1 // SPDX-License-Identifier: GPL-2.0 2 #include <dirent.h> 3 #include <errno.h> 4 #include <inttypes.h> 5 #include <regex.h> 6 #include <stdlib.h> 7 #include "callchain.h" 8 #include "debug.h" 9 #include "dso.h" 10 #include "env.h" 11 #include "event.h" 12 #include "evsel.h" 13 #include "hist.h" 14 #include "machine.h" 15 #include "map.h" 16 #include "map_symbol.h" 17 #include "branch.h" 18 #include "mem-events.h" 19 #include "srcline.h" 20 #include "symbol.h" 21 #include "sort.h" 22 #include "strlist.h" 23 #include "target.h" 24 #include "thread.h" 25 #include "util.h" 26 #include "vdso.h" 27 #include <stdbool.h> 28 #include <sys/types.h> 29 #include <sys/stat.h> 30 #include <unistd.h> 31 #include "unwind.h" 32 #include "linux/hash.h" 33 #include "asm/bug.h" 34 #include "bpf-event.h" 35 #include <internal/lib.h> // page_size 36 #include "cgroup.h" 37 38 #include <linux/ctype.h> 39 #include <symbol/kallsyms.h> 40 #include <linux/mman.h> 41 #include <linux/string.h> 42 #include <linux/zalloc.h> 43 44 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock); 45 46 static struct dso *machine__kernel_dso(struct machine *machine) 47 { 48 return machine->vmlinux_map->dso; 49 } 50 51 static void dsos__init(struct dsos *dsos) 52 { 53 INIT_LIST_HEAD(&dsos->head); 54 dsos->root = RB_ROOT; 55 init_rwsem(&dsos->lock); 56 } 57 58 static void machine__threads_init(struct machine *machine) 59 { 60 int i; 61 62 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 63 struct threads *threads = &machine->threads[i]; 64 threads->entries = RB_ROOT_CACHED; 65 init_rwsem(&threads->lock); 66 threads->nr = 0; 67 INIT_LIST_HEAD(&threads->dead); 68 threads->last_match = NULL; 69 } 70 } 71 72 static int machine__set_mmap_name(struct machine *machine) 73 { 74 if (machine__is_host(machine)) 75 machine->mmap_name = strdup("[kernel.kallsyms]"); 76 else if (machine__is_default_guest(machine)) 77 machine->mmap_name = strdup("[guest.kernel.kallsyms]"); 78 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]", 79 machine->pid) < 0) 80 machine->mmap_name = NULL; 81 82 return machine->mmap_name ? 0 : -ENOMEM; 83 } 84 85 int machine__init(struct machine *machine, const char *root_dir, pid_t pid) 86 { 87 int err = -ENOMEM; 88 89 memset(machine, 0, sizeof(*machine)); 90 maps__init(&machine->kmaps, machine); 91 RB_CLEAR_NODE(&machine->rb_node); 92 dsos__init(&machine->dsos); 93 94 machine__threads_init(machine); 95 96 machine->vdso_info = NULL; 97 machine->env = NULL; 98 99 machine->pid = pid; 100 101 machine->id_hdr_size = 0; 102 machine->kptr_restrict_warned = false; 103 machine->comm_exec = false; 104 machine->kernel_start = 0; 105 machine->vmlinux_map = NULL; 106 107 machine->root_dir = strdup(root_dir); 108 if (machine->root_dir == NULL) 109 return -ENOMEM; 110 111 if (machine__set_mmap_name(machine)) 112 goto out; 113 114 if (pid != HOST_KERNEL_ID) { 115 struct thread *thread = machine__findnew_thread(machine, -1, 116 pid); 117 char comm[64]; 118 119 if (thread == NULL) 120 goto out; 121 122 snprintf(comm, sizeof(comm), "[guest/%d]", pid); 123 thread__set_comm(thread, comm, 0); 124 thread__put(thread); 125 } 126 127 machine->current_tid = NULL; 128 err = 0; 129 130 out: 131 if (err) { 132 zfree(&machine->root_dir); 133 zfree(&machine->mmap_name); 134 } 135 return 0; 136 } 137 138 struct machine *machine__new_host(void) 139 { 140 struct machine *machine = malloc(sizeof(*machine)); 141 142 if (machine != NULL) { 143 machine__init(machine, "", HOST_KERNEL_ID); 144 145 if (machine__create_kernel_maps(machine) < 0) 146 goto out_delete; 147 } 148 149 return machine; 150 out_delete: 151 free(machine); 152 return NULL; 153 } 154 155 struct machine *machine__new_kallsyms(void) 156 { 157 struct machine *machine = machine__new_host(); 158 /* 159 * FIXME: 160 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly 161 * ask for not using the kcore parsing code, once this one is fixed 162 * to create a map per module. 163 */ 164 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) { 165 machine__delete(machine); 166 machine = NULL; 167 } 168 169 return machine; 170 } 171 172 static void dsos__purge(struct dsos *dsos) 173 { 174 struct dso *pos, *n; 175 176 down_write(&dsos->lock); 177 178 list_for_each_entry_safe(pos, n, &dsos->head, node) { 179 RB_CLEAR_NODE(&pos->rb_node); 180 pos->root = NULL; 181 list_del_init(&pos->node); 182 dso__put(pos); 183 } 184 185 up_write(&dsos->lock); 186 } 187 188 static void dsos__exit(struct dsos *dsos) 189 { 190 dsos__purge(dsos); 191 exit_rwsem(&dsos->lock); 192 } 193 194 void machine__delete_threads(struct machine *machine) 195 { 196 struct rb_node *nd; 197 int i; 198 199 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 200 struct threads *threads = &machine->threads[i]; 201 down_write(&threads->lock); 202 nd = rb_first_cached(&threads->entries); 203 while (nd) { 204 struct thread *t = rb_entry(nd, struct thread, rb_node); 205 206 nd = rb_next(nd); 207 __machine__remove_thread(machine, t, false); 208 } 209 up_write(&threads->lock); 210 } 211 } 212 213 void machine__exit(struct machine *machine) 214 { 215 int i; 216 217 if (machine == NULL) 218 return; 219 220 machine__destroy_kernel_maps(machine); 221 maps__exit(&machine->kmaps); 222 dsos__exit(&machine->dsos); 223 machine__exit_vdso(machine); 224 zfree(&machine->root_dir); 225 zfree(&machine->mmap_name); 226 zfree(&machine->current_tid); 227 228 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 229 struct threads *threads = &machine->threads[i]; 230 struct thread *thread, *n; 231 /* 232 * Forget about the dead, at this point whatever threads were 233 * left in the dead lists better have a reference count taken 234 * by who is using them, and then, when they drop those references 235 * and it finally hits zero, thread__put() will check and see that 236 * its not in the dead threads list and will not try to remove it 237 * from there, just calling thread__delete() straight away. 238 */ 239 list_for_each_entry_safe(thread, n, &threads->dead, node) 240 list_del_init(&thread->node); 241 242 exit_rwsem(&threads->lock); 243 } 244 } 245 246 void machine__delete(struct machine *machine) 247 { 248 if (machine) { 249 machine__exit(machine); 250 free(machine); 251 } 252 } 253 254 void machines__init(struct machines *machines) 255 { 256 machine__init(&machines->host, "", HOST_KERNEL_ID); 257 machines->guests = RB_ROOT_CACHED; 258 } 259 260 void machines__exit(struct machines *machines) 261 { 262 machine__exit(&machines->host); 263 /* XXX exit guest */ 264 } 265 266 struct machine *machines__add(struct machines *machines, pid_t pid, 267 const char *root_dir) 268 { 269 struct rb_node **p = &machines->guests.rb_root.rb_node; 270 struct rb_node *parent = NULL; 271 struct machine *pos, *machine = malloc(sizeof(*machine)); 272 bool leftmost = true; 273 274 if (machine == NULL) 275 return NULL; 276 277 if (machine__init(machine, root_dir, pid) != 0) { 278 free(machine); 279 return NULL; 280 } 281 282 while (*p != NULL) { 283 parent = *p; 284 pos = rb_entry(parent, struct machine, rb_node); 285 if (pid < pos->pid) 286 p = &(*p)->rb_left; 287 else { 288 p = &(*p)->rb_right; 289 leftmost = false; 290 } 291 } 292 293 rb_link_node(&machine->rb_node, parent, p); 294 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost); 295 296 return machine; 297 } 298 299 void machines__set_comm_exec(struct machines *machines, bool comm_exec) 300 { 301 struct rb_node *nd; 302 303 machines->host.comm_exec = comm_exec; 304 305 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 306 struct machine *machine = rb_entry(nd, struct machine, rb_node); 307 308 machine->comm_exec = comm_exec; 309 } 310 } 311 312 struct machine *machines__find(struct machines *machines, pid_t pid) 313 { 314 struct rb_node **p = &machines->guests.rb_root.rb_node; 315 struct rb_node *parent = NULL; 316 struct machine *machine; 317 struct machine *default_machine = NULL; 318 319 if (pid == HOST_KERNEL_ID) 320 return &machines->host; 321 322 while (*p != NULL) { 323 parent = *p; 324 machine = rb_entry(parent, struct machine, rb_node); 325 if (pid < machine->pid) 326 p = &(*p)->rb_left; 327 else if (pid > machine->pid) 328 p = &(*p)->rb_right; 329 else 330 return machine; 331 if (!machine->pid) 332 default_machine = machine; 333 } 334 335 return default_machine; 336 } 337 338 struct machine *machines__findnew(struct machines *machines, pid_t pid) 339 { 340 char path[PATH_MAX]; 341 const char *root_dir = ""; 342 struct machine *machine = machines__find(machines, pid); 343 344 if (machine && (machine->pid == pid)) 345 goto out; 346 347 if ((pid != HOST_KERNEL_ID) && 348 (pid != DEFAULT_GUEST_KERNEL_ID) && 349 (symbol_conf.guestmount)) { 350 sprintf(path, "%s/%d", symbol_conf.guestmount, pid); 351 if (access(path, R_OK)) { 352 static struct strlist *seen; 353 354 if (!seen) 355 seen = strlist__new(NULL, NULL); 356 357 if (!strlist__has_entry(seen, path)) { 358 pr_err("Can't access file %s\n", path); 359 strlist__add(seen, path); 360 } 361 machine = NULL; 362 goto out; 363 } 364 root_dir = path; 365 } 366 367 machine = machines__add(machines, pid, root_dir); 368 out: 369 return machine; 370 } 371 372 void machines__process_guests(struct machines *machines, 373 machine__process_t process, void *data) 374 { 375 struct rb_node *nd; 376 377 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 378 struct machine *pos = rb_entry(nd, struct machine, rb_node); 379 process(pos, data); 380 } 381 } 382 383 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size) 384 { 385 struct rb_node *node; 386 struct machine *machine; 387 388 machines->host.id_hdr_size = id_hdr_size; 389 390 for (node = rb_first_cached(&machines->guests); node; 391 node = rb_next(node)) { 392 machine = rb_entry(node, struct machine, rb_node); 393 machine->id_hdr_size = id_hdr_size; 394 } 395 396 return; 397 } 398 399 static void machine__update_thread_pid(struct machine *machine, 400 struct thread *th, pid_t pid) 401 { 402 struct thread *leader; 403 404 if (pid == th->pid_ || pid == -1 || th->pid_ != -1) 405 return; 406 407 th->pid_ = pid; 408 409 if (th->pid_ == th->tid) 410 return; 411 412 leader = __machine__findnew_thread(machine, th->pid_, th->pid_); 413 if (!leader) 414 goto out_err; 415 416 if (!leader->maps) 417 leader->maps = maps__new(machine); 418 419 if (!leader->maps) 420 goto out_err; 421 422 if (th->maps == leader->maps) 423 return; 424 425 if (th->maps) { 426 /* 427 * Maps are created from MMAP events which provide the pid and 428 * tid. Consequently