1 // SPDX-License-Identifier: GPL-2.0 2 #include <dirent.h> 3 #include <errno.h> 4 #include <inttypes.h> 5 #include <regex.h> 6 #include <stdlib.h> 7 #include "callchain.h" 8 #include "debug.h" 9 #include "dso.h" 10 #include "env.h" 11 #include "event.h" 12 #include "evsel.h" 13 #include "hist.h" 14 #include "machine.h" 15 #include "map.h" 16 #include "map_symbol.h" 17 #include "branch.h" 18 #include "mem-events.h" 19 #include "srcline.h" 20 #include "symbol.h" 21 #include "sort.h" 22 #include "strlist.h" 23 #include "target.h" 24 #include "thread.h" 25 #include "util.h" 26 #include "vdso.h" 27 #include <stdbool.h> 28 #include <sys/types.h> 29 #include <sys/stat.h> 30 #include <unistd.h> 31 #include "unwind.h" 32 #include "linux/hash.h" 33 #include "asm/bug.h" 34 #include "bpf-event.h" 35 #include <internal/lib.h> // page_size 36 #include "cgroup.h" 37 38 #include <linux/ctype.h> 39 #include <symbol/kallsyms.h> 40 #include <linux/mman.h> 41 #include <linux/string.h> 42 #include <linux/zalloc.h> 43 44 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock); 45 46 static struct dso *machine__kernel_dso(struct machine *machine) 47 { 48 return machine->vmlinux_map->dso; 49 } 50 51 static void dsos__init(struct dsos *dsos) 52 { 53 INIT_LIST_HEAD(&dsos->head); 54 dsos->root = RB_ROOT; 55 init_rwsem(&dsos->lock); 56 } 57 58 static void machine__threads_init(struct machine *machine) 59 { 60 int i; 61 62 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 63 struct threads *threads = &machine->threads[i]; 64 threads->entries = RB_ROOT_CACHED; 65 init_rwsem(&threads->lock); 66 threads->nr = 0; 67 INIT_LIST_HEAD(&threads->dead); 68 threads->last_match = NULL; 69 } 70 } 71 72 static int machine__set_mmap_name(struct machine *machine) 73 { 74 if (machine__is_host(machine)) 75 machine->mmap_name = strdup("[kernel.kallsyms]"); 76 else if (machine__is_default_guest(machine)) 77 machine->mmap_name = strdup("[guest.kernel.kallsyms]"); 78 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]", 79 machine->pid) < 0) 80 machine->mmap_name = NULL; 81 82 return machine->mmap_name ? 0 : -ENOMEM; 83 } 84 85 int machine__init(struct machine *machine, const char *root_dir, pid_t pid) 86 { 87 int err = -ENOMEM; 88 89 memset(machine, 0, sizeof(*machine)); 90 maps__init(&machine->kmaps, machine); 91 RB_CLEAR_NODE(&machine->rb_node); 92 dsos__init(&machine->dsos); 93 94 machine__threads_init(machine); 95 96 machine->vdso_info = NULL; 97 machine->env = NULL; 98 99 machine->pid = pid; 100 101 machine->id_hdr_size = 0; 102 machine->kptr_restrict_warned = false; 103 machine->comm_exec = false; 104 machine->kernel_start = 0; 105 machine->vmlinux_map = NULL; 106 107 machine->root_dir = strdup(root_dir); 108 if (machine->root_dir == NULL) 109 return -ENOMEM; 110 111 if (machine__set_mmap_name(machine)) 112 goto out; 113 114 if (pid != HOST_KERNEL_ID) { 115 struct thread *thread = machine__findnew_thread(machine, -1, 116 pid); 117 char comm[64]; 118 119 if (thread == NULL) 120 goto out; 121 122 snprintf(comm, sizeof(comm), "[guest/%d]", pid); 123 thread__set_comm(thread, comm, 0); 124 thread__put(thread); 125 } 126 127 machine->current_tid = NULL; 128 err = 0; 129 130 out: 131 if (err) { 132 zfree(&machine->root_dir); 133 zfree(&machine->mmap_name); 134 } 135 return 0; 136 } 137 138 struct machine *machine__new_host(void) 139 { 140 struct machine *machine = malloc(sizeof(*machine)); 141 142 if (machine != NULL) { 143 machine__init(machine, "", HOST_KERNEL_ID); 144 145 if (machine__create_kernel_maps(machine) < 0) 146 goto out_delete; 147 } 148 149 return machine; 150 out_delete: 151 free(machine); 152 return NULL; 153 } 154 155 struct machine *machine__new_kallsyms(void) 156 { 157 struct machine *machine = machine__new_host(); 158 /* 159 * FIXME: 160 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly 161 * ask for not using the kcore parsing code, once this one is fixed 162 * to create a map per module. 163 */ 164 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) { 165 machine__delete(machine); 166 machine = NULL; 167 } 168 169 return machine; 170 } 171 172 static void dsos__purge(struct dsos *dsos) 173 { 174 struct dso *pos, *n; 175 176 down_write(&dsos->lock); 177 178 list_for_each_entry_safe(pos, n, &dsos->head, node) { 179 RB_CLEAR_NODE(&pos->rb_node); 180 pos->root = NULL; 181 list_del_init(&pos->node); 182 dso__put(pos); 183 } 184 185 up_write(&dsos->lock); 186 } 187 188 static void dsos__exit(struct dsos *dsos) 189 { 190 dsos__purge(dsos); 191 exit_rwsem(&dsos->lock); 192 } 193 194 void machine__delete_threads(struct machine *machine) 195 { 196 struct rb_node *nd; 197 int i; 198 199 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 200 struct threads *threads = &machine->threads[i]; 201 down_write(&threads->lock); 202 nd = rb_first_cached(&threads->entries); 203 while (nd) { 204 struct thread *t = rb_entry(nd, struct thread, rb_node); 205 206 nd = rb_next(nd); 207 __machine__remove_thread(machine, t, false); 208 } 209 up_write(&threads->lock); 210 } 211 } 212 213 void machine__exit(struct machine *machine) 214 { 215 int i; 216 217 if (machine == NULL) 218 return; 219 220 machine__destroy_kernel_maps(machine); 221 maps__exit(&machine->kmaps); 222 dsos__exit(&machine->dsos); 223 machine__exit_vdso(machine); 224 zfree(&machine->root_dir); 225 zfree(&machine->mmap_name); 226 zfree(&machine->current_tid); 227 228 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 229 struct threads *threads = &machine->threads[i]; 230 struct thread *thread, *n; 231 /* 232 * Forget about the dead, at this point whatever threads were 233 * left in the dead lists better have a reference count taken 234 * by who is using them, and then, when they drop those references 235 * and it finally hits zero, thread__put() will check and see that 236 * its not in the dead threads list and will not try to remove it 237 * from there, just calling thread__delete() straight away. 238 */ 239 list_for_each_entry_safe(thread, n, &threads->dead, node) 240 list_del_init(&thread->node); 241 242 exit_rwsem(&threads->lock); 243 } 244 } 245 246 void machine__delete(struct machine *machine) 247 { 248 if (machine) { 249 machine__exit(machine); 250 free(machine); 251 } 252 } 253 254 void machines__init(struct machines *machines) 255 { 256 machine__init(&machines->host, "", HOST_KERNEL_ID); 257 machines->guests = RB_ROOT_CACHED; 258 } 259 260 void machines__exit(struct machines *machines) 261 { 262 machine__exit(&machines->host); 263 /* XXX exit guest */ 264 } 265 266 struct machine *machines__add(struct machines *machines, pid_t pid, 267 const char *root_dir) 268 { 269 struct rb_node **p = &machines->guests.rb_root.rb_node; 270 struct rb_node *parent = NULL; 271 struct machine *pos, *machine = malloc(sizeof(*machine)); 272 bool leftmost = true; 273 274 if (machine == NULL) 275 return NULL; 276 277 if (machine__init(machine, root_dir, pid) != 0) { 278 free(machine); 279 return NULL; 280 } 281 282 while (*p != NULL) { 283 parent = *p; 284 pos = rb_entry(parent, struct machine, rb_node); 285 if (pid < pos->pid) 286 p = &(*p)->rb_left; 287 else { 288 p = &(*p)->rb_right; 289 leftmost = false; 290 } 291 } 292 293 rb_link_node(&machine->rb_node, parent, p); 294 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost); 295 296 return machine; 297 } 298 299 void machines__set_comm_exec(struct machines *machines, bool comm_exec) 300 { 301 struct rb_node *nd; 302 303 machines->host.comm_exec = comm_exec; 304 305 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 306 struct machine *machine = rb_entry(nd, struct machine, rb_node); 307 308 machine->comm_exec = comm_exec; 309 } 310 } 311 312 struct machine *machines__find(struct machines *machines, pid_t pid) 313 { 314 struct rb_node **p = &machines->guests.rb_root.rb_node; 315 struct rb_node *parent = NULL; 316 struct machine *machine; 317 struct machine *default_machine = NULL; 318 319 if (pid == HOST_KERNEL_ID) 320 return &machines->host; 321 322 while (*p != NULL) { 323 parent = *p; 324 machine = rb_entry(parent, struct machine, rb_node); 325 if (pid < machine->pid) 326 p = &(*p)->rb_left; 327 else if (pid > machine->pid) 328 p = &(*p)->rb_right; 329 else 330 return machine; 331 if (!machine->pid) 332 default_machine = machine; 333 } 334 335 return default_machine; 336 } 337 338 struct machine *machines__findnew(struct machines *machines, pid_t pid) 339 { 340 char path[PATH_MAX]; 341 const char *root_dir = ""; 342 struct machine *machine = machines__find(machines, pid); 343 344 if (machine && (machine->pid == pid)) 345 goto out; 346 347 if ((pid != HOST_KERNEL_ID) && 348 (pid != DEFAULT_GUEST_KERNEL_ID) && 349 (symbol_conf.guestmount)) { 350 sprintf(path, "%s/%d", symbol_conf.guestmount, pid); 351 if (access(path, R_OK)) { 352 static struct strlist *seen; 353 354 if (!seen) 355 seen = strlist__new(NULL, NULL); 356 357 if (!strlist__has_entry(seen, path)) { 358 pr_err("Can't access file %s\n", path); 359 strlist__add(seen, path); 360 } 361 machine = NULL; 362 goto out; 363 } 364 root_dir = path; 365 } 366 367 machine = machines__add(machines, pid, root_dir); 368 out: 369 return machine; 370 } 371 372 struct machine *machines__find_guest(struct machines *machines, pid_t pid) 373 { 374 struct machine *machine = machines__find(machines, pid); 375 376 if (!machine) 377 machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID); 378 return machine; 379 } 380 381 void machines__process_guests(struct machines *machines, 382 machine__process_t process, void *data) 383 { 384 struct rb_node *nd; 385 386 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 387 struct machine *pos = rb_entry(nd, struct machine, rb_node); 388 process(pos, data); 389 } 390 } 391 392 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size) 393 { 394 struct rb_node *node; 395 struct machine *machine; 396 397 machines->host.id_hdr_size = id_hdr_size; 398 399 for (node = rb_first_cached(&machines->guests); node; 400 node = rb_next(node)) { 401 machine = rb_entry(node, struct machine, rb_node); 402 machine->id_hdr_size = id_hdr_size; 403 } 404 405 return; 406 } 407 408 static void machine__update_thread_pid(struct machine *machine, 409 struct thread *th, pid_t pid) 410 { 411 struct thread *leader; 412 413 if (pid == th->pid_ || pid == -1 || th->pid_ != -1) 414 return; 415 416 th->pid_ = pid; 417 418 if (th->pid_ == th->tid) 419 return; 420 421 leader = __machine__findnew_thread(machine, th->pid_, th->pid_); 422 if (!leader) 423 goto out_err; 424 425 if (!leader->maps) 426 leader->maps = maps__new(machine); 427 428 if (!leader->maps) 429 goto out_err; 430 431 if (th->maps == leader->maps) 432 return; 433 434 if (th->maps) { 435 /* 436 * Maps are created from MMAP events which provide the pid and 437 * tid. Consequently there never should