP: 2179 ret = machine__process_cgroup_event(machine, event, sample); break; 2180 case PERF_RECORD_MMAP2: 2181 ret = machine__process_mmap2_event(machine, event, sample); break; 2182 case PERF_RECORD_FORK: 2183 ret = machine__process_fork_event(machine, event, sample); break; 2184 case PERF_RECORD_EXIT: 2185 ret = machine__process_exit_event(machine, event, sample); break; 2186 case PERF_RECORD_LOST: 2187 ret = machine__process_lost_event(machine, event, sample); break; 2188 case PERF_RECORD_AUX: 2189 ret = machine__process_aux_event(machine, event); break; 2190 case PERF_RECORD_ITRACE_START: 2191 ret = machine__process_itrace_start_event(machine, event); break; 2192 case PERF_RECORD_LOST_SAMPLES: 2193 ret = machine__process_lost_samples_event(machine, event, sample); break; 2194 case PERF_RECORD_SWITCH: 2195 case PERF_RECORD_SWITCH_CPU_WIDE: 2196 ret = machine__process_switch_event(machine, event); break; 2197 case PERF_RECORD_KSYMBOL: 2198 ret = machine__process_ksymbol(machine, event, sample); break; 2199 case PERF_RECORD_BPF_EVENT: 2200 ret = machine__process_bpf(machine, event, sample); break; 2201 case PERF_RECORD_TEXT_POKE: 2202 ret = machine__process_text_poke(machine, event, sample); break; 2203 case PERF_RECORD_AUX_OUTPUT_HW_ID: 2204 ret = machine__process_aux_output_hw_id_event(machine, event); break; 2205 default: 2206 ret = -1; 2207 break; 2208 } 2209 2210 return ret; 2211 } 2212 2213 static bool symbol__match_regex(struct symbol *sym, regex_t *regex) 2214 { 2215 if (!regexec(regex, sym->name, 0, NULL, 0)) 2216 return true; 2217 return false; 2218 } 2219 2220 static void ip__resolve_ams(struct thread *thread, 2221 struct addr_map_symbol *ams, 2222 u64 ip) 2223 { 2224 struct addr_location al; 2225 2226 addr_location__init(&al); 2227 /* 2228 * We cannot use the header.misc hint to determine whether a 2229 * branch stack address is user, kernel, guest, hypervisor. 2230 * Branches may straddle the kernel/user/hypervisor boundaries. 2231 * Thus, we have to try consecutively until we find a match 2232 * or else, the symbol is unknown 2233 */ 2234 thread__find_cpumode_addr_location(thread, ip, &al); 2235 2236 ams->addr = ip; 2237 ams->al_addr = al.addr; 2238 ams->al_level = al.level; 2239 ams->ms.maps = maps__get(al.maps); 2240 ams->ms.sym = al.sym; 2241 ams->ms.map = map__get(al.map); 2242 ams->phys_addr = 0; 2243 ams->data_page_size = 0; 2244 addr_location__exit(&al); 2245 } 2246 2247 static void ip__resolve_data(struct thread *thread, 2248 u8 m, struct addr_map_symbol *ams, 2249 u64 addr, u64 phys_addr, u64 daddr_page_size) 2250 { 2251 struct addr_location al; 2252 2253 addr_location__init(&al); 2254 2255 thread__find_symbol(thread, m, addr, &al); 2256 2257 ams->addr = addr; 2258 ams->al_addr = al.addr; 2259 ams->al_level = al.level; 2260 ams->ms.maps = maps__get(al.maps); 2261 ams->ms.sym = al.sym; 2262 ams->ms.map = map__get(al.map); 2263 ams->phys_addr = phys_addr; 2264 ams->data_page_size = daddr_page_size; 2265 addr_location__exit(&al); 2266 } 2267 2268 struct mem_info *sample__resolve_mem(struct perf_sample *sample, 2269 struct addr_location *al) 2270 { 2271 struct mem_info *mi = mem_info__new(); 2272 2273 if (!mi) 2274 return NULL; 2275 2276 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip); 2277 ip__resolve_data(al->thread, al->cpumode, &mi->daddr, 2278 sample->addr, sample->phys_addr, 2279 sample->data_page_size); 2280 mi->data_src.val = sample->data_src; 2281 2282 return mi; 2283 } 2284 2285 static char *callchain_srcline(struct map_symbol *ms, u64 ip) 2286 { 2287 struct map *map = ms->map; 2288 char *srcline = NULL; 2289 struct dso *dso; 2290 2291 if (!map || callchain_param.key == CCKEY_FUNCTION) 2292 return srcline; 2293 2294 dso = map__dso(map); 2295 srcline = srcline__tree_find(&dso->srclines, ip); 2296 if (!srcline) { 2297 bool show_sym = false; 2298 bool show_addr = callchain_param.key == CCKEY_ADDRESS; 2299 2300 srcline = get_srcline(dso, map__rip_2objdump(map, ip), 2301 ms->sym, show_sym, show_addr, ip); 2302 srcline__tree_insert(&dso->srclines, ip, srcline); 2303 } 2304 2305 return srcline; 2306 } 2307 2308 struct iterations { 2309 int nr_loop_iter; 2310 u64 cycles; 2311 }; 2312 2313 static int add_callchain_ip(struct thread *thread, 2314 struct callchain_cursor *cursor, 2315 struct symbol **parent, 2316 struct addr_location *root_al, 2317 u8 *cpumode, 2318 u64 ip, 2319 bool branch, 2320 struct branch_flags *flags, 2321 struct iterations *iter, 2322 u64 branch_from) 