xref: /openbmc/linux/tools/perf/util/machine.c (revision 4464005a12b5c79e1a364e6272ee10a83413f928)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include <stdlib.h>
7 #include "callchain.h"
8 #include "debug.h"
9 #include "dso.h"
10 #include "env.h"
11 #include "event.h"
12 #include "evsel.h"
13 #include "hist.h"
14 #include "machine.h"
15 #include "map.h"
16 #include "map_symbol.h"
17 #include "branch.h"
18 #include "mem-events.h"
19 #include "srcline.h"
20 #include "symbol.h"
21 #include "sort.h"
22 #include "strlist.h"
23 #include "target.h"
24 #include "thread.h"
25 #include "util.h"
26 #include "vdso.h"
27 #include <stdbool.h>
28 #include <sys/types.h>
29 #include <sys/stat.h>
30 #include <unistd.h>
31 #include "unwind.h"
32 #include "linux/hash.h"
33 #include "asm/bug.h"
34 #include "bpf-event.h"
35 #include <internal/lib.h> // page_size
36 #include "cgroup.h"
37 
38 #include <linux/ctype.h>
39 #include <symbol/kallsyms.h>
40 #include <linux/mman.h>
41 #include <linux/string.h>
42 #include <linux/zalloc.h>
43 
44 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
45 
46 static struct dso *machine__kernel_dso(struct machine *machine)
47 {
48 	return machine->vmlinux_map->dso;
49 }
50 
51 static void dsos__init(struct dsos *dsos)
52 {
53 	INIT_LIST_HEAD(&dsos->head);
54 	dsos->root = RB_ROOT;
55 	init_rwsem(&dsos->lock);
56 }
57 
58 static void machine__threads_init(struct machine *machine)
59 {
60 	int i;
61 
62 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
63 		struct threads *threads = &machine->threads[i];
64 		threads->entries = RB_ROOT_CACHED;
65 		init_rwsem(&threads->lock);
66 		threads->nr = 0;
67 		INIT_LIST_HEAD(&threads->dead);
68 		threads->last_match = NULL;
69 	}
70 }
71 
72 static int machine__set_mmap_name(struct machine *machine)
73 {
74 	if (machine__is_host(machine))
75 		machine->mmap_name = strdup("[kernel.kallsyms]");
76 	else if (machine__is_default_guest(machine))
77 		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
78 	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
79 			  machine->pid) < 0)
80 		machine->mmap_name = NULL;
81 
82 	return machine->mmap_name ? 0 : -ENOMEM;
83 }
84 
85 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
86 {
87 	int err = -ENOMEM;
88 
89 	memset(machine, 0, sizeof(*machine));
90 	maps__init(&machine->kmaps, machine);
91 	RB_CLEAR_NODE(&machine->rb_node);
92 	dsos__init(&machine->dsos);
93 
94 	machine__threads_init(machine);
95 
96 	machine->vdso_info = NULL;
97 	machine->env = NULL;
98 
99 	machine->pid = pid;
100 
101 	machine->id_hdr_size = 0;
102 	machine->kptr_restrict_warned = false;
103 	machine->comm_exec = false;
104 	machine->kernel_start = 0;
105 	machine->vmlinux_map = NULL;
106 
107 	machine->root_dir = strdup(root_dir);
108 	if (machine->root_dir == NULL)
109 		return -ENOMEM;
110 
111 	if (machine__set_mmap_name(machine))
112 		goto out;
113 
114 	if (pid != HOST_KERNEL_ID) {
115 		struct thread *thread = machine__findnew_thread(machine, -1,
116 								pid);
117 		char comm[64];
118 
119 		if (thread == NULL)
120 			goto out;
121 
122 		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
123 		thread__set_comm(thread, comm, 0);
124 		thread__put(thread);
125 	}
126 
127 	machine->current_tid = NULL;
128 	err = 0;
129 
130 out:
131 	if (err) {
132 		zfree(&machine->root_dir);
133 		zfree(&machine->mmap_name);
134 	}
135 	return 0;
136 }
137 
138 struct machine *machine__new_host(void)
139 {
140 	struct machine *machine = malloc(sizeof(*machine));
141 
142 	if (machine != NULL) {
143 		machine__init(machine, "", HOST_KERNEL_ID);
144 
145 		if (machine__create_kernel_maps(machine) < 0)
146 			goto out_delete;
147 	}
148 
149 	return machine;
150 out_delete:
151 	free(machine);
152 	return NULL;
153 }
154 
155 struct machine *machine__new_kallsyms(void)
156 {
157 	struct machine *machine = machine__new_host();
158 	/*
159 	 * FIXME:
160 	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
161 	 *    ask for not using the kcore parsing code, once this one is fixed
162 	 *    to create a map per module.
163 	 */
164 	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
165 		machine__delete(machine);
166 		machine = NULL;
167 	}
168 
169 	return machine;
170 }
171 
172 static void dsos__purge(struct dsos *dsos)
173 {
174 	struct dso *pos, *n;
175 
176 	down_write(&dsos->lock);
177 
178 	list_for_each_entry_safe(pos, n, &dsos->head, node) {
179 		RB_CLEAR_NODE(&pos->rb_node);
180 		pos->root = NULL;
181 		list_del_init(&pos->node);
182 		dso__put(pos);
183 	}
184 
185 	up_write(&dsos->lock);
186 }
187 
188 static void dsos__exit(struct dsos *dsos)
189 {
190 	dsos__purge(dsos);
191 	exit_rwsem(&dsos->lock);
192 }
193 
194 void machine__delete_threads(struct machine *machine)
195 {
196 	struct rb_node *nd;
197 	int i;
198 
199 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
200 		struct threads *threads = &machine->threads[i];
201 		down_write(&threads->lock);
202 		nd = rb_first_cached(&threads->entries);
203 		while (nd) {
204 			struct thread *t = rb_entry(nd, struct thread, rb_node);
205 
206 			nd = rb_next(nd);
207 			__machine__remove_thread(machine, t, false);
208 		}
209 		up_write(&threads->lock);
210 	}
211 }
212 
213 void machine__exit(struct machine *machine)
214 {
215 	int i;
216 
217 	if (machine == NULL)
218 		return;
219 
220 	machine__destroy_kernel_maps(machine);
221 	maps__exit(&machine->kmaps);
222 	dsos__exit(&machine->dsos);
223 	machine__exit_vdso(machine);
224 	zfree(&machine->root_dir);
225 	zfree(&machine->mmap_name);
226 	zfree(&machine->current_tid);
227 
228 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
229 		struct threads *threads = &machine->threads[i];
230 		struct thread *thread, *n;
231 		/*
232 		 * Forget about the dead, at this point whatever threads were
233 		 * left in the dead lists better have a reference count taken
234 		 * by who is using them, and then, when they drop those references
235 		 * and it finally hits zero, thread__put() will check and see that
236 		 * its not in the dead threads list and will not try to remove it
237 		 * from there, just calling thread__delete() straight away.
238 		 */
239 		list_for_each_entry_safe(thread, n, &threads->dead, node)
240 			list_del_init(&thread->node);
241 
242 		exit_rwsem(&threads->lock);
243 	}
244 }
245 
246 void machine__delete(struct machine *machine)
247 {
248 	if (machine) {
249 		machine__exit(machine);
250 		free(machine);
251 	}
252 }
253 
254 void machines__init(struct machines *machines)
255 {
256 	machine__init(&machines->host, "", HOST_KERNEL_ID);
257 	machines->guests = RB_ROOT_CACHED;
258 }
259 
260 void machines__exit(struct machines *machines)
261 {
262 	machine__exit(&machines->host);
263 	/* XXX exit guest */
264 }
265 
266 struct machine *machines__add(struct machines *machines, pid_t pid,
267 			      const char *root_dir)
268 {
269 	struct rb_node **p = &machines->guests.rb_root.rb_node;
270 	struct rb_node *parent = NULL;
271 	struct machine *pos, *machine = malloc(sizeof(*machine));
272 	bool leftmost = true;
273 
274 	if (machine == NULL)
275 		return NULL;
276 
277 	if (machine__init(machine, root_dir, pid) != 0) {
278 		free(machine);
279 		return NULL;
280 	}
281 
282 	while (*p != NULL) {
283 		parent = *p;
284 		pos = rb_entry(parent, struct machine, rb_node);
285 		if (pid < pos->pid)
286 			p = &(*p)->rb_left;
287 		else {
288 			p = &(*p)->rb_right;
289 			leftmost = false;
290 		}
291 	}
292 
293 	rb_link_node(&machine->rb_node, parent, p);
294 	rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
295 
296 	return machine;
297 }
298 
299 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
300 {
301 	struct rb_node *nd;
302 
303 	machines->host.comm_exec = comm_exec;
304 
305 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
306 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
307 
308 		machine->comm_exec = comm_exec;
309 	}
310 }
311 
312 struct machine *machines__find(struct machines *machines, pid_t pid)
313 {
314 	struct rb_node **p = &machines->guests.rb_root.rb_node;
315 	struct rb_node *parent = NULL;
316 	struct machine *machine;
317 	struct machine *default_machine = NULL;
318 
319 	if (pid == HOST_KERNEL_ID)
320 		return &machines->host;
321 
322 	while (*p != NULL) {
323 		parent = *p;
324 		machine = rb_entry(parent, struct machine, rb_node);
325 		if (pid < machine->pid)
326 			p = &(*p)->rb_left;
327 		else if (pid > machine->pid)
328 			p = &(*p)->rb_right;
329 		else
330 			return machine;
331 		if (!machine->pid)
332 			default_machine = machine;
333 	}
334 
335 	return default_machine;
336 }
337 
338 struct machine *machines__findnew(struct machines *machines, pid_t pid)
339 {
340 	char path[PATH_MAX];
341 	const char *root_dir = "";
342 	struct machine *machine = machines__find(machines, pid);
343 
344 	if (machine && (machine->pid == pid))
345 		goto out;
346 
347 	if ((pid != HOST_KERNEL_ID) &&
348 	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
349 	    (symbol_conf.guestmount)) {
350 		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
351 		if (access(path, R_OK)) {
352 			static struct strlist *seen;
353 
354 			if (!seen)
355 				seen = strlist__new(NULL, NULL);
356 
357 			if (!strlist__has_entry(seen, path)) {
358 				pr_err("Can't access file %s\n", path);
359 				strlist__add(seen, path);
360 			}
361 			machine = NULL;
362 			goto out;
363 		}
364 		root_dir = path;
365 	}
366 
367 	machine = machines__add(machines, pid, root_dir);
368 out:
369 	return machine;
370 }
371 
372 void machines__process_guests(struct machines *machines,
373 			      machine__process_t process, void *data)
374 {
375 	struct rb_node *nd;
376 
377 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
378 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
379 		process(pos, data);
380 	}
381 }
382 
383 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
384 {
385 	struct rb_node *node;
386 	struct machine *machine;
387 
388 	machines->host.id_hdr_size = id_hdr_size;
389 
390 	for (node = rb_first_cached(&machines->guests); node;
391 	     node = rb_next(node)) {
392 		machine = rb_entry(node, struct machine, rb_node);
393 		machine->id_hdr_size = id_hdr_size;
394 	}
395 
396 	return;
397 }
398 
399 static void machine__update_thread_pid(struct machine *machine,
400 				       struct thread *th, pid_t pid)
401 {
402 	struct thread *leader;
403 
404 	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
405 		return;
406 
407 	th->pid_ = pid;
408 
409 	if (th->pid_ == th->tid)
410 		return;
411 
412 	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
413 	if (!leader)
414 		goto out_err;
415 
416 	if (!leader->maps)
417 		leader->maps = maps__new(machine);
418 
419 	if (!leader->maps)
420 		goto out_err;
421 
422 	if (th->maps == leader->maps)
423 		return;
424 
425 	if (th->maps) {
426 		/*
427 		 * Maps are created from MMAP events which provide the pid and
428 		 * tid.  Consequently there never should be any maps on a thread
429 		 * with an unknown pid.  Just print an error if there are.