be any maps on a thread 438 * with an unknown pid. Just print an error if there are. 439 */ 440 if (!maps__empty(th->maps)) 441 pr_err("Discarding thread maps for %d:%d\n", 442 th->pid_, th->tid); 443 maps__put(th->maps); 444 } 445 446 th->maps = maps__get(leader->maps); 447 out_put: 448 thread__put(leader); 449 return; 450 out_err: 451 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid); 452 goto out_put; 453 } 454 455 /* 456 * Front-end cache - TID lookups come in blocks, 457 * so most of the time we dont have to look up 458 * the full rbtree: 459 */ 460 static struct thread* 461 __threads__get_last_match(struct threads *threads, struct machine *machine, 462 int pid, int tid) 463 { 464 struct thread *th; 465 466 th = threads->last_match; 467 if (th != NULL) { 468 if (th->tid == tid) { 469 machine__update_thread_pid(machine, th, pid); 470 return thread__get(th); 471 } 472 473 threads->last_match = NULL; 474 } 475 476 return NULL; 477 } 478 479 static struct thread* 480 threads__get_last_match(struct threads *threads, struct machine *machine, 481 int pid, int tid) 482 { 483 struct thread *th = NULL; 484 485 if (perf_singlethreaded) 486 th = __threads__get_last_match(threads, machine, pid, tid); 487 488 return th; 489 } 490 491 static void 492 __threads__set_last_match(struct threads *threads, struct thread *th) 493 { 494 threads->last_match = th; 495 } 496 497 static void 498 threads__set_last_match(struct threads *threads, struct thread *th) 499 { 500 if (perf_singlethreaded) 501 __threads__set_last_match(threads, th); 502 } 503 504 /* 505 * Caller must eventually drop thread->refcnt returned with a successful 506 * lookup/new thread inserted. 507 */ 508 static struct thread *____machine__findnew_thread(struct machine *machine, 509 struct threads *threads, 510 pid_t pid, pid_t tid, 511 bool create) 512 { 513 struct rb_node **p = &threads->entries.rb_root.rb_node; 514 struct rb_node *parent = NULL; 515 struct thread *th; 516 bool leftmost = true; 517 518 th = threads__get_last_match(threads, machine, pid, tid); 519 if (th) 520 return th; 521 522 while (*p != NULL) { 523 parent = *p; 524 th = rb_entry(parent, struct thread, rb_node); 525 526 if (th->tid == tid) { 527 threads__set_last_match(threads, th); 528 machine__update_thread_pid(machine, th, pid); 529 return thread__get(th); 530 } 531 532 if (tid < th->tid) 533 p = &(*p)->rb_left; 534 else { 535 p = &(*p)->rb_right; 536 leftmost = false; 537 } 538 } 539 540 if (!create) 541 return NULL; 542 543 th = thread__new(pid, tid); 544 if (th != NULL) { 545 rb_link_node(&th->rb_node, parent, p); 546 rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost); 547 548 /* 549 * We have to initialize maps separately after rb tree is updated. 550 * 551 * The reason is that we call machine__findnew_thread 552 * within thread__init_maps to find the thread 553 * leader and that would screwed the rb tree. 554 */ 555 if (thread__init_maps(th, machine)) { 556 rb_erase_cached(&th->rb_node, &threads->entries); 557 RB_CLEAR_NODE(&th->rb_node); 558 thread__put(th); 559 return NULL; 560 } 561 /* 562 * It is now in the rbtree, get a ref 563 */ 564 thread__get(th); 565 threads__set_last_match(threads, th); 566 ++threads->nr; 567 } 568 569 return th; 570 } 571 572 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid) 573 { 574 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true); 575 } 576 577 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, 578 pid_t tid) 579 { 580 struct threads *threads = machine__threads(machine, tid); 581 struct thread *th; 582 583 down_write(&threads->lock); 584 th = __machine__findnew_thread(machine, pid, tid); 585 up_write(&threads->lock); 586 return th; 587 } 588 589 struct thread *machine__find_thread(struct machine *machine, pid_t pid, 590 pid_t tid) 591 { 592 struct threads *threads = machine__threads(machine, tid); 593 struct thread *th; 594 595 down_read(&threads->lock); 596 th = ____machine__findnew_thread(machine, threads, pid, tid, false); 597 up_read(&threads->lock); 598 return th; 599 } 600 601 /* 602 * Threads are identified by pid and tid, and the idle task has pid == tid == 0. 603 * So here a single thread is created for that, but actually there is a separate 604 * idle task per cpu, so there should be one 'struct thread' per cpu, but there 605 * is only 1. That causes problems for some tools, requiring workarounds. For 606 * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu(). 607 */ 608 struct thread *machine__idle_thread(struct machine *machine) 609 { 610 struct thread *thread = machine__findnew_thread(machine, 0, 0); 611 612 if (!thread || thread__set_comm(thread, "swapper", 0) || 613 thread__set_namespaces(thread, 0, NULL)) 614 pr_err("problem inserting idle task for machine pid %d\n", machine->pid); 615 616 return thread; 617 } 618 619 struct comm *machine__thread_exec_comm(struct machine *machine, 620 struct thread *thread) 621 { 622 if (machine->comm_exec) 623 return thread__exec_comm(thread); 624 else 625 return thread__comm(thread); 626 } 627 628 int machine__process_comm_event(struct machine *machine, union perf_event *event, 629 struct perf_sample *sample) 630 { 631 struct thread *thread = machine__findnew_thread(machine, 632 event->comm.pid, 633 event->comm.tid); 634 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC; 635 int err = 0; 636 637 if (exec) 638 machine->comm_exec = true; 639 640 if (dump_trace) 641 perf_event__fprintf_comm(event, stdout); 642 643 if (thread == NULL || 644 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) { 645 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n"); 646 err = -1; 647 } 648 649 thread__put(thread); 650 651 return err; 652 } 653 654 int machine__process_namespaces_event(struct machine *machine __maybe_unused, 655 union perf_event *event, 656 struct perf_sample *sample __maybe_unused) 657 { 658 struct thread *thread = machine__findnew_thread(machine, 659 event->namespaces.pid, 660 event->namespaces.tid); 661 int err = 0; 662 663 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES, 664 "\nWARNING: kernel seems to support more namespaces than perf" 665 " tool.\nTry updating the perf tool..\n\n"); 666 667 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES, 668 "\nWARNING: perf tool seems to support more namespaces than" 669 " the kernel.\nTry updating the kernel..\n\n"); 670 671 if (dump_trace) 672 perf_event__fprintf_namespaces(event, stdout); 673 674 if (thread == NULL || 675 thread__set_namespaces(thread, sample->time, &event->namespaces)) { 676 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n"); 677 err = -1; 678 } 679 680 thread__put(thread); 681 682 return err; 683 } 684 685 int machine__process_cgroup_event(struct machine *machine, 686 union perf_event *event, 687 struct perf_sample *sample __maybe_unused) 688 { 689 struct cgroup *cgrp; 690 691 if (dump_trace) 692 perf_event__fprintf_cgroup(event, stdout); 693 694 cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path); 695 if (cgrp == NULL) 696 return -ENOMEM; 697 698 return 0; 699 } 700 701 int machine__process_lost_event(struct machine *machine __maybe_unused, 702 union perf_event *event, struct perf_sample *sample __maybe_unused) 703 { 704 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n", 705 event->lost.id, event->lost.lost); 706 return 0; 707 } 708 709 int machine__process_lost_samples_event(struct machine *machine __maybe_unused, 710 union perf_event *event, struct perf_sample *sample) 711 { 712 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n", 713 sample->id, event->lost_samples.lost); 714 return 0; 715 } 716 717 static struct dso *machine__findnew_module_dso(struct machine *machine, 718 struct kmod_path *m, 719 const char *filename) 720 { 721 struct dso *dso; 722 723 down_write(&machine->dsos.lock); 724 725 dso = __dsos__find(&machine->dsos, m->name, true); 726 if (!dso) { 727 dso = __dsos__addnew(&machine->dsos, m->name); 728 if (dso == NULL) 729 goto out_unlock; 730 731 dso__set_module_info(dso, m, machine); 732 dso__set_long_name(dso, strdup(filename), true); 733 dso->kernel = DSO_SPACE__KERNEL; 734 } 735 736 dso__get(dso); 737 out_unlock: 738 up_write(&machine->dsos.lock); 739 return dso; 740 } 741 742 int machine__process_aux_event(struct machine *machine __maybe_unused, 743 union perf_event *event) 744 { 745 if (dump_trace) 746 perf_event__fprintf_aux(event, stdout); 747 return 0; 748 } 749 750 int machine__process_itrace_start_event(struct machine *machine __maybe_unused, 751 union perf_event *event) 752 { 753 if (dump_trace) 754 perf_event__fprintf_itrace_start(event, stdout); 755 return 0; 756 } 757 758 int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused, 759 union perf_event *event) 760 { 761 if (dump_trace) 762 perf_event__fprintf_aux_output_hw_id(event, stdout); 763 return 0; 764 } 765 766 int machine__process_switch_event(struct machine *machine __maybe_unused, 767 union perf_event *event) 768 { 769 if (dump_trace) 770 perf_event__fprintf_switch(event, stdout); 771 return 0; 772 } 773 774 static int machine__process_ksymbol_register(struct machine *machine, 775 union perf_event *event, 776 struct perf_sample *sample __maybe_unused) 777 { 778 struct symbol *sym; 779 struct map *map = maps__find(&machine->kmaps, event->ksymbol.addr); 780 781 if (!map) { 782 struct dso *dso = dso__new(event->ksymbol.name); 783 784 if (dso) { 785 dso->kernel = DSO_SPACE__KERNEL; 786 map = map__new2(0, dso); 787 dso__put(dso); 788 } 789 790 if (!dso || !map) { 791 return -ENOMEM; 792 } 793 794 if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) { 795 map->dso->binary_type = DSO_BINARY_TYPE__OOL; 796 map->dso->data.file_size = event->ksymbol.len; 797 dso__set_loaded(map->dso); 798 } 799 800 map->start = event->ksymbol.addr; 801 map->end = map->start + event->ksymbol.len; 802 maps__insert(&machine->kmaps, map); 803 map__put(map); 804 dso__set_loaded(dso); 805 806 if (is_bpf_image(event->ksymbol.name)) { 807 dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE; 808 dso__set_long_name(dso, "", false); 809 } 810 } 811 812 sym = symbol__new(map->map_ip(map, map->start), 813 event->ksymbol.len, 814 0, 0, event->ksymbol.name); 815 if (!sym) 816 return -ENOMEM; 817 dso__insert_symbol(map->dso, sym); 818 return 0; 819 } 820 821 static int machine__process_ksymbol_unregister(struct machine *machine, 822 union perf_event *event, 823 struct perf_sample *sample __maybe_unused) 824 { 825 struct symbol *sym; 826 struct map *map; 827 828 map = maps__find(&machine->kmaps, event->ksymbol.addr); 829 if (!map) 830 return 0; 831 832 if (map != machine->vmlinux_map) 833 maps__remove(&machine->kmaps, map); 834 else { 835 sym = dso__find_symbol(map->dso, map->map_ip(map, map->start)); 836 if (sym) 837 dso__delete_symbol(map->dso, sym); 838 } 839 840 return 