there never should be any maps on a thread 429 * with an unknown pid. Just print an error if there are. 430 */ 431 if (!maps__empty(th->maps)) 432 pr_err("Discarding thread maps for %d:%d\n", 433 th->pid_, th->tid); 434 maps__put(th->maps); 435 } 436 437 th->maps = maps__get(leader->maps); 438 out_put: 439 thread__put(leader); 440 return; 441 out_err: 442 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid); 443 goto out_put; 444 } 445 446 /* 447 * Front-end cache - TID lookups come in blocks, 448 * so most of the time we dont have to look up 449 * the full rbtree: 450 */ 451 static struct thread* 452 __threads__get_last_match(struct threads *threads, struct machine *machine, 453 int pid, int tid) 454 { 455 struct thread *th; 456 457 th = threads->last_match; 458 if (th != NULL) { 459 if (th->tid == tid) { 460 machine__update_thread_pid(machine, th, pid); 461 return thread__get(th); 462 } 463 464 threads->last_match = NULL; 465 } 466 467 return NULL; 468 } 469 470 static struct thread* 471 threads__get_last_match(struct threads *threads, struct machine *machine, 472 int pid, int tid) 473 { 474 struct thread *th = NULL; 475 476 if (perf_singlethreaded) 477 th = __threads__get_last_match(threads, machine, pid, tid); 478 479 return th; 480 } 481 482 static void 483 __threads__set_last_match(struct threads *threads, struct thread *th) 484 { 485 threads->last_match = th; 486 } 487 488 static void 489 threads__set_last_match(struct threads *threads, struct thread *th) 490 { 491 if (perf_singlethreaded) 492 __threads__set_last_match(threads, th); 493 } 494 495 /* 496 * Caller must eventually drop thread->refcnt returned with a successful 497 * lookup/new thread inserted. 498 */ 499 static struct thread *____machine__findnew_thread(struct machine *machine, 500 struct threads *threads, 501 pid_t pid, pid_t tid, 502 bool create) 503 { 504 struct rb_node **p = &threads->entries.rb_root.rb_node; 505 struct rb_node *parent = NULL; 506 struct thread *th; 507 bool leftmost = true; 508 509 th = threads__get_last_match(threads, machine, pid, tid); 510 if (th) 511 return th; 512 513 while (*p != NULL) { 514 parent = *p; 515 th = rb_entry(parent, struct thread, rb_node); 516 517 if (th->tid == tid) { 518 threads__set_last_match(threads, th); 519 machine__update_thread_pid(machine, th, pid); 520 return thread__get(th); 521 } 522 523 if (tid < th->tid) 524 p = &(*p)->rb_left; 525 else { 526 p = &(*p)->rb_right; 527 leftmost = false; 528 } 529 } 530 531 if (!create) 532 return NULL; 533 534 th = thread__new(pid, tid); 535 if (th != NULL) { 536 rb_link_node(&th->rb_node, parent, p); 537 rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost); 538 539 /* 540 * We have to initialize maps separately after rb tree is updated. 541 * 542 * The reason is that we call machine__findnew_thread 543 * within thread__init_maps to find the thread 544 * leader and that would screwed the rb tree. 545 */ 546 if (thread__init_maps(th, machine)) { 547 rb_erase_cached(&th->rb_node, &threads->entries); 548 RB_CLEAR_NODE(&th->rb_node); 549 thread__put(th); 550 return NULL; 551 } 552 /* 553 * It is now in the rbtree, get a ref 554 */ 555 thread__get(th); 556 threads__set_last_match(threads, th); 557 ++threads->nr; 558 } 559 560 return th; 561 } 562 563 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid) 564 { 565 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true); 566 } 567 568 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, 569 pid_t tid) 570 { 571 struct threads *threads = machine__threads(machine, tid); 572 struct thread *th; 573 574 down_write(&threads->lock); 575 th = __machine__findnew_thread(machine, pid, tid); 576 up_write(&threads->lock); 577 return th; 578 } 579 580 struct thread *machine__find_thread(struct machine *machine, pid_t pid, 581 pid_t tid) 582 { 583 struct threads *threads = machine__threads(machine, tid); 584 struct thread *th; 585 586 down_read(&threads->lock); 587 th = ____machine__findnew_thread(machine, threads, pid, tid, false); 588 up_read(&threads->lock); 589 return th; 590 } 591 592 struct comm *machine__thread_exec_comm(struct machine *machine, 593 struct thread *thread) 594 { 595 if (machine->comm_exec) 596 return thread__exec_comm(thread); 597 else 598 return thread__comm(thread); 599 } 600 601 int machine__process_comm_event(struct machine *machine, union perf_event *event, 602 struct perf_sample *sample) 603 { 604 struct thread *thread = machine__findnew_thread(machine, 605 event->comm.pid, 606 event->comm.tid); 607 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC; 608 int err = 0; 609 610 if (exec) 611 machine->comm_exec = true; 612 613 if (dump_trace) 614 perf_event__fprintf_comm(event, stdout); 615 616 if (thread == NULL || 617 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) { 618 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n"); 619 err = -1; 620 } 621 622 thread__put(thread); 623 624 return err; 625 } 626 627 int machine__process_namespaces_event(struct machine *machine __maybe_unused, 628 union perf_event *event, 629 struct perf_sample *sample __maybe_unused) 630 { 631 struct thread *thread = machine__findnew_thread(machine, 632 event->namespaces.pid, 633 event->namespaces.tid); 634 int err = 0; 635 636 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES, 637 "\nWARNING: kernel seems to support more namespaces than perf" 638 " tool.\nTry updating the perf tool..\n\n"); 639 640 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES, 641 "\nWARNING: perf tool seems to support more namespaces than" 642 " the kernel.\nTry updating the kernel..\n\n"); 643 644 if (dump_trace) 645 perf_event__fprintf_namespaces(event, stdout); 646 647 if (thread == NULL || 648 thread__set_namespaces(thread, sample->time, &event->namespaces)) { 649 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n"); 650 err = -1; 651 } 652 653 thread__put(thread); 654 655 return err; 656 } 657 658 int machine__process_cgroup_event(struct machine *machine, 659 union perf_event *event, 660 struct perf_sample *sample __maybe_unused) 661 { 662 struct cgroup *cgrp; 663 664 if (dump_trace) 665 perf_event__fprintf_cgroup(event, stdout); 666 667 cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path); 668 if (cgrp == NULL) 669 return -ENOMEM; 670 671 return 0; 672 } 673 674 int machine__process_lost_event(struct machine *machine __maybe_unused, 675 union perf_event *event, struct perf_sample *sample __maybe_unused) 676 { 677 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n", 678 event->lost.id, event->lost.lost); 679 return 0; 680 } 681 682 int machine__process_lost_samples_event(struct machine *machine __maybe_unused, 683 union perf_event *event, struct perf_sample *sample) 684 { 685 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n", 686 sample->id, event->lost_samples.lost); 687 return 0; 688 } 689 690 static struct dso *machine__findnew_module_dso(struct machine *machine, 691 struct kmod_path *m, 692 const char *filename) 693 { 694 struct dso *dso; 695 696 down_write(&machine->dsos.lock); 697 698 dso = __dsos__find(&machine->dsos, m->name, true); 699 if (!dso) { 700 dso = __dsos__addnew(&machine->dsos, m->name); 701 if (dso == NULL) 702 goto out_unlock; 703 704 dso__set_module_info(dso, m, machine); 705 dso__set_long_name(dso, strdup(filename), true); 706 dso->kernel = DSO_SPACE__KERNEL; 707 } 708 709 dso__get(dso); 710 out_unlock: 711 up_write(&machine->dsos.lock); 712 return dso; 713 } 714 715 int machine__process_aux_event(struct machine *machine __maybe_unused, 716 union perf_event *event) 717 { 718 if (dump_trace) 719 perf_event__fprintf_aux(event, stdout); 720 return 0; 721 } 722 723 int machine__process_itrace_start_event(struct machine *machine __maybe_unused, 724 union perf_event *event) 725 { 726 if (dump_trace) 727 perf_event__fprintf_itrace_start(event, stdout); 728 return 0; 729 } 730 731 int machine__process_switch_event(struct machine *machine __maybe_unused, 732 union perf_event *event) 733 { 734 if (dump_trace) 735 perf_event__fprintf_switch(event, stdout); 736 return 0; 737 } 738 739 static int is_bpf_image(const char *name) 740 { 741 return strncmp(name, "bpf_trampoline_", sizeof("bpf_trampoline_") - 1) == 0 || 742 strncmp(name, "bpf_dispatcher_", sizeof("bpf_dispatcher_") - 1) == 0; 743 } 744 745 static int machine__process_ksymbol_register(struct machine *machine, 746 union perf_event *event, 747 struct perf_sample *sample __maybe_unused) 748 { 749 struct symbol *sym; 750 struct map *map = maps__find(&machine->kmaps, event->ksymbol.addr); 751 752 if (!map) { 753 struct dso *dso = dso__new(event->ksymbol.name); 754 755 if (dso) { 756 dso->kernel = DSO_SPACE__KERNEL; 757 map = map__new2(0, dso); 758 } 759 760 if (!dso || !map) { 761 dso__put(dso); 762 return -ENOMEM; 763 } 764 765 if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) { 766 map->dso->binary_type = DSO_BINARY_TYPE__OOL; 767 map->dso->data.file_size = event->ksymbol.len; 768 dso__set_loaded(map->dso); 769 } 770 771 map->start = event->ksymbol.addr; 772 map->end = map->start + event->ksymbol.len; 773 maps__insert(&machine->kmaps, map); 774 dso__set_loaded(dso); 775 776 if (is_bpf_image(event->ksymbol.name)) { 777 dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE; 778 dso__set_long_name(dso, "", false); 779 } 780 } 781 782 sym = symbol__new(map->map_ip(map, map->start), 783 event->ksymbol.len, 784 0, 0, event->ksymbol.name); 785 if (!sym) 786 return -ENOMEM; 787 dso__insert_symbol(map->dso, sym); 788 return 0; 789 } 790 791 static int machine__process_ksymbol_unregister(struct machine *machine, 792 union perf_event *event, 793 struct perf_sample *sample __maybe_unused) 794 { 795 struct map *map; 796 797 map = maps__find(&machine->kmaps, event->ksymbol.addr); 798 if (map) 799 maps__remove(&machine->kmaps, map); 800 801 return 0; 802 } 803 804 int machine__process_ksymbol(struct machine *machine __maybe_unused, 805 union perf_event *event, 806 struct perf_sample *sample) 807 { 808 if (dump_trace) 809 perf_event__fprintf_ksymbol(event, stdout); 810 811 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER) 812 return machine__process_ksymbol_unregister(machine, event, 813 sample); 814 return machine__process_ksymbol_register(machine, event, sample); 815 } 816 817 int machine__process_text_poke(struct machine *machine, union perf_event *event, 818 struct perf_sample *sample __maybe_unused) 819 { 820 struct map *map = maps__find(&machine->kmaps, event->text_poke.addr); 821 