430 		 */
431 		if (!maps__empty(th->maps))
432 			pr_err("Discarding thread maps for %d:%d\n",
433 			       th->pid_, th->tid);
434 		maps__put(th->maps);
435 	}
436 
437 	th->maps = maps__get(leader->maps);
438 out_put:
439 	thread__put(leader);
440 	return;
441 out_err:
442 	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
443 	goto out_put;
444 }
445 
446 /*
447  * Front-end cache - TID lookups come in blocks,
448  * so most of the time we dont have to look up
449  * the full rbtree:
450  */
451 static struct thread*
452 __threads__get_last_match(struct threads *threads, struct machine *machine,
453 			  int pid, int tid)
454 {
455 	struct thread *th;
456 
457 	th = threads->last_match;
458 	if (th != NULL) {
459 		if (th->tid == tid) {
460 			machine__update_thread_pid(machine, th, pid);
461 			return thread__get(th);
462 		}
463 
464 		threads->last_match = NULL;
465 	}
466 
467 	return NULL;
468 }
469 
470 static struct thread*
471 threads__get_last_match(struct threads *threads, struct machine *machine,
472 			int pid, int tid)
473 {
474 	struct thread *th = NULL;
475 
476 	if (perf_singlethreaded)
477 		th = __threads__get_last_match(threads, machine, pid, tid);
478 
479 	return th;
480 }
481 
482 static void
483 __threads__set_last_match(struct threads *threads, struct thread *th)
484 {
485 	threads->last_match = th;
486 }
487 
488 static void
489 threads__set_last_match(struct threads *threads, struct thread *th)
490 {
491 	if (perf_singlethreaded)
492 		__threads__set_last_match(threads, th);
493 }
494 
495 /*
496  * Caller must eventually drop thread->refcnt returned with a successful
497  * lookup/new thread inserted.
498  */
499 static struct thread *____machine__findnew_thread(struct machine *machine,
500 						  struct threads *threads,
501 						  pid_t pid, pid_t tid,
502 						  bool create)
503 {
504 	struct rb_node **p = &threads->entries.rb_root.rb_node;
505 	struct rb_node *parent = NULL;
506 	struct thread *th;
507 	bool leftmost = true;
508 
509 	th = threads__get_last_match(threads, machine, pid, tid);
510 	if (th)
511 		return th;
512 
513 	while (*p != NULL) {
514 		parent = *p;
515 		th = rb_entry(parent, struct thread, rb_node);
516 
517 		if (th->tid == tid) {
518 			threads__set_last_match(threads, th);
519 			machine__update_thread_pid(machine, th, pid);
520 			return thread__get(th);
521 		}
522 
523 		if (tid < th->tid)
524 			p = &(*p)->rb_left;
525 		else {
526 			p = &(*p)->rb_right;
527 			leftmost = false;
528 		}
529 	}
530 
531 	if (!create)
532 		return NULL;
533 
534 	th = thread__new(pid, tid);
535 	if (th != NULL) {
536 		rb_link_node(&th->rb_node, parent, p);
537 		rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
538 
539 		/*
540 		 * We have to initialize maps separately after rb tree is updated.
541 		 *
542 		 * The reason is that we call machine__findnew_thread
543 		 * within thread__init_maps to find the thread
544 		 * leader and that would screwed the rb tree.
545 		 */
546 		if (thread__init_maps(th, machine)) {
547 			rb_erase_cached(&th->rb_node, &threads->entries);
548 			RB_CLEAR_NODE(&th->rb_node);
549 			thread__put(th);
550 			return NULL;
551 		}
552 		/*
553 		 * It is now in the rbtree, get a ref
554 		 */
555 		thread__get(th);
556 		threads__set_last_match(threads, th);
557 		++threads->nr;
558 	}
559 
560 	return th;
561 }
562 
563 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
564 {
565 	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
566 }
567 
568 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
569 				       pid_t tid)
570 {
571 	struct threads *threads = machine__threads(machine, tid);
572 	struct thread *th;
573 
574 	down_write(&threads->lock);
575 	th = __machine__findnew_thread(machine, pid, tid);
576 	up_write(&threads->lock);
577 	return th;
578 }
579 
580 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
581 				    pid_t tid)
582 {
583 	struct threads *threads = machine__threads(machine, tid);
584 	struct thread *th;
585 
586 	down_read(&threads->lock);
587 	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
588 	up_read(&threads->lock);
589 	return th;
590 }
591 
592 struct comm *machine__thread_exec_comm(struct machine *machine,
593 				       struct thread *thread)
594 {
595 	if (machine->comm_exec)
596 		return thread__exec_comm(thread);
597 	else
598 		return thread__comm(thread);
599 }
600 
601 int machine__process_comm_event(struct machine *machine, union perf_event *event,
602 				struct perf_sample *sample)
603 {
604 	struct thread *thread = machine__findnew_thread(machine,
605 							event->comm.pid,
606 							event->comm.tid);
607 	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
608 	int err = 0;
609 
610 	if (exec)
611 		machine->comm_exec = true;
612 
613 	if (dump_trace)
614 		perf_event__fprintf_comm(event, stdout);
615 
616 	if (thread == NULL ||
617 	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
618 		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
619 		err = -1;
620 	}
621 
622 	thread__put(thread);
623 
624 	return err;
625 }
626 
627 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
628 				      union perf_event *event,
629 				      struct perf_sample *sample __maybe_unused)
630 {
631 	struct thread *thread = machine__findnew_thread(machine,
632 							event->namespaces.pid,
633 							event->namespaces.tid);
634 	int err = 0;
635 
636 	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
637 		  "\nWARNING: kernel seems to support more namespaces than perf"
638 		  " tool.\nTry updating the perf tool..\n\n");
639 
640 	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
641 		  "\nWARNING: perf tool seems to support more namespaces than"
642 		  " the kernel.\nTry updating the kernel..\n\n");
643 
644 	if (dump_trace)
645 		perf_event__fprintf_namespaces(event, stdout);
646 
647 	if (thread == NULL ||
648 	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
649 		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
650 		err = -1;
651 	}
652 
653 	thread__put(thread);
654 
655 	return err;
656 }
657 
658 int machine__process_cgroup_event(struct machine *machine,
659 				  union perf_event *event,
660 				  struct perf_sample *sample __maybe_unused)
661 {
662 	struct cgroup *cgrp;
663 
664 	if (dump_trace)
665 		perf_event__fprintf_cgroup(event, stdout);
666 
667 	cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
668 	if (cgrp == NULL)
669 		return -ENOMEM;
670 
671 	return 0;
672 }
673 
674 int machine__process_lost_event(struct machine *machine __maybe_unused,
675 				union perf_event *event, struct perf_sample *sample __maybe_unused)
676 {
677 	dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
678 		    event->lost.id, event->lost.lost);
679 	return 0;
680 }
681 
682 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
683 					union perf_event *event, struct perf_sample *sample)
684 {
685 	dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
686 		    sample->id, event->lost_samples.lost);
687 	return 0;
688 }
689 
690 static struct dso *machine__findnew_module_dso(struct machine *machine,
691 					       struct kmod_path *m,
692 					       const char *filename)
693 {
694 	struct dso *dso;
695 
696 	down_write(&machine->dsos.lock);
697 
698 	dso = __dsos__find(&machine->dsos, m->name, true);
699 	if (!dso) {
700 		dso = __dsos__addnew(&machine->dsos, m->name);
701 		if (dso == NULL)
702 			goto out_unlock;
703 
704 		dso__set_module_info(dso, m, machine);
705 		dso__set_long_name(dso, strdup(filename), true);
706 		dso->kernel = DSO_TYPE_KERNEL;
707 	}
708 
709 	dso__get(dso);
710 out_unlock:
711 	up_write(&machine->dsos.lock);
712 	return dso;
713 }
714 
715 int machine__process_aux_event(struct machine *machine __maybe_unused,
716 			       union perf_event *event)
717 {
718 	if (dump_trace)
719 		perf_event__fprintf_aux(event, stdout);
720 	return 0;
721 }
722 
723 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
724 					union perf_event *event)
725 {
726 	if (dump_trace)
727 		perf_event__fprintf_itrace_start(event, stdout);
728 	return 0;
729 }
730 
731 int machine__process_switch_event(struct machine *machine __maybe_unused,
732 				  union perf_event *event)
733 {
734 	if (dump_trace)
735 		perf_event__fprintf_switch(event, stdout);
736 	return 0;
737 }
738 
739 static int is_bpf_image(const char *name)
740 {
741 	return strncmp(name, "bpf_trampoline_", sizeof("bpf_trampoline_") - 1) == 0 ||
742 	       strncmp(name, "bpf_dispatcher_", sizeof("bpf_dispatcher_") - 1) == 0;
743 }
744 
745 static int machine__process_ksymbol_register(struct machine *machine,
746 					     union perf_event *event,
747 					     struct perf_sample *sample __maybe_unused)
748 {
749 	struct symbol *sym;
750 	struct map *map = maps__find(&machine->kmaps, event->ksymbol.addr);
751 
752 	if (!map) {
753 		struct dso *dso = dso__new(event->ksymbol.name);
754 
755 		if (dso) {
756 			dso->kernel = DSO_TYPE_KERNEL;
757 			map = map__new2(0, dso);
758 		}
759 
760 		if (!dso || !map) {
761 			dso__put(dso);
762 			return -ENOMEM;
763 		}
764 
765 		map->start = event->ksymbol.addr;
766 		map->end = map->start + event->ksymbol.len;
767 		maps__insert(&machine->kmaps, map);
768 		dso__set_loaded(dso);
769 
770 		if (is_bpf_image(event->ksymbol.name)) {
771 			dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE;
772 			dso__set_long_name(dso, "", false);
773 		}
774 	}
775 
776 	sym = symbol__new(map->map_ip(map, map->start),
777 			  event->ksymbol.len,
778 			  0, 0, event->ksymbol.name);
779 	if (!sym)
780 		return -ENOMEM;
781 	dso__insert_symbol(map->dso, sym);
782 	return 0;
783 }
784 
785 static int machine__process_ksymbol_unregister(struct machine *machine,
786 					       union perf_event *event,
787 					       struct perf_sample *sample __maybe_unused)
788 {
789 	struct map *map;
790 
791 	map = maps__find(&machine->kmaps, event->ksymbol.addr);
792 	if (map)
793 		maps__remove(&machine->kmaps, map);
794 
795 	return 0;
796 }
797 
798 int machine__process_ksymbol(struct machine *machine __maybe_unused,
799 			     union perf_event *event,
800 			     struct perf_sample *sample)
801 {
802 	if (dump_trace)
803 		perf_event__fprintf_ksymbol(event, stdout);
804 
805 	if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
806 		return machine__process_ksymbol_unregister(machine, event,
807 							   sample);
808 	return machine__process_ksymbol_register(machine, event, sample);
809 }
810 
811 static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
812 					      const char *filename)
813 {
814 	struct map *map = NULL;
815 	struct kmod_path m;
816 	struct dso *dso;
817 
818 	if (kmod_path__parse_name(&m, filename))
819 		return NULL;
820 
821 	dso = machine__findnew_module_dso(machine, &m, filename);
822 	if (dso == NULL)
823 		goto out;
824 
825 	map = map__new2(start, dso);
826 	if (map == NULL)
827 		goto out;
828 
829 	maps__insert(&machine->kmaps, map);
830 
831 	/* Put the map here because maps__insert alread got it */
832 	map__put(map);
833 out:
834 	/* put the dso here, corresponding to  machine__findnew_module_dso */
835 	dso__put(dso);
836 	zfree(&m.name);
837 	return map;
838 }
839 
840 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
841 {
842 	struct rb_node *nd;
843 	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
844 
845 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
846 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
847 		ret += __dsos__fprintf(&pos->dsos.head, fp);
848 	}
849 
850 	return ret;
851 }
852 
853 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
854 				     bool (skip)(struct dso *dso, int parm), int parm)
855 {
856 	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
857 }
858 
859 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
860 				     bool (skip)(struct dso *dso, int parm), int parm)
861 {
862 	struct rb_node *nd;
863 	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
864 
865 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
866 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
867 		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
868 	}
869 	return ret;
870 }
871 
872 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
873 {
874 	int i;
875 	size_t printed = 0;
876 	struct dso *kdso = machine__kernel_dso(machine);
877 
878 	if (kdso->has_build_id) {
879 		char filename[PATH_MAX];
880 		if (dso__build_id_filename(kdso, filename, sizeof(filename),
881 					   false))
882 			printed += fprintf(fp, "[0] %s\n", filename);
883 	}
884 
885 	for (i = 0; i < vmlinux_path__nr_entries; ++i)
886 		printed += fprintf(fp, "[%d] %s\n",
887 				   i + kdso->has_build_id, vmlinux_path[i]);
888 
889 	return printed;
890 }
891 
892 size_t machine__fprintf(struct machine *machine, FILE *fp)
893 {
894 	struct rb_node *nd;
895 	size_t ret;
896 	int i;
897 
898 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
899 		struct threads *threads = &machine->threads[i];
900 
901 		down_read(&threads->lock);
902 
903 		ret = fprintf(fp, "Threads: %u\n", threads->nr);
904 
905 		for (nd = rb_first_cached(&threads->entries); nd;
906 		     nd = rb_next(nd)) {
907 			struct thread *pos = rb_entry(nd, struct thread, rb_node);
908 
909 			ret += thread__fprintf(pos, fp);
910 		}
911 
912 		up_read(&threads->lock);
913 	}
914 	return ret;
915 }
916 
917 static struct dso *machine__get_kernel(struct machine *machine)
918 {
919 	const char *vmlinux_name = machine->mmap_name;
920 	struct dso *kernel;
921 
922 	if (machine__is_host(machine)) {
923 		if (symbol_conf.vmlinux_name)
924 			vmlinux_name = symbol_conf.vmlinux_name;
925 
926 		kernel = machine__findnew_kernel(machine, vmlinux_name,
927 						 "[kernel]", DSO_TYPE_KERNEL);
928 	} else {
929 		if (symbol_conf.default_guest_vmlinux_name)
930 			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
931 
932 		kernel = machine__findnew_kernel(machine, vmlinux_name,
933 						 "[guest.kernel]",
934 						 DSO_TYPE_GUEST_KERNEL);
935 	}
936 
937 	if (kernel != NULL && (!kernel->has_build_id))
938 		dso__read_running_kernel_build_id(kernel, machine);
939 
940 	return kernel;
941 }
942 
943 struct process_args {
944 	u64 start;
945 };
946 
947 void machine__get_kallsyms_filename(struct machine *machine, char *buf,
948 				    size_t bufsz)
949 {
950 	if (machine__is_default_guest(machine))
951 		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
952 	else
953 		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
954 }
955 
956 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
957 
958 /* Figure out the start address of kernel map from /proc/kallsyms.