2323 { 2324 struct map_symbol ms = {}; 2325 struct addr_location al; 2326 int nr_loop_iter = 0, err = 0; 2327 u64 iter_cycles = 0; 2328 const char *srcline = NULL; 2329 2330 addr_location__init(&al); 2331 al.filtered = 0; 2332 al.sym = NULL; 2333 al.srcline = NULL; 2334 if (!cpumode) { 2335 thread__find_cpumode_addr_location(thread, ip, &al); 2336 } else { 2337 if (ip >= PERF_CONTEXT_MAX) { 2338 switch (ip) { 2339 case PERF_CONTEXT_HV: 2340 *cpumode = PERF_RECORD_MISC_HYPERVISOR; 2341 break; 2342 case PERF_CONTEXT_KERNEL: 2343 *cpumode = PERF_RECORD_MISC_KERNEL; 2344 break; 2345 case PERF_CONTEXT_USER: 2346 *cpumode = PERF_RECORD_MISC_USER; 2347 break; 2348 default: 2349 pr_debug("invalid callchain context: " 2350 "%"PRId64"\n", (s64) ip); 2351 /* 2352 * It seems the callchain is corrupted. 2353 * Discard all. 2354 */ 2355 callchain_cursor_reset(cursor); 2356 err = 1; 2357 goto out; 2358 } 2359 goto out; 2360 } 2361 thread__find_symbol(thread, *cpumode, ip, &al); 2362 } 2363 2364 if (al.sym != NULL) { 2365 if (perf_hpp_list.parent && !*parent && 2366 symbol__match_regex(al.sym, &parent_regex)) 2367 *parent = al.sym; 2368 else if (have_ignore_callees && root_al && 2369 symbol__match_regex(al.sym, &ignore_callees_regex)) { 2370 /* Treat this symbol as the root, 2371 forgetting its callees. */ 2372 addr_location__copy(root_al, &al); 2373 callchain_cursor_reset(cursor); 2374 } 2375 } 2376 2377 if (symbol_conf.hide_unresolved && al.sym == NULL) 2378 goto out; 2379 2380 if (iter) { 2381 nr_loop_iter = iter->nr_loop_iter; 2382 iter_cycles = iter->cycles; 2383 } 2384 2385 ms.maps = maps__get(al.maps); 2386 ms.map = map__get(al.map); 2387 ms.sym = al.sym; 2388 2389 if (!branch && append_inlines(cursor, &ms, ip) == 0) 2390 goto out; 2391 2392 srcline = callchain_srcline(&ms, al.addr); 2393 err = callchain_cursor_append(cursor, ip, &ms, 2394 branch, flags, nr_loop_iter, 2395 iter_cycles, branch_from, srcline); 2396 out: 2397 addr_location__exit(&al); 2398 maps__put(ms.maps); 2399 map__put(ms.map); 2400 return err; 2401 } 2402 2403 struct branch_info *sample__resolve_bstack(struct perf_sample *sample, 2404 struct addr_location *al) 2405 { 2406 unsigned int i; 2407 const struct branch_stack *bs = sample->branch_stack; 2408 struct branch_entry *entries = perf_sample__branch_entries(sample); 2409 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info)); 2410 2411 if (!bi) 2412 return NULL; 2413 2414 for (i = 0; i < bs->nr; i++) { 2415 ip__resolve_ams(al->thread, &bi[i].to, entries[i].to); 2416 ip__resolve_ams(al->thread, &bi[i].from, entries[i].from); 2417 bi[i].flags = entries[i].flags; 2418 } 2419 return bi; 2420 } 2421 2422 static void save_iterations(struct iterations *iter, 2423 struct branch_entry *be, int nr) 2424 { 2425 int i; 2426 2427 iter->nr_loop_iter++; 2428 iter->cycles = 0; 2429 2430 for (i = 0; i < nr; i++) 2431 iter->cycles += be[i].flags.cycles; 2432 } 2433 2434 #define CHASHSZ 127 2435 #define CHASHBITS 7 2436 #define NO_ENTRY 0xff 2437 2438 #define PERF_MAX_BRANCH_DEPTH 127 2439 2440 /* Remove loops. */ 2441 static int remove_loops(struct branch_entry *l, int nr, 2442 struct iterations *iter) 2443 { 2444 int i, j, off; 2445 unsigned char chash[CHASHSZ]; 2446 2447 memset(chash, NO_ENTRY, sizeof(chash)); 2448 2449 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255); 2450 2451 for (i = 0; i < nr; i++) { 2452 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ; 2453 2454 /* no collision handling for now */ 2455 if (chash[h] == NO_ENTRY) { 2456 chash[h] = i; 2457 } else if (l[chash[h]].from == l[i].from) { 2458 bool is_loop = true; 2459 /* check if it is a real loop */ 2460 off = 0; 2461 for (j = chash[h]; j < i && i + off < nr; j++, off++) 2462 if (l[j].from != l[i + off].from) { 2463 is_loop = false; 2464 break; 2465 } 2466 if (is_loop) { 2467 j = nr - (i + off); 2468 if (j > 0) { 2469 save_iterations(iter + i + off, 2470 l + i, off); 2471 2472 memmove(iter + i, iter + i + off, 2473 j * sizeof(*iter)); 2474 2475 memmove(l + i, l + i + off, 2476 j * sizeof(*l)); 2477 } 2478 2479 nr -= off; 2480 } 2481 } 2482 } 2483 return nr; 2484 } 2485 2486 static int lbr_callchain_add_kernel_ip(struct thread *thread, 2487 struct callchain_cursor *cursor, 2488 struct perf_sample *sample, 2489 struct symbol **parent, 2490 struct addr_location *root_al, 2491 u64 branch_from, 2492 bool callee, int end) 2493 { 2494 struct ip_callchain *chain = sample->callchain; 2495 u8 cpumode = PERF_RECORD_MISC_USER; 2496 int