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 822 823 if (dump_trace) 824 perf_event__fprintf_text_poke(event, machine, stdout); 825 826 if (!event->text_poke.new_len) 827 return 0; 828 829 if (cpumode != PERF_RECORD_MISC_KERNEL) { 830 pr_debug("%s: unsupported cpumode - ignoring\n", __func__); 831 return 0; 832 } 833 834 if (map && map->dso) { 835 u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len; 836 int ret; 837 838 /* 839 * Kernel maps might be changed when loading symbols so loading 840 * must be done prior to using kernel maps. 841 */ 842 map__load(map); 843 ret = dso__data_write_cache_addr(map->dso, map, machine, 844 event->text_poke.addr, 845 new_bytes, 846 event->text_poke.new_len); 847 if (ret != event->text_poke.new_len) 848 pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n", 849 event->text_poke.addr); 850 } else { 851 pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n", 852 event->text_poke.addr); 853 } 854 855 return 0; 856 } 857 858 static struct map *machine__addnew_module_map(struct machine *machine, u64 start, 859 const char *filename) 860 { 861 struct map *map = NULL; 862 struct kmod_path m; 863 struct dso *dso; 864 865 if (kmod_path__parse_name(&m, filename)) 866 return NULL; 867 868 dso = machine__findnew_module_dso(machine, &m, filename); 869 if (dso == NULL) 870 goto out; 871 872 map = map__new2(start, dso); 873 if (map == NULL) 874 goto out; 875 876 maps__insert(&machine->kmaps, map); 877 878 /* Put the map here because maps__insert alread got it */ 879 map__put(map); 880 out: 881 /* put the dso here, corresponding to machine__findnew_module_dso */ 882 dso__put(dso); 883 zfree(&m.name); 884 return map; 885 } 886 887 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp) 888 { 889 struct rb_node *nd; 890 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp); 891 892 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 893 struct machine *pos = rb_entry(nd, struct machine, rb_node); 894 ret += __dsos__fprintf(&pos->dsos.head, fp); 895 } 896 897 return ret; 898 } 899 900 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp, 901 bool (skip)(struct dso *dso, int parm), int parm) 902 { 903 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm); 904 } 905 906 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp, 907 bool (skip)(struct dso *dso, int parm), int parm) 908 { 909 struct rb_node *nd; 910 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm); 911 912 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 913 struct machine *pos = rb_entry(nd, struct machine, rb_node); 914 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm); 915 } 916 return ret; 917 } 918 919 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp) 920 { 921 int i; 922 size_t printed = 0; 923 struct dso *kdso = machine__kernel_dso(machine); 924 925 if (kdso->has_build_id) { 926 char filename[PATH_MAX]; 927 if (dso__build_id_filename(kdso, filename, sizeof(filename), 928 false)) 929 printed += fprintf(fp, "[0] %s\n", filename); 930 } 931 932 for (i = 0; i < vmlinux_path__nr_entries; ++i) 933 printed += fprintf(fp, "[%d] %s\n", 934 i + kdso->has_build_id, vmlinux_path[i]); 935 936 return printed; 937 } 938 939 size_t machine__fprintf(struct machine *machine, FILE *fp) 940 { 941 struct rb_node *nd; 942 size_t ret; 943 int i; 944 945 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 946 struct threads *threads = &machine->threads[i]; 947 948 down_read(&threads->lock); 949 950 ret = fprintf(fp, "Threads: %u\n", threads->nr); 951 952 for (nd = rb_first_cached(&threads->entries); nd; 953 nd = rb_next(nd)) { 954 struct thread *pos = rb_entry(nd, struct thread, rb_node); 955 956 ret += thread__fprintf(pos, fp); 957 } 958 959 up_read(&threads->lock); 960 } 961 return ret; 962 } 963 964 static struct dso *machine__get_kernel(struct machine *machine) 965 { 966 const char *vmlinux_name = machine->mmap_name; 967 struct dso *kernel; 968 969 if (machine__is_host(machine)) { 970 if (symbol_conf.vmlinux_name) 971 vmlinux_name = symbol_conf.vmlinux_name; 972 973 kernel = machine__findnew_kernel(machine, vmlinux_name, 974 "[kernel]", DSO_SPACE__KERNEL); 975 } else { 976 if (symbol_conf.default_guest_vmlinux_name) 977 vmlinux_name = symbol_conf.default_guest_vmlinux_name; 978 979 kernel = machine__findnew_kernel(machine, vmlinux_name, 980 "[guest.kernel]", 981 DSO_SPACE__KERNEL_GUEST); 982 } 983 984 if (kernel != NULL && (!kernel->has_build_id)) 985 dso__read_running_kernel_build_id(kernel, machine); 986 987 return kernel; 988 } 989 990 struct process_args { 991 u64 start; 992 }; 993 994 void machine__get_kallsyms_filename(struct machine *machine, char *buf, 995 size_t bufsz) 996 { 997 if (machine__is_default_guest(machine)) 998 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms); 999 else 1000 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir); 1001 } 1002 1003 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL}; 1004 1005 /* Figure out the start address of kernel map from /proc/kallsyms. 1006 * Returns the name of the start symbol in *symbol_name. Pass in NULL as 1007 * symbol_name if it's not that important. 1008 */ 1009 static int machine__get_running_kernel_start(struct machine *machine, 1010 const char **symbol_name, 1011 u64 *start, u64 *end) 1012 { 1013 char filename[PATH_MAX]; 1014 int i, err = -1; 1015 const char *name; 1016 u64 addr = 0; 1017 1018 machine__get_kallsyms_filename(machine, filename, PATH_MAX); 1019 1020 if (symbol__restricted_filename(filename, "/proc/kallsyms")) 1021 return 0; 1022 1023 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) { 1024 err = kallsyms__get_function_start(filename, name, &addr); 1025 if (!err) 1026 break; 1027 } 1028 1029 if (err) 1030 return -1; 1031 1032 if (symbol_name) 1033 *symbol_name = name; 1034 1035 *start = addr; 1036 1037 err = kallsyms__get_function_start(filename, "_etext", &addr); 1038 if (!err) 1039 *end = addr; 1040 1041 return 0; 1042 } 1043 1044 int machine__create_extra_kernel_map(struct machine *machine, 1045 struct dso *kernel, 1046 struct extra_kernel_map *xm) 1047 { 1048 struct kmap *kmap; 1049 struct map *map; 1050 1051 map = map__new2(xm->start, kernel); 1052 if (!map) 1053 return -1; 1054 1055 map->end = xm->end; 1056 map->pgoff = xm->pgoff; 1057 1058 kmap = map__kmap(map); 1059 1060 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN); 1061 1062 maps__insert(&machine->kmaps, map); 1063 1064 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n", 1065 kmap->name, map->start, map->end); 1066 1067 map__put(map); 1068 1069 return 0; 1070 } 1071 1072 static u64 find_entry_trampoline(struct dso *dso) 1073 { 1074 /* Duplicates are removed so lookup all aliases */ 1075 const char *syms[] = { 1076 "_entry_trampoline", 1077 "__entry_trampoline_start", 1078 "entry_SYSCALL_64_trampoline", 1079 }; 1080 struct symbol *sym = dso__first_symbol(dso); 1081 unsigned int i; 1082 1083 for (; sym; sym = dso__next_symbol(sym)) { 1084 if (sym->binding != STB_GLOBAL) 1085 continue; 1086 for (i = 0; i < ARRAY_SIZE(syms); i++) { 1087 if (!strcmp(sym->name, syms[i])) 1088 return sym->start; 1089 } 1090 } 1091 1092 return 0; 1093 } 1094 1095 /* 1096 * These values can be used for kernels that do not have symbols for the entry 1097 * trampolines in kallsyms. 1098 */ 1099 #define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL 1100 #define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000 1101 #define X86_64_ENTRY_TRAMPOLINE 0x6000 1102 1103 /* Map x86_64 PTI entry trampolines */ 1104 int machine__map_x86_64_entry_trampolines(struct machine *machine, 1105 struct dso *kernel) 1106 { 1107 struct maps *kmaps = &machine->kmaps; 1108 int nr_cpus_avail, cpu; 1109 bool found = false; 1110 struct map *map; 1111 u64 pgoff; 1112 1113 /* 1114 * In the vmlinux case, pgoff is a virtual address which must now be 1115 * mapped to a vmlinux offset. 1116 */ 1117 maps__for_each_entry(kmaps, map) { 1118 struct kmap *kmap = __map__kmap(map); 1119 struct map *dest_map; 1120 1121 if (!kmap || !is_entry_trampoline(kmap->name)) 1122 continue; 1123 1124 dest_map = maps__find(kmaps, map->pgoff); 1125 if (dest_map != map) 1126 map->pgoff = dest_map->map_ip(dest_map, map->pgoff); 1127 found = true; 1128 } 1129 if (found || machine->trampolines_mapped) 1130 return 0; 1131 1132 pgoff = find_entry_trampoline(kernel); 1133 if (!pgoff) 1134 return 0; 1135 1136 nr_cpus_avail = machine__nr_cpus_avail(machine); 1137 1138 /* Add a 1 page map for each CPU's entry trampoline */ 1139 for (cpu = 0; cpu < nr_cpus_avail; cpu++) { 1140 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU + 1141 cpu * X86_64_CPU_ENTRY_AREA_SIZE + 1142 X86_64_ENTRY_TRAMPOLINE; 1143 struct extra_kernel_map xm = { 1144 .start = va, 1145 .end = va + page_size, 1146 .pgoff = pgoff, 1147 }; 1148 1149 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN); 1150 1151 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0) 1152 return -1; 1153 } 1154 1155 machine->trampolines_mapped = nr_cpus_avail; 1156 1157 return 0; 1158 } 1159 1160 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused, 1161 struct dso *kernel __maybe_unused) 1162 { 1163 return 0; 1164 } 1165 1166 static int 1167 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel) 1168 { 1169 /* In case of renewal the kernel map, destroy previous one */ 1170 machine__destroy_kernel_maps(machine); 1171 1172 machine->vmlinux_map = map__new2(0, kernel); 1173 if (machine->vmlinux_map == NULL) 1174 return -1; 1175 1176 machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip; 1177 maps__insert(&machine->kmaps, machine->vmlinux_map); 1178 return 0; 1179 } 1180 1181 void machine__destroy_kernel_maps(struct machine *machine) 1182 { 1183 struct kmap *kmap; 1184 struct map *map = machine__kernel_map(machine); 1185 1186 if (map == NULL) 1187 return; 1188 1189 kmap = map__kmap(map); 1190 maps__remove(&machine->kmaps, map); 1191 if (kmap && kmap->ref_reloc_sym) { 1192 zfree((char **)&kmap->ref_reloc_sym->name); 1193 zfree(&kmap->ref_reloc_sym); 1194 } 1195 1196 map__zput(machine->vmlinux_map); 1197 } 1198 1199 int machines__create_guest_kernel_maps(struct machines *machines) 1200 { 1201 int ret = 0; 1202 struct dirent **namelist = NULL; 1203 int i, items = 0; 1204 char path[PATH_MAX]; 1205 pid_t pid; 1206 char *endp; 1207 1208 if (symbol_conf.default_guest_vmlinux_name || 1209 symbol_conf.default_guest_modules || 1210 symbol_conf.default_guest_kallsyms) { 1211 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID); 1212 } 1213 1214 if (symbol_conf.guestmount) { 1215 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL); 1216 if (items <= 0) 1217 return -ENOENT; 1218 for (i = 0; i < items; i++) { 1219 if (!isdigit(namelist[i]->d_name[0])) { 1220 /* Filter out . and .. */ 1221 continue; 1222 } 1223 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10); 1224 if ((*endp != '\0') || 1225 (endp == namelist[i]->d_name) || 1226 (errno == ERANGE)) { 1227 pr_debug("invalid directory (%s). Skipping.