959  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
960  * symbol_name if it's not that important.
961  */
962 static int machine__get_running_kernel_start(struct machine *machine,
963 					     const char **symbol_name,
964 					     u64 *start, u64 *end)
965 {
966 	char filename[PATH_MAX];
967 	int i, err = -1;
968 	const char *name;
969 	u64 addr = 0;
970 
971 	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
972 
973 	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
974 		return 0;
975 
976 	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
977 		err = kallsyms__get_function_start(filename, name, &addr);
978 		if (!err)
979 			break;
980 	}
981 
982 	if (err)
983 		return -1;
984 
985 	if (symbol_name)
986 		*symbol_name = name;
987 
988 	*start = addr;
989 
990 	err = kallsyms__get_function_start(filename, "_etext", &addr);
991 	if (!err)
992 		*end = addr;
993 
994 	return 0;
995 }
996 
997 int machine__create_extra_kernel_map(struct machine *machine,
998 				     struct dso *kernel,
999 				     struct extra_kernel_map *xm)
1000 {
1001 	struct kmap *kmap;
1002 	struct map *map;
1003 
1004 	map = map__new2(xm->start, kernel);
1005 	if (!map)
1006 		return -1;
1007 
1008 	map->end   = xm->end;
1009 	map->pgoff = xm->pgoff;
1010 
1011 	kmap = map__kmap(map);
1012 
1013 	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1014 
1015 	maps__insert(&machine->kmaps, map);
1016 
1017 	pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1018 		  kmap->name, map->start, map->end);
1019 
1020 	map__put(map);
1021 
1022 	return 0;
1023 }
1024 
1025 static u64 find_entry_trampoline(struct dso *dso)
1026 {
1027 	/* Duplicates are removed so lookup all aliases */
1028 	const char *syms[] = {
1029 		"_entry_trampoline",
1030 		"__entry_trampoline_start",
1031 		"entry_SYSCALL_64_trampoline",
1032 	};
1033 	struct symbol *sym = dso__first_symbol(dso);
1034 	unsigned int i;
1035 
1036 	for (; sym; sym = dso__next_symbol(sym)) {
1037 		if (sym->binding != STB_GLOBAL)
1038 			continue;
1039 		for (i = 0; i < ARRAY_SIZE(syms); i++) {
1040 			if (!strcmp(sym->name, syms[i]))
1041 				return sym->start;
1042 		}
1043 	}
1044 
1045 	return 0;
1046 }
1047 
1048 /*
1049  * These values can be used for kernels that do not have symbols for the entry
1050  * trampolines in kallsyms.
1051  */
1052 #define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
1053 #define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
1054 #define X86_64_ENTRY_TRAMPOLINE		0x6000
1055 
1056 /* Map x86_64 PTI entry trampolines */
1057 int machine__map_x86_64_entry_trampolines(struct machine *machine,
1058 					  struct dso *kernel)
1059 {
1060 	struct maps *kmaps = &machine->kmaps;
1061 	int nr_cpus_avail, cpu;
1062 	bool found = false;
1063 	struct map *map;
1064 	u64 pgoff;
1065 
1066 	/*
1067 	 * In the vmlinux case, pgoff is a virtual address which must now be
1068 	 * mapped to a vmlinux offset.
1069 	 */
1070 	maps__for_each_entry(kmaps, map) {
1071 		struct kmap *kmap = __map__kmap(map);
1072 		struct map *dest_map;
1073 
1074 		if (!kmap || !is_entry_trampoline(kmap->name))
1075 			continue;
1076 
1077 		dest_map = maps__find(kmaps, map->pgoff);
1078 		if (dest_map != map)
1079 			map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1080 		found = true;
1081 	}
1082 	if (found || machine->trampolines_mapped)
1083 		return 0;
1084 
1085 	pgoff = find_entry_trampoline(kernel);
1086 	if (!pgoff)
1087 		return 0;
1088 
1089 	nr_cpus_avail = machine__nr_cpus_avail(machine);
1090 
1091 	/* Add a 1 page map for each CPU's entry trampoline */
1092 	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1093 		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1094 			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1095 			 X86_64_ENTRY_TRAMPOLINE;
1096 		struct extra_kernel_map xm = {
1097 			.start = va,
1098 			.end   = va + page_size,
1099 			.pgoff = pgoff,
1100 		};
1101 
1102 		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1103 
1104 		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1105 			return -1;
1106 	}
1107 
1108 	machine->trampolines_mapped = nr_cpus_avail;
1109 
1110 	return 0;
1111 }
1112 
1113 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1114 					     struct dso *kernel __maybe_unused)
1115 {
1116 	return 0;
1117 }
1118 
1119 static int
1120 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1121 {
1122 	/* In case of renewal the kernel map, destroy previous one */
1123 	machine__destroy_kernel_maps(machine);
1124 
1125 	machine->vmlinux_map = map__new2(0, kernel);
1126 	if (machine->vmlinux_map == NULL)
1127 		return -1;
1128 
1129 	machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1130 	maps__insert(&machine->kmaps, machine->vmlinux_map);
1131 	return 0;
1132 }
1133 
1134 void machine__destroy_kernel_maps(struct machine *machine)
1135 {
1136 	struct kmap *kmap;
1137 	struct map *map = machine__kernel_map(machine);
1138 
1139 	if (map == NULL)
1140 		return;
1141 
1142 	kmap = map__kmap(map);
1143 	maps__remove(&machine->kmaps, map);
1144 	if (kmap && kmap->ref_reloc_sym) {
1145 		zfree((char **)&kmap->ref_reloc_sym->name);
1146 		zfree(&kmap->ref_reloc_sym);
1147 	}
1148 
1149 	map__zput(machine->vmlinux_map);
1150 }
1151 
1152 int machines__create_guest_kernel_maps(struct machines *machines)
1153 {
1154 	int ret = 0;
1155 	struct dirent **namelist = NULL;
1156 	int i, items = 0;
1157 	char path[PATH_MAX];
1158 	pid_t pid;
1159 	char *endp;
1160 
1161 	if (symbol_conf.default_guest_vmlinux_name ||
1162 	    symbol_conf.default_guest_modules ||
1163 	    symbol_conf.default_guest_kallsyms) {
1164 		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1165 	}
1166 
1167 	if (symbol_conf.guestmount) {
1168 		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1169 		if (items <= 0)
1170 			return -ENOENT;
1171 		for (i = 0; i < items; i++) {
1172 			if (!isdigit(namelist[i]->d_name[0])) {
1173 				/* Filter out . and .. */
1174 				continue;
1175 			}
1176 			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1177 			if ((*endp != '\0') ||
1178 			    (endp == namelist[i]->d_name) ||
1179 			    (errno == ERANGE)) {
1180 				pr_debug("invalid directory (%s). Skipping.\n",
1181 					 namelist[i]->d_name);
1182 				continue;
1183 			}
1184 			sprintf(path, "%s/%s/proc/kallsyms",
1185 				symbol_conf.guestmount,
1186 				namelist[i]->d_name);
1187 			ret = access(path, R_OK);
1188 			if (ret) {
1189 				pr_debug("Can't access file %s\n", path);
1190 				goto failure;
1191 			}
1192 			machines__create_kernel_maps(machines, pid);
1193 		}
1194 failure:
1195 		free(namelist);
1196 	}
1197 
1198 	return ret;
1199 }
1200 
1201 void machines__destroy_kernel_maps(struct machines *machines)
1202 {
1203 	struct rb_node *next = rb_first_cached(&machines->guests);
1204 
1205 	machine__destroy_kernel_maps(&machines->host);
1206 
1207 	while (next) {
1208 		struct machine *pos = rb_entry(next, struct machine, rb_node);
1209 
1210 		next = rb_next(&pos->rb_node);
1211 		rb_erase_cached(&pos->rb_node, &machines->guests);
1212 		machine__delete(pos);
1213 	}
1214 }
1215 
1216 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1217 {
1218 	struct machine *machine = machines__findnew(machines, pid);
1219 
1220 	if (machine == NULL)
1221 		return -1;
1222 
1223 	return machine__create_kernel_maps(machine);
1224 }
1225 
1226 int machine__load_kallsyms(struct machine *machine, const char *filename)
1227 {
1228 	struct map *map = machine__kernel_map(machine);
1229 	int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1230 
1231 	if (ret > 0) {
1232 		dso__set_loaded(map->dso);
1233 		/*
1234 		 * Since /proc/kallsyms will have multiple sessions for the
1235 		 * kernel, with modules between them, fixup the end of all
1236 		 * sections.