err, i; 2497 2498 if (callee) { 2499 for (i = 0; i < end + 1; i++) { 2500 err = add_callchain_ip(thread, cursor, parent, 2501 root_al, &cpumode, chain->ips[i], 2502 false, NULL, NULL, branch_from); 2503 if (err) 2504 return err; 2505 } 2506 return 0; 2507 } 2508 2509 for (i = end; i >= 0; i--) { 2510 err = add_callchain_ip(thread, cursor, parent, 2511 root_al, &cpumode, chain->ips[i], 2512 false, NULL, NULL, branch_from); 2513 if (err) 2514 return err; 2515 } 2516 2517 return 0; 2518 } 2519 2520 static void save_lbr_cursor_node(struct thread *thread, 2521 struct callchain_cursor *cursor, 2522 int idx) 2523 { 2524 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread); 2525 2526 if (!lbr_stitch) 2527 return; 2528 2529 if (cursor->pos == cursor->nr) { 2530 lbr_stitch->prev_lbr_cursor[idx].valid = false; 2531 return; 2532 } 2533 2534 if (!cursor->curr) 2535 cursor->curr = cursor->first; 2536 else 2537 cursor->curr = cursor->curr->next; 2538 memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr, 2539 sizeof(struct callchain_cursor_node)); 2540 2541 lbr_stitch->prev_lbr_cursor[idx].valid = true; 2542 cursor->pos++; 2543 } 2544 2545 static int lbr_callchain_add_lbr_ip(struct thread *thread, 2546 struct callchain_cursor *cursor, 2547 struct perf_sample *sample, 2548 struct symbol **parent, 2549 struct addr_location *root_al, 2550 u64 *branch_from, 2551 bool callee) 2552 { 2553 struct branch_stack *lbr_stack = sample->branch_stack; 2554 struct branch_entry *entries = perf_sample__branch_entries(sample); 2555 u8 cpumode = PERF_RECORD_MISC_USER; 2556 int lbr_nr = lbr_stack->nr; 2557 struct branch_flags *flags; 2558 int err, i; 2559 u64 ip; 2560 2561 /* 2562 * The curr and pos are not used in writing session. They are cleared 2563 * in callchain_cursor_commit() when the writing session is closed. 2564 * Using curr and pos to track the current cursor node. 2565 */ 2566 if (thread__lbr_stitch(thread)) { 2567 cursor->curr = NULL; 2568 cursor->pos = cursor->nr; 2569 if (cursor->nr) { 2570 cursor->curr = cursor->first; 2571 for (i = 0; i < (int)(cursor->nr - 1); i++) 2572 cursor->curr = cursor->curr->next; 2573 } 2574 } 2575 2576 if (callee) { 2577 /* Add LBR ip from first entries.to */ 2578 ip = entries[0].to; 2579 flags = &entries[0].flags; 2580 *branch_from = entries[0].from; 2581 err = add_callchain_ip(thread, cursor, parent, 2582 root_al, &cpumode, ip, 2583 true, flags, NULL, 2584 *branch_from); 2585 if (err) 2586 return err; 2587 2588 /* 2589 * The number of cursor node increases. 2590 * Move the current cursor node. 2591 * But does not need to save current cursor node for entry 0. 2592 * It's impossible to stitch the whole LBRs of previous sample. 2593 */ 2594 if (thread__lbr_stitch(thread) && (cursor->pos != cursor->nr)) { 2595 if (!cursor->curr) 2596 cursor->curr = cursor->first; 2597 else 2598 cursor->curr = cursor->curr->next; 2599 cursor->pos++; 2600 } 2601 2602 /* Add LBR ip from entries.from one by one. */ 2603 for (i = 0; i < lbr_nr; i++) { 2604 ip = entries[i].from; 2605 flags = &entries[i].flags; 2606 err = add_callchain_ip(thread, cursor, parent, 2607 root_al, &cpumode, ip, 2608 true, flags, NULL, 2609 *branch_from); 2610 if (err) 2611 return err; 2612 save_lbr_cursor_node(thread, cursor, i); 2613 } 2614 return 0; 2615 } 2616 2617 /* Add LBR ip from entries.from one by one. */ 2618 for (i = lbr_nr - 1; i >= 0; i--) { 2619 ip = entries[i].from; 2620 flags = &entries[i].flags; 2621 err = add_callchain_ip(thread, cursor, parent, 2622 root_al, &cpumode, ip, 2623 true, flags, NULL, 2624 *branch_from); 2625 if (err) 2626 return err; 2627 save_lbr_cursor_node(thread, cursor, i); 2628 } 2629 2630 /* Add LBR ip from first entries.to */ 2631 ip = entries[0].to; 2632 flags = &entries[0].flags; 2633 *branch_from = entries[0].from; 2634 err = add_callchain_ip(thread, cursor, parent, 2635 root_al, &cpumode, ip, 2636 true, flags, NULL, 2637 *branch_from); 2638 if (err) 2639 return err; 2640 2641 return 0; 2642 } 2643 2644 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread, 2645 struct callchain_cursor *cursor) 2646 { 2647 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread); 2648 struct callchain_cursor_node *cnode; 2649 struct stitch_list *stitch_node; 2650 int err; 2651 2652 list_for_each_entry(stitch_node, &lbr_stitch->lists, node) { 2653 cnode = &stitch_node->cursor; 2654 2655 err = callchain_cursor_append(cursor, cnode->ip, 2656 &cnode->ms, 2657 cnode->branch, 2658 &cnode->branch_flags, 2659 