1 // SPDX-License-Identifier: GPL-2.0 2 #include <dirent.h> 3 #include <errno.h> 4 #include <inttypes.h> 5 #include <regex.h> 6 #include "callchain.h" 7 #include "debug.h" 8 #include "event.h" 9 #include "evsel.h" 10 #include "hist.h" 11 #include "machine.h" 12 #include "map.h" 13 #include "sort.h" 14 #include "strlist.h" 15 #include "thread.h" 16 #include "vdso.h" 17 #include <stdbool.h> 18 #include <sys/types.h> 19 #include <sys/stat.h> 20 #include <unistd.h> 21 #include "unwind.h" 22 #include "linux/hash.h" 23 #include "asm/bug.h" 24 25 #include "sane_ctype.h" 26 #include <symbol/kallsyms.h> 27 #include <linux/mman.h> 28 29 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock); 30 31 static void dsos__init(struct dsos *dsos) 32 { 33 INIT_LIST_HEAD(&dsos->head); 34 dsos->root = RB_ROOT; 35 init_rwsem(&dsos->lock); 36 } 37 38 static void machine__threads_init(struct machine *machine) 39 { 40 int i; 41 42 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 43 struct threads *threads = &machine->threads[i]; 44 threads->entries = RB_ROOT; 45 init_rwsem(&threads->lock); 46 threads->nr = 0; 47 INIT_LIST_HEAD(&threads->dead); 48 threads->last_match = NULL; 49 } 50 } 51 52 static int machine__set_mmap_name(struct machine *machine) 53 { 54 if (machine__is_host(machine)) 55 machine->mmap_name = strdup("[kernel.kallsyms]"); 56 else if (machine__is_default_guest(machine)) 57 machine->mmap_name = strdup("[guest.kernel.kallsyms]"); 58 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]", 59 machine->pid) < 0) 60 machine->mmap_name = NULL; 61 62 return machine->mmap_name ? 0 : -ENOMEM; 63 } 64 65 int machine__init(struct machine *machine, const char *root_dir, pid_t pid) 66 { 67 int err = -ENOMEM; 68 69 memset(machine, 0, sizeof(*machine)); 70 map_groups__init(&machine->kmaps, machine); 71 RB_CLEAR_NODE(&machine->rb_node); 72 dsos__init(&machine->dsos); 73 74 machine__threads_init(machine); 75 76 machine->vdso_info = NULL; 77 machine->env = NULL; 78 79 machine->pid = pid; 80 81 machine->id_hdr_size = 0; 82 machine->kptr_restrict_warned = false; 83 machine->comm_exec = false; 84 machine->kernel_start = 0; 85 machine->vmlinux_map = NULL; 86 87 machine->root_dir = strdup(root_dir); 88 if (machine->root_dir == NULL) 89 return -ENOMEM; 90 91 if (machine__set_mmap_name(machine)) 92 goto out; 93 94 if (pid != HOST_KERNEL_ID) { 95 struct thread *thread = machine__findnew_thread(machine, -1, 96 pid); 97 char comm[64]; 98 99 if (thread == NULL) 100 goto out; 101 102 snprintf(comm, sizeof(comm), "[guest/%d]", pid); 103 thread__set_comm(thread, comm, 0); 104 thread__put(thread); 105 } 106 107 machine->current_tid = NULL; 108 err = 0; 109 110 out: 111 if (err) { 112 zfree(&machine->root_dir); 113 zfree(&machine->mmap_name); 114 } 115 return 0; 116 } 117 118 struct machine *machine__new_host(void) 119 { 120 struct machine *machine = malloc(sizeof(*machine)); 121 122 if (machine != NULL) { 123 machine__init(machine, "", HOST_KERNEL_ID); 124 125 if (machine__create_kernel_maps(machine) < 0) 126 goto out_delete; 127 } 128 129 return machine; 130 out_delete: 131 free(machine); 132 return NULL; 133 } 134 135 struct machine *machine__new_kallsyms(void) 136 { 137 struct machine *machine = machine__new_host(); 138 /* 139 * FIXME: 140 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly 141 * ask for not using the kcore parsing code, once this one is fixed 142 * to create a map per module. 143 */ 144 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) { 145 machine__delete(machine); 146 machine = NULL; 147 } 148 149 return machine; 150 } 151 152 static void dsos__purge(struct dsos *dsos) 153 { 154 struct dso *pos, *n; 155 156 down_write(&dsos->lock); 157 158 list_for_each_entry_safe(pos, n, &dsos->head, node) { 159 RB_CLEAR_NODE(&pos->rb_node); 160 pos->root = NULL; 161 list_del_init(&pos->node); 162 dso__put(pos); 163 } 164 165 up_write(&dsos->lock); 166 } 167 168 static void dsos__exit(struct dsos *dsos) 169 { 170 dsos__purge(dsos); 171 exit_rwsem(&dsos->lock); 172 } 173 174 void machine__delete_threads(struct machine *machine) 175 { 176 struct rb_node *nd; 177 int i; 178 179 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 180 struct threads *threads = &machine->threads[i]; 181 down_write(&threads->lock); 182 nd = rb_first(&threads->entries); 183 while (nd) { 184 struct thread *t = rb_entry(nd, struct thread, rb_node); 185 186 nd = rb_next(nd); 187 __machine__remove_thread(machine, t, false); 188 } 189 up_write(&threads->lock); 190 } 191 } 192 193 void machine__exit(struct machine *machine) 194 { 195 int i; 196 197 if (machine == NULL) 198 return; 199 200 machine__destroy_kernel_maps(machine); 201 map_groups__exit(&machine->kmaps); 202 dsos__exit(&machine->dsos); 203 machine__exit_vdso(machine); 204 zfree(&machine->root_dir); 205 zfree(&machine->mmap_name); 206 zfree(&machine->current_tid); 207 208 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 209 struct threads *threads = &machine->threads[i]; 210 exit_rwsem(&threads->lock); 211 } 212 } 213 214 void machine__delete(struct machine *machine) 215 { 216 if (machine) { 217 machine__exit(machine); 218 free(machine); 219 } 220 } 221 222 void machines__init(struct machines *machines) 223 { 224 machine__init(&machines->host, "", HOST_KERNEL_ID); 225 machines->guests = RB_ROOT; 226 } 227 228 void machines__exit(struct machines *machines) 229 { 230 machine__exit(&machines->host); 231 /* XXX exit guest */ 232 } 233 234 struct machine *machines__add(struct machines *machines, pid_t pid, 235 const char *root_dir) 236 { 237 struct rb_node **p = &machines->guests.rb_node; 238 struct rb_node *parent = NULL; 239 struct machine *pos, *machine = malloc(sizeof(*machine)); 240 241 if (machine == NULL) 242 return NULL; 243 244 if (machine__init(machine, root_dir, pid) != 0) { 245 free(machine); 246 return NULL; 247 } 248 249 while (*p != NULL) { 250 parent = *p; 251 pos = rb_entry(parent, struct machine, rb_node); 252 if (pid < pos->pid) 253 p = &(*p)->rb_left; 254 else 255 p = &(*p)->rb_right; 256 } 257 258 rb_link_node(&machine->rb_node, parent, p); 259 rb_insert_color(&machine->rb_node, &machines->guests); 260 261 return machine; 262 } 263 264 void machines__set_comm_exec(struct machines *machines, bool comm_exec) 265 { 266 struct rb_node *nd; 267 268 machines->host.comm_exec = comm_exec; 269 270 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 271 struct machine *machine = rb_entry(nd, struct machine, rb_node); 272 273 machine->comm_exec = comm_exec; 274 } 275 } 276 277 struct machine *machines__find(struct machines *machines, pid_t pid) 278 { 279 struct rb_node **p = &machines->guests.rb_node; 280 struct rb_node *parent = NULL; 281 struct machine *machine; 282 struct machine *default_machine = NULL; 283 284 if (pid == HOST_KERNEL_ID) 285 return &machines->host; 286 287 while (*p != NULL) { 288 parent = *p; 289 machine = rb_entry(parent, struct machine, rb_node); 290 if (pid < machine->pid) 291 p = &(*p)->rb_left; 292 else if (pid > machine->pid) 293 p = &(*p)->rb_right; 294 else 295 return machine; 296 if (!machine->pid) 297 default_machine = machine; 298 } 299 300 return default_machine; 301 } 302 303 struct machine *machines__findnew(struct machines *machines, pid_t pid) 304 { 305 char path[PATH_MAX]; 306 const char *root_dir = ""; 307 struct machine *machine = machines__find(machines, pid); 308 309 if (machine && (machine->pid == pid)) 310 goto out; 311 312 if ((pid != HOST_KERNEL_ID) && 313 (pid != DEFAULT_GUEST_KERNEL_ID) && 314 (symbol_conf.guestmount)) { 315 sprintf(path, "%s/%d", symbol_conf.guestmount, pid); 316 if (access(path, R_OK)) { 317 static struct strlist *seen; 318 319 if (!seen) 320 seen = strlist__new(NULL, NULL); 321 322 if (!strlist__has_entry(seen, path)) { 323 pr_err("Can't access file %s\n", path); 324 strlist__add(seen, path); 325 } 326 machine = NULL; 327 goto out; 328 } 329 root_dir = path; 330 } 331 332 machine = machines__add(machines, pid, root_dir); 333 out: 334 return machine; 335 } 336 337 void machines__process_guests(struct machines *machines, 338 machine__process_t process, void *data) 339 { 340 struct rb_node *nd; 341 342 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 343 struct machine *pos = rb_entry(nd, struct machine, rb_node); 344 process(pos, data); 345 } 346 } 347 348 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size) 349 { 350 struct rb_node *node; 351 struct machine *machine; 352 353 machines->host.id_hdr_size = id_hdr_size; 354 355 for (node = rb_first(&machines->guests); node; node = rb_next(node)) { 356 machine = rb_entry(node, struct machine, rb_node); 357 machine->id_hdr_size = id_hdr_size; 358 } 359 360 return; 361 } 362 363 static void machine__update_thread_pid(struct machine *machine, 364 struct thread *th, pid_t