1237 		 */
1238 		maps__fixup_end(&machine->kmaps);
1239 	}
1240 
1241 	return ret;
1242 }
1243 
1244 int machine__load_vmlinux_path(struct machine *machine)
1245 {
1246 	struct map *map = machine__kernel_map(machine);
1247 	int ret = dso__load_vmlinux_path(map->dso, map);
1248 
1249 	if (ret > 0)
1250 		dso__set_loaded(map->dso);
1251 
1252 	return ret;
1253 }
1254 
1255 static char *get_kernel_version(const char *root_dir)
1256 {
1257 	char version[PATH_MAX];
1258 	FILE *file;
1259 	char *name, *tmp;
1260 	const char *prefix = "Linux version ";
1261 
1262 	sprintf(version, "%s/proc/version", root_dir);
1263 	file = fopen(version, "r");
1264 	if (!file)
1265 		return NULL;
1266 
1267 	tmp = fgets(version, sizeof(version), file);
1268 	fclose(file);
1269 	if (!tmp)
1270 		return NULL;
1271 
1272 	name = strstr(version, prefix);
1273 	if (!name)
1274 		return NULL;
1275 	name += strlen(prefix);
1276 	tmp = strchr(name, ' ');
1277 	if (tmp)
1278 		*tmp = '\0';
1279 
1280 	return strdup(name);
1281 }
1282 
1283 static bool is_kmod_dso(struct dso *dso)
1284 {
1285 	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1286 	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1287 }
1288 
1289 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1290 {
1291 	char *long_name;
1292 	struct map *map = maps__find_by_name(maps, m->name);
1293 
1294 	if (map == NULL)
1295 		return 0;
1296 
1297 	long_name = strdup(path);
1298 	if (long_name == NULL)
1299 		return -ENOMEM;
1300 
1301 	dso__set_long_name(map->dso, long_name, true);
1302 	dso__kernel_module_get_build_id(map->dso, "");
1303 
1304 	/*
1305 	 * Full name could reveal us kmod compression, so
1306 	 * we need to update the symtab_type if needed.
1307 	 */
1308 	if (m->comp && is_kmod_dso(map->dso)) {
1309 		map->dso->symtab_type++;
1310 		map->dso->comp = m->comp;
1311 	}
1312 
1313 	return 0;
1314 }
1315 
1316 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1317 {
1318 	struct dirent *dent;
1319 	DIR *dir = opendir(dir_name);
1320 	int ret = 0;
1321 
1322 	if (!dir) {
1323 		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1324 		return -1;
1325 	}
1326 
1327 	while ((dent = readdir(dir)) != NULL) {
1328 		char path[PATH_MAX];
1329 		struct stat st;
1330 
1331 		/*sshfs might return bad dent->d_type, so we have to stat*/
1332 		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1333 		if (stat(path, &st))
1334 			continue;
1335 
1336 		if (S_ISDIR(st.st_mode)) {
1337 			if (!strcmp(dent->d_name, ".") ||
1338 			    !strcmp(dent->d_name, ".."))
1339 				continue;
1340 
1341 			/* Do not follow top-level source and build symlinks */
1342 			if (depth == 0) {
1343 				if (!strcmp(dent->d_name, "source") ||
1344 				    !strcmp(dent->d_name, "build"))
1345 					continue;
1346 			}
1347 
1348 			ret = maps__set_modules_path_dir(maps, path, depth + 1);
1349 			if (ret < 0)
1350 				goto out;
1351 		} else {
1352 			struct kmod_path m;
1353 
1354 			ret = kmod_path__parse_name(&m, dent->d_name);
1355 			if (ret)
1356 				goto out;
1357 
1358 			if (m.kmod)
1359 				ret = maps__set_module_path(maps, path, &m);
1360 
1361 			zfree(&m.name);
1362 
1363 			if (ret)
1364 				goto out;
1365 		}
1366 	}
1367 
1368 out:
1369 	closedir(dir);
1370 	return ret;
1371 }
1372 
1373 static int machine__set_modules_path(struct machine *machine)
1374 {
1375 	char *version;
1376 	char modules_path[PATH_MAX];
1377 
1378 	version = get_kernel_version(machine->root_dir);
1379 	if (!version)
1380 		return -1;
1381 
1382 	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1383 		 machine->root_dir, version);
1384 	free(version);
1385 
1386 	return maps__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1387 }
1388 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1389 				u64 *size __maybe_unused,
1390 				const char *name __maybe_unused)
1391 {
1392 	return 0;
1393 }
1394 
1395 static int machine__create_module(void *arg, const char *name, u64 start,
1396 				  u64 size)
1397 {
1398 	struct machine *machine = arg;
1399 	struct map *map;
1400 
1401 	if (arch__fix_module_text_start(&start, &size, name) < 0)
1402 		return -1;
1403 
1404 	map = machine__addnew_module_map(machine, start, name);
1405 	if (map == NULL)
1406 		return -1;
1407 	map->end = start + size;
1408 
1409 	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1410 
1411 	return 0;
1412 }
1413 
1414 static int machine__create_modules(struct machine *machine)
1415 {
1416 	const char *modules;
1417 	char path[PATH_MAX];
1418 
1419 	if (machine__is_default_guest(machine)) {
1420 		modules = symbol_conf.default_guest_modules;
1421 	} else {
1422 		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1423 		modules = path;
1424 	}
1425 
1426 	if (symbol__restricted_filename(modules, "/proc/modules"))
1427 		return -1;
1428 
1429 	if (modules__parse(modules, machine, machine__create_module))
1430 		return -1;
1431 
1432 	if (!machine__set_modules_path(machine))
1433 		return 0;
1434 
1435 	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1436 
1437 	return 0;
1438 }
1439 
1440 static void machine__set_kernel_mmap(struct machine *machine,
1441 				     u64 start, u64 end)
1442 {
1443 	machine->vmlinux_map->start = start;
1444 	machine->vmlinux_map->end   = end;
1445 	/*
1446 	 * Be a bit paranoid here, some perf.data file came with
1447 	 * a zero sized synthesized MMAP event for the kernel.
1448 	 */
1449 	if (start == 0 && end == 0)
1450 		machine->vmlinux_map->end = ~0ULL;
1451 }
1452 
1453 static void machine__update_kernel_mmap(struct machine *machine,
1454 				     u64 start, u64 end)
1455 {
1456 	struct map *map = machine__kernel_map(machine);
1457 
1458 	map__get(map);
1459 	maps__remove(&machine->kmaps, map);
1460 
1461 	machine__set_kernel_mmap(machine, start, end);
1462 
1463 	maps__insert(&machine->kmaps, map);
1464 	map__put(map);
1465 }
1466 
1467 int machine__create_kernel_maps(struct machine *machine)
1468 {
1469 	struct dso *kernel = machine__get_kernel(machine);
1470 	const char *name = NULL;
1471 	struct map *map;
1472 	u64 start = 0, end = ~0ULL;
1473 	int ret;
1474 
1475 	if (kernel == NULL)
1476 		return -1;
1477 
1478 	ret = __machine__create_kernel_maps(machine, kernel);
1479 	if (ret < 0)
1480 		goto out_put;
1481 
1482 	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1483 		if (machine__is_host(machine))
1484 			pr_debug("Problems creating module maps, "
1485 				 "continuing anyway...\n");
1486 		else
1487 			pr_debug("Problems creating module maps for guest %d, "
1488 				 "continuing anyway...\n", machine->pid);
1489 	}
1490 
1491 	if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1492 		if (name &&
1493 		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1494 			machine__destroy_kernel_maps(machine);
1495 			ret = -1;
1496 			goto out_put;
1497 		}
1498 
1499 		/*
1500 		 * we have a real start address now, so re-order the kmaps
1501 		 * assume it's the last in the kmaps
1502 		 */
1503 		machine__update_kernel_mmap(machine, start, end);
1504 	}
1505 
1506 	if (machine__create_extra_kernel_maps(machine, kernel))
1507 		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1508 
1509 	if (end == ~0ULL) {
1510 		/* update end address of the kernel map using adjacent module address */
1511 		map = map__next(machine__kernel_map(machine));
1512 		if (map)
1513 			machine__set_kernel_mmap(machine, start, map->start);
1514 	}
1515 
1516 out_put:
1517 	dso__put(kernel);
1518 	return ret;
1519 }
1520 
1521 static bool machine__uses_kcore(struct machine *machine)
1522 {
1523 	struct dso *dso;
1524 
1525 	list_for_each_entry(dso, &machine->dsos.head, node) {
1526 		if (dso__is_kcore(dso))
1527 			return true;
1528 	}
1529 
1530 	return false;
1531 }
1532 
1533 static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1534 					     union perf_event *event)
1535 {
1536 	return machine__is(machine, "x86_64") &&
1537 	       is_entry_trampoline(event->mmap.filename);
1538 }
1539 
1540 static int machine__process_extra_kernel_map(struct machine *machine,
1541 					     union perf_event *event)
1542 {
1543 	struct dso *kernel = machine__kernel_dso(machine);
1544 	struct extra_kernel_map xm = {
1545 		.start = event->mmap.start,
1546 		.end   = event->mmap.start + event->mmap.len,
1547 		.pgoff = event->mmap.pgoff,
1548 	};
1549 
1550 	if (kernel == NULL)
1551 		return -1;
1552 
1553 	strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1554 
1555 	return machine__create_extra_kernel_map(machine, kernel, &xm);
1556 }
1557 
1558 static int machine__process_kernel_mmap_event(struct machine *machine,
1559 					      union perf_event *event)
1560 {
1561 	struct map *map;
1562 	enum dso_kernel_type kernel_type;
1563 	bool is_kernel_mmap;
1564 
1565 	/* If we have maps from kcore then we do not need or want any others */
1566 	if (machine__uses_kcore(machine))
1567 		return 0;
1568 
1569 	if (machine__is_host(machine))
1570 		kernel_type = DSO_TYPE_KERNEL;
1571 	else
1572 		kernel_type = DSO_TYPE_GUEST_KERNEL;
1573 
1574 	is_kernel_mmap = memcmp(event->mmap.filename,
1575 				machine->mmap_name,
1576 				strlen(machine->mmap_name) - 1) == 0;
1577 	if (event->mmap.filename[0] == '/' ||
1578 	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1579 		map = machine__addnew_module_map(machine, event->mmap.start,
1580 						 event->mmap.filename);
1581 		if (map == NULL)
1582 			goto out_problem;
1583 
1584 		map->end = map->start + event->mmap.len;
1585 	} else if (is_kernel_mmap) {
1586 		const char *symbol_name = (event->mmap.filename +
1587 				strlen(machine->mmap_name));
1588 		/*
1589 		 * Should be there already, from the build-id table in
1590 		 * the header.
1591 		 */
1592 		struct dso *kernel = NULL;
1593 		struct dso *dso;
1594 
1595 		down_read(&machine->dsos.lock);
1596 
1597 		list_for_each_entry(dso, &machine->dsos.head, node) {
1598 
1599 			/*
1600 			 * The cpumode passed to is_kernel_module is not the
1601 			 * cpumode of *this* event. If we insist on passing
1602 			 * correct cpumode to is_kernel_module, we should
1603 			 * record the cpumode when we adding this dso to the
1604 			 * linked list.
1605 			 *
1606 			 * However we don't really need passing correct
1607 			 * cpumode.  We know the correct cpumode must be kernel
1608 			 * mode (if not, we should not link it onto kernel_dsos
1609 			 * list).
1610 			 *
1611 			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1612 			 * is_kernel_module() treats it as a kernel cpumode.