0; 841 } 842 843 int machine__process_ksymbol(struct machine *machine __maybe_unused, 844 union perf_event *event, 845 struct perf_sample *sample) 846 { 847 if (dump_trace) 848 perf_event__fprintf_ksymbol(event, stdout); 849 850 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER) 851 return machine__process_ksymbol_unregister(machine, event, 852 sample); 853 return machine__process_ksymbol_register(machine, event, sample); 854 } 855 856 int machine__process_text_poke(struct machine *machine, union perf_event *event, 857 struct perf_sample *sample __maybe_unused) 858 { 859 struct map *map = maps__find(&machine->kmaps, event->text_poke.addr); 860 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 861 862 if (dump_trace) 863 perf_event__fprintf_text_poke(event, machine, stdout); 864 865 if (!event->text_poke.new_len) 866 return 0; 867 868 if (cpumode != PERF_RECORD_MISC_KERNEL) { 869 pr_debug("%s: unsupported cpumode - ignoring\n", __func__); 870 return 0; 871 } 872 873 if (map && map->dso) { 874 u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len; 875 int ret; 876 877 /* 878 * Kernel maps might be changed when loading symbols so loading 879 * must be done prior to using kernel maps. 880 */ 881 map__load(map); 882 ret = dso__data_write_cache_addr(map->dso, map, machine, 883 event->text_poke.addr, 884 new_bytes, 885 event->text_poke.new_len); 886 if (ret != event->text_poke.new_len) 887 pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n", 888 event->text_poke.addr); 889 } else { 890 pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n", 891 event->text_poke.addr); 892 } 893 894 return 0; 895 } 896 897 static struct map *machine__addnew_module_map(struct machine *machine, u64 start, 898 const char *filename) 899 { 900 struct map *map = NULL; 901 struct kmod_path m; 902 struct dso *dso; 903 904 if (kmod_path__parse_name(&m, filename)) 905 return NULL; 906 907 dso = machine__findnew_module_dso(machine, &m, filename); 908 if (dso == NULL) 909 goto out; 910 911 map = map__new2(start, dso); 912 if (map == NULL) 913 goto out; 914 915 maps__insert(&machine->kmaps, map); 916 917 /* Put the map here because maps__insert already got it */ 918 map__put(map); 919 out: 920 /* put the dso here, corresponding to machine__findnew_module_dso */ 921 dso__put(dso); 922 zfree(&m.name); 923 return map; 924 } 925 926 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp) 927 { 928 struct rb_node *nd; 929 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp); 930 931 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 932 struct machine *pos = rb_entry(nd, struct machine, rb_node); 933 ret += __dsos__fprintf(&pos->dsos.head, fp); 934 } 935 936 return ret; 937 } 938 939 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp, 940 bool (skip)(struct dso *dso, int parm), int parm) 941 { 942 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm); 943 } 944 945 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp, 946 bool (skip)(struct dso *dso, int parm), int parm) 947 { 948 struct rb_node *nd; 949 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm); 950 951 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 952 struct machine *pos = rb_entry(nd, struct machine, rb_node); 953 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm); 954 } 955 return ret; 956 } 957 958 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp) 959 { 960 int i; 961 size_t printed = 0; 962 struct dso *kdso = machine__kernel_dso(machine); 963 964 if (kdso->has_build_id) { 965 char filename[PATH_MAX]; 966 if (dso__build_id_filename(kdso, filename, sizeof(filename), 967 false)) 968 printed += fprintf(fp, "[0] %s\n", filename); 969 } 970 971 for (i = 0; i < vmlinux_path__nr_entries; ++i) 972 printed += fprintf(fp, "[%d] %s\n", 973 i + kdso->has_build_id, vmlinux_path[i]); 974 975 return printed; 976 } 977 978 size_t machine__fprintf(struct machine *machine, FILE *fp) 979 { 980 struct rb_node *nd; 981 size_t ret; 982 int i; 983 984 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 985 struct threads *threads = &machine->threads[i]; 986 987 down_read(&threads->lock); 988 989 ret = fprintf(fp, "Threads: %u\n", threads->nr); 990 991 for (nd = rb_first_cached(&threads->entries); nd; 992 nd = rb_next(nd)) { 993 struct thread *pos = rb_entry(nd, struct thread, rb_node); 994 995 ret += thread__fprintf(pos, fp); 996 } 997 998 up_read(&threads->lock); 999 } 1000 return ret; 1001 } 1002 1003 static struct dso *machine__get_kernel(struct machine *machine) 1004 { 1005 const char *vmlinux_name = machine->mmap_name; 1006 struct dso *kernel; 1007 1008 if (machine__is_host(machine)) { 1009 if (symbol_conf.vmlinux_name) 1010 vmlinux_name = symbol_conf.vmlinux_name; 1011 1012 kernel = machine__findnew_kernel(machine, vmlinux_name, 1013 "[kernel]", DSO_SPACE__KERNEL); 1014 } else { 1015 if (symbol_conf.default_guest_vmlinux_name) 1016 vmlinux_name = symbol_conf.default_guest_vmlinux_name; 1017 1018 kernel = machine__findnew_kernel(machine, vmlinux_name, 1019 "[guest.kernel]", 1020 DSO_SPACE__KERNEL_GUEST); 1021 } 1022 1023 if (kernel != NULL && (!kernel->has_build_id)) 1024 dso__read_running_kernel_build_id(kernel, machine); 1025 1026 return kernel; 1027 } 1028 1029 struct process_args { 1030 u64 start; 1031 }; 1032 1033 void machine__get_kallsyms_filename(struct machine *machine, char *buf, 1034 size_t bufsz) 1035 { 1036 if (machine__is_default_guest(machine)) 1037 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms); 1038 else 1039 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir); 1040 } 1041 1042 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL}; 1043 1044 /* Figure out the start address of kernel map from /proc/kallsyms. 1045 * Returns the name of the start symbol in *symbol_name. Pass in NULL as 1046 * symbol_name if it's not that important. 1047 */ 1048 static int machine__get_running_kernel_start(struct machine *machine, 1049 const char **symbol_name, 1050 u64 *start, u64 *end) 1051 { 1052 char filename[PATH_MAX]; 1053 int i, err = -1; 1054 const char *name; 1055 u64 addr = 0; 1056 1057 machine__get_kallsyms_filename(machine, filename, PATH_MAX); 1058 1059 if (symbol__restricted_filename(filename, "/proc/kallsyms")) 1060 return 0; 1061 1062 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) { 1063 err = kallsyms__get_function_start(filename, name, &addr); 1064 if (!err) 1065 break; 1066 } 1067 1068 if (err) 1069 return -1; 1070 1071 if (symbol_name) 1072 *symbol_name = name; 1073 1074 *start = addr; 1075 1076 err = kallsyms__get_function_start(filename, "_etext", &addr); 1077 if (!err) 1078 *end = addr; 1079 1080 return 0; 1081 } 1082 1083 int machine__create_extra_kernel_map(struct machine *machine, 1084 struct dso *kernel, 1085 struct extra_kernel_map *xm) 1086 { 1087 struct kmap *kmap; 1088 struct map *map; 1089 1090 map = map__new2(xm->start, kernel); 1091 if (!map) 1092 return -1; 1093 1094 map->end = xm->end; 1095 map->pgoff = xm->pgoff; 1096 1097 kmap = map__kmap(map); 1098 1099 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN); 1100 1101 maps__insert(&machine->kmaps, map); 1102 1103 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n", 1104 kmap->name, map->start, map->end); 1105 1106 map__put(map); 1107 1108 return 0; 1109 } 1110 1111 static u64 find_entry_trampoline(struct dso *dso) 1112 { 1113 /* Duplicates are removed so lookup all aliases */ 1114 const char *syms[] = { 1115 "_entry_trampoline", 1116 "__entry_trampoline_start", 1117 "entry_SYSCALL_64_trampoline", 1118 }; 1119 struct symbol *sym = dso__first_symbol(dso); 1120 unsigned int i; 1121 1122 for (; sym; sym = dso__next_symbol(sym)) { 1123 if (sym->binding != STB_GLOBAL) 1124 continue; 1125 for (i = 0; i < ARRAY_SIZE(syms); i++) { 1126 if (!strcmp(sym->name, syms[i])) 1127 return sym->start; 1128 } 1129 } 1130 1131 return 0; 1132 } 1133 1134 /* 1135 * These values can be used for kernels that do not have symbols for the entry 1136 * trampolines in kallsyms. 1137 */ 1138 #define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL 1139 #define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000 1140 #define X86_64_ENTRY_TRAMPOLINE 0x6000 1141 1142 /* Map x86_64 PTI entry trampolines */ 1143 int machine__map_x86_64_entry_trampolines(struct machine *machine, 1144 struct dso *kernel) 1145 { 1146 struct maps *kmaps = &machine->kmaps; 1147 int nr_cpus_avail, cpu; 1148 bool found = false; 1149 struct map *map; 1150 u64 pgoff; 1151 1152 /* 1153 * In the vmlinux case, pgoff is a virtual address which must now be 1154 * mapped to a vmlinux offset. 1155 */ 1156 maps__for_each_entry(kmaps, map) { 1157 struct kmap *kmap = __map__kmap(map); 1158 struct map *dest_map; 1159 1160 if (!kmap || !is_entry_trampoline(kmap->name)) 1161 continue; 1162 1163 dest_map = maps__find(kmaps, map->pgoff); 1164 if (dest_map != map) 1165 map->pgoff = dest_map->map_ip(dest_map, map->pgoff); 1166 found = true; 1167 } 1168 if (found || machine->trampolines_mapped) 1169 return 0; 1170 1171 pgoff = find_entry_trampoline(kernel); 1172 if (!pgoff) 1173 return 0; 1174 1175 nr_cpus_avail = machine__nr_cpus_avail(machine); 1176 1177 /* Add a 1 page map for each CPU's entry trampoline */ 1178 for (cpu = 0; cpu < nr_cpus_avail; cpu++) { 1179 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU + 1180 cpu * X86_64_CPU_ENTRY_AREA_SIZE + 1181 X86_64_ENTRY_TRAMPOLINE; 1182 struct extra_kernel_map xm = { 1183 .start = va, 1184 .end = va + page_size, 1185 .pgoff = pgoff, 1186 }; 1187 1188 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN); 1189 1190 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0) 1191 return -1; 1192 } 1193 1194 machine->trampolines_mapped = nr_cpus_avail; 1195 1196 return 0; 1197 } 1198 1199 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused, 1200 struct dso *kernel __maybe_unused) 1201 { 1202 return 0; 1203 } 1204 1205 static int 1206 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel) 1207 { 1208 /* In case of renewal the kernel map, destroy previous one */ 1209 machine__destroy_kernel_maps(machine); 1210 1211 machine->vmlinux_map = map__new2(0, kernel); 1212 if (machine->vmlinux_map == NULL) 1213 return -1; 1214 1215 machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip; 1216 maps__insert(&machine->kmaps, machine->vmlinux_map); 1217 return 0; 1218 } 1219 1220 void machine__destroy_kernel_maps(struct machine *machine) 1221 { 1222 struct kmap *kmap; 1223 struct map *map = machine__kernel_map(machine); 1224 1225 if (map == NULL) 1226 return; 1227 1228 kmap = map__kmap(map); 1229 maps__remove(&machine->kmaps, map); 1230 if (kmap && kmap->ref_reloc_sym) { 1231 zfree((char **)&kmap->ref_reloc_sym->name); 1232 zfree(&kmap->ref_reloc_sym); 1233 } 1234 1235 map__zput(machine->vmlinux_map); 1236 } 1237 1238 int machines__create_guest_kernel_maps(struct machines *machines) 1239 { 1240 int ret = 0; 1241 struct dirent **namelist = NULL; 1242 int i, items = 0; 1243 char path[PATH_MAX]; 1244 pid_t pid; 1245 char *endp; 1246 1247 if (symbol_conf.default_guest_vmlinux_name || 1248 symbol_conf.default_guest_modules || 1249 symbol_conf.default_guest_kallsyms) { 1250 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID); 1251 } 1252 1253 if (symbol_conf.guestmount) { 1254 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL); 1255 if (items <= 0) 1256 return -ENOENT; 1257 for (i = 0; i < items; i++) { 1258 if (!isdigit(namelist[i]->d_name[0])) { 1259 /* Filter out . and .. */ 1260 continue; 1261 } 1262 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10); 1263 if ((*endp != '\0') || 1264 (endp == namelist[i]->d_name) || 1265 (errno == ERANGE)) { 1266 pr_debug("invalid directory (%s). Skipping.