pid) 365 { 366 struct thread *leader; 367 368 if (pid == th->pid_ || pid == -1 || th->pid_ != -1) 369 return; 370 371 th->pid_ = pid; 372 373 if (th->pid_ == th->tid) 374 return; 375 376 leader = __machine__findnew_thread(machine, th->pid_, th->pid_); 377 if (!leader) 378 goto out_err; 379 380 if (!leader->mg) 381 leader->mg = map_groups__new(machine); 382 383 if (!leader->mg) 384 goto out_err; 385 386 if (th->mg == leader->mg) 387 return; 388 389 if (th->mg) { 390 /* 391 * Maps are created from MMAP events which provide the pid and 392 * tid. Consequently there never should be any maps on a thread 393 * with an unknown pid. Just print an error if there are. 394 */ 395 if (!map_groups__empty(th->mg)) 396 pr_err("Discarding thread maps for %d:%d\n", 397 th->pid_, th->tid); 398 map_groups__put(th->mg); 399 } 400 401 th->mg = map_groups__get(leader->mg); 402 out_put: 403 thread__put(leader); 404 return; 405 out_err: 406 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid); 407 goto out_put; 408 } 409 410 /* 411 * Front-end cache - TID lookups come in blocks, 412 * so most of the time we dont have to look up 413 * the full rbtree: 414 */ 415 static struct thread* 416 __threads__get_last_match(struct threads *threads, struct machine *machine, 417 int pid, int tid) 418 { 419 struct thread *th; 420 421 th = threads->last_match; 422 if (th != NULL) { 423 if (th->tid == tid) { 424 machine__update_thread_pid(machine, th, pid); 425 return thread__get(th); 426 } 427 428 threads->last_match = NULL; 429 } 430 431 return NULL; 432 } 433 434 static struct thread* 435 threads__get_last_match(struct threads *threads, struct machine *machine, 436 int pid, int tid) 437 { 438 struct thread *th = NULL; 439 440 if (perf_singlethreaded) 441 th = __threads__get_last_match(threads, machine, pid, tid); 442 443 return th; 444 } 445 446 static void 447 __threads__set_last_match(struct threads *threads, struct thread *th) 448 { 449 threads->last_match = th; 450 } 451 452 static void 453 threads__set_last_match(struct threads *threads, struct thread *th) 454 { 455 if (perf_singlethreaded) 456 __threads__set_last_match(threads, th); 457 } 458 459 /* 460 * Caller must eventually drop thread->refcnt returned with a successful 461 * lookup/new thread inserted. 462 */ 463 static struct thread *____machine__findnew_thread(struct machine *machine, 464 struct threads *threads, 465 pid_t pid, pid_t tid, 466 bool create) 467 { 468 struct rb_node **p = &threads->entries.rb_node; 469 struct rb_node *parent = NULL; 470 struct thread *th; 471 472 th = threads__get_last_match(threads, machine, pid, tid); 473 if (th) 474 return th; 475 476 while (*p != NULL) { 477 parent = *p; 478 th = rb_entry(parent, struct thread, rb_node); 479 480 if (th->tid == tid) { 481 threads__set_last_match(threads, th); 482 machine__update_thread_pid(machine, th, pid); 483 return thread__get(th); 484 } 485 486 if (tid < th->tid) 487 p = &(*p)->rb_left; 488 else 489 p = &(*p)->rb_right; 490 } 491 492 if (!create) 493 return NULL; 494 495 th = thread__new(pid, tid); 496 if (th != NULL) { 497 rb_link_node(&th->rb_node, parent, p); 498 rb_insert_color(&th->rb_node, &threads->entries); 499 500 /* 501 * We have to initialize map_groups separately 502 * after rb tree is updated. 503 * 504 * The reason is that we call machine__findnew_thread 505 * within thread__init_map_groups to find the thread 506 * leader and that would screwed the rb tree. 507 */ 508 if (thread__init_map_groups(th, machine)) { 509 rb_erase_init(&th->rb_node, &threads->entries); 510 RB_CLEAR_NODE(&th->rb_node); 511 thread__put(th); 512 return NULL; 513 } 514 /* 515 * It is now in the rbtree, get a ref 516 */ 517 thread__get(th); 518 threads__set_last_match(threads, th); 519 ++threads->nr; 520 } 521 522 return th; 523 } 524 525 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid) 526 { 527 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true); 528 } 529 530 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, 531 pid_t tid) 532 { 533 struct threads *threads = machine__threads(machine, tid); 534 struct thread *th; 535 536 down_write(&threads->lock); 537 th = __machine__findnew_thread(machine, pid, tid); 538 up_write(&threads->lock); 539 return th; 540 } 541 542 struct thread *machine__find_thread(struct machine *machine, pid_t pid, 543 pid_t tid) 544 { 545 struct threads *threads = machine__threads(machine, tid); 546 struct thread *th; 547 548 down_read(&threads->lock); 549 th = ____machine__findnew_thread(machine, threads, pid, tid, false); 550 up_read(&threads->lock); 551 return th; 552 } 553 554 struct comm *machine__thread_exec_comm(struct machine *machine, 555 struct thread *thread) 556 { 557 if (machine->comm_exec) 558 return thread__exec_comm(thread); 559 else 560 return thread__comm(thread); 561 } 562 563 int machine__process_comm_event(struct machine *machine, union perf_event *event, 564 struct perf_sample *sample) 565 { 566 struct thread *thread = machine__findnew_thread(machine, 567 event->comm.pid, 568 event->comm.tid); 569 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC; 570 int err = 0; 571 572 if (exec) 573 machine->comm_exec = true; 574 575 if (dump_trace) 576 perf_event__fprintf_comm(event, stdout); 577 578 if (thread == NULL || 579 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) { 580 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n"); 581 err = -1; 582 } 583 584 thread__put(thread); 585 586 return err; 587 } 588 589 int machine__process_namespaces_event(struct machine *machine __maybe_unused, 590 union perf_event *event, 591 struct perf_sample *sample __maybe_unused) 592 { 593 struct thread *thread = machine__findnew_thread(machine, 594 event->namespaces.pid, 595 event->namespaces.tid); 596 int err = 0; 597 598 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES, 599 "\nWARNING: kernel seems to support more namespaces than perf" 600 " tool.\nTry updating the perf tool..\n\n"); 601 602 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES, 603 "\nWARNING: perf tool seems to support more namespaces than" 604 " the kernel.\nTry updating the kernel..\n\n"); 605 606 if (dump_trace) 607 perf_event__fprintf_namespaces(event, stdout); 608 609 if (thread == NULL || 610 thread__set_namespaces(thread, sample->time, &event->namespaces)) { 611 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n"); 612 err = -1; 613 } 614 615 thread__put(thread); 616 617 return err; 618 } 619 620 int machine__process_lost_event(struct machine *machine __maybe_unused, 621 union perf_event *event, struct perf_sample *sample __maybe_unused) 622 { 623 dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n", 624 event->lost.id, event->lost.lost); 625 return 0; 626 } 627 628 int machine__process_lost_samples_event(struct machine *machine __maybe_unused, 629 union perf_event *event, struct perf_sample *sample) 630 { 631 dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n", 632 sample->id, event->lost_samples.lost); 633 return 0; 634 } 635 636 static struct dso *machine__findnew_module_dso(struct machine *machine, 637 struct kmod_path *m, 638 const char *filename) 639 { 640 struct dso *dso; 641 642 down_write(&machine->dsos.lock); 643 644 dso = __dsos__find(&machine->dsos, m->name, true); 645 if (!dso) { 646 dso = __dsos__addnew(&machine->dsos, m->name); 647 if (dso == NULL) 648 goto out_unlock; 649 650 dso__set_module_info(dso, m, machine); 651 dso__set_long_name(dso, strdup(filename), true); 652 } 653 654 dso__get(dso); 655 out_unlock: 656 up_write(&machine->dsos.lock); 657 return dso; 658 } 659 660 int machine__process_aux_event(struct machine *machine __maybe_unused, 661 union perf_event *event) 662 { 663 if (dump_trace) 664 perf_event__fprintf_aux(event, stdout); 665 return 0; 666 } 667 668 int machine__process_itrace_start_event(struct machine *machine __maybe_unused, 669 union perf_event *event) 670 { 671 if (dump_trace) 672 perf_event__fprintf_itrace_start(event, stdout); 673 return 0; 674 } 675 676 int machine__process_switch_event(struct machine *machine __maybe_unused, 677 union perf_event *event) 678 { 679 if (dump_trace) 680 perf_event__fprintf_switch(event, stdout); 681 return 0; 682 } 683 684 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename) 685 { 686 const char *dup_filename; 687 688 if (!filename || !dso || !dso->long_name) 689 return; 690 if (dso->long_name[0] != '[') 691 return; 692 if (!strchr(filename, '/')) 693 return; 694 695 dup_filename = strdup(filename); 696 if (!dup_filename) 697 return; 698 699 dso__set_long_name(dso, dup_filename, true); 700 } 701 702 struct map *machine__findnew_module_map(struct machine *machine, u64 start, 703 const char *filename) 704 { 705 struct map *map = NULL; 706 struct dso *dso = NULL; 707 struct kmod_path m; 708 709 if (kmod_path__parse_name(&m, filename)) 710 return NULL; 711 712 map = map_groups__find_by_name(&machine->kmaps, m.name); 713 if (map) { 714 /* 715 * If the map's dso is an offline module, give dso__load() 716 * a chance to find the file path of that module by fixing 717 * long_name. 718 */ 719 dso__adjust_kmod_long_name(map->dso, filename); 720 goto out; 721 } 722 723 dso = machine__findnew_module_dso(machine, &m, filename); 724 if (dso == NULL) 725 goto out; 726 727 map = map__new2(start, dso); 728 if (map == NULL) 729 goto out; 730 731 map_groups__insert(&machine->kmaps, map); 732 733 /* Put the map here because map_groups__insert alread got it */ 734 map__put(map); 735 out: 736 /* put the dso here, corresponding to machine__findnew_module_dso */ 737 dso__put(dso); 738 free(m.name); 739 return map; 740 } 741 742 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp) 743 { 744 struct rb_node *nd; 745 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp); 746 747 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 748 struct machine *pos = rb_entry(nd, struct machine, rb_node); 749 ret += __dsos__fprintf(&pos->dsos.head, fp); 750 } 751 752 return ret; 753 } 754 755 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp, 756 bool (skip)(struct dso *dso, int parm), int parm) 757 { 758 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm); 759 } 760 761 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp, 762 bool (skip)(struct dso *dso, int parm), int parm) 763 { 764 struct rb_node *nd; 765 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm); 766 767 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 768 struct machine *pos = rb_entry(nd, struct machine, rb_node); 769 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm); 770 } 771 return ret; 772 } 773 774 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp) 775 { 776 int i; 777 size_t printed = 0; 778 struct dso *kdso = machine__kernel_map(machine)->dso; 779 780 if (kdso->has_build_id) { 781 char filename[PATH_MAX]; 782 if (dso__build_id_filename(kdso, filename, sizeof(filename), 783 false)) 784 printed += fprintf(fp, "[0] %s\n", filename); 785 } 786 787 for (i = 0; i < vmlinux_path__nr_entries; ++i) 788 printed += fprintf(fp, "[%d] %s\n", 789 i + kdso->has_build_id, vmlinux_path[i]); 790 791 return printed; 792 } 793 794 size_t machine__fprintf(struct machine *machine, FILE *fp) 795 { 796 struct rb_node *nd; 797 size_t ret; 798 int i; 799 800 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 801 struct threads *threads = &machine->threads[i]; 802 803 down_read(&threads->lock); 804 805 ret = fprintf(fp, "Threads: %u\n", threads->nr); 806 807 for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) { 808 struct thread *pos = rb_entry(nd, struct thread, rb_node); 809 810 ret += thread__fprintf(pos, fp); 811 } 812 813 up_read(&threads->lock); 814 } 815 return ret; 816 } 817 818 static struct dso *machine__get_kernel(struct machine *machine) 819 { 820 const char *vmlinux_name = machine->mmap_name; 821 struct dso *kernel; 822 823 if (machine__is_host(machine)) { 824 if (symbol_conf.vmlinux_name) 825 vmlinux_name = symbol_conf.vmlinux_name; 826 827 kernel = machine__findnew_kernel(machine, vmlinux_name, 828 "[kernel]", DSO_TYPE_KERNEL); 829 } else { 830 if (symbol_conf.default_guest_vmlinux_name) 831 vmlinux_name = symbol_conf.default_guest_vmlinux_name; 832 833 kernel = machine__findnew_kernel(machine, vmlinux_name, 834 "[guest.kernel]", 835 DSO_TYPE_GUEST_KERNEL); 836 } 837 838 if (kernel != NULL && (!kernel->has_build_id)) 839 dso__read_running_kernel_build_id(kernel, machine); 840 841 return kernel; 842 } 843 844 struct process_args { 845 u64 start; 846 }; 847 848 void machine__get_kallsyms_filename(struct machine *machine, char *buf, 849 size_t bufsz) 850 { 851 if (machine__is_default_guest(machine)) 852 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms); 853 else 854 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir); 855 } 856 857 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL}; 858 859 /* Figure out the start address of kernel map from /proc/kallsyms. 860 * Returns the name of the start symbol in *symbol_name. Pass in NULL as 861 * symbol_name if it's not that important. 862 */ 863 static int machine__get_running_kernel_start(struct machine *machine, 864 const char **symbol_name, u64 *start) 865 { 866 char filename[PATH_MAX]; 867 int i, err = -1; 868 const char *name; 869 u64 addr = 0; 870 871 machine__get_kallsyms_filename(machine, filename, PATH_MAX); 872 873 if (symbol__restricted_filename(filename, "/proc/kallsyms")) 874 return 0; 875 876 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) { 877 err = kallsyms__get_function_start(filename, name, &addr); 878 if (!err) 879 break; 880 } 881 882 if (err) 883 return -1; 884 885 if (symbol_name) 886 *symbol_name = name; 887 888 *start = addr; 889 return 0; 890 } 891 892 int machine__create_extra_kernel_map(struct machine *machine, 893 struct dso *kernel, 894 struct extra_kernel_map *xm) 895 { 896 struct kmap *kmap; 897 struct map *map; 898 899 map = map__new2(xm->start, kernel); 900 if (!map) 901 return -1; 902 903 map->end = xm->end; 904 map->pgoff = xm->pgoff; 905 906 kmap = map__kmap(map); 907 908 kmap->kmaps = &machine->kmaps; 909 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN); 910 911 map_groups__insert(&machine->kmaps, map); 912 913 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n", 914 kmap->name, map->start, map->end); 915 916 map__put(map); 917 918 return 0; 919 } 920 921 static u64 find_entry_trampoline(struct dso *dso) 922 { 923 /* Duplicates are removed so lookup all aliases */ 924 const char *syms[] = { 925 "_entry_trampoline", 926 "__entry_trampoline_start", 927 "entry_SYSCALL_64_trampoline", 928 }; 929 struct symbol *sym = dso__first_symbol(dso); 930 unsigned int i; 931 932 for (; sym; sym = dso__next_symbol(sym)) { 933 if (sym->binding != STB_GLOBAL) 934 continue; 935 for (i = 0; i < ARRAY_SIZE(syms); i++) { 936 if (!strcmp(sym->name, syms[i])) 937 return sym->start; 938 } 939 } 940 941 return 0; 942 } 943 944 /* 945 * These values can be used for kernels that do not have symbols for the entry 946 * trampolines in kallsyms. 947 */ 948 #define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL 949 #define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000 950 #define X86_64_ENTRY_TRAMPOLINE 0x6000 951 952 /* Map x86_64 PTI entry trampolines */ 953 int machine__map_x86_64_entry_trampolines(struct machine *machine, 954 struct dso *kernel) 955 { 956 struct map_groups *kmaps = &machine->kmaps; 957 struct maps *maps = &kmaps->maps; 958 int nr_cpus_avail, cpu; 959 bool found = false; 960 struct map *map; 961 u64 pgoff; 962 963 /* 964 * In the vmlinux case, pgoff is a virtual address which must now be 965 * mapped to a vmlinux offset. 966 */ 967 for (map = maps__first(maps); map; map = map__next(map)) { 968 struct kmap *kmap = __map__kmap(map); 969 struct map *dest_map; 970 971 if (!kmap || !is_entry_trampoline(kmap->name)) 972 continue; 973 974 dest_map = map_groups__find(kmaps, map->pgoff); 975 if (dest_map != map) 976 map->pgoff = dest_map->map_ip(dest_map, map->pgoff); 977 found = true; 978 } 979 if (found || machine->trampolines_mapped) 980 return 0; 981 982 pgoff = find_entry_trampoline(kernel); 983 if (!pgoff) 984 return 0; 985 986 nr_cpus_avail = machine__nr_cpus_avail(machine); 987 988 /* Add a 1 page map for each CPU's entry trampoline */ 989 for (cpu = 0; cpu < nr_cpus_avail; cpu++) { 990 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU + 991 cpu * X86_64_CPU_ENTRY_AREA_SIZE + 992 X86_64_ENTRY_TRAMPOLINE; 993 struct extra_kernel_map xm = { 994 .start = va, 995 .end = va + page_size, 996 .pgoff = pgoff, 997 }; 998 999 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN); 1000 1001 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0) 1002 return -1; 1003 } 1004 1005 machine->trampolines_mapped = nr_cpus_avail; 1006 1007 return 0; 1008 } 1009 1010 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused, 1011 struct dso *kernel __maybe_unused) 1012 { 1013 return 0; 1014 } 1015 1016 static int 1017 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel) 1018 { 1019 struct kmap *kmap; 1020 struct map *map; 1021 1022 /* In case of renewal the kernel map, destroy previous one */ 1023 machine__destroy_kernel_maps(machine); 1024 1025 machine->vmlinux_map = map__new2(0, kernel); 1026 if (machine->vmlinux_map == NULL) 1027 return -1; 1028 1029 machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip; 1030 map = machine__kernel_map(machine); 1031 kmap = map__kmap(map); 1032 if (!kmap) 1033 return -1; 1034 1035 kmap->kmaps = &machine->kmaps; 1036 map_groups__insert(&machine->kmaps, map); 1037 1038 return 0; 1039 } 1040 1041 void