1613 			 */
1614 
1615 			if (!dso->kernel ||
1616 			    is_kernel_module(dso->long_name,
1617 					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1618 				continue;
1619 
1620 
1621 			kernel = dso;
1622 			break;
1623 		}
1624 
1625 		up_read(&machine->dsos.lock);
1626 
1627 		if (kernel == NULL)
1628 			kernel = machine__findnew_dso(machine, machine->mmap_name);
1629 		if (kernel == NULL)
1630 			goto out_problem;
1631 
1632 		kernel->kernel = kernel_type;
1633 		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1634 			dso__put(kernel);
1635 			goto out_problem;
1636 		}
1637 
1638 		if (strstr(kernel->long_name, "vmlinux"))
1639 			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1640 
1641 		machine__update_kernel_mmap(machine, event->mmap.start,
1642 					 event->mmap.start + event->mmap.len);
1643 
1644 		/*
1645 		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1646 		 * symbol. Effectively having zero here means that at record
1647 		 * time /proc/sys/kernel/kptr_restrict was non zero.
1648 		 */
1649 		if (event->mmap.pgoff != 0) {
1650 			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1651 							symbol_name,
1652 							event->mmap.pgoff);
1653 		}
1654 
1655 		if (machine__is_default_guest(machine)) {
1656 			/*
1657 			 * preload dso of guest kernel and modules
1658 			 */
1659 			dso__load(kernel, machine__kernel_map(machine));
1660 		}
1661 	} else if (perf_event__is_extra_kernel_mmap(machine, event)) {
1662 		return machine__process_extra_kernel_map(machine, event);
1663 	}
1664 	return 0;
1665 out_problem:
1666 	return -1;
1667 }
1668 
1669 int machine__process_mmap2_event(struct machine *machine,
1670 				 union perf_event *event,
1671 				 struct perf_sample *sample)
1672 {
1673 	struct thread *thread;
1674 	struct map *map;
1675 	struct dso_id dso_id = {
1676 		.maj = event->mmap2.maj,
1677 		.min = event->mmap2.min,
1678 		.ino = event->mmap2.ino,
1679 		.ino_generation = event->mmap2.ino_generation,
1680 	};
1681 	int ret = 0;
1682 
1683 	if (dump_trace)
1684 		perf_event__fprintf_mmap2(event, stdout);
1685 
1686 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1687 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1688 		ret = machine__process_kernel_mmap_event(machine, event);
1689 		if (ret < 0)
1690 			goto out_problem;
1691 		return 0;
1692 	}
1693 
1694 	thread = machine__findnew_thread(machine, event->mmap2.pid,
1695 					event->mmap2.tid);
1696 	if (thread == NULL)
1697 		goto out_problem;
1698 
1699 	map = map__new(machine, event->mmap2.start,
1700 			event->mmap2.len, event->mmap2.pgoff,
1701 			&dso_id, event->mmap2.prot,
1702 			event->mmap2.flags,
1703 			event->mmap2.filename, thread);
1704 
1705 	if (map == NULL)
1706 		goto out_problem_map;
1707 
1708 	ret = thread__insert_map(thread, map);
1709 	if (ret)
1710 		goto out_problem_insert;
1711 
1712 	thread__put(thread);
1713 	map__put(map);
1714 	return 0;
1715 
1716 out_problem_insert:
1717 	map__put(map);
1718 out_problem_map:
1719 	thread__put(thread);
1720 out_problem:
1721 	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1722 	return 0;
1723 }
1724 
1725 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1726 				struct perf_sample *sample)
1727 {
1728 	struct thread *thread;
1729 	struct map *map;
1730 	u32 prot = 0;
1731 	int ret = 0;
1732 
1733 	if (dump_trace)
1734 		perf_event__fprintf_mmap(event, stdout);
1735 
1736 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1737 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1738 		ret = machine__process_kernel_mmap_event(machine, event);
1739 		if (ret < 0)
1740 			goto out_problem;
1741 		return 0;
1742 	}
1743 
1744 	thread = machine__findnew_thread(machine, event->mmap.pid,
1745 					 event->mmap.tid);
1746 	if (thread == NULL)
1747 		goto out_problem;
1748 
1749 	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1750 		prot = PROT_EXEC;
1751 
1752 	map = map__new(machine, event->mmap.start,
1753 			event->mmap.len, event->mmap.pgoff,
1754 			NULL, prot, 0, event->mmap.filename, thread);
1755 
1756 	if (map == NULL)
1757 		goto out_problem_map;
1758 
1759 	ret = thread__insert_map(thread, map);
1760 	if (ret)
1761 		goto out_problem_insert;
1762 
1763 	thread__put(thread);
1764 	map__put(map);
1765 	return 0;
1766 
1767 out_problem_insert:
1768 	map__put(map);
1769 out_problem_map:
1770 	thread__put(thread);
1771 out_problem:
1772 	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1773 	return 0;
1774 }
1775 
1776 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1777 {
1778 	struct threads *threads = machine__threads(machine, th->tid);
1779 
1780 	if (threads->last_match == th)
1781 		threads__set_last_match(threads, NULL);
1782 
1783 	if (lock)
1784 		down_write(&threads->lock);
1785 
1786 	BUG_ON(refcount_read(&th->refcnt) == 0);
1787 
1788 	rb_erase_cached(&th->rb_node, &threads->entries);
1789 	RB_CLEAR_NODE(&th->rb_node);
1790 	--threads->nr;
1791 	/*
1792 	 * Move it first to the dead_threads list, then drop the reference,
1793 	 * if this is the last reference, then the thread__delete destructor
1794 	 * will be called and we will remove it from the dead_threads list.
1795 	 */
1796 	list_add_tail(&th->node, &threads->dead);
1797 
1798 	/*
1799 	 * We need to do the put here because if this is the last refcount,
1800 	 * then we will be touching the threads->dead head when removing the
1801 	 * thread.
1802 	 */
1803 	thread__put(th);
1804 
1805 	if (lock)
1806 		up_write(&threads->lock);
1807 }
1808 
1809 void machine__remove_thread(struct machine *machine, struct thread *th)
1810 {
1811 	return __machine__remove_thread(machine, th, true);
1812 }
1813 
1814 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1815 				struct perf_sample *sample)
1816 {
1817 	struct thread *thread = machine__find_thread(machine,
1818 						     event->fork.pid,
1819 						     event->fork.tid);
1820 	struct thread *parent = machine__findnew_thread(machine,
1821 							event->fork.ppid,
1822 							event->fork.ptid);
1823 	bool do_maps_clone = true;
1824 	int err = 0;
1825 
1826 	if (dump_trace)
1827 		perf_event__fprintf_task(event, stdout);
1828 
1829 	/*
1830 	 * There may be an existing thread that is not actually the parent,
1831 	 * either because we are processing events out of order, or because the
1832 	 * (fork) event that would have removed the thread was lost. Assume the
1833 	 * latter case and continue on as best we can.
1834 	 */
1835 	if (parent->pid_ != (pid_t)event->fork.ppid) {
1836 		dump_printf("removing erroneous parent thread %d/%d\n",
1837 			    parent->pid_, parent->tid);
1838 		machine__remove_thread(machine, parent);
1839 		thread__put(parent);
1840 		parent = machine__findnew_thread(machine, event->fork.ppid,
1841 						 event->fork.ptid);
1842 	}
1843 
1844 	/* if a thread currently exists for the thread id remove it */
1845 	if (thread != NULL) {
1846 		machine__remove_thread(machine, thread);
1847 		thread__put(thread);
1848 	}
1849 
1850 	thread = machine__findnew_thread(machine, event->fork.pid,
1851 					 event->fork.tid);
1852 	/*
1853 	 * When synthesizing FORK events, we are trying to create thread
1854 	 * objects for the already running tasks on the machine.
1855 	 *
1856 	 * Normally, for a kernel FORK event, we want to clone the parent's
1857 	 * maps because that is what the kernel just did.
1858 	 *
1859 	 * But when synthesizing, this should not be done.  If we do, we end up
1860 	 * with overlapping maps as we process the sythesized MMAP2 events that
1861 	 * get delivered shortly thereafter.
1862 	 *
1863 	 * Use the FORK event misc flags in an internal way to signal this
1864 	 * situation, so we can elide the map clone when appropriate.
1865 	 */
1866 	if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1867 		do_maps_clone = false;
1868 
1869 	if (thread == NULL || parent == NULL ||
1870 	    thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1871 		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1872 		err = -1;
1873 	}
1874 	thread__put(thread);
1875 	thread__put(parent);
1876 
1877 	return err;
1878 }
1879 
1880 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1881 				struct perf_sample *sample __maybe_unused)
1882 {
1883 	struct thread *thread = machine__find_thread(machine,
1884 						     event->fork.pid,
1885 						     event->fork.tid);
1886 
1887 	if (dump_trace)
1888 		perf_event__fprintf_task(event, stdout);
1889 
1890 	if (thread != NULL) {
1891 		thread__exited(thread);
1892 		thread__put(thread);
1893 	}
1894 
1895 	return 0;
1896 }
1897 
1898 int machine__process_event(struct machine *machine, union perf_event *event,
1899 			   struct perf_sample *sample)
1900 {
1901 	int ret;
1902 
1903 	switch (event->header.type) {
1904 	case PERF_RECORD_COMM:
1905 		ret = machine__process_comm_event(machine, event, sample); break;
1906 	case PERF_RECORD_MMAP:
1907 		ret = machine__process_mmap_event(machine, event, sample); break;
1908 	case PERF_RECORD_NAMESPACES:
1909 		ret = machine__process_namespaces_event(machine, event, sample); break;
1910 	case PERF_RECORD_CGROUP:
1911 		ret = machine__process_cgroup_event(machine, event, sample); break;
1912 	case PERF_RECORD_MMAP2:
1913 		ret = machine__process_mmap2_event(machine, event, sample); break;
1914 	case PERF_RECORD_FORK:
1915 		ret = machine__process_fork_event(machine, event, sample); break;
1916 	case PERF_RECORD_EXIT:
1917 		ret = machine__process_exit_event(machine, event, sample); break;
1918 	case PERF_RECORD_LOST:
1919 		ret = machine__process_lost_event(machine, event, sample); break;
1920 	case PERF_RECORD_AUX:
1921 		ret = machine__process_aux_event(machine, event); break;
1922 	case PERF_RECORD_ITRACE_START:
1923 		ret = machine__process_itrace_start_event(machine, event); break;
1924 	case PERF_RECORD_LOST_SAMPLES:
1925 		ret = machine__process_lost_samples_event(machine, event, sample); break;
1926 	case PERF_RECORD_SWITCH:
1927 	case PERF_RECORD_SWITCH_CPU_WIDE:
1928 		ret = machine__process_switch_event(machine, event); break;
1929 	case PERF_RECORD_KSYMBOL:
1930 		ret = machine__process_ksymbol(machine, event, sample); break;
1931 	case PERF_RECORD_BPF_EVENT:
1932 		ret = machine__process_bpf(machine, event, sample); break;
1933 	default:
1934 		ret = -1;
1935 		break;
1936 	}
1937 
1938 	return ret;
1939 }
1940 
1941 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1942 {
1943 	if (!regexec(regex, sym->name, 0, NULL, 0))
1944 		return 1;
1945 	return 0;
1946 }
1947 
1948 static void ip__resolve_ams(struct thread *thread,
1949 			    struct addr_map_symbol *ams,
1950 			    u64 ip)
1951 {
1952 	struct addr_location al;
1953 
1954 	memset(&al, 0, sizeof(al));
1955 	/*
1956 	 * We cannot use the header.misc hint to determine whether a
1957 	 * branch stack address is user, kernel, guest, hypervisor.
1958 	 * Branches may straddle the kernel/user/hypervisor boundaries.