\n", 1228 namelist[i]->d_name); 1229 continue; 1230 } 1231 sprintf(path, "%s/%s/proc/kallsyms", 1232 symbol_conf.guestmount, 1233 namelist[i]->d_name); 1234 ret = access(path, R_OK); 1235 if (ret) { 1236 pr_debug("Can't access file %s\n", path); 1237 goto failure; 1238 } 1239 machines__create_kernel_maps(machines, pid); 1240 } 1241 failure: 1242 free(namelist); 1243 } 1244 1245 return ret; 1246 } 1247 1248 void machines__destroy_kernel_maps(struct machines *machines) 1249 { 1250 struct rb_node *next = rb_first_cached(&machines->guests); 1251 1252 machine__destroy_kernel_maps(&machines->host); 1253 1254 while (next) { 1255 struct machine *pos = rb_entry(next, struct machine, rb_node); 1256 1257 next = rb_next(&pos->rb_node); 1258 rb_erase_cached(&pos->rb_node, &machines->guests); 1259 machine__delete(pos); 1260 } 1261 } 1262 1263 int machines__create_kernel_maps(struct machines *machines, pid_t pid) 1264 { 1265 struct machine *machine = machines__findnew(machines, pid); 1266 1267 if (machine == NULL) 1268 return -1; 1269 1270 return machine__create_kernel_maps(machine); 1271 } 1272 1273 int machine__load_kallsyms(struct machine *machine, const char *filename) 1274 { 1275 struct map *map = machine__kernel_map(machine); 1276 int ret = __dso__load_kallsyms(map->dso, filename, map, true); 1277 1278 if (ret > 0) { 1279 dso__set_loaded(map->dso); 1280 /* 1281 * Since /proc/kallsyms will have multiple sessions for the 1282 * kernel, with modules between them, fixup the end of all 1283 * sections. 1284 */ 1285 maps__fixup_end(&machine->kmaps); 1286 } 1287 1288 return ret; 1289 } 1290 1291 int machine__load_vmlinux_path(struct machine *machine) 1292 { 1293 struct map *map = machine__kernel_map(machine); 1294 int ret = dso__load_vmlinux_path(map->dso, map); 1295 1296 if (ret > 0) 1297 dso__set_loaded(map->dso); 1298 1299 return ret; 1300 } 1301 1302 static char *get_kernel_version(const char *root_dir) 1303 { 1304 char version[PATH_MAX]; 1305 FILE *file; 1306 char *name, *tmp; 1307 const char *prefix = "Linux version "; 1308 1309 sprintf(version, "%s/proc/version", root_dir); 1310 file = fopen(version, "r"); 1311 if (!file) 1312 return NULL; 1313 1314 tmp = fgets(version, sizeof(version), file); 1315 fclose(file); 1316 if (!tmp) 1317 return NULL; 1318 1319 name = strstr(version, prefix); 1320 if (!name) 1321 return NULL; 1322 name += strlen(prefix); 1323 tmp = strchr(name, ' '); 1324 if (tmp) 1325 *tmp = '\0'; 1326 1327 return strdup(name); 1328 } 1329 1330 static bool is_kmod_dso(struct dso *dso) 1331 { 1332 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE || 1333 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE; 1334 } 1335 1336 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m) 1337 { 1338 char *long_name; 1339 struct map *map = maps__find_by_name(maps, m->name); 1340 1341 if (map == NULL) 1342 return 0; 1343 1344 long_name = strdup(path); 1345 if (long_name == NULL) 1346 return -ENOMEM; 1347 1348 dso__set_long_name(map->dso, long_name, true); 1349 dso__kernel_module_get_build_id(map->dso, ""); 1350 1351 /* 1352 * Full name could reveal us kmod compression, so 1353 * we need to update the symtab_type if needed. 1354 */ 1355 if (m->comp && is_kmod_dso(map->dso)) { 1356 map->dso->symtab_type++; 1357 map->dso->comp = m->comp; 1358 } 1359 1360 return 0; 1361 } 1362 1363 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth) 1364 { 1365 struct dirent *dent; 1366 DIR *dir = opendir(dir_name); 1367 int ret = 0; 1368 1369 if (!dir) { 1370 pr_debug("%s: cannot open %s dir\n", __func__, dir_name); 1371 return -1; 1372 } 1373 1374 while ((dent = readdir(dir)) != NULL) { 1375 char path[PATH_MAX]; 1376 struct stat st; 1377 1378 /*sshfs might return bad dent->d_type, so we have to stat*/ 1379 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name); 1380 if (stat(path, &st)) 1381 continue; 1382 1383 if (S_ISDIR(st.st_mode)) { 1384 if (!strcmp(dent->d_name, ".") || 1385 !strcmp(dent->d_name, "..")) 1386 continue; 1387 1388 /* Do not follow top-level source and build symlinks */ 1389 if (depth == 0) { 1390 if (!strcmp(dent->d_name, "source") || 1391 !strcmp(dent->d_name, "build")) 1392 continue; 1393 } 1394 1395 ret = maps__set_modules_path_dir(maps, path, depth + 1); 1396 if (ret < 0) 1397 goto out; 1398 } else { 1399 struct kmod_path m; 1400 1401 ret = kmod_path__parse_name(&m, dent->d_name); 1402 if (ret) 1403 goto out; 1404 1405 if (m.kmod) 1406 ret = maps__set_module_path(maps, path, &m); 1407 1408 zfree(&m.name); 1409 1410 if (ret) 1411 goto out; 1412 } 1413 } 1414 1415 out: 1416 closedir(dir); 1417 return ret; 1418 } 1419 1420 static int machine__set_modules_path(struct machine *machine) 1421 { 1422 char *version; 1423 char modules_path[PATH_MAX]; 1424 1425 version = get_kernel_version(machine->root_dir); 1426 if (!version) 1427 return -1; 1428 1429 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s", 1430 machine->root_dir, version); 1431 free(version); 1432 1433 return maps__set_modules_path_dir(&machine->kmaps, modules_path, 0); 1434 } 1435 int __weak arch__fix_module_text_start(u64 *start __maybe_unused, 1436 u64 *size __maybe_unused, 1437 const char *name __maybe_unused) 1438 { 1439 return 0; 1440 } 1441 1442 static int machine__create_module(void *arg, const char *name, u64 start, 1443 u64 size) 1444 { 1445 struct machine *machine = arg; 1446 struct map *map; 1447 1448 if (arch__fix_module_text_start(&start, &size, name) < 0) 1449 return -1; 1450 1451 map = machine__addnew_module_map(machine, start, name); 1452 if (map == NULL) 1453 return -1; 1454 map->end = start + size; 1455 1456 dso__kernel_module_get_build_id(map->dso, machine->root_dir); 1457 1458 return 0; 1459 } 1460 1461 static int machine__create_modules(struct machine *machine) 1462 { 1463 const char *modules; 1464 char path[PATH_MAX]; 1465 1466 if (machine__is_default_guest(machine)) { 1467 modules = symbol_conf.default_guest_modules; 1468 } else { 1469 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir); 1470 modules = path; 1471 } 1472 1473 if (symbol__restricted_filename(modules, "/proc/modules")) 1474 return -1; 1475 1476 if (modules__parse(modules, machine, machine__create_module)) 1477 return -1; 1478 1479 if (!machine__set_modules_path(machine)) 1480 return 0; 1481 1482 pr_debug("Problems setting modules path maps, continuing anyway...\n"); 1483 1484 return 0; 1485 } 1486 1487 static void machine__set_kernel_mmap(struct machine *machine, 1488 u64 start, u64 end) 1489 { 1490 machine->vmlinux_map->start = start; 1491 machine->vmlinux_map->end = end; 1492 /* 1493 * Be a bit paranoid here, some perf.data file came with 1494 * a zero sized synthesized MMAP event for the kernel. 1495 */ 1496 if (start == 0 && end == 0) 1497 machine->vmlinux_map->end = ~0ULL; 1498 } 1499 1500 static void machine__update_kernel_mmap(struct machine *machine, 1501 u64 start, u64 end) 1502 { 1503 struct map *map = machine__kernel_map(machine); 1504 1505 map__get(map); 1506 maps__remove(&machine->kmaps, map); 1507 1508 machine__set_kernel_mmap(machine, start, end); 1509 1510 maps__insert(&machine->kmaps, map); 1511 map__put(map); 1512 } 1513 1514 int machine__create_kernel_maps(struct machine *machine) 1515 { 1516 struct dso *kernel = machine__get_kernel(machine); 1517 const char *name = NULL; 1518 struct map *map; 1519 u64 start = 0, end = ~0ULL; 1520 int ret; 1521 1522 if (kernel == NULL) 1523 return -1; 1524 1525 ret = __machine__create_kernel_maps(machine, kernel); 1526 if (ret < 0) 1527 goto out_put; 1528 1529 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) { 1530 if (machine__is_host(machine)) 1531 pr_debug("Problems creating module maps, " 1532 "continuing anyway...\n"); 1533 else 1534 pr_debug("Problems creating module maps for guest %d, " 1535 "continuing anyway...\n", machine->pid); 1536 } 1537 1538 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) { 1539 if (name && 1540 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) { 1541 machine__destroy_kernel_maps(machine); 1542 ret = -1; 1543 goto out_put; 1544 } 1545 1546 /* 1547 * we have a real start address now, so re-order the kmaps 1548 * assume it's the last in the kmaps 1549 */ 1550 machine__update_kernel_mmap(machine, start, end); 1551 } 1552 1553 if (machine__create_extra_kernel_maps(machine, kernel)) 1554 pr_debug("Problems creating extra kernel maps, continuing anyway...\n"); 1555 1556 if (end == ~0ULL) { 1557 /* update end address of the kernel map using adjacent module address */ 1558 map = map__next(machine__kernel_map(machine)); 1559 if (map) 1560 machine__set_kernel_mmap(machine, start, map->start); 1561 } 1562 1563 out_put: 1564 dso__put(kernel); 1565 return ret; 1566 } 1567 1568 static bool machine__uses_kcore(struct machine *machine) 1569 { 1570 struct dso *dso; 1571 1572 list_for_each_entry(dso, &machine->dsos.head, node) { 1573 if (dso__is_kcore(dso)) 1574 return true; 1575 } 1576 1577 return false; 1578 } 1579 1580 static bool perf_event__is_extra_kernel_mmap(struct machine *machine, 1581 union perf_event *event) 1582 { 1583 return machine__is(machine, "x86_64") && 1584 is_entry_trampoline(event->mmap.filename); 1585 } 1586 1587 static int machine__process_extra_kernel_map(struct machine *machine, 1588 union perf_event *event) 1589 { 1590 struct dso *kernel = machine__kernel_dso(machine); 1591 struct extra_kernel_map xm = { 1592 .start = event->mmap.start, 1593 .end = event->mmap.start + event->mmap.len, 1594 .pgoff = event->mmap.pgoff, 1595 }; 1596 1597 if (kernel == NULL) 1598 return -1; 1599 1600 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN); 1601 1602 return machine__create_extra_kernel_map(machine, kernel, &xm); 1603 } 1604 1605 static int machine__process_kernel_mmap_event(struct machine *machine, 1606 union perf_event *event) 1607 { 1608 struct map *map; 1609 enum dso_space_type dso_space; 1610 bool is_kernel_mmap; 1611 1612 /* If we have maps from kcore then we do not need or want any others */ 1613 if (machine__uses_kcore(machine)) 1614 return 0; 1615 1616 if (machine__is_host(machine)) 1617 dso_space = DSO_SPACE__KERNEL; 1618 else 1619 dso_space = DSO_SPACE__KERNEL_GUEST; 1620 1621 is_kernel_mmap = memcmp(event->mmap.filename, 1622 machine->mmap_name, 1623 strlen(machine->mmap_name) - 1) == 0; 1624 if (event->mmap.filename[0] == '/' || 1625 (!is_kernel_mmap && event->mmap.filename[0] == '[')) { 1626 map = machine__addnew_module_map(machine, event->mmap.start, 1627 event->mmap.filename); 1628 if (map == NULL) 1629 goto out_problem; 1630 1631 map->end = map->start + event->mmap.len; 1632 } else if (is_kernel_mmap) { 1633 const char *symbol_name = (event->mmap.filename + 1634 strlen(machine->mmap_name)); 1635 /* 1636 * Should be there already, from the build-id table in 1637 * the header. 