cnode->nr_loop_iter, 2660 cnode->iter_cycles, 2661 cnode->branch_from, 2662 cnode->srcline); 2663 if (err) 2664 return err; 2665 } 2666 return 0; 2667 } 2668 2669 static struct stitch_list *get_stitch_node(struct thread *thread) 2670 { 2671 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread); 2672 struct stitch_list *stitch_node; 2673 2674 if (!list_empty(&lbr_stitch->free_lists)) { 2675 stitch_node = list_first_entry(&lbr_stitch->free_lists, 2676 struct stitch_list, node); 2677 list_del(&stitch_node->node); 2678 2679 return stitch_node; 2680 } 2681 2682 return malloc(sizeof(struct stitch_list)); 2683 } 2684 2685 static bool has_stitched_lbr(struct thread *thread, 2686 struct perf_sample *cur, 2687 struct perf_sample *prev, 2688 unsigned int max_lbr, 2689 bool callee) 2690 { 2691 struct branch_stack *cur_stack = cur->branch_stack; 2692 struct branch_entry *cur_entries = perf_sample__branch_entries(cur); 2693 struct branch_stack *prev_stack = prev->branch_stack; 2694 struct branch_entry *prev_entries = perf_sample__branch_entries(prev); 2695 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread); 2696 int i, j, nr_identical_branches = 0; 2697 struct stitch_list *stitch_node; 2698 u64 cur_base, distance; 2699 2700 if (!cur_stack || !prev_stack) 2701 return false; 2702 2703 /* Find the physical index of the base-of-stack for current sample. */ 2704 cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1; 2705 2706 distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) : 2707 (max_lbr + prev_stack->hw_idx - cur_base); 2708 /* Previous sample has shorter stack. Nothing can be stitched. */ 2709 if (distance + 1 > prev_stack->nr) 2710 return false; 2711 2712 /* 2713 * Check if there are identical LBRs between two samples. 2714 * Identical LBRs must have same from, to and flags values. Also, 2715 * they have to be saved in the same LBR registers (same physical 2716 * index). 2717 * 2718 * Starts from the base-of-stack of current sample. 2719 */ 2720 for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) { 2721 if ((prev_entries[i].from != cur_entries[j].from) || 2722 (prev_entries[i].to != cur_entries[j].to) || 2723 (prev_entries[i].flags.value != cur_entries[j].flags.value)) 2724 break; 2725 nr_identical_branches++; 2726 } 2727 2728 if (!nr_identical_branches) 2729 return false; 2730 2731 /* 2732 * Save the LBRs between the base-of-stack of previous sample 2733 * and the base-of-stack of current sample into lbr_stitch->lists. 2734 * These LBRs will be stitched later. 2735 */ 2736 for (i = prev_stack->nr - 1; i > (int)distance; i--) { 2737 2738 if (!lbr_stitch->prev_lbr_cursor[i].valid) 2739 continue; 2740 2741 stitch_node = get_stitch_node(thread); 2742 if (!stitch_node) 2743 return false; 2744 2745 memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i], 2746 sizeof(struct callchain_cursor_node)); 2747 2748 if (callee) 2749 list_add(&stitch_node->node, &lbr_stitch->lists); 2750 else 2751 list_add_tail(&stitch_node->node, &lbr_stitch->lists); 2752 } 2753 2754 return true; 2755 } 2756 2757 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr) 2758 { 2759 if (thread__lbr_stitch(thread)) 2760 return true; 2761 2762 thread__set_lbr_stitch(thread, zalloc(sizeof(struct lbr_stitch))); 2763 if (!thread__lbr_stitch(thread)) 2764 goto err; 2765 2766 thread__lbr_stitch(thread)->prev_lbr_cursor = 2767 calloc(max_lbr + 1, sizeof(struct callchain_cursor_node)); 2768 if (!thread__lbr_stitch(thread)->prev_lbr_cursor) 2769 goto free_lbr_stitch; 2770 2771 INIT_LIST_HEAD(&thread__lbr_stitch(thread)->lists); 2772 INIT_LIST_HEAD(&thread__lbr_stitch(thread)->free_lists); 2773 2774 return true; 2775 2776 free_lbr_stitch: 2777 free(thread__lbr_stitch(thread)); 2778 thread__set_lbr_stitch(thread, NULL); 2779 err: 2780 pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n"); 2781 thread__set_lbr_stitch_enable(thread, false); 2782 return false; 2783 } 2784 2785 /* 2786 * Resolve LBR callstack chain sample 2787 * Return: 2788 * 1 on success get LBR callchain information 2789 * 0 no available LBR callchain information, should try fp 2790 * negative error code on other errors. 