1959 	 * Thus, we have to try consecutively until we find a match
1960 	 * or else, the symbol is unknown
1961 	 */
1962 	thread__find_cpumode_addr_location(thread, ip, &al);
1963 
1964 	ams->addr = ip;
1965 	ams->al_addr = al.addr;
1966 	ams->ms.maps = al.maps;
1967 	ams->ms.sym = al.sym;
1968 	ams->ms.map = al.map;
1969 	ams->phys_addr = 0;
1970 }
1971 
1972 static void ip__resolve_data(struct thread *thread,
1973 			     u8 m, struct addr_map_symbol *ams,
1974 			     u64 addr, u64 phys_addr)
1975 {
1976 	struct addr_location al;
1977 
1978 	memset(&al, 0, sizeof(al));
1979 
1980 	thread__find_symbol(thread, m, addr, &al);
1981 
1982 	ams->addr = addr;
1983 	ams->al_addr = al.addr;
1984 	ams->ms.maps = al.maps;
1985 	ams->ms.sym = al.sym;
1986 	ams->ms.map = al.map;
1987 	ams->phys_addr = phys_addr;
1988 }
1989 
1990 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1991 				     struct addr_location *al)
1992 {
1993 	struct mem_info *mi = mem_info__new();
1994 
1995 	if (!mi)
1996 		return NULL;
1997 
1998 	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1999 	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
2000 			 sample->addr, sample->phys_addr);
2001 	mi->data_src.val = sample->data_src;
2002 
2003 	return mi;
2004 }
2005 
2006 static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2007 {
2008 	struct map *map = ms->map;
2009 	char *srcline = NULL;
2010 
2011 	if (!map || callchain_param.key == CCKEY_FUNCTION)
2012 		return srcline;
2013 
2014 	srcline = srcline__tree_find(&map->dso->srclines, ip);
2015 	if (!srcline) {
2016 		bool show_sym = false;
2017 		bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2018 
2019 		srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
2020 				      ms->sym, show_sym, show_addr, ip);
2021 		srcline__tree_insert(&map->dso->srclines, ip, srcline);
2022 	}
2023 
2024 	return srcline;
2025 }
2026 
2027 struct iterations {
2028 	int nr_loop_iter;
2029 	u64 cycles;
2030 };
2031 
2032 static int add_callchain_ip(struct thread *thread,
2033 			    struct callchain_cursor *cursor,
2034 			    struct symbol **parent,
2035 			    struct addr_location *root_al,
2036 			    u8 *cpumode,
2037 			    u64 ip,
2038 			    bool branch,
2039 			    struct branch_flags *flags,
2040 			    struct iterations *iter,
2041 			    u64 branch_from)
2042 {
2043 	struct map_symbol ms;
2044 	struct addr_location al;
2045 	int nr_loop_iter = 0;
2046 	u64 iter_cycles = 0;
2047 	const char *srcline = NULL;
2048 
2049 	al.filtered = 0;
2050 	al.sym = NULL;
2051 	if (!cpumode) {
2052 		thread__find_cpumode_addr_location(thread, ip, &al);
2053 	} else {
2054 		if (ip >= PERF_CONTEXT_MAX) {
2055 			switch (ip) {
2056 			case PERF_CONTEXT_HV:
2057 				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
2058 				break;
2059 			case PERF_CONTEXT_KERNEL:
2060 				*cpumode = PERF_RECORD_MISC_KERNEL;
2061 				break;
2062 			case PERF_CONTEXT_USER:
2063 				*cpumode = PERF_RECORD_MISC_USER;
2064 				break;
2065 			default:
2066 				pr_debug("invalid callchain context: "
2067 					 "%"PRId64"\n", (s64) ip);
2068 				/*
2069 				 * It seems the callchain is corrupted.
2070 				 * Discard all.
2071 				 */
2072 				callchain_cursor_reset(cursor);
2073 				return 1;
2074 			}
2075 			return 0;
2076 		}
2077 		thread__find_symbol(thread, *cpumode, ip, &al);
2078 	}
2079 
2080 	if (al.sym != NULL) {
2081 		if (perf_hpp_list.parent && !*parent &&
2082 		    symbol__match_regex(al.sym, &parent_regex))
2083 			*parent = al.sym;
2084 		else if (have_ignore_callees && root_al &&
2085 		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
2086 			/* Treat this symbol as the root,
2087 			   forgetting its callees. */
2088 			*root_al = al;
2089 			callchain_cursor_reset(cursor);
2090 		}
2091 	}
2092 
2093 	if (symbol_conf.hide_unresolved && al.sym == NULL)
2094 		return 0;
2095 
2096 	if (iter) {
2097 		nr_loop_iter = iter->nr_loop_iter;
2098 		iter_cycles = iter->cycles;
2099 	}
2100 
2101 	ms.maps = al.maps;
2102 	ms.map = al.map;
2103 	ms.sym = al.sym;
2104 	srcline = callchain_srcline(&ms, al.addr);
2105 	return callchain_cursor_append(cursor, ip, &ms,
2106 				       branch, flags, nr_loop_iter,
2107 				       iter_cycles, branch_from, srcline);
2108 }
2109 
2110 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2111 					   struct addr_location *al)
2112 {
2113 	unsigned int i;
2114 	const struct branch_stack *bs = sample->branch_stack;
2115 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2116 	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2117 
2118 	if (!bi)
2119 		return NULL;
2120 
2121 	for (i = 0; i < bs->nr; i++) {
2122 		ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2123 		ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2124 		bi[i].flags = entries[i].flags;
2125 	}
2126 	return bi;
2127 }
2128 
2129 static void save_iterations(struct iterations *iter,
2130 			    struct branch_entry *be, int nr)
2131 {
2132 	int i;
2133 
2134 	iter->nr_loop_iter++;
2135 	iter->cycles = 0;
2136 
2137 	for (i = 0; i < nr; i++)
2138 		iter->cycles += be[i].flags.cycles;
2139 }
2140 
2141 #define CHASHSZ 127
2142 #define CHASHBITS 7
2143 #define NO_ENTRY 0xff
2144 
2145 #define PERF_MAX_BRANCH_DEPTH 127
2146 
2147 /* Remove loops. */
2148 static int remove_loops(struct branch_entry *l, int nr,
2149 			struct iterations *iter)
2150 {
2151 	int i, j, off;
2152 	unsigned char chash[CHASHSZ];
2153 
2154 	memset(chash, NO_ENTRY, sizeof(chash));
2155 
2156 	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2157 
2158 	for (i = 0; i < nr; i++) {
2159 		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2160 
2161 		/* no collision handling for now */
2162 		if (chash[h] == NO_ENTRY) {
2163 			chash[h] = i;
2164 		} else if (l[chash[h]].from == l[i].from) {
2165 			bool is_loop = true;
2166 			/* check if it is a real loop */
2167 			off = 0;
2168 			for (j = chash[h]; j < i && i + off < nr; j++, off++)
2169 				if (l[j].from != l[i + off].from) {
2170 					is_loop = false;
2171 					break;
2172 				}
2173 			if (is_loop) {
2174 				j = nr - (i + off);
2175 				if (j > 0) {
2176 					save_iterations(iter + i + off,
2177 						l + i, off);
2178 
2179 					memmove(iter + i, iter + i + off,
2180 						j * sizeof(*iter));
2181 
2182 					memmove(l + i, l + i + off,
2183 						j * sizeof(*l));
2184 				}
2185 
2186 				nr -= off;
2187 			}
2188 		}
2189 	}
2190 	return nr;
2191 }
2192 
2193 static int lbr_callchain_add_kernel_ip(struct thread *thread,
2194 				       struct callchain_cursor *cursor,
2195 				       struct perf_sample *sample,
2196 				       struct symbol **parent,
2197 				       struct addr_location *root_al,
2198 				       u64 branch_from,
2199 				       bool callee, int end)
2200 {
2201 	struct ip_callchain *chain = sample->callchain;
2202 	u8 cpumode = PERF_RECORD_MISC_USER;
2203 	int err, i;
2204 
2205 	if (callee) {
2206 		for (i = 0; i < end + 1; i++) {
2207 			err = add_callchain_ip(thread, cursor, parent,
2208 					       root_al, &cpumode, chain->ips[i],
2209 					       false, NULL, NULL, branch_from);
2210 			if (err)
2211 				return err;
2212 		}
2213 		return 0;
2214 	}
2215 
2216 	for (i = end; i >= 0; i--) {
2217 		err = add_callchain_ip(thread, cursor, parent,
2218 				       root_al, &cpumode, chain->ips[i],
2219 				       false, NULL, NULL, branch_from);
2220 		if (err)
2221 			return err;
2222 	}
2223 
2224 	return 0;
2225 }
2226 
2227 static void save_lbr_cursor_node(struct thread *thread,
2228 				 struct callchain_cursor *cursor,
2229 				 int idx)
2230 {
2231 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2232 
2233 	if (!lbr_stitch)
2234 		return;
2235 
2236 	if (cursor->pos == cursor->nr) {
2237 		lbr_stitch->prev_lbr_cursor[idx].valid = false;
2238 		return;
2239 	}
2240 
2241 	if (!cursor->curr)
2242 		cursor->curr = cursor->first;
2243 	else
2244 		cursor->curr = cursor->curr->next;
2245 	memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2246 	       sizeof(struct callchain_cursor_node));
2247 
2248 	lbr_stitch->prev_lbr_cursor[idx].valid = true;
2249 	cursor->pos++;
2250 }
2251 
2252 static int lbr_callchain_add_lbr_ip(struct thread *thread,
2253 				    struct callchain_cursor *cursor,
2254 				    struct perf_sample *sample,
2255 				    struct symbol **parent,
2256 				    struct addr_location *root_al,
2257 				    u64 *branch_from,
2258 				    bool callee)
2259 {
2260 	struct branch_stack *lbr_stack = sample->branch_stack;
2261 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2262 	u8 cpumode = PERF_RECORD_MISC_USER;
2263 	int lbr_nr = lbr_stack->nr;
2264 	struct branch_flags *flags;
2265 	int err, i;
2266 	u64 ip;
2267 
2268 	/*
2269 	 * The curr and pos are not used in writing session. They are cleared
2270 	 * in callchain_cursor_commit() when the writing session is closed.
2271 	 * Using curr and pos to track the current cursor node.
2272 	 */
2273 	if (thread->lbr_stitch) {
2274 		cursor->curr = NULL;
2275 		cursor->pos = cursor->nr;
2276 		if (cursor->nr) {
2277 			cursor->curr = cursor->first;
2278 			for (i = 0; i < (int)(cursor->nr - 1); i++)
2279 				cursor->curr = cursor->curr->next;
2280 		}
2281 	}
2282 
2283 	if (callee) {
2284 		/* Add LBR ip from first entries.to */
2285 		ip = entries[0].to;
2286 		flags = &entries[0].flags;
2287 		*branch_from = entries[0].from;
2288 		err = add_callchain_ip(thread, cursor, parent,
2289 				       root_al, &cpumode, ip,
2290 				       true, flags, NULL,
2291 				       *branch_from);
2292 		if (err)
2293 			return err;
2294 
2295 		/*
2296 		 * The number of cursor node increases.
2297 		 * Move the current cursor node.
2298 		 * But does not need to save current cursor node for entry 0.
2299 		 * It's impossible to stitch the whole LBRs of previous sample.