machine__destroy_kernel_maps(struct machine *machine) 1042 { 1043 struct kmap *kmap; 1044 struct map *map = machine__kernel_map(machine); 1045 1046 if (map == NULL) 1047 return; 1048 1049 kmap = map__kmap(map); 1050 map_groups__remove(&machine->kmaps, map); 1051 if (kmap && kmap->ref_reloc_sym) { 1052 zfree((char **)&kmap->ref_reloc_sym->name); 1053 zfree(&kmap->ref_reloc_sym); 1054 } 1055 1056 map__zput(machine->vmlinux_map); 1057 } 1058 1059 int machines__create_guest_kernel_maps(struct machines *machines) 1060 { 1061 int ret = 0; 1062 struct dirent **namelist = NULL; 1063 int i, items = 0; 1064 char path[PATH_MAX]; 1065 pid_t pid; 1066 char *endp; 1067 1068 if (symbol_conf.default_guest_vmlinux_name || 1069 symbol_conf.default_guest_modules || 1070 symbol_conf.default_guest_kallsyms) { 1071 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID); 1072 } 1073 1074 if (symbol_conf.guestmount) { 1075 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL); 1076 if (items <= 0) 1077 return -ENOENT; 1078 for (i = 0; i < items; i++) { 1079 if (!isdigit(namelist[i]->d_name[0])) { 1080 /* Filter out . and .. */ 1081 continue; 1082 } 1083 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10); 1084 if ((*endp != '\0') || 1085 (endp == namelist[i]->d_name) || 1086 (errno == ERANGE)) { 1087 pr_debug("invalid directory (%s). Skipping.\n", 1088 namelist[i]->d_name); 1089 continue; 1090 } 1091 sprintf(path, "%s/%s/proc/kallsyms", 1092 symbol_conf.guestmount, 1093 namelist[i]->d_name); 1094 ret = access(path, R_OK); 1095 if (ret) { 1096 pr_debug("Can't access file %s\n", path); 1097 goto failure; 1098 } 1099 machines__create_kernel_maps(machines, pid); 1100 } 1101 failure: 1102 free(namelist); 1103 } 1104 1105 return ret; 1106 } 1107 1108 void machines__destroy_kernel_maps(struct machines *machines) 1109 { 1110 struct rb_node *next = rb_first(&machines->guests); 1111 1112 machine__destroy_kernel_maps(&machines->host); 1113 1114 while (next) { 1115 struct machine *pos = rb_entry(next, struct machine, rb_node); 1116 1117 next = rb_next(&pos->rb_node); 1118 rb_erase(&pos->rb_node, &machines->guests); 1119 machine__delete(pos); 1120 } 1121 } 1122 1123 int machines__create_kernel_maps(struct machines *machines, pid_t pid) 1124 { 1125 struct machine *machine = machines__findnew(machines, pid); 1126 1127 if (machine == NULL) 1128 return -1; 1129 1130 return machine__create_kernel_maps(machine); 1131 } 1132 1133 int machine__load_kallsyms(struct machine *machine, const char *filename) 1134 { 1135 struct map *map = machine__kernel_map(machine); 1136 int ret = __dso__load_kallsyms(map->dso, filename, map, true); 1137 1138 if (ret > 0) { 1139 dso__set_loaded(map->dso); 1140 /* 1141 * Since /proc/kallsyms will have multiple sessions for the 1142 * kernel, with modules between them, fixup the end of all 1143 * sections. 1144 */ 1145 map_groups__fixup_end(&machine->kmaps); 1146 } 1147 1148 return ret; 1149 } 1150 1151 int machine__load_vmlinux_path(struct machine *machine) 1152 { 1153 struct map *map = machine__kernel_map(machine); 1154 int ret = dso__load_vmlinux_path(map->dso, map); 1155 1156 if (ret > 0) 1157 dso__set_loaded(map->dso); 1158 1159 return ret; 1160 } 1161 1162 static char *get_kernel_version(const char *root_dir) 1163 { 1164 char version[PATH_MAX]; 1165 FILE *file; 1166 char *name, *tmp; 1167 const char *prefix = "Linux version "; 1168 1169 sprintf(version, "%s/proc/version", root_dir); 1170 file = fopen(version, "r"); 1171 if (!file) 1172 return NULL; 1173 1174 version[0] = '\0'; 1175 tmp = fgets(version, sizeof(version), file); 1176 fclose(file); 1177 1178 name = strstr(version, prefix); 1179 if (!name) 1180 return NULL; 1181 name += strlen(prefix); 1182 tmp = strchr(name, ' '); 1183 if (tmp) 1184 *tmp = '\0'; 1185 1186 return strdup(name); 1187 } 1188 1189 static bool is_kmod_dso(struct dso *dso) 1190 { 1191 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE || 1192 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE; 1193 } 1194 1195 static int map_groups__set_module_path(struct map_groups *mg, const char *path, 1196 struct kmod_path *m) 1197 { 1198 char *long_name; 1199 struct map *map = map_groups__find_by_name(mg, m->name); 1200 1201 if (map == NULL) 1202 return 0; 1203 1204 long_name = strdup(path); 1205 if (long_name == NULL) 1206 return -ENOMEM; 1207 1208 dso__set_long_name(map->dso, long_name, true); 1209 dso__kernel_module_get_build_id(map->dso, ""); 1210 1211 /* 1212 * Full name could reveal us kmod compression, so 1213 * we need to update the symtab_type if needed. 1214 */ 1215 if (m->comp && is_kmod_dso(map->dso)) { 1216 map->dso->symtab_type++; 1217 map->dso->comp = m->comp; 1218 } 1219 1220 return 0; 1221 } 1222 1223 static int map_groups__set_modules_path_dir(struct map_groups *mg, 1224 const char *dir_name, int depth) 1225 { 1226 struct dirent *dent; 1227 DIR *dir = opendir(dir_name); 1228 int ret = 0; 1229 1230 if (!dir) { 1231 pr_debug("%s: cannot open %s dir\n", __func__, dir_name); 1232 return -1; 1233 } 1234 1235 while ((dent = readdir(dir)) != NULL) { 1236 char path[PATH_MAX]; 1237 struct stat st; 1238 1239 /*sshfs might return bad dent->d_type, so we have to stat*/ 1240 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name); 1241 if (stat(path, &st)) 1242 continue; 1243 1244 if (S_ISDIR(st.st_mode)) { 1245 if (!strcmp(dent->d_name, ".") || 1246 !strcmp(dent->d_name, "..")) 1247 continue; 1248 1249 /* Do not follow top-level source and build symlinks */ 1250 if (depth == 0) { 1251 if (!strcmp(dent->d_name, "source") || 1252 !strcmp(dent->d_name, "build")) 1253 continue; 1254 } 1255 1256 ret = map_groups__set_modules_path_dir(mg, path, 1257 depth + 1); 1258 if (ret < 0) 1259 goto out; 1260 } else { 1261 struct kmod_path m; 1262 1263 ret = kmod_path__parse_name(&m, dent->d_name); 1264 if (ret) 1265 goto out; 1266 1267 if (m.kmod) 1268 ret = map_groups__set_module_path(mg, path, &m); 1269 1270 free(m.name); 1271 1272 if (ret) 1273 goto out; 1274 } 1275 } 1276 1277 out: 1278 closedir(dir); 1279 return ret; 1280 } 1281 1282 static int machine__set_modules_path(struct machine *machine) 1283 { 1284 char *version; 1285 char modules_path[PATH_MAX]; 1286 1287 version = get_kernel_version(machine->root_dir); 1288 if (!version) 1289 return -1; 1290 1291 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s", 1292 machine->root_dir, version); 1293 free(version); 1294 1295 return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0); 1296 } 1297 int __weak arch__fix_module_text_start(u64 *start __maybe_unused, 1298 const char *name __maybe_unused) 1299 { 1300 return 0; 1301 } 1302 1303 static int machine__create_module(void *arg, const char *name, u64 start, 1304 u64 size) 1305 { 1306 struct machine *machine = arg; 1307 struct map *map; 1308 1309 if (arch__fix_module_text_start(&start, name) < 0) 1310 return -1; 1311 1312 map = machine__findnew_module_map(machine, start, name); 1313 if (map == NULL) 1314 return -1; 1315 map->end = start + size; 1316 1317 dso__kernel_module_get_build_id(map->dso, machine->root_dir); 1318 1319 return 0; 1320 } 1321 1322 static int machine__create_modules(struct machine *machine) 1323 { 1324 const char *modules; 1325 char path[PATH_MAX]; 1326 1327 if (machine__is_default_guest(machine)) { 1328 modules = symbol_conf.default_guest_modules; 1329 } else { 1330 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir); 1331 modules = path; 1332 } 1333 1334 if (symbol__restricted_filename(modules, "/proc/modules")) 1335 return -1; 1336 1337 if (modules__parse(modules, machine, machine__create_module)) 1338 return -1; 1339 1340 if (!machine__set_modules_path(machine)) 1341 return 0; 1342 1343 pr_debug("Problems setting modules path maps, continuing anyway...\n"); 1344 1345 return 0; 1346 } 1347 1348 static void machine__set_kernel_mmap(struct machine *machine, 1349 u64 start, u64 end) 1350 { 1351 machine->vmlinux_map->start = start; 1352 machine->vmlinux_map->end = end; 1353 /* 1354 * Be a bit paranoid here, some perf.data file came with 1355 * a zero sized synthesized MMAP event for the kernel. 1356 */ 1357 if (start == 0 && end == 0) 1358 machine->vmlinux_map->end = ~0ULL; 1359 } 1360 1361 int machine__create_kernel_maps(struct machine *machine) 1362 { 1363 struct dso *kernel = machine__get_kernel(machine); 1364 const char *name = NULL; 1365 struct map *map; 1366 u64 addr = 0; 1367 int ret; 1368 1369 if (kernel == NULL) 1370 return -1; 1371 1372 ret = __machine__create_kernel_maps(machine, kernel); 1373 if (ret < 0) 1374 goto out_put; 1375 1376 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) { 1377 if (machine__is_host(machine)) 1378 pr_debug("Problems creating module maps, " 1379 "continuing anyway...\n"); 1380 else 1381 pr_debug("Problems creating module maps for guest %d, " 1382 "continuing anyway...