2791 */ 2792 static int resolve_lbr_callchain_sample(struct thread *thread, 2793 struct callchain_cursor *cursor, 2794 struct perf_sample *sample, 2795 struct symbol **parent, 2796 struct addr_location *root_al, 2797 int max_stack, 2798 unsigned int max_lbr) 2799 { 2800 bool callee = (callchain_param.order == ORDER_CALLEE); 2801 struct ip_callchain *chain = sample->callchain; 2802 int chain_nr = min(max_stack, (int)chain->nr), i; 2803 struct lbr_stitch *lbr_stitch; 2804 bool stitched_lbr = false; 2805 u64 branch_from = 0; 2806 int err; 2807 2808 for (i = 0; i < chain_nr; i++) { 2809 if (chain->ips[i] == PERF_CONTEXT_USER) 2810 break; 2811 } 2812 2813 /* LBR only affects the user callchain */ 2814 if (i == chain_nr) 2815 return 0; 2816 2817 if (thread__lbr_stitch_enable(thread) && !sample->no_hw_idx && 2818 (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) { 2819 lbr_stitch = thread__lbr_stitch(thread); 2820 2821 stitched_lbr = has_stitched_lbr(thread, sample, 2822 &lbr_stitch->prev_sample, 2823 max_lbr, callee); 2824 2825 if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) { 2826 list_replace_init(&lbr_stitch->lists, 2827 &lbr_stitch->free_lists); 2828 } 2829 memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample)); 2830 } 2831 2832 if (callee) { 2833 /* Add kernel ip */ 2834 err = lbr_callchain_add_kernel_ip(thread, cursor, sample, 2835 parent, root_al, branch_from, 2836 true, i); 2837 if (err) 2838 goto error; 2839 2840 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent, 2841 root_al, &branch_from, true); 2842 if (err) 2843 goto error; 2844 2845 if (stitched_lbr) { 2846 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor); 2847 if (err) 2848 goto error; 2849 } 2850 2851 } else { 2852 if (stitched_lbr) { 2853 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor); 2854 if (err) 2855 goto error; 2856 } 2857 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent, 2858 root_al, &branch_from, false); 2859 if (err) 2860 goto error; 2861 2862 /* Add kernel ip */ 2863 err = lbr_callchain_add_kernel_ip(thread, cursor, sample, 2864 parent, root_al, branch_from, 2865 false, i); 2866 if (err) 2867 goto error; 2868 } 2869 return 1; 2870 2871 error: 2872 return (err < 0) ? err : 0; 2873 } 2874 2875 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread, 2876 struct callchain_cursor *cursor, 2877 struct symbol **parent, 2878 struct addr_location *root_al, 2879 u8 *cpumode, int ent) 2880 { 2881 int err = 0; 2882 2883 while (--ent >= 0) { 2884 u64 ip = chain->ips[ent]; 2885 2886 if (ip >= PERF_CONTEXT_MAX) { 2887 err = add_callchain_ip(thread, cursor, parent, 2888 root_al, cpumode, ip, 2889 false, NULL, NULL, 0); 2890 break; 2891 } 2892 } 2893 return err; 2894 } 2895 2896 static u64 get_leaf_frame_caller(struct perf_sample *sample, 2897 struct thread *thread, int usr_idx) 2898 { 2899 if (machine__normalized_is(maps__machine(thread__maps(thread)), "arm64")) 2900 return get_leaf_frame_caller_aarch64(sample, thread, usr_idx); 2901 else 2902 return 0; 2903 } 2904 2905 static int thread__resolve_callchain_sample(struct thread *thread, 2906 struct callchain_cursor *cursor, 2907 struct evsel *evsel, 2908 struct perf_sample *sample, 2909 struct symbol **parent, 2910 struct addr_location *root_al, 2911 int max_stack) 2912 { 2913 struct branch_stack *branch = sample->branch_stack; 2914 struct branch_entry *entries = perf_sample__branch_entries(sample); 2915 struct ip_callchain *chain = sample->callchain; 2916 int chain_nr = 0; 2917 u8 cpumode = PERF_RECORD_MISC_USER; 2918 int i, j, err, nr_entries, usr_idx; 2919 int skip_idx = -1; 2920 int first_call = 0; 2921 u64 leaf_frame_caller; 2922 2923 if (chain) 2924 chain_nr = chain->nr; 2925 2926 if (evsel__has_branch_callstack(evsel)) { 2927 struct perf_env *env = evsel__env(evsel); 2928 2929 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent, 2930 root_al, max_stack, 2931 !env ? 0 : env->max_branches); 2932 if (err) 2933 return (err < 0) ? err : 0; 2934 } 2935 2936 /* 2937 * Based on DWARF debug information, some architectures skip 2938 * a callchain entry saved by the kernel. 2939 */ 2940 skip_idx = arch_skip_callchain_idx(thread, chain); 2941 2942 /* 2943 * Add branches to call stack for easier browsing. This gives 2944 * more context for a sample than just the callers. 2945 * 2946 * This uses individual histograms of paths compared to the 2947 * aggregated histograms the normal LBR mode uses. 2948 * 2949 * Limitations for now: 2950 * - No extra filters 2951 * - No annotations (should annotate somehow) 2952 */ 2953 2954 if (branch && callchain_param.branch_callstack) { 2955 int nr = min(max_stack, (int)branch->nr); 2956 struct branch_entry be[nr]; 2957 struct iterations iter[nr]; 2958 2959 if (branch->nr > PERF_MAX_BRANCH_DEPTH) { 2960 pr_warning("corrupted branch chain. skipping...