1638 */ 1639 struct dso *kernel = NULL; 1640 struct dso *dso; 1641 1642 down_read(&machine->dsos.lock); 1643 1644 list_for_each_entry(dso, &machine->dsos.head, node) { 1645 1646 /* 1647 * The cpumode passed to is_kernel_module is not the 1648 * cpumode of *this* event. If we insist on passing 1649 * correct cpumode to is_kernel_module, we should 1650 * record the cpumode when we adding this dso to the 1651 * linked list. 1652 * 1653 * However we don't really need passing correct 1654 * cpumode. We know the correct cpumode must be kernel 1655 * mode (if not, we should not link it onto kernel_dsos 1656 * list). 1657 * 1658 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN. 1659 * is_kernel_module() treats it as a kernel cpumode. 1660 */ 1661 1662 if (!dso->kernel || 1663 is_kernel_module(dso->long_name, 1664 PERF_RECORD_MISC_CPUMODE_UNKNOWN)) 1665 continue; 1666 1667 1668 kernel = dso; 1669 break; 1670 } 1671 1672 up_read(&machine->dsos.lock); 1673 1674 if (kernel == NULL) 1675 kernel = machine__findnew_dso(machine, machine->mmap_name); 1676 if (kernel == NULL) 1677 goto out_problem; 1678 1679 kernel->kernel = dso_space; 1680 if (__machine__create_kernel_maps(machine, kernel) < 0) { 1681 dso__put(kernel); 1682 goto out_problem; 1683 } 1684 1685 if (strstr(kernel->long_name, "vmlinux")) 1686 dso__set_short_name(kernel, "[kernel.vmlinux]", false); 1687 1688 machine__update_kernel_mmap(machine, event->mmap.start, 1689 event->mmap.start + event->mmap.len); 1690 1691 /* 1692 * Avoid using a zero address (kptr_restrict) for the ref reloc 1693 * symbol. Effectively having zero here means that at record 1694 * time /proc/sys/kernel/kptr_restrict was non zero. 1695 */ 1696 if (event->mmap.pgoff != 0) { 1697 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, 1698 symbol_name, 1699 event->mmap.pgoff); 1700 } 1701 1702 if (machine__is_default_guest(machine)) { 1703 /* 1704 * preload dso of guest kernel and modules 1705 */ 1706 dso__load(kernel, machine__kernel_map(machine)); 1707 } 1708 } else if (perf_event__is_extra_kernel_mmap(machine, event)) { 1709 return machine__process_extra_kernel_map(machine, event); 1710 } 1711 return 0; 1712 out_problem: 1713 return -1; 1714 } 1715 1716 int machine__process_mmap2_event(struct machine *machine, 1717 union perf_event *event, 1718 struct perf_sample *sample) 1719 { 1720 struct thread *thread; 1721 struct map *map; 1722 struct dso_id dso_id = { 1723 .maj = event->mmap2.maj, 1724 .min = event->mmap2.min, 1725 .ino = event->mmap2.ino, 1726 .ino_generation = event->mmap2.ino_generation, 1727 }; 1728 int ret = 0; 1729 1730 if (dump_trace) 1731 perf_event__fprintf_mmap2(event, stdout); 1732 1733 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1734 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1735 ret = machine__process_kernel_mmap_event(machine, event); 1736 if (ret < 0) 1737 goto out_problem; 1738 return 0; 1739 } 1740 1741 thread = machine__findnew_thread(machine, event->mmap2.pid, 1742 event->mmap2.tid); 1743 if (thread == NULL) 1744 goto out_problem; 1745 1746 map = map__new(machine, event->mmap2.start, 1747 event->mmap2.len, event->mmap2.pgoff, 1748 &dso_id, event->mmap2.prot, 1749 event->mmap2.flags, 1750 event->mmap2.filename, thread); 1751 1752 if (map == NULL) 1753 goto out_problem_map; 1754 1755 ret = thread__insert_map(thread, map); 1756 if (ret) 1757 goto out_problem_insert; 1758 1759 thread__put(thread); 1760 map__put(map); 1761 return 0; 1762 1763 out_problem_insert: 1764 map__put(map); 1765 out_problem_map: 1766 thread__put(thread); 1767 out_problem: 1768 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n"); 1769 return 0; 1770 } 1771 1772 int machine__process_mmap_event(struct machine *machine, union perf_event *event, 1773 struct perf_sample *sample) 1774 { 1775 struct thread *thread; 1776 struct map *map; 1777 u32 prot = 0; 1778 int ret = 0; 1779 1780 if (dump_trace) 1781 perf_event__fprintf_mmap(event, stdout); 1782 1783 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1784 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1785 ret = machine__process_kernel_mmap_event(machine, event); 1786 if (ret < 0) 1787 goto out_problem; 1788 return 0; 1789 } 1790 1791 thread = machine__findnew_thread(machine, event->mmap.pid, 1792 event->mmap.tid); 1793 if (thread == NULL) 1794 goto out_problem; 1795 1796 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA)) 1797 prot = PROT_EXEC; 1798 1799 map = map__new(machine, event->mmap.start, 1800 event->mmap.len, event->mmap.pgoff, 1801 NULL, prot, 0, event->mmap.filename, thread); 1802 1803 if (map == NULL) 1804 goto out_problem_map; 1805 1806 ret = thread__insert_map(thread, map); 1807 if (ret) 1808 goto out_problem_insert; 1809 1810 thread__put(thread); 1811 map__put(map); 1812 return 0; 1813 1814 out_problem_insert: 1815 map__put(map); 1816 out_problem_map: 1817 thread__put(thread); 1818 out_problem: 1819 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n"); 1820 return 0; 1821 } 1822 1823 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock) 1824 { 1825 struct threads *threads = machine__threads(machine, th->tid); 1826 1827 if (threads->last_match == th) 1828 threads__set_last_match(threads, NULL); 1829 1830 if (lock) 1831 down_write(&threads->lock); 1832 1833 BUG_ON(refcount_read(&th->refcnt) == 0); 1834 1835 rb_erase_cached(&th->rb_node, &threads->entries); 1836 RB_CLEAR_NODE(&th->rb_node); 1837 --threads->nr; 1838 /* 1839 * Move it first to the dead_threads list, then drop the reference, 1840 * if this is the last reference, then the thread__delete destructor 1841 * will be called and we will remove it from the dead_threads list. 1842 */ 1843 list_add_tail(&th->node, &threads->dead); 1844 1845 /* 1846 * We need to do the put here because if this is the last refcount, 1847 * then we will be touching the threads->dead head when removing the 1848 * thread. 1849 */ 1850 thread__put(th); 1851 1852 if (lock) 1853 up_write(&threads->lock); 1854 } 1855 1856 void machine__remove_thread(struct machine *machine, struct thread *th) 1857 { 1858 return __machine__remove_thread(machine, th, true); 1859 } 1860 1861 int machine__process_fork_event(struct machine *machine, union perf_event *event, 1862 struct perf_sample *sample) 1863 { 1864 struct thread *thread = machine__find_thread(machine, 1865 event->fork.pid, 1866 event->fork.tid); 1867 struct thread *parent = machine__findnew_thread(machine, 1868 event->fork.ppid, 1869 event->fork.ptid); 1870 bool do_maps_clone = true; 1871 int err = 0; 1872 1873 if (dump_trace) 1874 perf_event__fprintf_task(event, stdout); 1875 1876 /* 1877 * There may be an existing thread that is not actually the parent, 1878 * either because we are processing events out of order, or because the 1879 * (fork) event that would have removed the thread was lost. Assume the 1880 * latter case and continue on as best we can. 1881 */ 1882 if (parent->pid_ != (pid_t)event->fork.ppid) { 1883 dump_printf("removing erroneous parent thread %d/%d\n", 1884 parent->pid_, parent->tid); 1885 machine__remove_thread(machine, parent); 1886 thread__put(parent); 1887 parent = machine__findnew_thread(machine, event->fork.ppid, 1888 event->fork.ptid); 1889 } 1890 1891 /* if a thread currently exists for the thread id remove it */ 1892 if (thread != NULL) { 1893 machine__remove_thread(machine, thread); 1894 thread__put(thread); 1895 } 1896 1897 thread = machine__findnew_thread(machine, event->fork.pid, 1898 event->fork.tid); 1899 /* 1900 * When synthesizing FORK events, we are trying to create thread 1901 * objects for the already running tasks on the machine. 1902 * 1903 * Normally, for a kernel FORK event, we want to clone the parent's 1904 * maps because that is what the kernel just did. 1905 * 1906 * But when synthesizing, this should not be done. If we do, we end up 1907 * with overlapping maps as we process the sythesized MMAP2 events that 1908 * get delivered shortly thereafter. 1909 * 1910 * Use the FORK event misc flags in an internal way to signal this 1911 * situation, so we can elide the map clone when appropriate. 1912 */ 1913 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC) 1914 do_maps_clone = false; 1915 1916 if (thread == NULL || parent == NULL || 1917 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) { 1918 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n"); 1919 err = -1; 1920 } 1921 thread__put(thread); 1922 thread__put(parent); 1923 1924 return err; 1925 } 1926 1927 int machine__process_exit_event(struct machine *machine, union perf_event *event, 1928 struct perf_sample *sample __maybe_unused) 1929 { 1930 struct thread *thread = machine__find_thread(machine, 1931 event->fork.pid, 1932 event->fork.tid); 1933 1934 if (dump_trace) 1935 perf_event__fprintf_task(event, stdout); 1936 1937 if (thread != NULL) { 1938 thread__exited(thread); 1939 thread__put(thread); 1940 } 1941 1942 return 0; 1943 } 1944 1945 int machine__process_event(struct machine *machine, union perf_event *event, 1946 struct perf_sample *sample) 1947 { 1948 int ret; 1949 1950 switch (event->header.type) { 1951 case PERF_RECORD_COMM: 1952 ret = machine__process_comm_event(machine, event, sample); break; 1953 case PERF_RECORD_MMAP: 1954 ret = machine__process_mmap_event(machine, event, sample); break; 1955 case PERF_RECORD_NAMESPACES: 1956 ret = machine__process_namespaces_event(machine, event, sample); break; 1957 case PERF_RECORD_CGROUP: 1958 ret = machine__process_cgroup_event(machine, event, sample); break; 1959 case PERF_RECORD_MMAP2: 1960 ret = machine__process_mmap2_event(machine, event, sample); break; 1961 case PERF_RECORD_FORK: 1962 ret = machine__process_fork_event(machine, event, sample); break; 1963 case PERF_RECORD_EXIT: 1964 ret = machine__process_exit_event(machine, event, sample); break; 1965 case PERF_RECORD_LOST: 1966 ret = machine__process_lost_event(machine, event, sample); break; 1967 case PERF_RECORD_AUX: 1968 ret = machine__process_aux_event(machine, event); break; 1969 case PERF_RECORD_ITRACE_START: 1970 ret = machine__process_itrace_start_event(machine, event); break; 1971 case PERF_RECORD_LOST_SAMPLES: 1972 ret = machine__process_lost_samples_event(machine, event, sample); break; 1973 case PERF_RECORD_SWITCH: 1974 case PERF_RECORD_SWITCH_CPU_WIDE: 1975 ret = machine__process_switch_event(machine, event); break; 1976 case PERF_RECORD_KSYMBOL: 1977 ret = machine__process_ksymbol(machine, event, sample); break; 1978 case PERF_RECORD_BPF_EVENT: 1979 ret = machine__process_bpf(machine, event, sample); break; 1980 case PERF_RECORD_TEXT_POKE: 1981 ret = machine__process_text_poke(machine, event, sample); break; 1982 default: 1983 ret = -1; 1984 break; 1985 } 1986 1987 return ret; 1988 } 1989 1990 static bool symbol__match_regex(struct symbol *sym, regex_t *regex) 1991 { 1992 if (!regexec(regex, sym->name, 0, NULL, 0)) 1993 return 1; 1994 return 0; 1995 } 1996 1997 static void ip__resolve_ams(struct thread *thread, 1998 struct addr_map_symbol *ams, 1999 u64 ip) 2000 { 2001 struct addr_location al; 2002 2003 memset(&al, 0, sizeof(al)); 2004 /* 2005 * We cannot use the header.misc hint to determine whether a 2006 * branch stack address is user, kernel, guest, hypervisor. 