\n", machine->pid); 1383 } 1384 1385 if (!machine__get_running_kernel_start(machine, &name, &addr)) { 1386 if (name && 1387 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, addr)) { 1388 machine__destroy_kernel_maps(machine); 1389 ret = -1; 1390 goto out_put; 1391 } 1392 1393 /* we have a real start address now, so re-order the kmaps */ 1394 map = machine__kernel_map(machine); 1395 1396 map__get(map); 1397 map_groups__remove(&machine->kmaps, map); 1398 1399 /* assume it's the last in the kmaps */ 1400 machine__set_kernel_mmap(machine, addr, ~0ULL); 1401 1402 map_groups__insert(&machine->kmaps, map); 1403 map__put(map); 1404 } 1405 1406 if (machine__create_extra_kernel_maps(machine, kernel)) 1407 pr_debug("Problems creating extra kernel maps, continuing anyway...\n"); 1408 1409 /* update end address of the kernel map using adjacent module address */ 1410 map = map__next(machine__kernel_map(machine)); 1411 if (map) 1412 machine__set_kernel_mmap(machine, addr, map->start); 1413 out_put: 1414 dso__put(kernel); 1415 return ret; 1416 } 1417 1418 static bool machine__uses_kcore(struct machine *machine) 1419 { 1420 struct dso *dso; 1421 1422 list_for_each_entry(dso, &machine->dsos.head, node) { 1423 if (dso__is_kcore(dso)) 1424 return true; 1425 } 1426 1427 return false; 1428 } 1429 1430 static bool perf_event__is_extra_kernel_mmap(struct machine *machine, 1431 union perf_event *event) 1432 { 1433 return machine__is(machine, "x86_64") && 1434 is_entry_trampoline(event->mmap.filename); 1435 } 1436 1437 static int machine__process_extra_kernel_map(struct machine *machine, 1438 union perf_event *event) 1439 { 1440 struct map *kernel_map = machine__kernel_map(machine); 1441 struct dso *kernel = kernel_map ? kernel_map->dso : NULL; 1442 struct extra_kernel_map xm = { 1443 .start = event->mmap.start, 1444 .end = event->mmap.start + event->mmap.len, 1445 .pgoff = event->mmap.pgoff, 1446 }; 1447 1448 if (kernel == NULL) 1449 return -1; 1450 1451 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN); 1452 1453 return machine__create_extra_kernel_map(machine, kernel, &xm); 1454 } 1455 1456 static int machine__process_kernel_mmap_event(struct machine *machine, 1457 union perf_event *event) 1458 { 1459 struct map *map; 1460 enum dso_kernel_type kernel_type; 1461 bool is_kernel_mmap; 1462 1463 /* If we have maps from kcore then we do not need or want any others */ 1464 if (machine__uses_kcore(machine)) 1465 return 0; 1466 1467 if (machine__is_host(machine)) 1468 kernel_type = DSO_TYPE_KERNEL; 1469 else 1470 kernel_type = DSO_TYPE_GUEST_KERNEL; 1471 1472 is_kernel_mmap = memcmp(event->mmap.filename, 1473 machine->mmap_name, 1474 strlen(machine->mmap_name) - 1) == 0; 1475 if (event->mmap.filename[0] == '/' || 1476 (!is_kernel_mmap && event->mmap.filename[0] == '[')) { 1477 map = machine__findnew_module_map(machine, event->mmap.start, 1478 event->mmap.filename); 1479 if (map == NULL) 1480 goto out_problem; 1481 1482 map->end = map->start + event->mmap.len; 1483 } else if (is_kernel_mmap) { 1484 const char *symbol_name = (event->mmap.filename + 1485 strlen(machine->mmap_name)); 1486 /* 1487 * Should be there already, from the build-id table in 1488 * the header. 1489 */ 1490 struct dso *kernel = NULL; 1491 struct dso *dso; 1492 1493 down_read(&machine->dsos.lock); 1494 1495 list_for_each_entry(dso, &machine->dsos.head, node) { 1496 1497 /* 1498 * The cpumode passed to is_kernel_module is not the 1499 * cpumode of *this* event. If we insist on passing 1500 * correct cpumode to is_kernel_module, we should 1501 * record the cpumode when we adding this dso to the 1502 * linked list. 1503 * 1504 * However we don't really need passing correct 1505 * cpumode. We know the correct cpumode must be kernel 1506 * mode (if not, we should not link it onto kernel_dsos 1507 * list). 1508 * 1509 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN. 1510 * is_kernel_module() treats it as a kernel cpumode. 1511 */ 1512 1513 if (!dso->kernel || 1514 is_kernel_module(dso->long_name, 1515 PERF_RECORD_MISC_CPUMODE_UNKNOWN)) 1516 continue; 1517 1518 1519 kernel = dso; 1520 break; 1521 } 1522 1523 up_read(&machine->dsos.lock); 1524 1525 if (kernel == NULL) 1526 kernel = machine__findnew_dso(machine, machine->mmap_name); 1527 if (kernel == NULL) 1528 goto out_problem; 1529 1530 kernel->kernel = kernel_type; 1531 if (__machine__create_kernel_maps(machine, kernel) < 0) { 1532 dso__put(kernel); 1533 goto out_problem; 1534 } 1535 1536 if (strstr(kernel->long_name, "vmlinux")) 1537 dso__set_short_name(kernel, "[kernel.vmlinux]", false); 1538 1539 machine__set_kernel_mmap(machine, event->mmap.start, 1540 event->mmap.start + event->mmap.len); 1541 1542 /* 1543 * Avoid using a zero address (kptr_restrict) for the ref reloc 1544 * symbol. Effectively having zero here means that at record 1545 * time /proc/sys/kernel/kptr_restrict was non zero. 1546 */ 1547 if (event->mmap.pgoff != 0) { 1548 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, 1549 symbol_name, 1550 event->mmap.pgoff); 1551 } 1552 1553 if (machine__is_default_guest(machine)) { 1554 /* 1555 * preload dso of guest kernel and modules 1556 */ 1557 dso__load(kernel, machine__kernel_map(machine)); 1558 } 1559 } else if (perf_event__is_extra_kernel_mmap(machine, event)) { 1560 return machine__process_extra_kernel_map(machine, event); 1561 } 1562 return 0; 1563 out_problem: 1564 return -1; 1565 } 1566 1567 int machine__process_mmap2_event(struct machine *machine, 1568 union perf_event *event, 1569 struct perf_sample *sample) 1570 { 1571 struct thread *thread; 1572 struct map *map; 1573 int ret = 0; 1574 1575 if (dump_trace) 1576 perf_event__fprintf_mmap2(event, stdout); 1577 1578 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1579 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1580 ret = machine__process_kernel_mmap_event(machine, event); 1581 if (ret < 0) 1582 goto out_problem; 1583 return 0; 1584 } 1585 1586 thread = machine__findnew_thread(machine, event->mmap2.pid, 1587 event->mmap2.tid); 1588 if (thread == NULL) 1589 goto out_problem; 1590 1591 map = map__new(machine, event->mmap2.start, 1592 event->mmap2.len, event->mmap2.pgoff, 1593 event->mmap2.maj, 1594 event->mmap2.min, event->mmap2.ino, 1595 event->mmap2.ino_generation, 1596 event->mmap2.prot, 1597 event->mmap2.flags, 1598 event->mmap2.filename, thread); 1599 1600 if (map == NULL) 1601 goto out_problem_map; 1602 1603 ret = thread__insert_map(thread, map); 1604 if (ret) 1605 goto out_problem_insert; 1606 1607 thread__put(thread); 1608 map__put(map); 1609 return 0; 1610 1611 out_problem_insert: 1612 map__put(map); 1613 out_problem_map: 1614 thread__put(thread); 1615 out_problem: 1616 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n"); 1617 return 0; 1618 } 1619 1620 int machine__process_mmap_event(struct machine *machine, union perf_event *event, 1621 struct perf_sample *sample) 1622 { 1623 struct thread *thread; 1624 struct map *map; 1625 u32 prot = 0; 1626 int ret = 0; 1627 1628 if (dump_trace) 1629 perf_event__fprintf_mmap(event, stdout); 1630 1631 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1632 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1633 ret = machine__process_kernel_mmap_event(machine, event); 1634 if (ret < 0) 1635 goto out_problem; 1636 return 0; 1637 } 1638 1639 thread = machine__findnew_thread(machine, event->mmap.pid, 1640 event->mmap.tid); 1641 if (thread == NULL) 1642 goto out_problem; 1643 1644 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA)) 1645 prot = PROT_EXEC; 1646 1647 map = map__new(machine, event->mmap.start, 1648 event->mmap.len, event->mmap.pgoff, 1649 0, 0, 0, 0, prot, 0, 1650 event->mmap.filename, 1651 thread); 1652 1653 if (map == NULL) 1654 goto out_problem_map; 1655 1656 ret = thread__insert_map(thread, map); 1657 if (ret) 1658 goto out_problem_insert; 1659 1660 thread__put(thread); 1661 map__put(map); 1662 return 0; 1663 1664 out_problem_insert: 1665 map__put(map); 1666 out_problem_map: 1667 thread__put(thread); 1668 out_problem: 1669 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n"); 1670 return 0; 1671 } 1672 1673 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock) 1674 { 1675 struct threads *threads = machine__threads(machine, th->tid); 1676 1677 if (threads->last_match == th) 1678 threads__set_last_match(threads, NULL); 1679 1680 BUG_ON(refcount_read(&th->refcnt) == 0); 1681 if (lock) 1682 down_write(&threads->lock); 1683 rb_erase_init(&th->rb_node, &threads->entries); 1684 RB_CLEAR_NODE(&th->rb_node); 1685 --threads->nr; 1686 /* 1687 * Move it first to the dead_threads list, then drop the reference, 1688 * if this is the last reference, then the thread__delete destructor 1689 * will be called and we will remove it