\n"); 2961 goto check_calls; 2962 } 2963 2964 for (i = 0; i < nr; i++) { 2965 if (callchain_param.order == ORDER_CALLEE) { 2966 be[i] = entries[i]; 2967 2968 if (chain == NULL) 2969 continue; 2970 2971 /* 2972 * Check for overlap into the callchain. 2973 * The return address is one off compared to 2974 * the branch entry. To adjust for this 2975 * assume the calling instruction is not longer 2976 * than 8 bytes. 2977 */ 2978 if (i == skip_idx || 2979 chain->ips[first_call] >= PERF_CONTEXT_MAX) 2980 first_call++; 2981 else if (be[i].from < chain->ips[first_call] && 2982 be[i].from >= chain->ips[first_call] - 8) 2983 first_call++; 2984 } else 2985 be[i] = entries[branch->nr - i - 1]; 2986 } 2987 2988 memset(iter, 0, sizeof(struct iterations) * nr); 2989 nr = remove_loops(be, nr, iter); 2990 2991 for (i = 0; i < nr; i++) { 2992 err = add_callchain_ip(thread, cursor, parent, 2993 root_al, 2994 NULL, be[i].to, 2995 true, &be[i].flags, 2996 NULL, be[i].from); 2997 2998 if (!err) 2999 err = add_callchain_ip(thread, cursor, parent, root_al, 3000 NULL, be[i].from, 3001 true, &be[i].flags, 3002 &iter[i], 0); 3003 if (err == -EINVAL) 3004 break; 3005 if (err) 3006 return err; 3007 } 3008 3009 if (chain_nr == 0) 3010 return 0; 3011 3012 chain_nr -= nr; 3013 } 3014 3015 check_calls: 3016 if (chain && callchain_param.order != ORDER_CALLEE) { 3017 err = find_prev_cpumode(chain, thread, cursor, parent, root_al, 3018 &cpumode, chain->nr - first_call); 3019 if (err) 3020 return (err < 0) ? err : 0; 3021 } 3022 for (i = first_call, nr_entries = 0; 3023 i < chain_nr && nr_entries < max_stack; i++) { 3024 u64 ip; 3025 3026 if (callchain_param.order == ORDER_CALLEE) 3027 j = i; 3028 else 3029 j = chain->nr - i - 1; 3030 3031 #ifdef HAVE_SKIP_CALLCHAIN_IDX 3032 if (j == skip_idx) 3033 continue; 3034 #endif 3035 ip = chain->ips[j]; 3036 if (ip < PERF_CONTEXT_MAX) 3037 ++nr_entries; 3038 else if (callchain_param.order != ORDER_CALLEE) { 3039 err = find_prev_cpumode(chain, thread, cursor, parent, 3040 root_al, &cpumode, j); 3041 if (err) 3042 return (err < 0) ? err : 0; 3043 continue; 3044 } 3045 3046 /* 3047 * PERF_CONTEXT_USER allows us to locate where the user stack ends. 3048 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER, 3049 * the index will be different in order to add the missing frame 3050 * at the right place. 3051 */ 3052 3053 usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1; 3054 3055 if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) { 3056 3057 leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx); 3058 3059 /* 3060 * check if leaf_frame_Caller != ip to not add the same 3061 * value twice. 3062 */ 3063 3064 if (leaf_frame_caller && leaf_frame_caller != ip) { 3065 3066 err = add_callchain_ip(thread, cursor, parent, 3067 root_al, &cpumode, leaf_frame_caller, 3068 false, NULL, NULL, 0); 3069 if (err) 3070 return (err < 0) ? err : 0; 3071 } 3072 } 3073 3074 err = add_callchain_ip(thread, cursor, parent, 3075 root_al, &cpumode, ip, 3076 false, NULL, NULL, 0); 3077 3078 if (err) 3079 return (err < 0) ? err : 0; 3080 } 3081 3082 return 0; 3083 } 3084 3085 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip) 3086 { 3087 struct symbol *sym = ms->sym; 3088 struct map *map = ms->map; 3089 struct inline_node *inline_node; 3090 struct inline_list *ilist; 3091 struct dso *dso; 3092 u64 addr; 3093 int ret = 1; 3094 struct map_symbol ilist_ms; 3095 3096 if (!symbol_conf.inline_name || !map || !sym) 3097 return ret; 3098 3099 addr = map__dso_map_ip(map, ip); 3100 addr = map__rip_2objdump(map, addr); 3101 dso = map__dso(map); 3102 3103 inline_node = inlines__tree_find(&dso->inlined_nodes, addr); 3104 if (!inline_node) { 3105 inline_node = dso__parse_addr_inlines(dso, addr, sym); 3106 if (!inline_node) 3107 return ret; 3108 inlines__tree_insert(&dso->inlined_nodes, inline_node); 3109 } 3110 3111 ilist_ms = (struct map_symbol) { 3112 .maps = maps__get(ms->maps), 3113 .map = map__get(map), 3114 }; 3115 list_for_each_entry(ilist, &inline_node->val, list) { 3116 ilist_ms.sym = ilist->symbol; 3117 ret = callchain_cursor_append(cursor, ip, &ilist_ms, false, 3118 NULL, 0, 0, 0, ilist->srcline); 3119 3120 if (ret != 0) 3121 return ret; 3122 } 3123 map__put(ilist_ms.map); 3124 maps__put(ilist_ms.maps); 3125 3126 return ret; 3127 } 3128 3129 static int unwind_entry(struct unwind_entry *entry, void *arg) 3130 { 3131 struct callchain_cursor *cursor = arg; 3132 const char *srcline = NULL; 3133 u64 addr = entry->ip; 3134 3135 if (symbol_conf.hide_unresolved && entry->ms.sym == NULL) 3136 return 0; 3137 3138 if (append_inlines(cursor, &entry->ms, entry->ip) == 0) 3139 return 0; 3140 3141 /* 3142 * Convert entry->ip from a virtual address to an offset in 3143 * its corresponding binary. 