2007 * Branches may straddle the kernel/user/hypervisor boundaries. 2008 * Thus, we have to try consecutively until we find a match 2009 * or else, the symbol is unknown 2010 */ 2011 thread__find_cpumode_addr_location(thread, ip, &al); 2012 2013 ams->addr = ip; 2014 ams->al_addr = al.addr; 2015 ams->ms.maps = al.maps; 2016 ams->ms.sym = al.sym; 2017 ams->ms.map = al.map; 2018 ams->phys_addr = 0; 2019 } 2020 2021 static void ip__resolve_data(struct thread *thread, 2022 u8 m, struct addr_map_symbol *ams, 2023 u64 addr, u64 phys_addr) 2024 { 2025 struct addr_location al; 2026 2027 memset(&al, 0, sizeof(al)); 2028 2029 thread__find_symbol(thread, m, addr, &al); 2030 2031 ams->addr = addr; 2032 ams->al_addr = al.addr; 2033 ams->ms.maps = al.maps; 2034 ams->ms.sym = al.sym; 2035 ams->ms.map = al.map; 2036 ams->phys_addr = phys_addr; 2037 } 2038 2039 struct mem_info *sample__resolve_mem(struct perf_sample *sample, 2040 struct addr_location *al) 2041 { 2042 struct mem_info *mi = mem_info__new(); 2043 2044 if (!mi) 2045 return NULL; 2046 2047 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip); 2048 ip__resolve_data(al->thread, al->cpumode, &mi->daddr, 2049 sample->addr, sample->phys_addr); 2050 mi->data_src.val = sample->data_src; 2051 2052 return mi; 2053 } 2054 2055 static char *callchain_srcline(struct map_symbol *ms, u64 ip) 2056 { 2057 struct map *map = ms->map; 2058 char *srcline = NULL; 2059 2060 if (!map || callchain_param.key == CCKEY_FUNCTION) 2061 return srcline; 2062 2063 srcline = srcline__tree_find(&map->dso->srclines, ip); 2064 if (!srcline) { 2065 bool show_sym = false; 2066 bool show_addr = callchain_param.key == CCKEY_ADDRESS; 2067 2068 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip), 2069 ms->sym, show_sym, show_addr, ip); 2070 srcline__tree_insert(&map->dso->srclines, ip, srcline); 2071 } 2072 2073 return srcline; 2074 } 2075 2076 struct iterations { 2077 int nr_loop_iter; 2078 u64 cycles; 2079 }; 2080 2081 static int add_callchain_ip(struct thread *thread, 2082 struct callchain_cursor *cursor, 2083 struct symbol **parent, 2084 struct addr_location *root_al, 2085 u8 *cpumode, 2086 u64 ip, 2087 bool branch, 2088 struct branch_flags *flags, 2089 struct iterations *iter, 2090 u64 branch_from) 2091 { 2092 struct map_symbol ms; 2093 struct addr_location al; 2094 int nr_loop_iter = 0; 2095 u64 iter_cycles = 0; 2096 const char *srcline = NULL; 2097 2098 al.filtered = 0; 2099 al.sym = NULL; 2100 if (!cpumode) { 2101 thread__find_cpumode_addr_location(thread, ip, &al); 2102 } else { 2103 if (ip >= PERF_CONTEXT_MAX) { 2104 switch (ip) { 2105 case PERF_CONTEXT_HV: 2106 *cpumode = PERF_RECORD_MISC_HYPERVISOR; 2107 break; 2108 case PERF_CONTEXT_KERNEL: 2109 *cpumode = PERF_RECORD_MISC_KERNEL; 2110 break; 2111 case PERF_CONTEXT_USER: 2112 *cpumode = PERF_RECORD_MISC_USER; 2113 break; 2114 default: 2115 pr_debug("invalid callchain context: " 2116 "%"PRId64"\n", (s64) ip); 2117 /* 2118 * It seems the callchain is corrupted. 2119 * Discard all. 2120 */ 2121 callchain_cursor_reset(cursor); 2122 return 1; 2123 } 2124 return 0; 2125 } 2126 thread__find_symbol(thread, *cpumode, ip, &al); 2127 } 2128 2129 if (al.sym != NULL) { 2130 if (perf_hpp_list.parent && !*parent && 2131 symbol__match_regex(al.sym, &parent_regex)) 2132 *parent = al.sym; 2133 else if (have_ignore_callees && root_al && 2134 symbol__match_regex(al.sym, &ignore_callees_regex)) { 2135 /* Treat this symbol as the root, 2136 forgetting its callees. */ 2137 *root_al = al; 2138 callchain_cursor_reset(cursor); 2139 } 2140 } 2141 2142 if (symbol_conf.hide_unresolved && al.sym == NULL) 2143 return 0; 2144 2145 if (iter) { 2146 nr_loop_iter = iter->nr_loop_iter; 2147 iter_cycles = iter->cycles; 2148 } 2149 2150 ms.maps = al.maps; 2151 ms.map = al.map; 2152 ms.sym = al.sym; 2153 srcline = callchain_srcline(&ms, al.addr); 2154 return callchain_cursor_append(cursor, ip, &ms, 2155 branch, flags, nr_loop_iter, 2156 iter_cycles, branch_from, srcline); 2157 } 2158 2159 struct branch_info *sample__resolve_bstack(struct perf_sample *sample, 2160 struct addr_location *al) 2161 { 2162 unsigned int i; 2163 const struct branch_stack *bs = sample->branch_stack; 2164 struct branch_entry *entries = perf_sample__branch_entries(sample); 2165 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info)); 2166 2167 if (!bi) 2168 return NULL; 2169 2170 for (i = 0; i < bs->nr; i++) { 2171 ip__resolve_ams(al->thread, &bi[i].to, entries[i].to); 2172 ip__resolve_ams(al->thread, &bi[i].from, entries[i].from); 2173 bi[i].flags = entries[i].flags; 2174 } 2175 return bi; 2176 } 2177 2178 static void save_iterations(struct iterations *iter, 2179 struct branch_entry *be, int nr) 2180 { 2181 int i; 2182 2183 iter->nr_loop_iter++; 2184 iter->cycles = 0; 2185 2186 for (i = 0; i < nr; i++) 2187 iter->cycles += be[i].flags.cycles; 2188 } 2189 2190 #define CHASHSZ 127 2191 #define CHASHBITS 7 2192 #define NO_ENTRY 0xff 2193 2194 #define PERF_MAX_BRANCH_DEPTH 127 2195 2196 /* Remove loops. */ 2197 static int remove_loops(struct branch_entry *l, int nr, 2198 struct iterations *iter) 2199 { 2200 int i, j, off; 2201 unsigned char chash[CHASHSZ]; 2202 2203 memset(chash, NO_ENTRY, sizeof(chash)); 2204 2205 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255); 2206 2207 for (i = 0; i < nr; i++) { 2208 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ; 2209 2210 /* no collision handling for now */ 2211 if (chash[h] == NO_ENTRY) { 2212 chash[h] = i; 2213 } else if (l[chash[h]].from == l[i].from) { 2214 bool is_loop = true; 2215 /* check if it is a real loop */ 2216 off = 0; 2217 for (j = chash[h]; j < i && i + off < nr; j++, off++) 2218 if (l[j].from != l[i + off].from) { 2219 is_loop = false; 2220 break; 2221 } 2222 if (is_loop) { 2223 j = nr - (i + off); 2224 if (j > 0) { 2225 save_iterations(iter + i + off, 2226 l + i, off); 2227 2228 memmove(iter + i, iter + i + off, 2229 j * sizeof(*iter)); 2230 2231 memmove(l + i, l + i + off, 2232 j * sizeof(*l)); 2233 } 2234 2235 nr -= off; 2236 } 2237 } 2238 } 2239 return nr; 2240 } 2241 2242 static int lbr_callchain_add_kernel_ip(struct thread *thread, 2243 struct callchain_cursor *cursor, 2244 struct perf_sample *sample, 2245 struct symbol **parent, 2246 struct addr_location *root_al, 2247 u64 branch_from, 2248 bool callee, int end) 2249 { 2250 struct ip_callchain *chain = sample->callchain; 2251 u8 cpumode = PERF_RECORD_MISC_USER; 2252 int err, i; 2253 2254 if (callee) { 2255 for (i = 0; i < end + 1; i++) { 2256 err = add_callchain_ip(thread, cursor, parent, 2257 root_al, &cpumode, chain->ips[i], 2258 false, NULL, NULL, branch_from); 2259 if (err) 2260 return err; 2261 } 2262 return 0; 2263 } 2264 2265 for (i = end; i >= 0; i--) { 2266 err = add_callchain_ip(thread, cursor, parent, 2267 root_al, &cpumode, chain->ips[i], 2268 false, NULL, NULL, branch_from); 2269 if (err) 2270 return err; 2271 } 2272 2273 return 0; 2274 } 2275 2276 static void save_lbr_cursor_node(struct thread *thread, 2277 struct callchain_cursor *cursor, 2278 int idx) 2279 { 2280 struct lbr_stitch *lbr_stitch = thread->lbr_stitch; 2281 2282 if (!lbr_stitch) 2283 return; 2284 2285 if (cursor->pos == cursor->nr) { 2286 lbr_stitch->prev_lbr_cursor[idx].valid = false; 2287 return; 2288 } 2289 2290 if (!cursor->curr) 2291 cursor->curr = cursor->first; 2292 else 2293 cursor->curr = cursor->curr->next; 2294 memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr, 2295 sizeof(struct callchain_cursor_node)); 2296 2297 lbr_stitch->prev_lbr_cursor[idx].valid = true; 2298 cursor->pos++; 2299 } 2300 2301 static int lbr_callchain_add_lbr_ip(struct thread *thread, 2302 struct callchain_cursor *cursor, 2303 struct perf_sample *sample, 2304 struct symbol **parent, 2305 struct addr_location *root_al, 2306 u64 *branch_from, 2307 bool callee) 2308 { 2309 struct branch_stack *lbr_stack = sample->branch_stack; 2310 struct branch_entry *entries = perf_sample__branch_entries(sample); 2311 u8 cpumode = PERF_RECORD_MISC_USER; 2312 int lbr_nr = lbr_stack->nr; 2313 struct branch_flags *flags; 2314 int err, i; 2315 u64 ip; 2316 2317 /* 2318 * The curr and pos are not used in writing session. They are cleared 2319 * in callchain_cursor_commit() when the writing session is closed. 2320 * Using curr and pos to track the current cursor node. 2321 */ 2322 if (thread->lbr_stitch) { 2323 cursor->curr = NULL; 2324 cursor->pos = cursor->nr; 2325 if (cursor->nr) { 2326 cursor->curr = cursor->first; 2327 for (i = 0; i < (int)(cursor->nr - 1); i++) 2328 cursor->curr = cursor->curr->next; 2329 } 2330 } 2331 2332 if (callee) { 2333 /* Add LBR ip from first entries.to */ 2334 ip = entries[0].to; 2335 flags = &entries[0].flags; 2336 *branch_from = entries[0].from; 2337 err = add_callchain_ip(thread, cursor, parent, 2338 root_al, &cpumode, ip, 2339 true, flags, NULL, 2340 *branch_from); 2341 if (err) 2342 return err; 2343 2344 /* 2345 * The number of cursor node increases. 2346 * Move the current cursor node. 2347 * But does not need to save current cursor node for entry 0. 