\n", 1267 namelist[i]->d_name); 1268 continue; 1269 } 1270 sprintf(path, "%s/%s/proc/kallsyms", 1271 symbol_conf.guestmount, 1272 namelist[i]->d_name); 1273 ret = access(path, R_OK); 1274 if (ret) { 1275 pr_debug("Can't access file %s\n", path); 1276 goto failure; 1277 } 1278 machines__create_kernel_maps(machines, pid); 1279 } 1280 failure: 1281 free(namelist); 1282 } 1283 1284 return ret; 1285 } 1286 1287 void machines__destroy_kernel_maps(struct machines *machines) 1288 { 1289 struct rb_node *next = rb_first_cached(&machines->guests); 1290 1291 machine__destroy_kernel_maps(&machines->host); 1292 1293 while (next) { 1294 struct machine *pos = rb_entry(next, struct machine, rb_node); 1295 1296 next = rb_next(&pos->rb_node); 1297 rb_erase_cached(&pos->rb_node, &machines->guests); 1298 machine__delete(pos); 1299 } 1300 } 1301 1302 int machines__create_kernel_maps(struct machines *machines, pid_t pid) 1303 { 1304 struct machine *machine = machines__findnew(machines, pid); 1305 1306 if (machine == NULL) 1307 return -1; 1308 1309 return machine__create_kernel_maps(machine); 1310 } 1311 1312 int machine__load_kallsyms(struct machine *machine, const char *filename) 1313 { 1314 struct map *map = machine__kernel_map(machine); 1315 int ret = __dso__load_kallsyms(map->dso, filename, map, true); 1316 1317 if (ret > 0) { 1318 dso__set_loaded(map->dso); 1319 /* 1320 * Since /proc/kallsyms will have multiple sessions for the 1321 * kernel, with modules between them, fixup the end of all 1322 * sections. 1323 */ 1324 maps__fixup_end(&machine->kmaps); 1325 } 1326 1327 return ret; 1328 } 1329 1330 int machine__load_vmlinux_path(struct machine *machine) 1331 { 1332 struct map *map = machine__kernel_map(machine); 1333 int ret = dso__load_vmlinux_path(map->dso, map); 1334 1335 if (ret > 0) 1336 dso__set_loaded(map->dso); 1337 1338 return ret; 1339 } 1340 1341 static char *get_kernel_version(const char *root_dir) 1342 { 1343 char version[PATH_MAX]; 1344 FILE *file; 1345 char *name, *tmp; 1346 const char *prefix = "Linux version "; 1347 1348 sprintf(version, "%s/proc/version", root_dir); 1349 file = fopen(version, "r"); 1350 if (!file) 1351 return NULL; 1352 1353 tmp = fgets(version, sizeof(version), file); 1354 fclose(file); 1355 if (!tmp) 1356 return NULL; 1357 1358 name = strstr(version, prefix); 1359 if (!name) 1360 return NULL; 1361 name += strlen(prefix); 1362 tmp = strchr(name, ' '); 1363 if (tmp) 1364 *tmp = '\0'; 1365 1366 return strdup(name); 1367 } 1368 1369 static bool is_kmod_dso(struct dso *dso) 1370 { 1371 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE || 1372 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE; 1373 } 1374 1375 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m) 1376 { 1377 char *long_name; 1378 struct map *map = maps__find_by_name(maps, m->name); 1379 1380 if (map == NULL) 1381 return 0; 1382 1383 long_name = strdup(path); 1384 if (long_name == NULL) 1385 return -ENOMEM; 1386 1387 dso__set_long_name(map->dso, long_name, true); 1388 dso__kernel_module_get_build_id(map->dso, ""); 1389 1390 /* 1391 * Full name could reveal us kmod compression, so 1392 * we need to update the symtab_type if needed. 1393 */ 1394 if (m->comp && is_kmod_dso(map->dso)) { 1395 map->dso->symtab_type++; 1396 map->dso->comp = m->comp; 1397 } 1398 1399 return 0; 1400 } 1401 1402 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth) 1403 { 1404 struct dirent *dent; 1405 DIR *dir = opendir(dir_name); 1406 int ret = 0; 1407 1408 if (!dir) { 1409 pr_debug("%s: cannot open %s dir\n", __func__, dir_name); 1410 return -1; 1411 } 1412 1413 while ((dent = readdir(dir)) != NULL) { 1414 char path[PATH_MAX]; 1415 struct stat st; 1416 1417 /*sshfs might return bad dent->d_type, so we have to stat*/ 1418 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name); 1419 if (stat(path, &st)) 1420 continue; 1421 1422 if (S_ISDIR(st.st_mode)) { 1423 if (!strcmp(dent->d_name, ".") || 1424 !strcmp(dent->d_name, "..")) 1425 continue; 1426 1427 /* Do not follow top-level source and build symlinks */ 1428 if (depth == 0) { 1429 if (!strcmp(dent->d_name, "source") || 1430 !strcmp(dent->d_name, "build")) 1431 continue; 1432 } 1433 1434 ret = maps__set_modules_path_dir(maps, path, depth + 1); 1435 if (ret < 0) 1436 goto out; 1437 } else { 1438 struct kmod_path m; 1439 1440 ret = kmod_path__parse_name(&m, dent->d_name); 1441 if (ret) 1442 goto out; 1443 1444 if (m.kmod) 1445 ret = maps__set_module_path(maps, path, &m); 1446 1447 zfree(&m.name); 1448 1449 if (ret) 1450 goto out; 1451 } 1452 } 1453 1454 out: 1455 closedir(dir); 1456 return ret; 1457 } 1458 1459 static int machine__set_modules_path(struct machine *machine) 1460 { 1461 char *version; 1462 char modules_path[PATH_MAX]; 1463 1464 version = get_kernel_version(machine->root_dir); 1465 if (!version) 1466 return -1; 1467 1468 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s", 1469 machine->root_dir, version); 1470 free(version); 1471 1472 return maps__set_modules_path_dir(&machine->kmaps, modules_path, 0); 1473 } 1474 int __weak arch__fix_module_text_start(u64 *start __maybe_unused, 1475 u64 *size __maybe_unused, 1476 const char *name __maybe_unused) 1477 { 1478 return 0; 1479 } 1480 1481 static int machine__create_module(void *arg, const char *name, u64 start, 1482 u64 size) 1483 { 1484 struct machine *machine = arg; 1485 struct map *map; 1486 1487 if (arch__fix_module_text_start(&start, &size, name) < 0) 1488 return -1; 1489 1490 map = machine__addnew_module_map(machine, start, name); 1491 if (map == NULL) 1492 return -1; 1493 map->end = start + size; 1494 1495 dso__kernel_module_get_build_id(map->dso, machine->root_dir); 1496 1497 return 0; 1498 } 1499 1500 static int machine__create_modules(struct machine *machine) 1501 { 1502 const char *modules; 1503 char path[PATH_MAX]; 1504 1505 if (machine__is_default_guest(machine)) { 1506 modules = symbol_conf.default_guest_modules; 1507 } else { 1508 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir); 1509 modules = path; 1510 } 1511 1512 if (symbol__restricted_filename(modules, "/proc/modules")) 1513 return -1; 1514 1515 if (modules__parse(modules, machine, machine__create_module)) 1516 return -1; 1517 1518 if (!machine__set_modules_path(machine)) 1519 return 0; 1520 1521 pr_debug("Problems setting modules path maps, continuing anyway...\n"); 1522 1523 return 0; 1524 } 1525 1526 static void machine__set_kernel_mmap(struct machine *machine, 1527 u64 start, u64 end) 1528 { 1529 machine->vmlinux_map->start = start; 1530 machine->vmlinux_map->end = end; 1531 /* 1532 * Be a bit paranoid here, some perf.data file came with 1533 * a zero sized synthesized MMAP event for the kernel. 1534 */ 1535 if (start == 0 && end == 0) 1536 machine->vmlinux_map->end = ~0ULL; 1537 } 1538 1539 static void machine__update_kernel_mmap(struct machine *machine, 1540 u64 start, u64 end) 1541 { 1542 struct map *map = machine__kernel_map(machine); 1543 1544 map__get(map); 1545 maps__remove(&machine->kmaps, map); 1546 1547 machine__set_kernel_mmap(machine, start, end); 1548 1549 maps__insert(&machine->kmaps, map); 1550 map__put(map); 1551 } 1552 1553 int machine__create_kernel_maps(struct machine *machine) 1554 { 1555 struct dso *kernel = machine__get_kernel(machine); 1556 const char *name = NULL; 1557 struct map *map; 1558 u64 start = 0, end = ~0ULL; 1559 int ret; 1560 1561 if (kernel == NULL) 1562 return -1; 1563 1564 ret = __machine__create_kernel_maps(machine, kernel); 1565 if (ret < 0) 1566 goto out_put; 1567 1568 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) { 1569 if (machine__is_host(machine)) 1570 pr_debug("Problems creating module maps, " 1571 "continuing anyway...\n"); 1572 else 1573 pr_debug("Problems creating module maps for guest %d, " 1574 "continuing anyway...\n", machine->pid); 1575 } 1576 1577 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) { 1578 if (name && 1579 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) { 1580 machine__destroy_kernel_maps(machine); 1581 ret = -1; 1582 goto out_put; 1583 } 1584 1585 /* 1586 * we have a real start address now, so re-order the kmaps 1587 * assume it's the last in the kmaps 1588 */ 1589 machine__update_kernel_mmap(machine, start, end); 1590 } 1591 1592 if (machine__create_extra_kernel_maps(machine, kernel)) 1593 pr_debug("Problems creating extra kernel maps, continuing anyway...\n"); 1594 1595 if (end == ~0ULL) { 1596 /* update end address of the kernel map using adjacent module address */ 1597 map = map__next(machine__kernel_map(machine)); 1598 if (map) 1599 machine__set_kernel_mmap(machine, start, map->start); 1600 } 1601 1602 out_put: 1603 dso__put(kernel); 1604 return ret; 1605 } 1606 1607 static bool machine__uses_kcore(struct machine *machine) 1608 { 1609 struct dso *dso; 1610 1611 list_for_each_entry(dso, &machine->dsos.head, node) { 1612 if (dso__is_kcore(dso)) 1613 return true; 1614 } 1615 1616 return false; 1617 } 1618 1619 static bool perf_event__is_extra_kernel_mmap(struct machine *machine, 1620 struct extra_kernel_map *xm) 1621 { 1622 return machine__is(machine, "x86_64") && 1623 is_entry_trampoline(xm->name); 1624 } 1625 1626 static int machine__process_extra_kernel_map(struct machine *machine, 1627 struct extra_kernel_map *xm) 1628 { 1629 struct dso *kernel = machine__kernel_dso(machine); 1630 1631 if (kernel == NULL) 1632 return -1; 1633 1634 return machine__create_extra_kernel_map(machine, kernel, xm); 1635 } 1636 1637 static int machine__process_kernel_mmap_event(struct machine *machine, 1638 struct extra_kernel_map *xm, 1639 struct build_id *bid) 1640 { 1641 struct map *map; 1642 enum dso_space_type dso_space; 1643 bool is_kernel_mmap; 1644 1645 /* If we have maps from kcore then we do not need or want any others */ 1646 if (machine__uses_kcore(machine)) 1647 return 0; 1648 1649 if (machine__is_host(machine)) 1650 dso_space = DSO_SPACE__KERNEL; 1651 else 1652 dso_space = DSO_SPACE__KERNEL_GUEST; 1653 1654 is_kernel_mmap = memcmp(xm->name, machine->mmap_name, 1655 strlen(machine->mmap_name) - 1) == 0; 1656 if (xm->name[0] == '/' || 1657 (!is_kernel_mmap && xm->name[0] == '[')) { 1658 map = machine__addnew_module_map(machine, xm->start, 1659 xm->name); 1660 if (map == NULL) 1661 goto out_problem; 1662 1663 map->end = map->start + xm->end - xm->start; 1664 1665 if (build_id__is_defined(bid)) 1666 dso__set_build_id(map->dso, bid); 1667 1668 } else if (is_kernel_mmap) { 1669 const char *symbol_name = (xm->name + strlen(machine->mmap_name)); 1670 /* 1671 * Should be there already, from the build-id table in 1672 * the header. 