from the dead_threads list. 1690 */ 1691 list_add_tail(&th->node, &threads->dead); 1692 if (lock) 1693 up_write(&threads->lock); 1694 thread__put(th); 1695 } 1696 1697 void machine__remove_thread(struct machine *machine, struct thread *th) 1698 { 1699 return __machine__remove_thread(machine, th, true); 1700 } 1701 1702 int machine__process_fork_event(struct machine *machine, union perf_event *event, 1703 struct perf_sample *sample) 1704 { 1705 struct thread *thread = machine__find_thread(machine, 1706 event->fork.pid, 1707 event->fork.tid); 1708 struct thread *parent = machine__findnew_thread(machine, 1709 event->fork.ppid, 1710 event->fork.ptid); 1711 bool do_maps_clone = true; 1712 int err = 0; 1713 1714 if (dump_trace) 1715 perf_event__fprintf_task(event, stdout); 1716 1717 /* 1718 * There may be an existing thread that is not actually the parent, 1719 * either because we are processing events out of order, or because the 1720 * (fork) event that would have removed the thread was lost. Assume the 1721 * latter case and continue on as best we can. 1722 */ 1723 if (parent->pid_ != (pid_t)event->fork.ppid) { 1724 dump_printf("removing erroneous parent thread %d/%d\n", 1725 parent->pid_, parent->tid); 1726 machine__remove_thread(machine, parent); 1727 thread__put(parent); 1728 parent = machine__findnew_thread(machine, event->fork.ppid, 1729 event->fork.ptid); 1730 } 1731 1732 /* if a thread currently exists for the thread id remove it */ 1733 if (thread != NULL) { 1734 machine__remove_thread(machine, thread); 1735 thread__put(thread); 1736 } 1737 1738 thread = machine__findnew_thread(machine, event->fork.pid, 1739 event->fork.tid); 1740 /* 1741 * When synthesizing FORK events, we are trying to create thread 1742 * objects for the already running tasks on the machine. 1743 * 1744 * Normally, for a kernel FORK event, we want to clone the parent's 1745 * maps because that is what the kernel just did. 1746 * 1747 * But when synthesizing, this should not be done. If we do, we end up 1748 * with overlapping maps as we process the sythesized MMAP2 events that 1749 * get delivered shortly thereafter. 1750 * 1751 * Use the FORK event misc flags in an internal way to signal this 1752 * situation, so we can elide the map clone when appropriate. 1753 */ 1754 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC) 1755 do_maps_clone = false; 1756 1757 if (thread == NULL || parent == NULL || 1758 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) { 1759 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n"); 1760 err = -1; 1761 } 1762 thread__put(thread); 1763 thread__put(parent); 1764 1765 return err; 1766 } 1767 1768 int machine__process_exit_event(struct machine *machine, union perf_event *event, 1769 struct perf_sample *sample __maybe_unused) 1770 { 1771 struct thread *thread = machine__find_thread(machine, 1772 event->fork.pid, 1773 event->fork.tid); 1774 1775 if (dump_trace) 1776 perf_event__fprintf_task(event, stdout); 1777 1778 if (thread != NULL) { 1779 thread__exited(thread); 1780 thread__put(thread); 1781 } 1782 1783 return 0; 1784 } 1785 1786 int machine__process_event(struct machine *machine, union perf_event *event, 1787 struct perf_sample *sample) 1788 { 1789 int ret; 1790 1791 switch (event->header.type) { 1792 case PERF_RECORD_COMM: 1793 ret = machine__process_comm_event(machine, event, sample); break; 1794 case PERF_RECORD_MMAP: 1795 ret = machine__process_mmap_event(machine, event, sample); break; 1796 case PERF_RECORD_NAMESPACES: 1797 ret = machine__process_namespaces_event(machine, event, sample); break; 1798 case PERF_RECORD_MMAP2: 1799 ret = machine__process_mmap2_event(machine, event, sample); break; 1800 case PERF_RECORD_FORK: 1801 ret = machine__process_fork_event(machine, event, sample); break; 1802 case PERF_RECORD_EXIT: 1803 ret = machine__process_exit_event(machine, event, sample); break; 1804 case PERF_RECORD_LOST: 1805 ret = machine__process_lost_event(machine, event, sample); break; 1806 case PERF_RECORD_AUX: 1807 ret = machine__process_aux_event(machine, event); break; 1808 case PERF_RECORD_ITRACE_START: 1809 ret = machine__process_itrace_start_event(machine, event); break; 1810 case PERF_RECORD_LOST_SAMPLES: 1811 ret = machine__process_lost_samples_event(machine, event, sample); break; 1812 case PERF_RECORD_SWITCH: 1813 case PERF_RECORD_SWITCH_CPU_WIDE: 1814 ret = machine__process_switch_event(machine, event); break; 1815 default: 1816 ret = -1; 1817 break; 1818 } 1819 1820 return ret; 1821 } 1822 1823 static bool symbol__match_regex(struct symbol *sym, regex_t *regex) 1824 { 1825 if (!regexec(regex, sym->name, 0, NULL, 0)) 1826 return 1; 1827 return 0; 1828 } 1829 1830 static void ip__resolve_ams(struct thread *thread, 1831 struct addr_map_symbol *ams, 1832 u64 ip) 1833 { 1834 struct addr_location al; 1835 1836 memset(&al, 0, sizeof(al)); 1837 /* 1838 * We cannot use the header.misc hint to determine whether a 1839 * branch stack address is user, kernel, guest, hypervisor. 1840 * Branches may straddle the kernel/user/hypervisor boundaries. 1841 * Thus, we have to try consecutively until we find a match 1842 * or else, the symbol is unknown 1843 */ 1844 thread__find_cpumode_addr_location(thread, ip, &al); 1845 1846 ams->addr = ip; 1847 ams->al_addr = al.addr; 1848 ams->sym = al.sym; 1849 ams->map = al.map; 1850 ams->phys_addr = 0; 1851 } 1852 1853 static void ip__resolve_data(struct thread *thread, 1854 u8 m, struct addr_map_symbol *ams, 1855 u64 addr, u64 phys_addr) 1856 { 1857 struct addr_location al; 1858 1859 memset(&al, 0, sizeof(al)); 1860 1861 thread__find_symbol(thread, m, addr, &al); 1862 1863 ams->addr = addr; 1864 ams->al_addr = al.addr; 1865 ams->sym = al.sym; 1866 ams->map = al.map; 1867 ams->phys_addr = phys_addr; 1868 } 1869 1870 struct mem_info *sample__resolve_mem(struct perf_sample *sample, 1871 struct addr_location *al) 1872 { 1873 struct mem_info *mi = mem_info__new(); 1874 1875 if (!mi) 1876 return NULL; 1877 1878 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip); 1879 ip__resolve_data(al->thread, al->cpumode, &mi->daddr, 1880 sample->addr, sample->phys_addr); 1881 mi->data_src.val = sample->data_src; 1882 1883 return mi; 1884 } 1885 1886 static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip) 1887 { 1888 char *srcline = NULL; 1889 1890 if (!map || callchain_param.key == CCKEY_FUNCTION) 1891 return srcline; 1892 1893 srcline = srcline__tree_find(&map->dso->srclines, ip); 1894 if (!srcline) { 1895 bool show_sym = false; 1896 bool show_addr = callchain_param.key == CCKEY_ADDRESS; 1897 1898 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip), 1899 sym, show_sym, show_addr, ip); 1900 srcline__tree_insert(&map->dso->srclines, ip, srcline); 1901 } 1902 1903 return srcline; 1904 } 1905 1906 struct iterations { 1907 int nr_loop_iter; 1908 u64 cycles; 1909 }; 1910 1911 static int add_callchain_ip(struct thread *thread, 1912 struct callchain_cursor *cursor, 1913 struct symbol **parent, 1914 struct addr_location *root_al, 1915 u8 *cpumode, 1916 u64 ip, 1917 bool branch, 1918 struct branch_flags *flags, 1919 struct iterations *iter, 1920 u64 branch_from) 1921 { 1922 struct addr_location al; 1923 int nr_loop_iter = 0; 1924 u64 iter_cycles = 0; 1925 const char *srcline = NULL; 1926 1927 al.filtered = 0; 1928 al.sym = NULL; 1929 if (!cpumode) { 1930 thread__find_cpumode_addr_location(thread, ip, &al); 1931 } else { 1932 if (ip >= PERF_CONTEXT_MAX) { 1933 switch (ip) { 1934 case PERF_CONTEXT_HV: 1935 *cpumode = PERF_RECORD_MISC_HYPERVISOR; 1936 break; 1937 case PERF_CONTEXT_KERNEL: 1938 *cpumode = PERF_RECORD_MISC_KERNEL; 1939 break; 1940 case PERF_CONTEXT_USER: 1941 *cpumode = PERF_RECORD_MISC_USER; 1942 break; 1943 default: 1944 pr_debug("invalid callchain context: " 1945 "%"PRId64"\n", (s64) ip); 1946 /* 1947 * It seems the callchain is corrupted. 1948 * Discard all. 1949 */ 1950 callchain_cursor_reset(cursor); 1951 return 1; 1952 } 1953 return 0; 1954 } 1955 thread__find_symbol(thread, *cpumode, ip, &al); 1956 } 1957 1958 if (al.sym != NULL) { 1959 if (perf_hpp_list.parent && !