2348 * It's impossible to stitch the whole LBRs of previous sample. 2349 */ 2350 if (thread->lbr_stitch && (cursor->pos != cursor->nr)) { 2351 if (!cursor->curr) 2352 cursor->curr = cursor->first; 2353 else 2354 cursor->curr = cursor->curr->next; 2355 cursor->pos++; 2356 } 2357 2358 /* Add LBR ip from entries.from one by one. */ 2359 for (i = 0; i < lbr_nr; i++) { 2360 ip = entries[i].from; 2361 flags = &entries[i].flags; 2362 err = add_callchain_ip(thread, cursor, parent, 2363 root_al, &cpumode, ip, 2364 true, flags, NULL, 2365 *branch_from); 2366 if (err) 2367 return err; 2368 save_lbr_cursor_node(thread, cursor, i); 2369 } 2370 return 0; 2371 } 2372 2373 /* Add LBR ip from entries.from one by one. */ 2374 for (i = lbr_nr - 1; i >= 0; i--) { 2375 ip = entries[i].from; 2376 flags = &entries[i].flags; 2377 err = add_callchain_ip(thread, cursor, parent, 2378 root_al, &cpumode, ip, 2379 true, flags, NULL, 2380 *branch_from); 2381 if (err) 2382 return err; 2383 save_lbr_cursor_node(thread, cursor, i); 2384 } 2385 2386 /* Add LBR ip from first entries.to */ 2387 ip = entries[0].to; 2388 flags = &entries[0].flags; 2389 *branch_from = entries[0].from; 2390 err = add_callchain_ip(thread, cursor, parent, 2391 root_al, &cpumode, ip, 2392 true, flags, NULL, 2393 *branch_from); 2394 if (err) 2395 return err; 2396 2397 return 0; 2398 } 2399 2400 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread, 2401 struct callchain_cursor *cursor) 2402 { 2403 struct lbr_stitch *lbr_stitch = thread->lbr_stitch; 2404 struct callchain_cursor_node *cnode; 2405 struct stitch_list *stitch_node; 2406 int err; 2407 2408 list_for_each_entry(stitch_node, &lbr_stitch->lists, node) { 2409 cnode = &stitch_node->cursor; 2410 2411 err = callchain_cursor_append(cursor, cnode->ip, 2412 &cnode->ms, 2413 cnode->branch, 2414 &cnode->branch_flags, 2415 cnode->nr_loop_iter, 2416 cnode->iter_cycles, 2417 cnode->branch_from, 2418 cnode->srcline); 2419 if (err) 2420 return err; 2421 } 2422 return 0; 2423 } 2424 2425 static struct stitch_list *get_stitch_node(struct thread *thread) 2426 { 2427 struct lbr_stitch *lbr_stitch = thread->lbr_stitch; 2428 struct stitch_list *stitch_node; 2429 2430 if (!list_empty(&lbr_stitch->free_lists)) { 2431 stitch_node = list_first_entry(&lbr_stitch->free_lists, 2432 struct stitch_list, node); 2433 list_del(&stitch_node->node); 2434 2435 return stitch_node; 2436 } 2437 2438 return malloc(sizeof(struct stitch_list)); 2439 } 2440 2441 static bool has_stitched_lbr(struct thread *thread, 2442 struct perf_sample *cur, 2443 struct perf_sample *prev, 2444 unsigned int max_lbr, 2445 bool callee) 2446 { 2447 struct branch_stack *cur_stack = cur->branch_stack; 2448 struct branch_entry *cur_entries = perf_sample__branch_entries(cur); 2449 struct branch_stack *prev_stack = prev->branch_stack; 2450 struct branch_entry *prev_entries = perf_sample__branch_entries(prev); 2451 struct lbr_stitch *lbr_stitch = thread->lbr_stitch; 2452 int i, j, nr_identical_branches = 0; 2453 struct stitch_list *stitch_node; 2454 u64 cur_base, distance; 2455 2456 if (!cur_stack || !prev_stack) 2457 return false; 2458 2459 /* Find the physical index of the base-of-stack for current sample. */ 2460 cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1; 2461 2462 distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) : 2463 (max_lbr + prev_stack->hw_idx - cur_base); 2464 /* Previous sample has shorter stack. Nothing can be stitched. */ 2465 if (distance + 1 > prev_stack->nr) 2466 return false; 2467 2468 /* 2469 * Check if there are identical LBRs between two samples. 2470 * Identicall LBRs must have same from, to and flags values. Also, 2471 * they have to be saved in the same LBR registers (same physical 2472 * index). 2473 * 2474 * Starts from the base-of-stack of current sample. 2475 */ 2476 for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) { 2477 if ((prev_entries[i].from != cur_entries[j].from) || 2478 (prev_entries[i].to != cur_entries[j].to) || 2479 (prev_entries[i].flags.value != cur_entries[j].flags.value)) 2480 break; 2481 nr_identical_branches++; 2482 } 2483 2484 if (!nr_identical_branches) 2485 return false; 2486 2487 /* 2488 * Save the LBRs between the base-of-stack of previous sample 2489 * and the base-of-stack of current sample into lbr_stitch->lists. 2490 * These LBRs will be stitched later. 2491 */ 2492 for (i = prev_stack->nr - 1; i > (int)distance; i--) { 2493 2494 if (!lbr_stitch->prev_lbr_cursor[i].valid) 2495 continue; 2496 2497 stitch_node = get_stitch_node(thread); 2498 if (!stitch_node) 2499 return false; 2500 2501 memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i], 2502 sizeof(struct callchain_cursor_node)); 2503 2504 if (callee) 2505 list_add(&stitch_node->node, &lbr_stitch->lists); 2506 else 2507 list_add_tail(&stitch_node->node, &lbr_stitch->lists); 2508 } 2509 2510 return true; 2511 } 2512 2513 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr) 2514 { 2515 if (thread->lbr_stitch) 2516 return true; 2517 2518 thread->lbr_stitch = zalloc(sizeof(*thread->lbr_stitch)); 2519 if (!thread->lbr_stitch) 2520 goto err; 2521 2522 thread->lbr_stitch->prev_lbr_cursor = calloc(max_lbr + 1, sizeof(struct callchain_cursor_node)); 2523 if (!thread->lbr_stitch->prev_lbr_cursor) 2524 goto free_lbr_stitch; 2525 2526 INIT_LIST_HEAD(&thread->lbr_stitch->lists); 2527 INIT_LIST_HEAD(&thread->lbr_stitch->free_lists); 2528 2529 return true; 2530 2531 free_lbr_stitch: 2532 zfree(&thread->lbr_stitch); 2533 err: 2534 pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n"); 2535 thread->lbr_stitch_enable = false; 2536 return false; 2537 } 2538 2539 /* 2540 * Recolve LBR callstack chain sample 2541 * Return: 2542 * 1 on success get LBR callchain information 2543 * 0 no available LBR callchain information, should try fp 2544 * negative error code on other errors. 2545 */ 2546 static int resolve_lbr_callchain_sample(struct thread *thread, 2547 struct callchain_cursor *cursor, 2548 struct perf_sample *sample, 2549 struct symbol **parent, 2550 struct addr_location *root_al, 2551 int max_stack, 2552 unsigned int max_lbr) 2553 { 2554 bool callee = (callchain_param.order == ORDER_CALLEE); 2555 struct ip_callchain *chain = sample->callchain; 2556 int chain_nr = min(max_stack, (int)chain->nr), i; 2557 struct lbr_stitch *lbr_stitch; 2558 bool stitched_lbr = false; 2559 u64 branch_from = 0; 2560 int err; 2561 2562 for (i = 0; i < chain_nr; i++) { 2563 if (chain->ips[i] == PERF_CONTEXT_USER) 2564 break; 2565 } 2566 2567 /* LBR only affects the user callchain */ 2568 if (i == chain_nr) 2569 return 0; 2570 2571 if (thread->lbr_stitch_enable && !sample->no_hw_idx && 2572 (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) { 2573 lbr_stitch = thread->lbr_stitch; 2574 2575 stitched_lbr = has_stitched_lbr(thread, sample, 2576 &lbr_stitch->prev_sample, 2577 max_lbr, callee); 2578 2579 if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) { 2580 list_replace_init(&lbr_stitch->lists, 2581 &lbr_stitch->free_lists); 2582 } 2583 memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample)); 2584 } 2585 2586 if (callee) { 2587 /* Add kernel ip */ 2588 err = lbr_callchain_add_kernel_ip(thread, cursor, sample, 2589 parent, root_al, branch_from, 2590 true, i); 2591 if (err) 2592 goto error; 2593 2594 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent, 2595 root_al, &branch_from, true); 2596 if (err) 2597 goto error; 2598 2599 if (stitched_lbr) { 2600 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor); 2601 if (err) 2602 goto error; 2603 } 2604 2605 } else { 2606 if (stitched_lbr) { 2607 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor); 2608 if (err) 2609 goto error; 2610 } 2611 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent, 2612 root_al, &branch_from, false); 2613 if (err) 2614 goto error; 2615 2616 /* Add kernel ip */ 2617 err = lbr_callchain_add_kernel_ip(thread, cursor, sample, 2618 parent, root_al, branch_from, 2619 false, i); 2620 if (err) 2621 goto error; 2622 } 2623 return 1; 2624 2625 error: 2626 return (err < 0) ? err : 0; 2627 } 2628 2629 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread, 2630 struct callchain_cursor *cursor, 2631 struct symbol **parent, 2632 struct addr_location *root_al, 2633 u8 *cpumode, int ent) 2634 { 2635 int err = 0; 2636 2637 while (--ent >= 0) { 2638 u64 ip = chain->ips[ent]; 2639 2640 if (ip >= PERF_CONTEXT_MAX) { 2641 err = add_callchain_ip(thread, cursor, parent, 2642 root_al, cpumode, ip, 2643 false, NULL, NULL, 0); 2644 break; 2645 } 2646 } 2647 return err; 2648 } 2649 2650 static int thread__resolve_callchain_sample(struct thread *thread, 2651 struct callchain_cursor *cursor, 2652 struct evsel *evsel, 2653 struct perf_sample *sample, 2654 struct symbol **parent, 2655 struct addr_location *root_al, 2656 int max_stack) 2657 { 2658 struct branch_stack *branch = sample->branch_stack; 2659 struct branch_entry *entries = perf_sample__branch_entries(sample); 2660 struct ip_callchain *chain = sample->callchain; 2661 int chain_nr = 0; 2662 u8 cpumode = PERF_RECORD_MISC_USER; 2663 int i, j, err, nr_entries; 2664 int skip_idx = -1; 2665 int first_call = 0; 2666 2667 if (chain) 2668 chain_nr = chain->nr; 2669 2670 if (evsel__has_branch_callstack(evsel)) { 2671 struct perf_env *env = evsel__env(evsel); 2672 2673 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent, 2674 root_al, max_stack, 2675 !env ? 0 : env->max_branches); 2676 if (err) 2677 return (err < 0) ? err : 0; 2678 } 2679 2680 /* 2681 * Based on DWARF debug information, some architectures skip 2682 * a callchain entry saved by the kernel. 2683 */ 2684 skip_idx = arch_skip_callchain_idx(thread, chain); 2685 2686 /* 2687 * Add branches to call stack for easier browsing. This gives 2688 * more context for a sample than just the callers. 2689 * 2690 * This uses individual histograms of paths compared to the 2691 * aggregated histograms the normal LBR mode uses. 2692 * 2693 * Limitations for now: 2694 * - No extra filters 2695 * - No annotations (should annotate somehow) 2696 */ 2697 2698 if (branch && callchain_param.branch_callstack) { 2699 int nr = min(max_stack, (int)branch->nr); 2700 struct branch_entry be[nr]; 2701 struct iterations iter[nr]; 2702 2703 if (branch->nr > PERF_MAX_BRANCH_DEPTH) { 2704 pr_warning("corrupted branch chain. skipping...\n"); 2705 goto check_calls; 2706 } 2707 2708 for (i = 0; i < nr; i++) { 2709 if (callchain_param.order == ORDER_CALLEE) { 2710 be[i] = entries[i]; 2711 2712 if (chain == NULL) 2713 continue; 2714 2715 /* 2716 * Check for overlap into the callchain. 