1673 */ 1674 struct dso *kernel = NULL; 1675 struct dso *dso; 1676 1677 down_read(&machine->dsos.lock); 1678 1679 list_for_each_entry(dso, &machine->dsos.head, node) { 1680 1681 /* 1682 * The cpumode passed to is_kernel_module is not the 1683 * cpumode of *this* event. If we insist on passing 1684 * correct cpumode to is_kernel_module, we should 1685 * record the cpumode when we adding this dso to the 1686 * linked list. 1687 * 1688 * However we don't really need passing correct 1689 * cpumode. We know the correct cpumode must be kernel 1690 * mode (if not, we should not link it onto kernel_dsos 1691 * list). 1692 * 1693 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN. 1694 * is_kernel_module() treats it as a kernel cpumode. 1695 */ 1696 1697 if (!dso->kernel || 1698 is_kernel_module(dso->long_name, 1699 PERF_RECORD_MISC_CPUMODE_UNKNOWN)) 1700 continue; 1701 1702 1703 kernel = dso; 1704 break; 1705 } 1706 1707 up_read(&machine->dsos.lock); 1708 1709 if (kernel == NULL) 1710 kernel = machine__findnew_dso(machine, machine->mmap_name); 1711 if (kernel == NULL) 1712 goto out_problem; 1713 1714 kernel->kernel = dso_space; 1715 if (__machine__create_kernel_maps(machine, kernel) < 0) { 1716 dso__put(kernel); 1717 goto out_problem; 1718 } 1719 1720 if (strstr(kernel->long_name, "vmlinux")) 1721 dso__set_short_name(kernel, "[kernel.vmlinux]", false); 1722 1723 machine__update_kernel_mmap(machine, xm->start, xm->end); 1724 1725 if (build_id__is_defined(bid)) 1726 dso__set_build_id(kernel, bid); 1727 1728 /* 1729 * Avoid using a zero address (kptr_restrict) for the ref reloc 1730 * symbol. Effectively having zero here means that at record 1731 * time /proc/sys/kernel/kptr_restrict was non zero. 1732 */ 1733 if (xm->pgoff != 0) { 1734 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, 1735 symbol_name, 1736 xm->pgoff); 1737 } 1738 1739 if (machine__is_default_guest(machine)) { 1740 /* 1741 * preload dso of guest kernel and modules 1742 */ 1743 dso__load(kernel, machine__kernel_map(machine)); 1744 } 1745 } else if (perf_event__is_extra_kernel_mmap(machine, xm)) { 1746 return machine__process_extra_kernel_map(machine, xm); 1747 } 1748 return 0; 1749 out_problem: 1750 return -1; 1751 } 1752 1753 int machine__process_mmap2_event(struct machine *machine, 1754 union perf_event *event, 1755 struct perf_sample *sample) 1756 { 1757 struct thread *thread; 1758 struct map *map; 1759 struct dso_id dso_id = { 1760 .maj = event->mmap2.maj, 1761 .min = event->mmap2.min, 1762 .ino = event->mmap2.ino, 1763 .ino_generation = event->mmap2.ino_generation, 1764 }; 1765 struct build_id __bid, *bid = NULL; 1766 int ret = 0; 1767 1768 if (dump_trace) 1769 perf_event__fprintf_mmap2(event, stdout); 1770 1771 if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) { 1772 bid = &__bid; 1773 build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size); 1774 } 1775 1776 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1777 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1778 struct extra_kernel_map xm = { 1779 .start = event->mmap2.start, 1780 .end = event->mmap2.start + event->mmap2.len, 1781 .pgoff = event->mmap2.pgoff, 1782 }; 1783 1784 strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN); 1785 ret = machine__process_kernel_mmap_event(machine, &xm, bid); 1786 if (ret < 0) 1787 goto out_problem; 1788 return 0; 1789 } 1790 1791 thread = machine__findnew_thread(machine, event->mmap2.pid, 1792 event->mmap2.tid); 1793 if (thread == NULL) 1794 goto out_problem; 1795 1796 map = map__new(machine, event->mmap2.start, 1797 event->mmap2.len, event->mmap2.pgoff, 1798 &dso_id, event->mmap2.prot, 1799 event->mmap2.flags, bid, 1800 event->mmap2.filename, thread); 1801 1802 if (map == NULL) 1803 goto out_problem_map; 1804 1805 ret = thread__insert_map(thread, map); 1806 if (ret) 1807 goto out_problem_insert; 1808 1809 thread__put(thread); 1810 map__put(map); 1811 return 0; 1812 1813 out_problem_insert: 1814 map__put(map); 1815 out_problem_map: 1816 thread__put(thread); 1817 out_problem: 1818 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n"); 1819 return 0; 1820 } 1821 1822 int machine__process_mmap_event(struct machine *machine, union perf_event *event, 1823 struct perf_sample *sample) 1824 { 1825 struct thread *thread; 1826 struct map *map; 1827 u32 prot = 0; 1828 int ret = 0; 1829 1830 if (dump_trace) 1831 perf_event__fprintf_mmap(event, stdout); 1832 1833 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1834 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1835 struct extra_kernel_map xm = { 1836 .start = event->mmap.start, 1837 .end = event->mmap.start + event->mmap.len, 1838 .pgoff = event->mmap.pgoff, 1839 }; 1840 1841 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN); 1842 ret = machine__process_kernel_mmap_event(machine, &xm, NULL); 1843 if (ret < 0) 1844 goto out_problem; 1845 return 0; 1846 } 1847 1848 thread = machine__findnew_thread(machine, event->mmap.pid, 1849 event->mmap.tid); 1850 if (thread == NULL) 1851 goto out_problem; 1852 1853 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA)) 1854 prot = PROT_EXEC; 1855 1856 map = map__new(machine, event->mmap.start, 1857 event->mmap.len, event->mmap.pgoff, 1858 NULL, prot, 0, NULL, event->mmap.filename, thread); 1859 1860 if (map == NULL) 1861 goto out_problem_map; 1862 1863 ret = thread__insert_map(thread, map); 1864 if (ret) 1865 goto out_problem_insert; 1866 1867 thread__put(thread); 1868 map__put(map); 1869 return 0; 1870 1871 out_problem_insert: 1872 map__put(map); 1873 out_problem_map: 1874 thread__put(thread); 1875 out_problem: 1876 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n"); 1877 return 0; 1878 } 1879 1880 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock) 1881 { 1882 struct threads *threads = machine__threads(machine, th->tid); 1883 1884 if (threads->last_match == th) 1885 threads__set_last_match(threads, NULL); 1886 1887 if (lock) 1888 down_write(&threads->lock); 1889 1890 BUG_ON(refcount_read(&th->refcnt) == 0); 1891 1892 rb_erase_cached(&th->rb_node, &threads->entries); 1893 RB_CLEAR_NODE(&th->rb_node); 1894 --threads->nr; 1895 /* 1896 * Move it first to the dead_threads list, then drop the reference, 1897 * if this is the last reference, then the thread__delete destructor 1898 * will be called and we will remove it from the dead_threads list. 1899 */ 1900 list_add_tail(&th->node, &threads->dead); 1901 1902 /* 1903 * We need to do the put here because if this is the last refcount, 1904 * then we will be touching the threads->dead head when removing the 1905 * thread. 1906 */ 1907 thread__put(th); 1908 1909 if (lock) 1910 up_write(&threads->lock); 1911 } 1912 1913 void machine__remove_thread(struct machine *machine, struct thread *th) 1914 { 1915 return __machine__remove_thread(machine, th, true); 1916 } 1917 1918 int machine__process_fork_event(struct machine *machine, union perf_event *event, 1919 struct perf_sample *sample) 1920 { 1921 struct thread *thread = machine__find_thread(machine, 1922 event->fork.pid, 1923 event->fork.tid); 1924 struct thread *parent = machine__findnew_thread(machine, 1925 event->fork.ppid, 1926 event->fork.ptid); 1927 bool do_maps_clone = true; 1928 int err = 0; 1929 1930 if (dump_trace) 1931 perf_event__fprintf_task(event, stdout); 1932 1933 /* 1934 * There may be an existing thread that is not actually the parent, 1935 * either because we are processing events out of order, or because the 1936 * (fork) event that would have removed the thread was lost. Assume the 1937 * latter case and continue on as best we can. 1938 */ 1939 if (parent->pid_ != (pid_t)event->fork.ppid) { 1940 dump_printf("removing erroneous parent thread %d/%d\n", 1941 parent->pid_, parent->tid); 1942 machine__remove_thread(machine, parent); 1943 thread__put(parent); 1944 parent = machine__findnew_thread(machine, event->fork.ppid, 1945 event->fork.ptid); 1946 } 1947 1948 /* if a thread currently exists for the thread id remove it */ 1949 if (thread != NULL) { 1950 machine__remove_thread(machine, thread); 1951 thread__put(thread); 1952 } 1953 1954 thread = machine__findnew_thread(machine, event->fork.pid, 1955 event->fork.tid); 1956 /* 1957 * When synthesizing FORK events, we are trying to create thread 1958 * objects for the already running tasks on the machine. 1959 * 1960 * Normally, for a kernel FORK event, we want to clone the parent's 1961 * maps because that is what the kernel just did. 1962 * 1963 * But when synthesizing, this should not be done. If we do, we end up 1964 * with overlapping maps as we process the synthesized MMAP2 events that 1965 * get delivered shortly thereafter. 1966 * 1967 * Use the FORK event misc flags in an internal way to signal this 1968 * situation, so we can elide the map clone when appropriate. 