3144 */ 3145 if (entry->ms.map) 3146 addr = map__dso_map_ip(entry->ms.map, entry->ip); 3147 3148 srcline = callchain_srcline(&entry->ms, addr); 3149 return callchain_cursor_append(cursor, entry->ip, &entry->ms, 3150 false, NULL, 0, 0, 0, srcline); 3151 } 3152 3153 static int thread__resolve_callchain_unwind(struct thread *thread, 3154 struct callchain_cursor *cursor, 3155 struct evsel *evsel, 3156 struct perf_sample *sample, 3157 int max_stack) 3158 { 3159 /* Can we do dwarf post unwind? */ 3160 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) && 3161 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER))) 3162 return 0; 3163 3164 /* Bail out if nothing was captured. */ 3165 if ((!sample->user_regs.regs) || 3166 (!sample->user_stack.size)) 3167 return 0; 3168 3169 return unwind__get_entries(unwind_entry, cursor, 3170 thread, sample, max_stack, false); 3171 } 3172 3173 int thread__resolve_callchain(struct thread *thread, 3174 struct callchain_cursor *cursor, 3175 struct evsel *evsel, 3176 struct perf_sample *sample, 3177 struct symbol **parent, 3178 struct addr_location *root_al, 3179 int max_stack) 3180 { 3181 int ret = 0; 3182 3183 if (cursor == NULL) 3184 return -ENOMEM; 3185 3186 callchain_cursor_reset(cursor); 3187 3188 if (callchain_param.order == ORDER_CALLEE) { 3189 ret = thread__resolve_callchain_sample(thread, cursor, 3190 evsel, sample, 3191 parent, root_al, 3192 max_stack); 3193 if (ret) 3194 return ret; 3195 ret = thread__resolve_callchain_unwind(thread, cursor, 3196 evsel, sample, 3197 max_stack); 3198 } else { 3199 ret = thread__resolve_callchain_unwind(thread, cursor, 3200 evsel, sample, 3201 max_stack); 3202 if (ret) 3203 return ret; 3204 ret = thread__resolve_callchain_sample(thread, cursor, 3205 evsel, sample, 3206 parent, root_al, 3207 max_stack); 3208 } 3209 3210 return ret; 3211 } 3212 3213 int machine__for_each_thread(struct machine *machine, 3214 int (*fn)(struct thread *thread, void *p), 3215 void *priv) 3216 { 3217 struct threads *threads; 3218 struct rb_node *nd; 3219 int rc = 0; 3220 int i; 3221 3222 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 3223 threads = &machine->threads[i]; 3224 for (nd = rb_first_cached(&threads->entries); nd; 3225 nd = rb_next(nd)) { 3226 struct thread_rb_node *trb = rb_entry(nd, struct thread_rb_node, rb_node); 3227 3228 rc = fn(trb->thread, priv); 3229 if (rc != 0) 3230 return rc; 3231 } 3232 } 3233 return rc; 3234 } 3235 3236 int machines__for_each_thread(struct machines *machines, 3237 int (*fn)(struct thread *thread, void *p), 3238 void *priv) 3239 { 3240 struct rb_node *nd; 3241 int rc = 0; 3242 3243 rc = machine__for_each_thread(&machines->host, fn, priv); 3244 if (rc != 0) 3245 return rc; 3246 3247 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 3248 struct machine *machine = rb_entry(nd, struct machine, rb_node); 3249 3250 rc = machine__for_each_thread(machine, fn, priv); 3251 if (rc != 0) 3252 return rc; 3253 } 3254 return rc; 3255 } 3256 3257 pid_t machine__get_current_tid(struct machine *machine, int cpu) 3258 { 3259 if (cpu < 0 || (size_t)cpu >= machine->current_tid_sz) 3260 return -1; 3261 3262 return machine->current_tid[cpu]; 3263 } 3264 3265 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid, 3266 pid_t tid) 3267 { 3268 struct thread *thread; 3269 const pid_t init_val = -1; 3270 3271 if (cpu < 0) 3272 return -EINVAL; 3273 3274 if (realloc_array_as_needed(machine->current_tid, 3275 machine->current_tid_sz, 3276 (unsigned int)cpu, 3277 &init_val)) 3278 return -ENOMEM; 3279 3280 machine->current_tid[cpu] = tid; 3281 3282 thread = machine__findnew_thread(machine, pid, tid); 3283 if (!thread) 3284 return -ENOMEM; 3285 3286 thread__set_cpu(thread, cpu); 3287 thread__put(thread); 3288 3289 return 0; 3290 } 3291 3292 /* 3293 * Compares the raw arch string. N.B. see instead perf_env__arch() or 3294 * machine__normalized_is() if a normalized arch is needed. 