2300 		 */
2301 		if (thread->lbr_stitch && (cursor->pos != cursor->nr)) {
2302 			if (!cursor->curr)
2303 				cursor->curr = cursor->first;
2304 			else
2305 				cursor->curr = cursor->curr->next;
2306 			cursor->pos++;
2307 		}
2308 
2309 		/* Add LBR ip from entries.from one by one. */
2310 		for (i = 0; i < lbr_nr; i++) {
2311 			ip = entries[i].from;
2312 			flags = &entries[i].flags;
2313 			err = add_callchain_ip(thread, cursor, parent,
2314 					       root_al, &cpumode, ip,
2315 					       true, flags, NULL,
2316 					       *branch_from);
2317 			if (err)
2318 				return err;
2319 			save_lbr_cursor_node(thread, cursor, i);
2320 		}
2321 		return 0;
2322 	}
2323 
2324 	/* Add LBR ip from entries.from one by one. */
2325 	for (i = lbr_nr - 1; i >= 0; i--) {
2326 		ip = entries[i].from;
2327 		flags = &entries[i].flags;
2328 		err = add_callchain_ip(thread, cursor, parent,
2329 				       root_al, &cpumode, ip,
2330 				       true, flags, NULL,
2331 				       *branch_from);
2332 		if (err)
2333 			return err;
2334 		save_lbr_cursor_node(thread, cursor, i);
2335 	}
2336 
2337 	/* Add LBR ip from first entries.to */
2338 	ip = entries[0].to;
2339 	flags = &entries[0].flags;
2340 	*branch_from = entries[0].from;
2341 	err = add_callchain_ip(thread, cursor, parent,
2342 			       root_al, &cpumode, ip,
2343 			       true, flags, NULL,
2344 			       *branch_from);
2345 	if (err)
2346 		return err;
2347 
2348 	return 0;
2349 }
2350 
2351 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2352 					     struct callchain_cursor *cursor)
2353 {
2354 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2355 	struct callchain_cursor_node *cnode;
2356 	struct stitch_list *stitch_node;
2357 	int err;
2358 
2359 	list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2360 		cnode = &stitch_node->cursor;
2361 
2362 		err = callchain_cursor_append(cursor, cnode->ip,
2363 					      &cnode->ms,
2364 					      cnode->branch,
2365 					      &cnode->branch_flags,
2366 					      cnode->nr_loop_iter,
2367 					      cnode->iter_cycles,
2368 					      cnode->branch_from,
2369 					      cnode->srcline);
2370 		if (err)
2371 			return err;
2372 	}
2373 	return 0;
2374 }
2375 
2376 static struct stitch_list *get_stitch_node(struct thread *thread)
2377 {
2378 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2379 	struct stitch_list *stitch_node;
2380 
2381 	if (!list_empty(&lbr_stitch->free_lists)) {
2382 		stitch_node = list_first_entry(&lbr_stitch->free_lists,
2383 					       struct stitch_list, node);
2384 		list_del(&stitch_node->node);
2385 
2386 		return stitch_node;
2387 	}
2388 
2389 	return malloc(sizeof(struct stitch_list));
2390 }
2391 
2392 static bool has_stitched_lbr(struct thread *thread,
2393 			     struct perf_sample *cur,
2394 			     struct perf_sample *prev,
2395 			     unsigned int max_lbr,
2396 			     bool callee)
2397 {
2398 	struct branch_stack *cur_stack = cur->branch_stack;
2399 	struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2400 	struct branch_stack *prev_stack = prev->branch_stack;
2401 	struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2402 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2403 	int i, j, nr_identical_branches = 0;
2404 	struct stitch_list *stitch_node;
2405 	u64 cur_base, distance;
2406 
2407 	if (!cur_stack || !prev_stack)
2408 		return false;
2409 
2410 	/* Find the physical index of the base-of-stack for current sample. */
2411 	cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2412 
2413 	distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2414 						     (max_lbr + prev_stack->hw_idx - cur_base);
2415 	/* Previous sample has shorter stack. Nothing can be stitched. */
2416 	if (distance + 1 > prev_stack->nr)
2417 		return false;
2418 
2419 	/*
2420 	 * Check if there are identical LBRs between two samples.
2421 	 * Identicall LBRs must have same from, to and flags values. Also,
2422 	 * they have to be saved in the same LBR registers (same physical
2423 	 * index).
2424 	 *
2425 	 * Starts from the base-of-stack of current sample.
2426 	 */
2427 	for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2428 		if ((prev_entries[i].from != cur_entries[j].from) ||
2429 		    (prev_entries[i].to != cur_entries[j].to) ||
2430 		    (prev_entries[i].flags.value != cur_entries[j].flags.value))
2431 			break;
2432 		nr_identical_branches++;
2433 	}
2434 
2435 	if (!nr_identical_branches)
2436 		return false;
2437 
2438 	/*
2439 	 * Save the LBRs between the base-of-stack of previous sample
2440 	 * and the base-of-stack of current sample into lbr_stitch->lists.
2441 	 * These LBRs will be stitched later.
2442 	 */
2443 	for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2444 
2445 		if (!lbr_stitch->prev_lbr_cursor[i].valid)
2446 			continue;
2447 
2448 		stitch_node = get_stitch_node(thread);
2449 		if (!stitch_node)
2450 			return false;
2451 
2452 		memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2453 		       sizeof(struct callchain_cursor_node));
2454 
2455 		if (callee)
2456 			list_add(&stitch_node->node, &lbr_stitch->lists);
2457 		else
2458 			list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2459 	}
2460 
2461 	return true;
2462 }
2463 
2464 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2465 {
2466 	if (thread->lbr_stitch)
2467 		return true;
2468 
2469 	thread->lbr_stitch = zalloc(sizeof(*thread->lbr_stitch));
2470 	if (!thread->lbr_stitch)
2471 		goto err;
2472 
2473 	thread->lbr_stitch->prev_lbr_cursor = calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2474 	if (!thread->lbr_stitch->prev_lbr_cursor)
2475 		goto free_lbr_stitch;
2476 
2477 	INIT_LIST_HEAD(&thread->lbr_stitch->lists);
2478 	INIT_LIST_HEAD(&thread->lbr_stitch->free_lists);
2479 
2480 	return true;
2481 
2482 free_lbr_stitch:
2483 	zfree(&thread->lbr_stitch);
2484 err:
2485 	pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2486 	thread->lbr_stitch_enable = false;
2487 	return false;
2488 }
2489 
2490 /*
2491  * Recolve LBR callstack chain sample
2492  * Return:
2493  * 1 on success get LBR callchain information
2494  * 0 no available LBR callchain information, should try fp
2495  * negative error code on other errors.
2496  */
2497 static int resolve_lbr_callchain_sample(struct thread *thread,
2498 					struct callchain_cursor *cursor,
2499 					struct perf_sample *sample,
2500 					struct symbol **parent,
2501 					struct addr_location *root_al,
2502 					int max_stack,
2503 					unsigned int max_lbr)
2504 {
2505 	bool callee = (callchain_param.order == ORDER_CALLEE);
2506 	struct ip_callchain *chain = sample->callchain;
2507 	int chain_nr = min(max_stack, (int)chain->nr), i;
2508 	struct lbr_stitch *lbr_stitch;
2509 	bool stitched_lbr = false;
2510 	u64 branch_from = 0;
2511 	int err;
2512 
2513 	for (i = 0; i < chain_nr; i++) {
2514 		if (chain->ips[i] == PERF_CONTEXT_USER)
2515 			break;
2516 	}
2517 
2518 	/* LBR only affects the user callchain */
2519 	if (i == chain_nr)
2520 		return 0;
2521 
2522 	if (thread->lbr_stitch_enable && !sample->no_hw_idx &&
2523 	    (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2524 		lbr_stitch = thread->lbr_stitch;
2525 
2526 		stitched_lbr = has_stitched_lbr(thread, sample,
2527 						&lbr_stitch->prev_sample,
2528 						max_lbr, callee);
2529 
2530 		if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2531 			list_replace_init(&lbr_stitch->lists,
2532 					  &lbr_stitch->free_lists);
2533 		}
2534 		memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2535 	}
2536 
2537 	if (callee) {
2538 		/* Add kernel ip */
2539 		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2540 						  parent, root_al, branch_from,
2541 						  true, i);
2542 		if (err)
2543 			goto error;
2544 
2545 		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2546 					       root_al, &branch_from, true);
2547 		if (err)
2548 			goto error;
2549 
2550 		if (stitched_lbr) {
2551 			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2552 			if (err)
2553 				goto error;
2554 		}
2555 
2556 	} else {
2557 		if (stitched_lbr) {
2558 			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2559 			if (err)
2560 				goto error;
2561 		}
2562 		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2563 					       root_al, &branch_from, false);
2564 		if (err)
2565 			goto error;
2566 
2567 		/* Add kernel ip */
2568 		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2569 						  parent, root_al, branch_from,
2570 						  false, i);
2571 		if (err)
2572 			goto error;
2573 	}
2574 	return 1;
2575 
2576 error:
2577 	return (err < 0) ? err : 0;
2578 }
2579 
2580 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2581 			     struct callchain_cursor *cursor,
2582 			     struct symbol **parent,
2583 			     struct addr_location *root_al,
2584 			     u8 *cpumode, int ent)
2585 {
2586 	int err = 0;
2587 
2588 	while (--ent >= 0) {
2589 		u64 ip = chain->ips[ent];
2590 
2591 		if (ip >= PERF_CONTEXT_MAX) {
2592 			err = add_callchain_ip(thread, cursor, parent,
2593 					       root_al, cpumode, ip,
2594 					       false, NULL, NULL, 0);
2595 			break;
2596 		}
2597 	}
2598 	return err;
2599 }
2600 
2601 static int thread__resolve_callchain_sample(struct thread *thread,
2602 					    struct callchain_cursor *cursor,
2603 					    struct evsel *evsel,
2604 					    struct perf_sample *sample,
2605 					    struct symbol **parent,
2606 					    struct addr_location *root_al,
2607 					    int max_stack)
2608 {
2609 	struct branch_stack *branch = sample->branch_stack;
2610 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2611 	struct ip_callchain *chain = sample->callchain;
2612 	int chain_nr = 0;
2613 	u8 cpumode = PERF_RECORD_MISC_USER;
2614 	int i, j, err, nr_entries;
2615 	int skip_idx = -1;
2616 	int first_call = 0;
2617 
2618 	if (chain)
2619 		chain_nr = chain->nr;
2620 
2621 	if (evsel__has_branch_callstack(evsel)) {
2622 		struct perf_env *env = evsel__env(evsel);
2623 
2624 		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2625 						   root_al, max_stack,
2626 						   !env ? 0 : env->max_branches);
2627 		if (err)
2628 			return (err < 0) ? err : 0;
2629 	}
2630 
2631 	/*
2632 	 * Based on DWARF debug information, some architectures skip
2633 	 * a callchain entry saved by the kernel.
2634 	 */
2635 	skip_idx = arch_skip_callchain_idx(thread, chain);
2636 
2637 	/*
2638 	 * Add branches to call stack for easier browsing. This gives
2639 	 * more context for a sample than just the callers.
2640 	 *
2641 	 * This uses individual histograms of paths compared to the
2642 	 * aggregated histograms the normal LBR mode uses.
2643 	 *
2644 	 * Limitations for now:
2645 	 * - No extra filters
2646 	 * - No annotations (should annotate somehow)
2647 	 */
2648 
2649 	if (branch && callchain_param.branch_callstack) {
2650 		int nr = min(max_stack, (int)branch->nr);
2651 		struct branch_entry be[nr];
2652 		struct iterations iter[nr];
2653 
2654 		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2655 			pr_warning("corrupted branch chain. skipping...\n");
2656 			goto check_calls;
2657 		}
2658 
2659 		for (i = 0; i < nr; i++) {
2660 			if (callchain_param.order == ORDER_CALLEE) {
2661 				be[i] = entries[i];
2662 
2663 				if (chain == NULL)
2664 					continue;
2665 
2666 				/*
2667 				 * Check for overlap into the callchain.
2668 				 * The return address is one off compared to
2669 				 * the branch entry. To adjust for this
2670 				 * assume the calling instruction is not longer
2671 				 * than 8 bytes.