1969 */ 1970 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC) 1971 do_maps_clone = false; 1972 1973 if (thread == NULL || parent == NULL || 1974 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) { 1975 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n"); 1976 err = -1; 1977 } 1978 thread__put(thread); 1979 thread__put(parent); 1980 1981 return err; 1982 } 1983 1984 int machine__process_exit_event(struct machine *machine, union perf_event *event, 1985 struct perf_sample *sample __maybe_unused) 1986 { 1987 struct thread *thread = machine__find_thread(machine, 1988 event->fork.pid, 1989 event->fork.tid); 1990 1991 if (dump_trace) 1992 perf_event__fprintf_task(event, stdout); 1993 1994 if (thread != NULL) { 1995 thread__exited(thread); 1996 thread__put(thread); 1997 } 1998 1999 return 0; 2000 } 2001 2002 int machine__process_event(struct machine *machine, union perf_event *event, 2003 struct perf_sample *sample) 2004 { 2005 int ret; 2006 2007 switch (event->header.type) { 2008 case PERF_RECORD_COMM: 2009 ret = machine__process_comm_event(machine, event, sample); break; 2010 case PERF_RECORD_MMAP: 2011 ret = machine__process_mmap_event(machine, event, sample); break; 2012 case PERF_RECORD_NAMESPACES: 2013 ret = machine__process_namespaces_event(machine, event, sample); break; 2014 case PERF_RECORD_CGROUP: 2015 ret = machine__process_cgroup_event(machine, event, sample); break; 2016 case PERF_RECORD_MMAP2: 2017 ret = machine__process_mmap2_event(machine, event, sample); break; 2018 case PERF_RECORD_FORK: 2019 ret = machine__process_fork_event(machine, event, sample); break; 2020 case PERF_RECORD_EXIT: 2021 ret = machine__process_exit_event(machine, event, sample); break; 2022 case PERF_RECORD_LOST: 2023 ret = machine__process_lost_event(machine, event, sample); break; 2024 case PERF_RECORD_AUX: 2025 ret = machine__process_aux_event(machine, event); break; 2026 case PERF_RECORD_ITRACE_START: 2027 ret = machine__process_itrace_start_event(machine, event); break; 2028 case PERF_RECORD_LOST_SAMPLES: 2029 ret = machine__process_lost_samples_event(machine, event, sample); break; 2030 case PERF_RECORD_SWITCH: 2031 case PERF_RECORD_SWITCH_CPU_WIDE: 2032 ret = machine__process_switch_event(machine, event); break; 2033 case PERF_RECORD_KSYMBOL: 2034 ret = machine__process_ksymbol(machine, event, sample); break; 2035 case PERF_RECORD_BPF_EVENT: 2036 ret = machine__process_bpf(machine, event, sample); break; 2037 case PERF_RECORD_TEXT_POKE: 2038 ret = machine__process_text_poke(machine, event, sample); break; 2039 case PERF_RECORD_AUX_OUTPUT_HW_ID: 2040 ret = machine__process_aux_output_hw_id_event(machine, event); break; 2041 default: 2042 ret = -1; 2043 break; 2044 } 2045 2046 return ret; 2047 } 2048 2049 static bool symbol__match_regex(struct symbol *sym, regex_t *regex) 2050 { 2051 if (!regexec(regex, sym->name, 0, NULL, 0)) 2052 return true; 2053 return false; 2054 } 2055 2056 static void ip__resolve_ams(struct thread *thread, 2057 struct addr_map_symbol *ams, 2058 u64 ip) 2059 { 2060 struct addr_location al; 2061 2062 memset(&al, 0, sizeof(al)); 2063 /* 2064 * We cannot use the header.misc hint to determine whether a 2065 * branch stack address is user, kernel, guest, hypervisor. 2066 * Branches may straddle the kernel/user/hypervisor boundaries. 2067 * Thus, we have to try consecutively until we find a match 2068 * or else, the symbol is unknown 2069 */ 2070 thread__find_cpumode_addr_location(thread, ip, &al); 2071 2072 ams->addr = ip; 2073 ams->al_addr = al.addr; 2074 ams->ms.maps = al.maps; 2075 ams->ms.sym = al.sym; 2076 ams->ms.map = al.map; 2077 ams->phys_addr = 0; 2078 ams->data_page_size = 0; 2079 } 2080 2081 static void ip__resolve_data(struct thread *thread, 2082 u8 m, struct addr_map_symbol *ams, 2083 u64 addr, u64 phys_addr, u64 daddr_page_size) 2084 { 2085 struct addr_location al; 2086 2087 memset(&al, 0, sizeof(al)); 2088 2089 thread__find_symbol(thread, m, addr, &al); 2090 2091 ams->addr = addr; 2092 ams->al_addr = al.addr; 2093 ams->ms.maps = al.maps; 2094 ams->ms.sym = al.sym; 2095 ams->ms.map = al.map; 2096 ams->phys_addr = phys_addr; 2097 ams->data_page_size = daddr_page_size; 2098 } 2099 2100 struct mem_info *sample__resolve_mem(struct perf_sample *sample, 2101 struct addr_location *al) 2102 { 2103 struct mem_info *mi = mem_info__new(); 2104 2105 if (!mi) 2106 return NULL; 2107 2108 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip); 2109 ip__resolve_data(al->thread, al->cpumode, &mi->daddr, 2110 sample->addr, sample->phys_addr, 2111 sample->data_page_size); 2112 mi->data_src.val = sample->data_src; 2113 2114 return mi; 2115 } 2116 2117 static char *callchain_srcline(struct map_symbol *ms, u64 ip) 2118 { 2119 struct map *map = ms->map; 2120 char *srcline = NULL; 2121 2122 if (!map || callchain_param.key == CCKEY_FUNCTION) 2123 return srcline; 2124 2125 srcline = srcline__tree_find(&map->dso->srclines, ip); 2126 if (!srcline) { 2127 bool show_sym = false; 2128 bool show_addr = callchain_param.key == CCKEY_ADDRESS; 2129 2130 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip), 2131 ms->sym, show_sym, show_addr, ip); 2132 srcline__tree_insert(&map->dso->srclines, ip, srcline); 2133 } 2134 2135 return srcline; 2136 } 2137 2138 struct iterations { 2139 int nr_loop_iter; 2140 u64 cycles; 2141 }; 2142 2143 static int add_callchain_ip(struct thread *thread, 2144 struct callchain_cursor *cursor, 2145 struct symbol **parent, 2146 struct addr_location *root_al, 2147 u8 *cpumode, 2148 u64 ip, 2149 bool branch, 2150 struct branch_flags *flags, 2151 struct iterations *iter, 2152 u64 branch_from) 2153 { 2154 struct map_symbol ms; 2155 struct addr_location al; 2156 int nr_loop_iter = 0; 2157 u64 iter_cycles = 0; 2158 const char *srcline = NULL; 2159 2160 al.filtered = 0; 2161 al.sym = NULL; 2162 al.srcline = NULL; 2163 if (!cpumode) { 2164 thread__find_cpumode_addr_location(thread, ip, &al); 2165 } else { 2166 if (ip >= PERF_CONTEXT_MAX) { 2167 switch (ip) { 2168 case PERF_CONTEXT_HV: 2169 *cpumode = PERF_RECORD_MISC_HYPERVISOR; 2170 break; 2171 case PERF_CONTEXT_KERNEL: 2172 *cpumode = PERF_RECORD_MISC_KERNEL; 2173 break; 2174 case PERF_CONTEXT_USER: 2175 *cpumode = PERF_RECORD_MISC_USER; 2176 break; 2177 default: 2178 pr_debug("invalid callchain context: " 2179 "%"PRId64"\n", (s64) ip); 2180 /* 2181 * It seems the callchain is corrupted. 2182 * Discard all. 2183 */ 2184 callchain_cursor_reset(cursor); 2185 return 1; 2186 } 2187 return 0; 2188 } 2189 thread__find_symbol(thread, *cpumode, ip, &al); 2190 } 2191 2192 if (al.sym != NULL) { 2193 if (perf_hpp_list.parent && !*parent && 2194 symbol__match_regex(al.sym, &parent_regex)) 2195 *parent = al.sym; 2196 else if (have_ignore_callees && root_al && 2197 symbol__match_regex(al.sym, &ignore_callees_regex)) { 2198 /* Treat this symbol as the root, 2199 forgetting its callees. */ 2200 *root_al = al; 2201 callchain_cursor_reset(cursor); 2202 } 2203 } 2204 2205 if (symbol_conf.hide_unresolved && al.sym == NULL) 2206 return 0; 2207 2208 if (iter) { 2209 nr_loop_iter = iter->nr_loop_iter; 2210 iter_cycles = iter->cycles; 2211 } 2212 2213 ms.maps = al.maps; 2214 ms.map = al.map; 2215 ms.sym = al.sym; 2216 srcline = callchain_srcline(&ms, al.addr); 2217 return callchain_cursor_append(cursor, ip, &ms, 2218 branch, flags, nr_loop_iter, 2219 iter_cycles, branch_from, srcline); 2220 } 2221 2222 struct branch_info *sample__resolve_bstack(struct perf_sample *sample, 2223 struct addr_location *al) 2224 { 2225 unsigned int i; 2226 const struct branch_stack *bs = sample->branch_stack; 2227 struct branch_entry *entries = perf_sample__branch_entries(sample); 2228 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info)); 2229 2230 if (!bi) 2231 return NULL; 2232 2233 for (i = 0; i < bs->nr; i++) { 2234 ip__resolve_ams(al->thread, &bi[i].to, entries[i].to); 2235 ip__resolve_ams(al->thread, &bi[i].from, entries[i].from); 2236 bi[i].flags = entries[i].flags; 2237 } 2238 return bi; 2239 } 2240 2241 static void save_iterations(struct iterations *iter, 2242 struct branch_entry *be, int nr) 2243 { 2244 int i; 2245 2246 iter->nr_loop_iter++; 2247 iter->cycles = 0; 2248 2249 for (i = 0; i < nr; i++) 2250 iter->cycles += be[i].flags.cycles; 2251 } 2252 2253 #define CHASHSZ 127 2254 #define CHASHBITS 7 2255 #define NO_ENTRY 0xff 2256 2257 #define PERF_MAX_BRANCH_DEPTH 127 2258 2259 /* Remove loops. */ 2260 static int remove_loops(struct branch_entry *l, int nr, 2261 struct iterations *iter) 2262 { 2263 int i, j, off; 2264 unsigned char chash[CHASHSZ]; 2265 2266 memset(chash, NO_ENTRY, sizeof(chash)); 2267 2268 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255); 2269 2270 for (i = 0; i < nr; i++) { 2271 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ; 2272 2273 /* no collision handling for now */ 2274 if (chash[h] == NO_ENTRY) { 2275 chash[h] = i; 2276 } else if (l[chash[h]].from == l[i].from) { 2277 bool is_loop = true; 2278 /* check if it is a real loop */ 2279 off = 0; 2280 for (j = chash[h]; j < i && i + off < nr; j++, off++) 2281 if (l[j].from != l[i + off].from) { 2282 is_loop = false; 2283 break; 2284 } 2285 if (is_loop) { 2286 j = nr - (i + off); 2287 if (j > 0) { 2288 save_iterations(iter + i + off, 2289 l + i, off); 2290 2291 memmove(iter + i, iter + i + off, 2292 j * sizeof(*iter)); 2293 2294 memmove(l + i, l + i + off, 2295 j * sizeof(*l)); 2296 } 2297 2298 nr -= off; 2299 } 2300 } 2301 } 2302 return nr; 2303 } 2304 2305 static int lbr_callchain_add_kernel_ip(struct thread *thread, 2306 struct callchain_cursor *cursor, 2307 struct perf_sample *sample, 2308 struct symbol **parent, 2309 struct addr_location *root_al, 2310 u64 branch_from, 2311 bool callee, int end) 2312 { 2313 struct ip_callchain *chain = sample->callchain; 2314 u8 cpumode = PERF_RECORD_MISC_USER; 2315 int err, i; 2316 2317 if (callee) { 2318 for (i = 0; i < end + 1; i++) { 2319 err = add_callchain_ip(thread, cursor, parent, 2320 root_al, &cpumode, chain->ips[i], 2321 false, NULL, NULL, branch_from); 2322 if (err) 2323 return err; 2324 } 2325 return 0; 2326 } 2327 2328 for (i = end; i >= 0; i--) { 2329 err = add_callchain_ip(thread, cursor, parent, 2330 root_al, &cpumode, chain->ips[i], 2331 false, NULL, NULL, branch_from); 2332 if (err) 2333 return err; 2334 } 2335 2336 return 0; 2337 } 2338 2339 static void save_lbr_cursor_node(struct thread *thread, 2340 struct callchain_cursor *cursor, 2341 int idx) 2342 { 2343 struct lbr_stitch *lbr_stitch = thread->lbr_stitch; 2344 2345 if (!lbr_stitch) 2346 return; 2347 2348 if (cursor->pos == cursor->nr) { 2349 lbr_stitch->prev_lbr_cursor[idx].valid = false; 2350 return; 2351 } 2352 2353 if (!cursor->curr) 2354 cursor->curr = cursor->first; 2355 else 2356 cursor->curr = cursor->curr->next; 2357 memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr, 2358 sizeof(struct callchain_cursor_node)); 2359 2360 lbr_stitch->prev_lbr_cursor[idx].valid = true; 2361 cursor->pos++; 2362 } 2363 2364 static int lbr_callchain_add_lbr_ip(struct thread *thread, 2365 struct callchain_cursor *cursor, 2366 struct perf_sample *sample, 2367 struct symbol **parent, 2368 struct addr_location *root_al, 2369 u64 *branch_from, 2370 bool callee) 2371 { 2372 struct branch_stack *lbr_stack = sample->branch_stack; 2373 struct branch_entry *entries = perf_sample__branch_entries(sample); 2374 u8 cpumode = PERF_RECORD_MISC_USER; 2375 int lbr_nr = lbr_stack->nr; 2376 struct branch_flags *flags; 2377 int err, i; 2378 u64 ip; 2379 2380 /* 2381 * The curr and pos are not used in writing session. They are cleared 2382 * in callchain_cursor_commit() when the writing session is closed. 2383 * Using curr and pos to track the current cursor node. 2384 */ 2385 if (thread->lbr_stitch) { 2386 cursor->curr = NULL; 2387 cursor->pos = cursor->nr; 2388 if (cursor->nr) { 2389 cursor->curr = cursor->first; 2390 for (i = 0; i < (int)(cursor->nr - 1); i++) 2391 cursor->curr = cursor->curr->next; 2392 } 2393 } 2394 2395 if (callee) { 2396 /* Add LBR ip from first entries.to */ 2397 ip = entries[0].to; 2398 flags = &entries[0].flags; 2399 *branch_from = entries[0].from; 2400 err = add_callchain_ip(thread, cursor, parent, 2401 root_al, &cpumode, ip, 2402 true, flags, NULL, 2403 *branch_from); 2404 if (err) 2405 return err; 2406 2407 /* 2408 * The number of cursor node increases. 