3295 */ 3296 bool machine__is(struct machine *machine, const char *arch) 3297 { 3298 return machine && !strcmp(perf_env__raw_arch(machine->env), arch); 3299 } 3300 3301 bool machine__normalized_is(struct machine *machine, const char *arch) 3302 { 3303 return machine && !strcmp(perf_env__arch(machine->env), arch); 3304 } 3305 3306 int machine__nr_cpus_avail(struct machine *machine) 3307 { 3308 return machine ? perf_env__nr_cpus_avail(machine->env) : 0; 3309 } 3310 3311 int machine__get_kernel_start(struct machine *machine) 3312 { 3313 struct map *map = machine__kernel_map(machine); 3314 int err = 0; 3315 3316 /* 3317 * The only addresses above 2^63 are kernel addresses of a 64-bit 3318 * kernel. Note that addresses are unsigned so that on a 32-bit system 3319 * all addresses including kernel addresses are less than 2^32. In 3320 * that case (32-bit system), if the kernel mapping is unknown, all 3321 * addresses will be assumed to be in user space - see 3322 * machine__kernel_ip(). 3323 */ 3324 machine->kernel_start = 1ULL << 63; 3325 if (map) { 3326 err = map__load(map); 3327 /* 3328 * On x86_64, PTI entry trampolines are less than the 3329 * start of kernel text, but still above 2^63. So leave 3330 * kernel_start = 1ULL << 63 for x86_64. 3331 */ 3332 if (!err && !machine__is(machine, "x86_64")) 3333 machine->kernel_start = map__start(map); 3334 } 3335 return err; 3336 } 3337 3338 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr) 3339 { 3340 u8 addr_cpumode = cpumode; 3341 bool kernel_ip; 3342 3343 if (!machine->single_address_space) 3344 goto out; 3345 3346 kernel_ip = machine__kernel_ip(machine, addr); 3347 switch (cpumode) { 3348 case PERF_RECORD_MISC_KERNEL: 3349 case PERF_RECORD_MISC_USER: 3350 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL : 3351 PERF_RECORD_MISC_USER; 3352 break; 3353 case PERF_RECORD_MISC_GUEST_KERNEL: 3354 case PERF_RECORD_MISC_GUEST_USER: 3355 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL : 3356 PERF_RECORD_MISC_GUEST_USER; 3357 break; 3358 default: 3359 break; 3360 } 3361 out: 3362 return addr_cpumode; 3363 } 3364 3365 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id) 3366 { 3367 return dsos__findnew_id(&machine->dsos, filename, id); 3368 } 3369 3370 struct dso *machine__findnew_dso(struct machine *machine, const char *filename) 3371 { 3372 return machine__findnew_dso_id(machine, filename, NULL); 3373 } 3374 3375 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp) 3376 { 3377 struct machine *machine = vmachine; 3378 struct map *map; 3379 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map); 3380 3381 if (sym == NULL) 3382 return NULL; 3383 3384 *modp = __map__is_kmodule(map) ? (char *)map__dso(map)->short_name : NULL; 3385 *addrp = map__unmap_ip(map, sym->start); 3386 return sym->name; 3387 } 3388 3389 int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv) 3390 { 3391 struct dso *pos; 3392 int err = 0; 3393 3394 list_for_each_entry(pos, &machine->dsos.head, node) { 3395 if (fn(pos, machine, priv)) 3396 err = -1; 3397 } 3398 return err; 3399 } 3400 3401 int machine__for_each_kernel_map(struct machine *machine, machine__map_t fn, void *priv) 3402 { 3403 struct maps *maps = machine__kernel_maps(machine); 3404 struct map_rb_node *pos; 3405 int err = 0; 3406 3407 maps__for_each_entry(maps, pos) { 3408 err = fn(pos->map, priv); 3409 if (err != 0) { 3410 break; 3411 } 3412 } 3413 return err; 3414 } 3415 3416 bool machine__is_lock_function(struct machine *machine, u64 addr) 3417 { 3418 if (!machine->sched.text_start) { 3419 struct map *kmap; 3420 struct symbol *sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_start", &kmap); 3421 3422 if (!sym) { 3423 /* to avoid retry */ 3424 machine->sched.text_start = 1; 3425 return false; 3426 } 3427 3428 machine->sched.text_start = map__unmap_ip(kmap, sym->start); 3429 3430 /* should not fail from here */ 3431 sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_end", &kmap); 3432 machine->sched.text_end = map__unmap_ip(kmap, sym->start); 3433 3434 sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_start", &kmap); 3435 machine->lock.text_start = map__unmap_ip(kmap, sym->start); 3436 3437 sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_end", &kmap); 3438 machine->lock.text_end = map__unmap_ip(kmap, sym->start); 3439 } 3440 3441 /* failed to get kernel symbols */ 3442 if (machine->sched.text_start == 1) 3443 return false; 3444 3445 /* mutex and rwsem functions are in sched text section */ 3446 if (machine->sched.text_start <= addr && addr < machine->sched.text_end) 3447 return true; 3448 3449 /* spinlock functions are in lock text section */ 3450 if (machine->lock.text_start <= addr && addr < machine->lock.text_end) 3451 return true; 3452 3453 return false; 3454 } 3455