2672 				 */
2673 				if (i == skip_idx ||
2674 				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2675 					first_call++;
2676 				else if (be[i].from < chain->ips[first_call] &&
2677 				    be[i].from >= chain->ips[first_call] - 8)
2678 					first_call++;
2679 			} else
2680 				be[i] = entries[branch->nr - i - 1];
2681 		}
2682 
2683 		memset(iter, 0, sizeof(struct iterations) * nr);
2684 		nr = remove_loops(be, nr, iter);
2685 
2686 		for (i = 0; i < nr; i++) {
2687 			err = add_callchain_ip(thread, cursor, parent,
2688 					       root_al,
2689 					       NULL, be[i].to,
2690 					       true, &be[i].flags,
2691 					       NULL, be[i].from);
2692 
2693 			if (!err)
2694 				err = add_callchain_ip(thread, cursor, parent, root_al,
2695 						       NULL, be[i].from,
2696 						       true, &be[i].flags,
2697 						       &iter[i], 0);
2698 			if (err == -EINVAL)
2699 				break;
2700 			if (err)
2701 				return err;
2702 		}
2703 
2704 		if (chain_nr == 0)
2705 			return 0;
2706 
2707 		chain_nr -= nr;
2708 	}
2709 
2710 check_calls:
2711 	if (chain && callchain_param.order != ORDER_CALLEE) {
2712 		err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2713 					&cpumode, chain->nr - first_call);
2714 		if (err)
2715 			return (err < 0) ? err : 0;
2716 	}
2717 	for (i = first_call, nr_entries = 0;
2718 	     i < chain_nr && nr_entries < max_stack; i++) {
2719 		u64 ip;
2720 
2721 		if (callchain_param.order == ORDER_CALLEE)
2722 			j = i;
2723 		else
2724 			j = chain->nr - i - 1;
2725 
2726 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2727 		if (j == skip_idx)
2728 			continue;
2729 #endif
2730 		ip = chain->ips[j];
2731 		if (ip < PERF_CONTEXT_MAX)
2732                        ++nr_entries;
2733 		else if (callchain_param.order != ORDER_CALLEE) {
2734 			err = find_prev_cpumode(chain, thread, cursor, parent,
2735 						root_al, &cpumode, j);
2736 			if (err)
2737 				return (err < 0) ? err : 0;
2738 			continue;
2739 		}
2740 
2741 		err = add_callchain_ip(thread, cursor, parent,
2742 				       root_al, &cpumode, ip,
2743 				       false, NULL, NULL, 0);
2744 
2745 		if (err)
2746 			return (err < 0) ? err : 0;
2747 	}
2748 
2749 	return 0;
2750 }
2751 
2752 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
2753 {
2754 	struct symbol *sym = ms->sym;
2755 	struct map *map = ms->map;
2756 	struct inline_node *inline_node;
2757 	struct inline_list *ilist;
2758 	u64 addr;
2759 	int ret = 1;
2760 
2761 	if (!symbol_conf.inline_name || !map || !sym)
2762 		return ret;
2763 
2764 	addr = map__map_ip(map, ip);
2765 	addr = map__rip_2objdump(map, addr);
2766 
2767 	inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2768 	if (!inline_node) {
2769 		inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2770 		if (!inline_node)
2771 			return ret;
2772 		inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2773 	}
2774 
2775 	list_for_each_entry(ilist, &inline_node->val, list) {
2776 		struct map_symbol ilist_ms = {
2777 			.maps = ms->maps,
2778 			.map = map,
2779 			.sym = ilist->symbol,
2780 		};
2781 		ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
2782 					      NULL, 0, 0, 0, ilist->srcline);
2783 
2784 		if (ret != 0)
2785 			return ret;
2786 	}
2787 
2788 	return ret;
2789 }
2790 
2791 static int unwind_entry(struct unwind_entry *entry, void *arg)
2792 {
2793 	struct callchain_cursor *cursor = arg;
2794 	const char *srcline = NULL;
2795 	u64 addr = entry->ip;
2796 
2797 	if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
2798 		return 0;
2799 
2800 	if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
2801 		return 0;
2802 
2803 	/*
2804 	 * Convert entry->ip from a virtual address to an offset in
2805 	 * its corresponding binary.
2806 	 */
2807 	if (entry->ms.map)
2808 		addr = map__map_ip(entry->ms.map, entry->ip);
2809 
2810 	srcline = callchain_srcline(&entry->ms, addr);
2811 	return callchain_cursor_append(cursor, entry->ip, &entry->ms,
2812 				       false, NULL, 0, 0, 0, srcline);
2813 }
2814 
2815 static int thread__resolve_callchain_unwind(struct thread *thread,
2816 					    struct callchain_cursor *cursor,
2817 					    struct evsel *evsel,
2818 					    struct perf_sample *sample,
2819 					    int max_stack)
2820 {
2821 	/* Can we do dwarf post unwind? */
2822 	if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2823 	      (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2824 		return 0;
2825 
2826 	/* Bail out if nothing was captured. */
2827 	if ((!sample->user_regs.regs) ||
2828 	    (!sample->user_stack.size))
2829 		return 0;
2830 
2831 	return unwind__get_entries(unwind_entry, cursor,
2832 				   thread, sample, max_stack);
2833 }
2834 
2835 int thread__resolve_callchain(struct thread *thread,
2836 			      struct callchain_cursor *cursor,
2837 			      struct evsel *evsel,
2838 			      struct perf_sample *sample,
2839 			      struct symbol **parent,
2840 			      struct addr_location *root_al,
2841 			      int max_stack)
2842 {
2843 	int ret = 0;
2844 
2845 	callchain_cursor_reset(cursor);
2846 
2847 	if (callchain_param.order == ORDER_CALLEE) {
2848 		ret = thread__resolve_callchain_sample(thread, cursor,
2849 						       evsel, sample,
2850 						       parent, root_al,
2851 						       max_stack);
2852 		if (ret)
2853 			return ret;
2854 		ret = thread__resolve_callchain_unwind(thread, cursor,
2855 						       evsel, sample,
2856 						       max_stack);
2857 	} else {
2858 		ret = thread__resolve_callchain_unwind(thread, cursor,
2859 						       evsel, sample,
2860 						       max_stack);
2861 		if (ret)
2862 			return ret;
2863 		ret = thread__resolve_callchain_sample(thread, cursor,
2864 						       evsel, sample,
2865 						       parent, root_al,
2866 						       max_stack);
2867 	}
2868 
2869 	return ret;
2870 }
2871 
2872 int machine__for_each_thread(struct machine *machine,
2873 			     int (*fn)(struct thread *thread, void *p),
2874 			     void *priv)
2875 {
2876 	struct threads *threads;
2877 	struct rb_node *nd;
2878 	struct thread *thread;
2879 	int rc = 0;
2880 	int i;
2881 
2882 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2883 		threads = &machine->threads[i];
2884 		for (nd = rb_first_cached(&threads->entries); nd;
2885 		     nd = rb_next(nd)) {
2886 			thread = rb_entry(nd, struct thread, rb_node);
2887 			rc = fn(thread, priv);
2888 			if (rc != 0)
2889 				return rc;
2890 		}
2891 
2892 		list_for_each_entry(thread, &threads->dead, node) {
2893 			rc = fn(thread, priv);
2894 			if (rc != 0)
2895 				return rc;
2896 		}
2897 	}
2898 	return rc;
2899 }
2900 
2901 int machines__for_each_thread(struct machines *machines,
2902 			      int (*fn)(struct thread *thread, void *p),
2903 			      void *priv)
2904 {
2905 	struct rb_node *nd;
2906 	int rc = 0;
2907 
2908 	rc = machine__for_each_thread(&machines->host, fn, priv);
2909 	if (rc != 0)
2910 		return rc;
2911 
2912 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
2913 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
2914 
2915 		rc = machine__for_each_thread(machine, fn, priv);
2916 		if (rc != 0)
2917 			return rc;
2918 	}
2919 	return rc;
2920 }
2921 
2922 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2923 {
2924 	int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2925 
2926 	if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid)
2927 		return -1;
2928 
2929 	return machine->current_tid[cpu];
2930 }
2931 
2932 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2933 			     pid_t tid)
2934 {
2935 	struct thread *thread;
2936 	int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2937 
2938 	if (cpu < 0)
2939 		return -EINVAL;
2940 
2941 	if (!machine->current_tid) {
2942 		int i;
2943 
2944 		machine->current_tid = calloc(nr_cpus, sizeof(pid_t));
2945 		if (!machine->current_tid)
2946 			return -ENOMEM;
2947 		for (i = 0; i < nr_cpus; i++)
2948 			machine->current_tid[i] = -1;
2949 	}
2950 
2951 	if (cpu >= nr_cpus) {
2952 		pr_err("Requested CPU %d too large. ", cpu);
2953 		pr_err("Consider raising MAX_NR_CPUS\n");
2954 		return -EINVAL;
2955 	}
2956 
2957 	machine->current_tid[cpu] = tid;
2958 
2959 	thread = machine__findnew_thread(machine, pid, tid);
2960 	if (!thread)
2961 		return -ENOMEM;
2962 
2963 	thread->cpu = cpu;
2964 	thread__put(thread);
2965 
2966 	return 0;
2967 }
2968 
2969 /*
2970  * Compares the raw arch string. N.B. see instead perf_env__arch() if a
2971  * normalized arch is needed.
2972  */
2973 bool machine__is(struct machine *machine, const char *arch)
2974 {
2975 	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
2976 }
2977 
2978 int machine__nr_cpus_avail(struct machine *machine)
2979 {
2980 	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
2981 }
2982 
2983 int machine__get_kernel_start(struct machine *machine)
2984 {
2985 	struct map *map = machine__kernel_map(machine);
2986 	int err = 0;
2987 
2988 	/*
2989 	 * The only addresses above 2^63 are kernel addresses of a 64-bit
2990 	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
2991 	 * all addresses including kernel addresses are less than 2^32.  In
2992 	 * that case (32-bit system), if the kernel mapping is unknown, all
2993 	 * addresses will be assumed to be in user space - see
2994 	 * machine__kernel_ip().
2995 	 */
2996 	machine->kernel_start = 1ULL << 63;
2997 	if (map) {
2998 		err = map__load(map);
2999 		/*
3000 		 * On x86_64, PTI entry trampolines are less than the
3001 		 * start of kernel text, but still above 2^63. So leave
3002 		 * kernel_start = 1ULL << 63 for x86_64.
3003 		 */
3004 		if (!err && !machine__is(machine, "x86_64"))
3005 			machine->kernel_start = map->start;
3006 	}
3007 	return err;
3008 }
3009 
3010 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3011 {
3012 	u8 addr_cpumode = cpumode;
3013 	bool kernel_ip;
3014 
3015 	if (!machine->single_address_space)
3016 		goto out;
3017 
3018 	kernel_ip = machine__kernel_ip(machine, addr);
3019 	switch (cpumode) {
3020 	case PERF_RECORD_MISC_KERNEL:
3021 	case PERF_RECORD_MISC_USER:
3022 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3023 					   PERF_RECORD_MISC_USER;
3024 		break;
3025 	case PERF_RECORD_MISC_GUEST_KERNEL:
3026 	case PERF_RECORD_MISC_GUEST_USER:
3027 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3028 					   PERF_RECORD_MISC_GUEST_USER;
3029 		break;
3030 	default:
3031 		break;
3032 	}
3033 out:
3034 	return addr_cpumode;
3035 }
3036 
3037 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
3038 {
3039 	return dsos__findnew_id(&machine->dsos, filename, id);
3040 }
3041 
3042 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3043 {
3044 	return machine__findnew_dso_id(machine, filename, NULL);
3045 }
3046 
3047 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3048 {
3049 	struct machine *machine = vmachine;
3050 	struct map *map;
3051 	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3052 
3053 	if (sym == NULL)
3054 		return NULL;
3055 
3056 	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
3057 	*addrp = map->unmap_ip(map, sym->start);
3058 	return sym->name;
3059 }
3060