2409 * Move the current cursor node. 2410 * But does not need to save current cursor node for entry 0. 2411 * It's impossible to stitch the whole LBRs of previous sample. 2412 */ 2413 if (thread->lbr_stitch && (cursor->pos != cursor->nr)) { 2414 if (!cursor->curr) 2415 cursor->curr = cursor->first; 2416 else 2417 cursor->curr = cursor->curr->next; 2418 cursor->pos++; 2419 } 2420 2421 /* Add LBR ip from entries.from one by one. */ 2422 for (i = 0; i < lbr_nr; i++) { 2423 ip = entries[i].from; 2424 flags = &entries[i].flags; 2425 err = add_callchain_ip(thread, cursor, parent, 2426 root_al, &cpumode, ip, 2427 true, flags, NULL, 2428 *branch_from); 2429 if (err) 2430 return err; 2431 save_lbr_cursor_node(thread, cursor, i); 2432 } 2433 return 0; 2434 } 2435 2436 /* Add LBR ip from entries.from one by one. */ 2437 for (i = lbr_nr - 1; i >= 0; i--) { 2438 ip = entries[i].from; 2439 flags = &entries[i].flags; 2440 err = add_callchain_ip(thread, cursor, parent, 2441 root_al, &cpumode, ip, 2442 true, flags, NULL, 2443 *branch_from); 2444 if (err) 2445 return err; 2446 save_lbr_cursor_node(thread, cursor, i); 2447 } 2448 2449 /* Add LBR ip from first entries.to */ 2450 ip = entries[0].to; 2451 flags = &entries[0].flags; 2452 *branch_from = entries[0].from; 2453 err = add_callchain_ip(thread, cursor, parent, 2454 root_al, &cpumode, ip, 2455 true, flags, NULL, 2456 *branch_from); 2457 if (err) 2458 return err; 2459 2460 return 0; 2461 } 2462 2463 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread, 2464 struct callchain_cursor *cursor) 2465 { 2466 struct lbr_stitch *lbr_stitch = thread->lbr_stitch; 2467 struct callchain_cursor_node *cnode; 2468 struct stitch_list *stitch_node; 2469 int err; 2470 2471 list_for_each_entry(stitch_node, &lbr_stitch->lists, node) { 2472 cnode = &stitch_node->cursor; 2473 2474 err = callchain_cursor_append(cursor, cnode->ip, 2475 &cnode->ms, 2476 cnode->branch, 2477 &cnode->branch_flags, 2478 cnode->nr_loop_iter, 2479 cnode->iter_cycles, 2480 cnode->branch_from, 2481 cnode->srcline); 2482 if (err) 2483 return err; 2484 } 2485 return 0; 2486 } 2487 2488 static struct stitch_list *get_stitch_node(struct thread *thread) 2489 { 2490 struct lbr_stitch *lbr_stitch = thread->lbr_stitch; 2491 struct stitch_list *stitch_node; 2492 2493 if (!list_empty(&lbr_stitch->free_lists)) { 2494 stitch_node = list_first_entry(&lbr_stitch->free_lists, 2495 struct stitch_list, node); 2496 list_del(&stitch_node->node); 2497 2498 return stitch_node; 2499 } 2500 2501 return malloc(sizeof(struct stitch_list)); 2502 } 2503 2504 static bool has_stitched_lbr(struct thread *thread, 2505 struct perf_sample *cur, 2506 struct perf_sample *prev, 2507 unsigned int max_lbr, 2508 bool callee) 2509 { 2510 struct branch_stack *cur_stack = cur->branch_stack; 2511 struct branch_entry *cur_entries = perf_sample__branch_entries(cur); 2512 struct branch_stack *prev_stack = prev->branch_stack; 2513 struct branch_entry *prev_entries = perf_sample__branch_entries(prev); 2514 struct lbr_stitch *lbr_stitch = thread->lbr_stitch; 2515 int i, j, nr_identical_branches = 0; 2516 struct stitch_list *stitch_node; 2517 u64 cur_base, distance; 2518 2519 if (!cur_stack || !prev_stack) 2520 return false; 2521 2522 /* Find the physical index of the base-of-stack for current sample. */ 2523 cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1; 2524 2525 distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) : 2526 (max_lbr + prev_stack->hw_idx - cur_base); 2527 /* Previous sample has shorter stack. Nothing can be stitched. */ 2528 if (distance + 1 > prev_stack->nr) 2529 return false; 2530 2531 /* 2532 * Check if there are identical LBRs between two samples. 2533 * Identical LBRs must have same from, to and flags values. Also, 2534 * they have to be saved in the same LBR registers (same physical 2535 * index). 2536 * 2537 * Starts from the base-of-stack of current sample. 2538 */ 2539 for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) { 2540 if ((prev_entries[i].from != cur_entries[j].from) || 2541 (prev_entries[i].to != cur_entries[j].to) || 2542 (prev_entries[i].flags.value != cur_entries[j].flags.value)) 2543 break; 2544 nr_identical_branches++; 2545 } 2546 2547 if (!nr_identical_branches) 2548 return false; 2549 2550 /* 2551 * Save the LBRs between the base-of-stack of previous sample 2552 * and the base-of-stack of current sample into lbr_stitch->lists. 2553 * These LBRs will be stitched later. 2554 */ 2555 for (i = prev_stack->nr - 1; i > (int)distance; i--) { 2556 2557 if (!lbr_stitch->prev_lbr_cursor[i].valid) 2558 continue; 2559 2560 stitch_node = get_stitch_node(thread); 2561 if (!stitch_node) 2562 return false; 2563 2564 memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i], 2565 sizeof(struct callchain_cursor_node)); 2566 2567 if (callee) 2568 list_add(&stitch_node->node, &lbr_stitch->lists); 2569 else 2570 list_add_tail(&stitch_node->node, &lbr_stitch->lists); 2571 } 2572 2573 return true; 2574 } 2575 2576 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr) 2577 { 2578 if (thread->lbr_stitch) 2579 return true; 2580 2581 thread->lbr_stitch = zalloc(sizeof(*thread->lbr_stitch)); 2582 if (!thread->lbr_stitch) 2583 goto err; 2584 2585 thread->lbr_stitch->prev_lbr_cursor = calloc(max_lbr + 1, sizeof(struct callchain_cursor_node)); 2586 if (!thread->lbr_stitch->prev_lbr_cursor) 2587 goto free_lbr_stitch; 2588 2589 INIT_LIST_HEAD(&thread->lbr_stitch->lists); 2590 INIT_LIST_HEAD(&thread->lbr_stitch->free_lists); 2591 2592 return true; 2593 2594 free_lbr_stitch: 2595 zfree(&thread->lbr_stitch); 2596 err: 2597 pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n"); 2598 thread->lbr_stitch_enable = false; 2599 return false; 2600 } 2601 2602 /* 2603 * Resolve LBR callstack chain sample 2604 * Return: 2605 * 1 on success get LBR callchain information 2606 * 0 no available LBR callchain information, should try fp 2607 * negative error code on other errors. 2608 */ 2609 static int resolve_lbr_callchain_sample(struct thread *thread, 2610 struct callchain_cursor *cursor, 2611 struct perf_sample *sample, 2612 struct symbol **parent, 2613 struct addr_location *root_al, 2614 int max_stack, 2615 unsigned int max_lbr) 2616 { 2617 bool callee = (callchain_param.order == ORDER_CALLEE); 2618 struct ip_callchain *chain = sample->callchain; 2619 int chain_nr = min(max_stack, (int)chain->nr), i; 2620 struct lbr_stitch *lbr_stitch; 2621 bool stitched_lbr = false; 2622 u64 branch_from = 0; 2623 int err; 2624 2625 for (i = 0; i < chain_nr; i++) { 2626 if (chain->ips[i] == PERF_CONTEXT_USER) 2627 break; 2628 } 2629 2630 /* LBR only affects the user callchain */ 2631 if (i == chain_nr) 2632 return 0; 2633 2634 if (thread->lbr_stitch_enable && !sample->no_hw_idx && 2635 (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) { 2636 lbr_stitch = thread->lbr_stitch; 2637 2638 stitched_lbr = has_stitched_lbr(thread, sample, 2639 &lbr_stitch->prev_sample, 2640 max_lbr, callee); 2641 2642 if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) { 2643 list_replace_init(&lbr_stitch->lists, 2644 &lbr_stitch->free_lists); 2645 } 2646 memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample)); 2647 } 2648 2649 if (callee) { 2650 /* Add kernel ip */ 2651 err = lbr_callchain_add_kernel_ip(thread, cursor, sample, 2652 parent, root_al, branch_from, 2653 true, i); 2654 if (err) 2655 goto error; 2656 2657 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent, 2658 root_al, &branch_from, true); 2659 if (err) 2660 goto error; 2661 2662 if (stitched_lbr) { 2663 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor); 2664 if (err) 2665 goto error; 2666 } 2667 2668 } else { 2669 if (stitched_lbr) { 2670 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor); 2671 if (err) 2672 goto error; 2673 } 2674 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent, 2675 root_al, &branch_from, false); 2676 if (err) 2677 goto error; 2678 2679 /* Add kernel ip */ 2680 err = lbr_callchain_add_kernel_ip(thread, cursor, sample, 2681 parent, root_al, branch_from, 2682 false, i); 2683 if (err) 2684 goto error; 2685 } 2686 return 1; 2687 2688 error: 2689 return (err < 0) ? err : 0; 2690 } 2691 2692 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread, 2693 struct callchain_cursor *cursor, 2694 struct symbol **parent, 2695 struct addr_location *root_al, 2696 u8 *cpumode, int ent) 2697 { 2698 int err = 0; 2699 2700 while (--ent >= 0) { 2701 u64 ip = chain->ips[ent]; 2702 2703 if (ip >= PERF_CONTEXT_MAX) { 2704 err = add_callchain_ip(thread, cursor, parent, 2705 root_al, cpumode, ip, 2706 false, NULL, NULL, 0); 2707 break; 2708 } 2709 } 2710 return err; 2711 } 2712 2713 static int thread__resolve_callchain_sample(struct thread *thread, 2714 struct callchain_cursor *cursor, 2715 struct evsel *evsel, 2716 struct perf_sample *sample, 2717 struct symbol **parent, 2718 struct addr_location *root_al, 2719 int max_stack) 2720 { 2721 struct branch_stack *branch = sample->branch_stack; 2722 struct branch_entry *entries = perf_sample__branch_entries(sample); 2723 struct ip_callchain *chain = sample->callchain; 2724 int chain_nr = 0; 2725 u8 cpumode = PERF_RECORD_MISC_USER; 2726 int i, j, err, nr_entries; 2727 int skip_idx = -1; 2728 int first_call = 0; 2729 2730 if (chain) 2731 chain_nr = chain->nr; 2732 2733 if (evsel__has_branch_callstack(evsel)) { 2734 struct perf_env *env = evsel__env(evsel); 2735 2736 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent, 2737 root_al, max_stack, 2738 !env ? 0 : env->max_branches); 2739 if (err) 2740 return (err < 0) ? err : 0; 2741 } 2742 2743 /* 2744 * Based on DWARF debug information, some architectures skip 2745 * a callchain entry saved by the kernel. 2746 */ 2747 skip_idx = arch_skip_callchain_idx(thread, chain); 2748 2749 /* 2750 * Add branches to call stack for easier browsing. This gives 2751 * more context for a sample than just the callers. 2752 * 2753 * This uses individual histograms of paths compared to the 2754 * aggregated histograms the normal LBR mode uses. 2755 * 2756 * Limitations for now: 2757 * - No extra filters 2758 * - No annotations (should annotate somehow) 2759 */ 2760 2761 if (branch && callchain_param.branch_callstack) { 2762 int nr = min(max_stack, (int)branch->nr); 2763 struct branch_entry be[nr]; 2764 struct iterations iter[nr]; 2765 2766 if (branch->nr > PERF_MAX_BRANCH_DEPTH) { 2767 pr_warning("corrupted branch chain. skipping...\n"); 2768 goto check_calls; 2769 } 2770 2771 for (i = 0; i < nr; i++) { 2772 if (callchain_param.order == ORDER_CALLEE) { 2773 be[i] = entries[i]; 2774 2775 if (chain == NULL) 2776 continue; 2777 2778 /* 2779 * Check for overlap into the callchain. 