2717 * The return address is one off compared to 2718 * the branch entry. To adjust for this 2719 * assume the calling instruction is not longer 2720 * than 8 bytes. 2721 */ 2722 if (i == skip_idx || 2723 chain->ips[first_call] >= PERF_CONTEXT_MAX) 2724 first_call++; 2725 else if (be[i].from < chain->ips[first_call] && 2726 be[i].from >= chain->ips[first_call] - 8) 2727 first_call++; 2728 } else 2729 be[i] = entries[branch->nr - i - 1]; 2730 } 2731 2732 memset(iter, 0, sizeof(struct iterations) * nr); 2733 nr = remove_loops(be, nr, iter); 2734 2735 for (i = 0; i < nr; i++) { 2736 err = add_callchain_ip(thread, cursor, parent, 2737 root_al, 2738 NULL, be[i].to, 2739 true, &be[i].flags, 2740 NULL, be[i].from); 2741 2742 if (!err) 2743 err = add_callchain_ip(thread, cursor, parent, root_al, 2744 NULL, be[i].from, 2745 true, &be[i].flags, 2746 &iter[i], 0); 2747 if (err == -EINVAL) 2748 break; 2749 if (err) 2750 return err; 2751 } 2752 2753 if (chain_nr == 0) 2754 return 0; 2755 2756 chain_nr -= nr; 2757 } 2758 2759 check_calls: 2760 if (chain && callchain_param.order != ORDER_CALLEE) { 2761 err = find_prev_cpumode(chain, thread, cursor, parent, root_al, 2762 &cpumode, chain->nr - first_call); 2763 if (err) 2764 return (err < 0) ? err : 0; 2765 } 2766 for (i = first_call, nr_entries = 0; 2767 i < chain_nr && nr_entries < max_stack; i++) { 2768 u64 ip; 2769 2770 if (callchain_param.order == ORDER_CALLEE) 2771 j = i; 2772 else 2773 j = chain->nr - i - 1; 2774 2775 #ifdef HAVE_SKIP_CALLCHAIN_IDX 2776 if (j == skip_idx) 2777 continue; 2778 #endif 2779 ip = chain->ips[j]; 2780 if (ip < PERF_CONTEXT_MAX) 2781 ++nr_entries; 2782 else if (callchain_param.order != ORDER_CALLEE) { 2783 err = find_prev_cpumode(chain, thread, cursor, parent, 2784 root_al, &cpumode, j); 2785 if (err) 2786 return (err < 0) ? err : 0; 2787 continue; 2788 } 2789 2790 err = add_callchain_ip(thread, cursor, parent, 2791 root_al, &cpumode, ip, 2792 false, NULL, NULL, 0); 2793 2794 if (err) 2795 return (err < 0) ? err : 0; 2796 } 2797 2798 return 0; 2799 } 2800 2801 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip) 2802 { 2803 struct symbol *sym = ms->sym; 2804 struct map *map = ms->map; 2805 struct inline_node *inline_node; 2806 struct inline_list *ilist; 2807 u64 addr; 2808 int ret = 1; 2809 2810 if (!symbol_conf.inline_name || !map || !sym) 2811 return ret; 2812 2813 addr = map__map_ip(map, ip); 2814 addr = map__rip_2objdump(map, addr); 2815 2816 inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr); 2817 if (!inline_node) { 2818 inline_node = dso__parse_addr_inlines(map->dso, addr, sym); 2819 if (!inline_node) 2820 return ret; 2821 inlines__tree_insert(&map->dso->inlined_nodes, inline_node); 2822 } 2823 2824 list_for_each_entry(ilist, &inline_node->val, list) { 2825 struct map_symbol ilist_ms = { 2826 .maps = ms->maps, 2827 .map = map, 2828 .sym = ilist->symbol, 2829 }; 2830 ret = callchain_cursor_append(cursor, ip, &ilist_ms, false, 2831 NULL, 0, 0, 0, ilist->srcline); 2832 2833 if (ret != 0) 2834 return ret; 2835 } 2836 2837 return ret; 2838 } 2839 2840 static int unwind_entry(struct unwind_entry *entry, void *arg) 2841 { 2842 struct callchain_cursor *cursor = arg; 2843 const char *srcline = NULL; 2844 u64 addr = entry->ip; 2845 2846 if (symbol_conf.hide_unresolved && entry->ms.sym == NULL) 2847 return 0; 2848 2849 if (append_inlines(cursor, &entry->ms, entry->ip) == 0) 2850 return 0; 2851 2852 /* 2853 * Convert entry->ip from a virtual address to an offset in 2854 * its corresponding binary. 2855 */ 2856 if (entry->ms.map) 2857 addr = map__map_ip(entry->ms.map, entry->ip); 2858 2859 srcline = callchain_srcline(&entry->ms, addr); 2860 return callchain_cursor_append(cursor, entry->ip, &entry->ms, 2861 false, NULL, 0, 0, 0, srcline); 2862 } 2863 2864 static int thread__resolve_callchain_unwind(struct thread *thread, 2865 struct callchain_cursor *cursor, 2866 struct evsel *evsel, 2867 struct perf_sample *sample, 2868 int max_stack) 2869 { 2870 /* Can we do dwarf post unwind? */ 2871 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) && 2872 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER))) 2873 return 0; 2874 2875 /* Bail out if nothing was captured. */ 2876 if ((!sample->user_regs.regs) || 2877 (!sample->user_stack.size)) 2878 return 0; 2879 2880 return unwind__get_entries(unwind_entry, cursor, 2881 thread, sample, max_stack); 2882 } 2883 2884 int thread__resolve_callchain(struct thread *thread, 2885 struct callchain_cursor *cursor, 2886 struct evsel *evsel, 2887 struct perf_sample *sample, 2888 struct symbol **parent, 2889 struct addr_location *root_al, 2890 int max_stack) 2891 { 2892 int ret = 0; 2893 2894 callchain_cursor_reset(cursor); 2895 2896 if (callchain_param.order == ORDER_CALLEE) { 2897 ret = thread__resolve_callchain_sample(thread, cursor, 2898 evsel, sample, 2899 parent, root_al, 2900 max_stack); 2901 if (ret) 2902 return ret; 2903 ret = thread__resolve_callchain_unwind(thread, cursor, 2904 evsel, sample, 2905 max_stack); 2906 } else { 2907 ret = thread__resolve_callchain_unwind(thread, cursor, 2908 evsel, sample, 2909 max_stack); 2910 if (ret) 2911 return ret; 2912 ret = thread__resolve_callchain_sample(thread, cursor, 2913 evsel, sample, 2914 parent, root_al, 2915 max_stack); 2916 } 2917 2918 return ret; 2919 } 2920 2921 int machine__for_each_thread(struct machine *machine, 2922 int (*fn)(struct thread *thread, void *p), 2923 void *priv) 2924 { 2925 struct threads *threads; 2926 struct rb_node *nd; 2927 struct thread *thread; 2928 int rc = 0; 2929 int i; 2930 2931 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 2932 threads = &machine->threads[i]; 2933 for (nd = rb_first_cached(&threads->entries); nd; 2934 nd = rb_next(nd)) { 2935 thread = rb_entry(nd, struct thread, rb_node); 2936 rc = fn(thread, priv); 2937 if (rc != 0) 2938 return rc; 2939 } 2940 2941 list_for_each_entry(thread, &threads->dead, node) { 2942 rc = fn(thread, priv); 2943 if (rc != 0) 2944 return rc; 2945 } 2946 } 2947 return rc; 2948 } 2949 2950 int machines__for_each_thread(struct machines *machines, 2951 int (*fn)(struct thread *thread, void *p), 2952 void *priv) 2953 { 2954 struct rb_node *nd; 2955 int rc = 0; 2956 2957 rc = machine__for_each_thread(&machines->host, fn, priv); 2958 if (rc != 0) 2959 return rc; 2960 2961 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 2962 struct machine *machine = rb_entry(nd, struct machine, rb_node); 2963 2964 rc = machine__for_each_thread(machine, fn, priv); 2965 if (rc != 0) 2966 return rc; 2967 } 2968 return rc; 2969 } 2970 2971 pid_t machine__get_current_tid(struct machine *machine, int cpu) 2972 { 2973 int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS); 2974 2975 if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid) 2976 return -1; 2977 2978 return machine->current_tid[cpu]; 2979 } 2980 2981 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid, 2982 pid_t tid) 2983 { 2984 struct thread *thread; 2985 int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS); 2986 2987 if (cpu < 0) 2988 return -EINVAL; 2989 2990 if (!machine->current_tid) { 2991 int i; 2992 2993 machine->current_tid = calloc(nr_cpus, sizeof(pid_t)); 2994 if (!machine->current_tid) 2995 return -ENOMEM; 2996 for (i = 0; i < nr_cpus; i++) 2997 machine->current_tid[i] = -1; 2998 } 2999 3000 if (cpu >= nr_cpus) { 3001 pr_err("Requested CPU %d too large. ", cpu); 3002 pr_err("Consider raising MAX_NR_CPUS\n"); 3003 return -EINVAL; 3004 } 3005 3006 machine->current_tid[cpu] = tid; 3007 3008 thread = machine__findnew_thread(machine, pid, tid); 3009 if (!thread) 3010 return -ENOMEM; 3011 3012 thread->cpu = cpu; 3013 thread__put(thread); 3014 3015 return 0; 3016 } 3017 3018 /* 3019 * Compares the raw arch string. N.B. see instead perf_env__arch() if a 3020 * normalized arch is needed. 3021 */ 3022 bool machine__is(struct machine *machine, const char *arch) 3023 { 3024 return machine && !strcmp(perf_env__raw_arch(machine->env), arch); 3025 } 3026 3027 int machine__nr_cpus_avail(struct machine *machine) 3028 { 3029 return machine ? perf_env__nr_cpus_avail(machine->env) : 0; 3030 } 3031 3032 int machine__get_kernel_start(struct machine *machine) 3033 { 3034 struct map *map = machine__kernel_map(machine); 3035 int err = 0; 3036 3037 /* 3038 * The only addresses above 2^63 are kernel addresses of a 64-bit 3039 * kernel. Note that addresses are unsigned so that on a 32-bit system 3040 * all addresses including kernel addresses are less than 2^32. In 3041 * that case (32-bit system), if the kernel mapping is unknown, all 3042 * addresses will be assumed to be in user space - see 3043 * machine__kernel_ip(). 3044 */ 3045 machine->kernel_start = 1ULL << 63; 3046 if (map) { 3047 err = map__load(map); 3048 /* 3049 * On x86_64, PTI entry trampolines are less than the 3050 * start of kernel text, but still above 2^63. So leave 3051 * kernel_start = 1ULL << 63 for x86_64. 3052 */ 3053 if (!err && !machine__is(machine, "x86_64")) 3054 machine->kernel_start = map->start; 3055 } 3056 return err; 3057 } 3058 3059 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr) 3060 { 3061 u8 addr_cpumode = cpumode; 3062 bool kernel_ip; 3063 3064 if (!machine->single_address_space) 3065 goto out; 3066 3067 kernel_ip = machine__kernel_ip(machine, addr); 3068 switch (cpumode) { 3069 case PERF_RECORD_MISC_KERNEL: 3070 case PERF_RECORD_MISC_USER: 3071 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL : 3072 PERF_RECORD_MISC_USER; 3073 break; 3074 case PERF_RECORD_MISC_GUEST_KERNEL: 3075 case PERF_RECORD_MISC_GUEST_USER: 3076 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL : 3077 PERF_RECORD_MISC_GUEST_USER; 3078 break; 3079 default: 3080 break; 3081 } 3082 out: 3083 return addr_cpumode; 3084 } 3085 3086 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id) 3087 { 3088 return dsos__findnew_id(&machine->dsos, filename, id); 3089 } 3090 3091 struct dso *machine__findnew_dso(struct machine *machine, const char *filename) 3092 { 3093 return machine__findnew_dso_id(machine, filename, NULL); 3094 } 3095 3096 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp) 3097 { 3098 struct machine *machine = vmachine; 3099 struct map *map; 3100 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map); 3101 3102 if (sym == NULL) 3103 return NULL; 3104 3105 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL; 3106 *addrp = map->unmap_ip(map, sym->start); 3107 return sym->name; 3108 } 3109