*parent && 1960 symbol__match_regex(al.sym, &parent_regex)) 1961 *parent = al.sym; 1962 else if (have_ignore_callees && root_al && 1963 symbol__match_regex(al.sym, &ignore_callees_regex)) { 1964 /* Treat this symbol as the root, 1965 forgetting its callees. */ 1966 *root_al = al; 1967 callchain_cursor_reset(cursor); 1968 } 1969 } 1970 1971 if (symbol_conf.hide_unresolved && al.sym == NULL) 1972 return 0; 1973 1974 if (iter) { 1975 nr_loop_iter = iter->nr_loop_iter; 1976 iter_cycles = iter->cycles; 1977 } 1978 1979 srcline = callchain_srcline(al.map, al.sym, al.addr); 1980 return callchain_cursor_append(cursor, ip, al.map, al.sym, 1981 branch, flags, nr_loop_iter, 1982 iter_cycles, branch_from, srcline); 1983 } 1984 1985 struct branch_info *sample__resolve_bstack(struct perf_sample *sample, 1986 struct addr_location *al) 1987 { 1988 unsigned int i; 1989 const struct branch_stack *bs = sample->branch_stack; 1990 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info)); 1991 1992 if (!bi) 1993 return NULL; 1994 1995 for (i = 0; i < bs->nr; i++) { 1996 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to); 1997 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from); 1998 bi[i].flags = bs->entries[i].flags; 1999 } 2000 return bi; 2001 } 2002 2003 static void save_iterations(struct iterations *iter, 2004 struct branch_entry *be, int nr) 2005 { 2006 int i; 2007 2008 iter->nr_loop_iter = nr; 2009 iter->cycles = 0; 2010 2011 for (i = 0; i < nr; i++) 2012 iter->cycles += be[i].flags.cycles; 2013 } 2014 2015 #define CHASHSZ 127 2016 #define CHASHBITS 7 2017 #define NO_ENTRY 0xff 2018 2019 #define PERF_MAX_BRANCH_DEPTH 127 2020 2021 /* Remove loops. */ 2022 static int remove_loops(struct branch_entry *l, int nr, 2023 struct iterations *iter) 2024 { 2025 int i, j, off; 2026 unsigned char chash[CHASHSZ]; 2027 2028 memset(chash, NO_ENTRY, sizeof(chash)); 2029 2030 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255); 2031 2032 for (i = 0; i < nr; i++) { 2033 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ; 2034 2035 /* no collision handling for now */ 2036 if (chash[h] == NO_ENTRY) { 2037 chash[h] = i; 2038 } else if (l[chash[h]].from == l[i].from) { 2039 bool is_loop = true; 2040 /* check if it is a real loop */ 2041 off = 0; 2042 for (j = chash[h]; j < i && i + off < nr; j++, off++) 2043 if (l[j].from != l[i + off].from) { 2044 is_loop = false; 2045 break; 2046 } 2047 if (is_loop) { 2048 j = nr - (i + off); 2049 if (j > 0) { 2050 save_iterations(iter + i + off, 2051 l + i, off); 2052 2053 memmove(iter + i, iter + i + off, 2054 j * sizeof(*iter)); 2055 2056 memmove(l + i, l + i + off, 2057 j * sizeof(*l)); 2058 } 2059 2060 nr -= off; 2061 } 2062 } 2063 } 2064 return nr; 2065 } 2066 2067 /* 2068 * Recolve LBR callstack chain sample 2069 * Return: 2070 * 1 on success get LBR callchain information 2071 * 0 no available LBR callchain information, should try fp 2072 * negative error code on other errors. 2073 */ 2074 static int resolve_lbr_callchain_sample(struct thread *thread, 2075 struct callchain_cursor *cursor, 2076 struct perf_sample *sample, 2077 struct symbol **parent, 2078 struct addr_location *root_al, 2079 int max_stack) 2080 { 2081 struct ip_callchain *chain = sample->callchain; 2082 int chain_nr = min(max_stack, (int)chain->nr), i; 2083 u8 cpumode = PERF_RECORD_MISC_USER; 2084 u64 ip, branch_from = 0; 2085 2086 for (i = 0; i < chain_nr; i++) { 2087 if (chain->ips[i] == PERF_CONTEXT_USER) 2088 break; 2089 } 2090 2091 /* LBR only affects the user callchain */ 2092 if (i != chain_nr) { 2093 struct branch_stack *lbr_stack = sample->branch_stack; 2094 int lbr_nr = lbr_stack->nr, j, k; 2095 bool branch; 2096 struct branch_flags *flags; 2097 /* 2098 * LBR callstack can only get user call chain. 2099 * The mix_chain_nr is kernel call chain 2100 * number plus LBR user call chain number. 2101 * i is kernel call chain number, 2102 * 1 is PERF_CONTEXT_USER, 2103 * lbr_nr + 1 is the user call chain number. 2104 * For details, please refer to the comments 2105 * in callchain__printf 2106 */ 2107 int mix_chain_nr = i + 1 + lbr_nr + 1; 2108 2109 for (j = 0; j < mix_chain_nr; j++) { 2110 int err; 2111 branch = false; 2112 flags = NULL; 2113 2114 if (callchain_param.order == ORDER_CALLEE) { 2115 if (j < i + 1) 2116 ip = chain->ips[j]; 2117 else if (j > i + 1) { 2118 k = j - i - 2; 2119 ip = lbr_stack->entries[k].from; 2120 branch = true; 2121 flags = &lbr_stack->entries[k].flags; 2122 } else { 2123 ip = lbr_stack->entries[0].to; 2124 branch = true; 2125 flags = &lbr_stack->entries[0].flags; 2126 branch_from = 2127 lbr_stack->entries[0].from; 2128 } 2129 } else { 2130 if (j < lbr_nr) { 2131 k = lbr_nr - j - 1; 2132 ip = lbr_stack->entries[k].from; 2133 branch = true; 2134 flags = &lbr_stack->entries[k].flags; 2135 } 2136 else if (j > lbr_nr) 2137 ip = chain->ips[i + 1 - (j - lbr_nr)]; 2138 else { 2139 ip = lbr_stack->entries[0].to; 2140 branch = true; 2141 flags = &lbr_stack->entries[0].flags; 2142 branch_from = 2143 lbr_stack->entries[0].from; 2144 } 2145 } 2146 2147 err = add_callchain_ip(thread, cursor, parent, 2148 root_al, &cpumode, ip, 2149 branch, flags, NULL, 2150 branch_from); 2151 if (err) 2152 return (err < 0) ? err : 0; 2153 } 2154 return 1; 2155 } 2156 2157 return 0; 2158 } 2159 2160 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread, 2161 struct callchain_cursor *cursor, 2162 struct symbol **parent, 2163 struct addr_location *root_al, 2164 u8 *cpumode, int ent) 2165 { 2166 int err = 0; 2167 2168 while (--ent >= 0) { 2169 u64 ip = chain->ips[ent]; 2170 2171 if (ip >= PERF_CONTEXT_MAX) { 2172 err = add_callchain_ip(thread, cursor, parent, 2173 root_al, cpumode, ip, 2174 false, NULL, NULL, 0); 2175 break; 2176 } 2177 } 2178 return err; 2179 } 2180 2181 static int thread__resolve_callchain_sample(struct thread *thread, 2182 struct callchain_cursor *cursor, 2183 struct perf_evsel *evsel, 2184 struct perf_sample *sample, 2185 struct symbol **parent, 2186 struct addr_location *root_al, 2187 int max_stack) 2188 { 2189 struct branch_stack *branch = sample->branch_stack; 2190 struct ip_callchain *chain = sample->callchain; 2191 int chain_nr = 0; 2192 u8 cpumode = PERF_RECORD_MISC_USER; 2193 int i, j, err, nr_entries; 2194 int skip_idx = -1; 2195 int first_call = 0; 2196 2197 if (chain) 2198 chain_nr = chain->nr; 2199 2200 if (perf_evsel__has_branch_callstack(evsel)) { 2201 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent, 2202 root_al, max_stack); 2203 if (err) 2204 return (err < 0) ? err : 0; 2205 } 2206 2207 /* 2208 * Based on DWARF debug information, some architectures skip 2209 * a callchain entry saved by the kernel. 2210 */ 2211 skip_idx = arch_skip_callchain_idx(thread, chain); 2212 2213 /* 2214 * Add branches to call stack for easier browsing. This gives 2215 * more context for a sample than just the callers. 2216 * 2217 * This uses individual histograms of paths compared to the 2218 * aggregated histograms the normal LBR mode uses. 2219 * 2220 * Limitations for now: 2221 * - No extra filters 2222 * - No annotations (should annotate somehow) 2223 */ 2224 2225 if (branch && callchain_param.branch_callstack) { 2226 int nr = min(max_stack, (int)branch->nr); 2227 struct branch_entry be[nr]; 2228 struct iterations iter[nr]; 2229 2230 if (branch->nr > PERF_MAX_BRANCH_DEPTH) { 2231 pr_warning("corrupted branch chain. skipping...\n"); 2232 goto check_calls; 2233 } 2234 2235 for (i = 0; i < nr; i++) { 2236 if (callchain_param.order == ORDER_CALLEE) { 2237 be[i] = branch->entries[i]; 2238 2239 if (chain == NULL) 2240 continue; 2241 2242 /* 2243 * Check for overlap into the callchain. 2244 * The return address is one off compared to 2245 * the branch entry. To adjust for this 2246 * assume the calling instruction is not longer 2247 * than 8 bytes. 2248 */ 2249 if (i == skip_idx || 2250 chain->ips[first_call] >= PERF_CONTEXT_MAX) 2251 first_call++; 2252 else if (be[i].from < chain->ips[first_call] && 2253 be[i].from >= chain->ips[first_call] - 8) 2254 first_call++; 2255 } else 2256 be[i] = branch->entries[branch->nr - i - 1]; 2257 } 2258 2259 memset(iter, 0, sizeof(struct iterations) * nr); 2260 nr = remove_loops(be, nr, iter); 2261 2262 for (i = 0; i < nr; i++) { 2263 err = add_callchain_ip(thread, cursor, parent, 2264 root_al, 2265 NULL, be[i].to, 2266 true, &be[i].flags, 2267 NULL, be[i].from); 2268 2269 if (!err) 2270 err = add_callchain_ip(thread, cursor, parent, root_al, 2271 NULL, be[i].from, 2272 true, &be[i].flags, 2273 &iter[i], 0); 2274 if (err == -EINVAL) 2275 break; 2276 if (err) 2277 return err; 2278 } 2279 2280 if (chain_nr == 0) 2281 return 0; 2282 2283 chain_nr -= nr; 2284 } 2285 2286 check_calls: 2287 if (callchain_param.order != ORDER_CALLEE) { 2288 err = find_prev_cpumode(chain, thread, cursor, parent, root_al, 2289 &cpumode, chain->nr - first_call); 2290 if (err) 2291 return (err < 0) ? err : 0; 2292 } 2293 for (i = first_call, nr_entries = 0; 2294 i < chain_nr && nr_entries < max_stack; i++) { 2295 u64 ip; 2296 2297 if (callchain_param.order == ORDER_CALLEE) 2298 j = i; 2299 else 2300 j = chain->nr - i - 1; 2301 2302 #ifdef HAVE_SKIP_CALLCHAIN_IDX 2303 if (j == skip_idx) 2304 continue; 2305 #endif 2306 ip = chain->ips[j]; 2307 if (ip < PERF_CONTEXT_MAX) 2308 ++nr_entries; 2309 else if (callchain_param.order != ORDER_CALLEE) { 2310 err = find_prev_cpumode(chain, thread, cursor, parent, 2311 root_al, &cpumode, j); 2312 if (err) 2313 return (err < 0) ? err : 0; 2314 