2780 * The return address is one off compared to 2781 * the branch entry. To adjust for this 2782 * assume the calling instruction is not longer 2783 * than 8 bytes. 2784 */ 2785 if (i == skip_idx || 2786 chain->ips[first_call] >= PERF_CONTEXT_MAX) 2787 first_call++; 2788 else if (be[i].from < chain->ips[first_call] && 2789 be[i].from >= chain->ips[first_call] - 8) 2790 first_call++; 2791 } else 2792 be[i] = entries[branch->nr - i - 1]; 2793 } 2794 2795 memset(iter, 0, sizeof(struct iterations) * nr); 2796 nr = remove_loops(be, nr, iter); 2797 2798 for (i = 0; i < nr; i++) { 2799 err = add_callchain_ip(thread, cursor, parent, 2800 root_al, 2801 NULL, be[i].to, 2802 true, &be[i].flags, 2803 NULL, be[i].from); 2804 2805 if (!err) 2806 err = add_callchain_ip(thread, cursor, parent, root_al, 2807 NULL, be[i].from, 2808 true, &be[i].flags, 2809 &iter[i], 0); 2810 if (err == -EINVAL) 2811 break; 2812 if (err) 2813 return err; 2814 } 2815 2816 if (chain_nr == 0) 2817 return 0; 2818 2819 chain_nr -= nr; 2820 } 2821 2822 check_calls: 2823 if (chain && callchain_param.order != ORDER_CALLEE) { 2824 err = find_prev_cpumode(chain, thread, cursor, parent, root_al, 2825 &cpumode, chain->nr - first_call); 2826 if (err) 2827 return (err < 0) ? err : 0; 2828 } 2829 for (i = first_call, nr_entries = 0; 2830 i < chain_nr && nr_entries < max_stack; i++) { 2831 u64 ip; 2832 2833 if (callchain_param.order == ORDER_CALLEE) 2834 j = i; 2835 else 2836 j = chain->nr - i - 1; 2837 2838 #ifdef HAVE_SKIP_CALLCHAIN_IDX 2839 if (j == skip_idx) 2840 continue; 2841 #endif 2842 ip = chain->ips[j]; 2843 if (ip < PERF_CONTEXT_MAX) 2844 ++nr_entries; 2845 else if (callchain_param.order != ORDER_CALLEE) { 2846 err = find_prev_cpumode(chain, thread, cursor, parent, 2847 root_al, &cpumode, j); 2848 if (err) 2849 return (err < 0) ? err : 0; 2850 continue; 2851 } 2852 2853 err = add_callchain_ip(thread, cursor, parent, 2854 root_al, &cpumode, ip, 2855 false, NULL, NULL, 0); 2856 2857 if (err) 2858 return (err < 0) ? err : 0; 2859 } 2860 2861 return 0; 2862 } 2863 2864 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip) 2865 { 2866 struct symbol *sym = ms->sym; 2867 struct map *map = ms->map; 2868 struct inline_node *inline_node; 2869 struct inline_list *ilist; 2870 u64 addr; 2871 int ret = 1; 2872 2873 if (!symbol_conf.inline_name || !map || !sym) 2874 return ret; 2875 2876 addr = map__map_ip(map, ip); 2877 addr = map__rip_2objdump(map, addr); 2878 2879 inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr); 2880 if (!inline_node) { 2881 inline_node = dso__parse_addr_inlines(map->dso, addr, sym); 2882 if (!inline_node) 2883 return ret; 2884 inlines__tree_insert(&map->dso->inlined_nodes, inline_node); 2885 } 2886 2887 list_for_each_entry(ilist, &inline_node->val, list) { 2888 struct map_symbol ilist_ms = { 2889 .maps = ms->maps, 2890 .map = map, 2891 .sym = ilist->symbol, 2892 }; 2893 ret = callchain_cursor_append(cursor, ip, &ilist_ms, false, 2894 NULL, 0, 0, 0, ilist->srcline); 2895 2896 if (ret != 0) 2897 return ret; 2898 } 2899 2900 return ret; 2901 } 2902 2903 static int unwind_entry(struct unwind_entry *entry, void *arg) 2904 { 2905 struct callchain_cursor *cursor = arg; 2906 const char *srcline = NULL; 2907 u64 addr = entry->ip; 2908 2909 if (symbol_conf.hide_unresolved && entry->ms.sym == NULL) 2910 return 0; 2911 2912 if (append_inlines(cursor, &entry->ms, entry->ip) == 0) 2913 return 0; 2914 2915 /* 2916 * Convert entry->ip from a virtual address to an offset in 2917 * its corresponding binary. 2918 */ 2919 if (entry->ms.map) 2920 addr = map__map_ip(entry->ms.map, entry->ip); 2921 2922 srcline = callchain_srcline(&entry->ms, addr); 2923 return callchain_cursor_append(cursor, entry->ip, &entry->ms, 2924 false, NULL, 0, 0, 0, srcline); 2925 } 2926 2927 static int thread__resolve_callchain_unwind(struct thread *thread, 2928 struct callchain_cursor *cursor, 2929 struct evsel *evsel, 2930 struct perf_sample *sample, 2931 int max_stack) 2932 { 2933 /* Can we do dwarf post unwind? */ 2934 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) && 2935 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER))) 2936 return 0; 2937 2938 /* Bail out if nothing was captured. */ 2939 if ((!sample->user_regs.regs) || 2940 (!sample->user_stack.size)) 2941 return 0; 2942 2943 return unwind__get_entries(unwind_entry, cursor, 2944 thread, sample, max_stack); 2945 } 2946 2947 int thread__resolve_callchain(struct thread *thread, 2948 struct callchain_cursor *cursor, 2949 struct evsel *evsel, 2950 struct perf_sample *sample, 2951 struct symbol **parent, 2952 struct addr_location *root_al, 2953 int max_stack) 2954 { 2955 int ret = 0; 2956 2957 callchain_cursor_reset(cursor); 2958 2959 if (callchain_param.order == ORDER_CALLEE) { 2960 ret = thread__resolve_callchain_sample(thread, cursor, 2961 evsel, sample, 2962 parent, root_al, 2963 max_stack); 2964 if (ret) 2965 return ret; 2966 ret = thread__resolve_callchain_unwind(thread, cursor, 2967 evsel, sample, 2968 max_stack); 2969 } else { 2970 ret = thread__resolve_callchain_unwind(thread, cursor, 2971 evsel, sample, 2972 max_stack); 2973 if (ret) 2974 return ret; 2975 ret = thread__resolve_callchain_sample(thread, cursor, 2976 evsel, sample, 2977 parent, root_al, 2978 max_stack); 2979 } 2980 2981 return ret; 2982 } 2983 2984 int machine__for_each_thread(struct machine *machine, 2985 int (*fn)(struct thread *thread, void *p), 2986 void *priv) 2987 { 2988 struct threads *threads; 2989 struct rb_node *nd; 2990 struct thread *thread; 2991 int rc = 0; 2992 int i; 2993 2994 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 2995 threads = &machine->threads[i]; 2996 for (nd = rb_first_cached(&threads->entries); nd; 2997 nd = rb_next(nd)) { 2998 thread = rb_entry(nd, struct thread, rb_node); 2999 rc = fn(thread, priv); 3000 if (rc != 0) 3001 return rc; 3002 } 3003 3004 list_for_each_entry(thread, &threads->dead, node) { 3005 rc = fn(thread, priv); 3006 if (rc != 0) 3007 return rc; 3008 } 3009 } 3010 return rc; 3011 } 3012 3013 int machines__for_each_thread(struct machines *machines, 3014 int (*fn)(struct thread *thread, void *p), 3015 void *priv) 3016 { 3017 struct rb_node *nd; 3018 int rc = 0; 3019 3020 rc = machine__for_each_thread(&machines->host, fn, priv); 3021 if (rc != 0) 3022 return rc; 3023 3024 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 3025 struct machine *machine = rb_entry(nd, struct machine, rb_node); 3026 3027 rc = machine__for_each_thread(machine, fn, priv); 3028 if (rc != 0) 3029 return rc; 3030 } 3031 return rc; 3032 } 3033 3034 pid_t machine__get_current_tid(struct machine *machine, int cpu) 3035 { 3036 int nr_cpus = min(machine->env->nr_cpus_avail, MAX_NR_CPUS); 3037 3038 if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid) 3039 return -1; 3040 3041 return machine->current_tid[cpu]; 3042 } 3043 3044 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid, 3045 pid_t tid) 3046 { 3047 struct thread *thread; 3048 int nr_cpus = min(machine->env->nr_cpus_avail, MAX_NR_CPUS); 3049 3050 if (cpu < 0) 3051 return -EINVAL; 3052 3053 if (!machine->current_tid) { 3054 int i; 3055 3056 machine->current_tid = calloc(nr_cpus, sizeof(pid_t)); 3057 if (!machine->current_tid) 3058 return -ENOMEM; 3059 for (i = 0; i < nr_cpus; i++) 3060 machine->current_tid[i] = -1; 3061 } 3062 3063 if (cpu >= nr_cpus) { 3064 pr_err("Requested CPU %d too large. ", cpu); 3065 pr_err("Consider raising MAX_NR_CPUS\n"); 3066 return -EINVAL; 3067 } 3068 3069 machine->current_tid[cpu] = tid; 3070 3071 thread = machine__findnew_thread(machine, pid, tid); 3072 if (!thread) 3073 return -ENOMEM; 3074 3075 thread->cpu = cpu; 3076 thread__put(thread); 3077 3078 return 0; 3079 } 3080 3081 /* 3082 * Compares the raw arch string. N.B. see instead perf_env__arch() if a 3083 * normalized arch is needed. 3084 */ 3085 bool machine__is(struct machine *machine, const char *arch) 3086 { 3087 return machine && !strcmp(perf_env__raw_arch(machine->env), arch); 3088 } 3089 3090 int machine__nr_cpus_avail(struct machine *machine) 3091 { 3092 return machine ? perf_env__nr_cpus_avail(machine->env) : 0; 3093 } 3094 3095 int machine__get_kernel_start(struct machine *machine) 3096 { 3097 struct map *map = machine__kernel_map(machine); 3098 int err = 0; 3099 3100 /* 3101 * The only addresses above 2^63 are kernel addresses of a 64-bit 3102 * kernel. Note that addresses are unsigned so that on a 32-bit system 3103 * all addresses including kernel addresses are less than 2^32. In 3104 * that case (32-bit system), if the kernel mapping is unknown, all 3105 * addresses will be assumed to be in user space - see 3106 * machine__kernel_ip(). 3107 */ 3108 machine->kernel_start = 1ULL << 63; 3109 if (map) { 3110 err = map__load(map); 3111 /* 3112 * On x86_64, PTI entry trampolines are less than the 3113 * start of kernel text, but still above 2^63. So leave 3114 * kernel_start = 1ULL << 63 for x86_64. 3115 */ 3116 if (!err && !machine__is(machine, "x86_64")) 3117 machine->kernel_start = map->start; 3118 } 3119 return err; 3120 } 3121 3122 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr) 3123 { 3124 u8 addr_cpumode = cpumode; 3125 bool kernel_ip; 3126 3127 if (!machine->single_address_space) 3128 goto out; 3129 3130 kernel_ip = machine__kernel_ip(machine, addr); 3131 switch (cpumode) { 3132 case PERF_RECORD_MISC_KERNEL: 3133 case PERF_RECORD_MISC_USER: 3134 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL : 3135 PERF_RECORD_MISC_USER; 3136 break; 3137 case PERF_RECORD_MISC_GUEST_KERNEL: 3138 case PERF_RECORD_MISC_GUEST_USER: 3139 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL : 3140 PERF_RECORD_MISC_GUEST_USER; 3141 break; 3142 default: 3143 break; 3144 } 3145 out: 3146 return addr_cpumode; 3147 } 3148 3149 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id) 3150 { 3151 return dsos__findnew_id(&machine->dsos, filename, id); 3152 } 3153 3154 struct dso *machine__findnew_dso(struct machine *machine, const char *filename) 3155 { 3156 return machine__findnew_dso_id(machine, filename, NULL); 3157 } 3158 3159 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp) 3160 { 3161 struct machine *machine = vmachine; 3162 struct map *map; 3163 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map); 3164 3165 if (sym == NULL) 3166 return NULL; 3167 3168 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL; 3169 *addrp = map->unmap_ip(map, sym->start); 3170 return sym->name; 3171 } 3172 3173 int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv) 3174 { 3175 struct dso *pos; 3176 int err = 0; 3177 3178 list_for_each_entry(pos, &machine->dsos.head, node) { 3179 if (fn(pos, machine, priv)) 3180 err = -1; 3181 } 3182 return err; 3183 } 3184