continue; 2315 } 2316 2317 err = add_callchain_ip(thread, cursor, parent, 2318 root_al, &cpumode, ip, 2319 false, NULL, NULL, 0); 2320 2321 if (err) 2322 return (err < 0) ? err : 0; 2323 } 2324 2325 return 0; 2326 } 2327 2328 static int append_inlines(struct callchain_cursor *cursor, 2329 struct map *map, struct symbol *sym, u64 ip) 2330 { 2331 struct inline_node *inline_node; 2332 struct inline_list *ilist; 2333 u64 addr; 2334 int ret = 1; 2335 2336 if (!symbol_conf.inline_name || !map || !sym) 2337 return ret; 2338 2339 addr = map__map_ip(map, ip); 2340 addr = map__rip_2objdump(map, addr); 2341 2342 inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr); 2343 if (!inline_node) { 2344 inline_node = dso__parse_addr_inlines(map->dso, addr, sym); 2345 if (!inline_node) 2346 return ret; 2347 inlines__tree_insert(&map->dso->inlined_nodes, inline_node); 2348 } 2349 2350 list_for_each_entry(ilist, &inline_node->val, list) { 2351 ret = callchain_cursor_append(cursor, ip, map, 2352 ilist->symbol, false, 2353 NULL, 0, 0, 0, ilist->srcline); 2354 2355 if (ret != 0) 2356 return ret; 2357 } 2358 2359 return ret; 2360 } 2361 2362 static int unwind_entry(struct unwind_entry *entry, void *arg) 2363 { 2364 struct callchain_cursor *cursor = arg; 2365 const char *srcline = NULL; 2366 u64 addr = entry->ip; 2367 2368 if (symbol_conf.hide_unresolved && entry->sym == NULL) 2369 return 0; 2370 2371 if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0) 2372 return 0; 2373 2374 /* 2375 * Convert entry->ip from a virtual address to an offset in 2376 * its corresponding binary. 2377 */ 2378 if (entry->map) 2379 addr = map__map_ip(entry->map, entry->ip); 2380 2381 srcline = callchain_srcline(entry->map, entry->sym, addr); 2382 return callchain_cursor_append(cursor, entry->ip, 2383 entry->map, entry->sym, 2384 false, NULL, 0, 0, 0, srcline); 2385 } 2386 2387 static int thread__resolve_callchain_unwind(struct thread *thread, 2388 struct callchain_cursor *cursor, 2389 struct perf_evsel *evsel, 2390 struct perf_sample *sample, 2391 int max_stack) 2392 { 2393 /* Can we do dwarf post unwind? */ 2394 if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) && 2395 (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER))) 2396 return 0; 2397 2398 /* Bail out if nothing was captured. */ 2399 if ((!sample->user_regs.regs) || 2400 (!sample->user_stack.size)) 2401 return 0; 2402 2403 return unwind__get_entries(unwind_entry, cursor, 2404 thread, sample, max_stack); 2405 } 2406 2407 int thread__resolve_callchain(struct thread *thread, 2408 struct callchain_cursor *cursor, 2409 struct perf_evsel *evsel, 2410 struct perf_sample *sample, 2411 struct symbol **parent, 2412 struct addr_location *root_al, 2413 int max_stack) 2414 { 2415 int ret = 0; 2416 2417 callchain_cursor_reset(cursor); 2418 2419 if (callchain_param.order == ORDER_CALLEE) { 2420 ret = thread__resolve_callchain_sample(thread, cursor, 2421 evsel, sample, 2422 parent, root_al, 2423 max_stack); 2424 if (ret) 2425 return ret; 2426 ret = thread__resolve_callchain_unwind(thread, cursor, 2427 evsel, sample, 2428 max_stack); 2429 } else { 2430 ret = thread__resolve_callchain_unwind(thread, cursor, 2431 evsel, sample, 2432 max_stack); 2433 if (ret) 2434 return ret; 2435 ret = thread__resolve_callchain_sample(thread, cursor, 2436 evsel, sample, 2437 parent, root_al, 2438 max_stack); 2439 } 2440 2441 return ret; 2442 } 2443 2444 int machine__for_each_thread(struct machine *machine, 2445 int (*fn)(struct thread *thread, void *p), 2446 void *priv) 2447 { 2448 struct threads *threads; 2449 struct rb_node *nd; 2450 struct thread *thread; 2451 int rc = 0; 2452 int i; 2453 2454 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 2455 threads = &machine->threads[i]; 2456 for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) { 2457 thread = rb_entry(nd, struct thread, rb_node); 2458 rc = fn(thread, priv); 2459 if (rc != 0) 2460 return rc; 2461 } 2462 2463 list_for_each_entry(thread, &threads->dead, node) { 2464 rc = fn(thread, priv); 2465 if (rc != 0) 2466 return rc; 2467 } 2468 } 2469 return rc; 2470 } 2471 2472 int machines__for_each_thread(struct machines *machines, 2473 int (*fn)(struct thread *thread, void *p), 2474 void *priv) 2475 { 2476 struct rb_node *nd; 2477 int rc = 0; 2478 2479 rc = machine__for_each_thread(&machines->host, fn, priv); 2480 if (rc != 0) 2481 return rc; 2482 2483 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 2484 struct machine *machine = rb_entry(nd, struct machine, rb_node); 2485 2486 rc = machine__for_each_thread(machine, fn, priv); 2487 if (rc != 0) 2488 return rc; 2489 } 2490 return rc; 2491 } 2492 2493 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool, 2494 struct target *target, struct thread_map *threads, 2495 perf_event__handler_t process, bool data_mmap, 2496 unsigned int nr_threads_synthesize) 2497 { 2498 if (target__has_task(target)) 2499 return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap); 2500 else if (target__has_cpu(target)) 2501 return perf_event__synthesize_threads(tool, process, 2502 machine, data_mmap, 2503 nr_threads_synthesize); 2504 /* command specified */ 2505 return 0; 2506 } 2507 2508 pid_t machine__get_current_tid(struct machine *machine, int cpu) 2509 { 2510 if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid) 2511 return -1; 2512 2513 return machine->current_tid[cpu]; 2514 } 2515 2516 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid, 2517 pid_t tid) 2518 { 2519 struct thread *thread; 2520 2521 if (cpu < 0) 2522 return -EINVAL; 2523 2524 if (!machine->current_tid) { 2525 int i; 2526 2527 machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t)); 2528 if (!machine->current_tid) 2529 return -ENOMEM; 2530 for (i = 0; i < MAX_NR_CPUS; i++) 2531 machine->current_tid[i] = -1; 2532 } 2533 2534 if (cpu >= MAX_NR_CPUS) { 2535 pr_err("Requested CPU %d too large. ", cpu); 2536 pr_err("Consider raising MAX_NR_CPUS\n"); 2537 return -EINVAL; 2538 } 2539 2540 machine->current_tid[cpu] = tid; 2541 2542 thread = machine__findnew_thread(machine, pid, tid); 2543 if (!thread) 2544 return -ENOMEM; 2545 2546 thread->cpu = cpu; 2547 thread__put(thread); 2548 2549 return 0; 2550 } 2551 2552 /* 2553 * Compares the raw arch string. N.B. see instead perf_env__arch() if a 2554 * normalized arch is needed. 2555 */ 2556 bool machine__is(struct machine *machine, const char *arch) 2557 { 2558 return machine && !strcmp(perf_env__raw_arch(machine->env), arch); 2559 } 2560 2561 int machine__nr_cpus_avail(struct machine *machine) 2562 { 2563 return machine ? perf_env__nr_cpus_avail(machine->env) : 0; 2564 } 2565 2566 int machine__get_kernel_start(struct machine *machine) 2567 { 2568 struct map *map = machine__kernel_map(machine); 2569 int err = 0; 2570 2571 /* 2572 * The only addresses above 2^63 are kernel addresses of a 64-bit 2573 * kernel. Note that addresses are unsigned so that on a 32-bit system 2574 * all addresses including kernel addresses are less than 2^32. In 2575 * that case (32-bit system), if the kernel mapping is unknown, all 2576 * addresses will be assumed to be in user space - see 2577 * machine__kernel_ip(). 2578 */ 2579 machine->kernel_start = 1ULL << 63; 2580 if (map) { 2581 err = map__load(map); 2582 /* 2583 * On x86_64, PTI entry trampolines are less than the 2584 * start of kernel text, but still above 2^63. So leave 2585 * kernel_start = 1ULL << 63 for x86_64. 2586 */ 2587 if (!err && !machine__is(machine, "x86_64")) 2588 machine->kernel_start = map->start; 2589 } 2590 return err; 2591 } 2592 2593 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr) 2594 { 2595 u8 addr_cpumode = cpumode; 2596 bool kernel_ip; 2597 2598 if (!machine->single_address_space) 2599 goto out; 2600 2601 kernel_ip = machine__kernel_ip(machine, addr); 2602 switch (cpumode) { 2603 case PERF_RECORD_MISC_KERNEL: 2604 case PERF_RECORD_MISC_USER: 2605 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL : 2606 PERF_RECORD_MISC_USER; 2607 break; 2608 case PERF_RECORD_MISC_GUEST_KERNEL: 2609 case PERF_RECORD_MISC_GUEST_USER: 2610 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL : 2611 PERF_RECORD_MISC_GUEST_USER; 2612 break; 2613 default: 2614 break; 2615 } 2616 out: 2617 return addr_cpumode; 2618 } 2619 2620 struct dso *machine__findnew_dso(struct machine *machine, const char *filename) 2621 { 2622 return dsos__findnew(&machine->dsos, filename); 2623 } 2624 2625 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp) 2626 { 2627 struct machine *machine = vmachine; 2628 struct map *map; 2629 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map); 2630 2631 if (sym == NULL) 2632 return NULL; 2633 2634 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL; 2635 *addrp = map->unmap_ip(map, sym->start); 2636 return sym->name; 2637 } 2638